mmap.c revision 659ace584e7a9fdda872eab4d6d7be1e0afb6cae
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/slab.h>
10#include <linux/backing-dev.h>
11#include <linux/mm.h>
12#include <linux/shm.h>
13#include <linux/mman.h>
14#include <linux/pagemap.h>
15#include <linux/swap.h>
16#include <linux/syscalls.h>
17#include <linux/capability.h>
18#include <linux/init.h>
19#include <linux/file.h>
20#include <linux/fs.h>
21#include <linux/personality.h>
22#include <linux/security.h>
23#include <linux/hugetlb.h>
24#include <linux/profile.h>
25#include <linux/module.h>
26#include <linux/mount.h>
27#include <linux/mempolicy.h>
28#include <linux/rmap.h>
29#include <linux/mmu_notifier.h>
30#include <linux/perf_event.h>
31
32#include <asm/uaccess.h>
33#include <asm/cacheflush.h>
34#include <asm/tlb.h>
35#include <asm/mmu_context.h>
36
37#include "internal.h"
38
39#ifndef arch_mmap_check
40#define arch_mmap_check(addr, len, flags)	(0)
41#endif
42
43#ifndef arch_rebalance_pgtables
44#define arch_rebalance_pgtables(addr, len)		(addr)
45#endif
46
47static void unmap_region(struct mm_struct *mm,
48		struct vm_area_struct *vma, struct vm_area_struct *prev,
49		unsigned long start, unsigned long end);
50
51/*
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
54 */
55#undef DEBUG_MM_RB
56
57/* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware.  The expected
59 * behavior is in parens:
60 *
61 * map_type	prot
62 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
63 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
64 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
65 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
66 *
67 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
68 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
69 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
70 *
71 */
72pgprot_t protection_map[16] = {
73	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75};
76
77pgprot_t vm_get_page_prot(unsigned long vm_flags)
78{
79	return __pgprot(pgprot_val(protection_map[vm_flags &
80				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81			pgprot_val(arch_vm_get_page_prot(vm_flags)));
82}
83EXPORT_SYMBOL(vm_get_page_prot);
84
85int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
86int sysctl_overcommit_ratio = 50;	/* default is 50% */
87int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88struct percpu_counter vm_committed_as;
89
90/*
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
94 *
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
97 *
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
100 *
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102 *
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
105 */
106int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107{
108	unsigned long free, allowed;
109
110	vm_acct_memory(pages);
111
112	/*
113	 * Sometimes we want to use more memory than we have
114	 */
115	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116		return 0;
117
118	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119		unsigned long n;
120
121		free = global_page_state(NR_FILE_PAGES);
122		free += nr_swap_pages;
123
124		/*
125		 * Any slabs which are created with the
126		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127		 * which are reclaimable, under pressure.  The dentry
128		 * cache and most inode caches should fall into this
129		 */
130		free += global_page_state(NR_SLAB_RECLAIMABLE);
131
132		/*
133		 * Leave the last 3% for root
134		 */
135		if (!cap_sys_admin)
136			free -= free / 32;
137
138		if (free > pages)
139			return 0;
140
141		/*
142		 * nr_free_pages() is very expensive on large systems,
143		 * only call if we're about to fail.
144		 */
145		n = nr_free_pages();
146
147		/*
148		 * Leave reserved pages. The pages are not for anonymous pages.
149		 */
150		if (n <= totalreserve_pages)
151			goto error;
152		else
153			n -= totalreserve_pages;
154
155		/*
156		 * Leave the last 3% for root
157		 */
158		if (!cap_sys_admin)
159			n -= n / 32;
160		free += n;
161
162		if (free > pages)
163			return 0;
164
165		goto error;
166	}
167
168	allowed = (totalram_pages - hugetlb_total_pages())
169	       	* sysctl_overcommit_ratio / 100;
170	/*
171	 * Leave the last 3% for root
172	 */
173	if (!cap_sys_admin)
174		allowed -= allowed / 32;
175	allowed += total_swap_pages;
176
177	/* Don't let a single process grow too big:
178	   leave 3% of the size of this process for other processes */
179	if (mm)
180		allowed -= mm->total_vm / 32;
181
182	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183		return 0;
184error:
185	vm_unacct_memory(pages);
186
187	return -ENOMEM;
188}
189
190/*
191 * Requires inode->i_mapping->i_mmap_lock
192 */
193static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194		struct file *file, struct address_space *mapping)
195{
196	if (vma->vm_flags & VM_DENYWRITE)
197		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198	if (vma->vm_flags & VM_SHARED)
199		mapping->i_mmap_writable--;
200
201	flush_dcache_mmap_lock(mapping);
202	if (unlikely(vma->vm_flags & VM_NONLINEAR))
203		list_del_init(&vma->shared.vm_set.list);
204	else
205		vma_prio_tree_remove(vma, &mapping->i_mmap);
206	flush_dcache_mmap_unlock(mapping);
207}
208
209/*
210 * Unlink a file-based vm structure from its prio_tree, to hide
211 * vma from rmap and vmtruncate before freeing its page tables.
212 */
213void unlink_file_vma(struct vm_area_struct *vma)
214{
215	struct file *file = vma->vm_file;
216
217	if (file) {
218		struct address_space *mapping = file->f_mapping;
219		spin_lock(&mapping->i_mmap_lock);
220		__remove_shared_vm_struct(vma, file, mapping);
221		spin_unlock(&mapping->i_mmap_lock);
222	}
223}
224
225/*
226 * Close a vm structure and free it, returning the next.
227 */
228static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229{
230	struct vm_area_struct *next = vma->vm_next;
231
232	might_sleep();
233	if (vma->vm_ops && vma->vm_ops->close)
234		vma->vm_ops->close(vma);
235	if (vma->vm_file) {
236		fput(vma->vm_file);
237		if (vma->vm_flags & VM_EXECUTABLE)
238			removed_exe_file_vma(vma->vm_mm);
239	}
240	mpol_put(vma_policy(vma));
241	kmem_cache_free(vm_area_cachep, vma);
242	return next;
243}
244
245SYSCALL_DEFINE1(brk, unsigned long, brk)
246{
247	unsigned long rlim, retval;
248	unsigned long newbrk, oldbrk;
249	struct mm_struct *mm = current->mm;
250	unsigned long min_brk;
251
252	down_write(&mm->mmap_sem);
253
254#ifdef CONFIG_COMPAT_BRK
255	min_brk = mm->end_code;
256#else
257	min_brk = mm->start_brk;
258#endif
259	if (brk < min_brk)
260		goto out;
261
262	/*
263	 * Check against rlimit here. If this check is done later after the test
264	 * of oldbrk with newbrk then it can escape the test and let the data
265	 * segment grow beyond its set limit the in case where the limit is
266	 * not page aligned -Ram Gupta
267	 */
268	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
269	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270			(mm->end_data - mm->start_data) > rlim)
271		goto out;
272
273	newbrk = PAGE_ALIGN(brk);
274	oldbrk = PAGE_ALIGN(mm->brk);
275	if (oldbrk == newbrk)
276		goto set_brk;
277
278	/* Always allow shrinking brk. */
279	if (brk <= mm->brk) {
280		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281			goto set_brk;
282		goto out;
283	}
284
285	/* Check against existing mmap mappings. */
286	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287		goto out;
288
289	/* Ok, looks good - let it rip. */
290	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291		goto out;
292set_brk:
293	mm->brk = brk;
294out:
295	retval = mm->brk;
296	up_write(&mm->mmap_sem);
297	return retval;
298}
299
300#ifdef DEBUG_MM_RB
301static int browse_rb(struct rb_root *root)
302{
303	int i = 0, j;
304	struct rb_node *nd, *pn = NULL;
305	unsigned long prev = 0, pend = 0;
306
307	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308		struct vm_area_struct *vma;
309		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310		if (vma->vm_start < prev)
311			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312		if (vma->vm_start < pend)
313			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314		if (vma->vm_start > vma->vm_end)
315			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316		i++;
317		pn = nd;
318		prev = vma->vm_start;
319		pend = vma->vm_end;
320	}
321	j = 0;
322	for (nd = pn; nd; nd = rb_prev(nd)) {
323		j++;
324	}
325	if (i != j)
326		printk("backwards %d, forwards %d\n", j, i), i = 0;
327	return i;
328}
329
330void validate_mm(struct mm_struct *mm)
331{
332	int bug = 0;
333	int i = 0;
334	struct vm_area_struct *tmp = mm->mmap;
335	while (tmp) {
336		tmp = tmp->vm_next;
337		i++;
338	}
339	if (i != mm->map_count)
340		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341	i = browse_rb(&mm->mm_rb);
342	if (i != mm->map_count)
343		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344	BUG_ON(bug);
345}
346#else
347#define validate_mm(mm) do { } while (0)
348#endif
349
350static struct vm_area_struct *
351find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352		struct vm_area_struct **pprev, struct rb_node ***rb_link,
353		struct rb_node ** rb_parent)
354{
355	struct vm_area_struct * vma;
356	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357
358	__rb_link = &mm->mm_rb.rb_node;
359	rb_prev = __rb_parent = NULL;
360	vma = NULL;
361
362	while (*__rb_link) {
363		struct vm_area_struct *vma_tmp;
364
365		__rb_parent = *__rb_link;
366		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367
368		if (vma_tmp->vm_end > addr) {
369			vma = vma_tmp;
370			if (vma_tmp->vm_start <= addr)
371				break;
372			__rb_link = &__rb_parent->rb_left;
373		} else {
374			rb_prev = __rb_parent;
375			__rb_link = &__rb_parent->rb_right;
376		}
377	}
378
379	*pprev = NULL;
380	if (rb_prev)
381		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382	*rb_link = __rb_link;
383	*rb_parent = __rb_parent;
384	return vma;
385}
386
387static inline void
388__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389		struct vm_area_struct *prev, struct rb_node *rb_parent)
390{
391	if (prev) {
392		vma->vm_next = prev->vm_next;
393		prev->vm_next = vma;
394	} else {
395		mm->mmap = vma;
396		if (rb_parent)
397			vma->vm_next = rb_entry(rb_parent,
398					struct vm_area_struct, vm_rb);
399		else
400			vma->vm_next = NULL;
401	}
402}
403
404void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
405		struct rb_node **rb_link, struct rb_node *rb_parent)
406{
407	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
408	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
409}
410
411static void __vma_link_file(struct vm_area_struct *vma)
412{
413	struct file *file;
414
415	file = vma->vm_file;
416	if (file) {
417		struct address_space *mapping = file->f_mapping;
418
419		if (vma->vm_flags & VM_DENYWRITE)
420			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
421		if (vma->vm_flags & VM_SHARED)
422			mapping->i_mmap_writable++;
423
424		flush_dcache_mmap_lock(mapping);
425		if (unlikely(vma->vm_flags & VM_NONLINEAR))
426			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
427		else
428			vma_prio_tree_insert(vma, &mapping->i_mmap);
429		flush_dcache_mmap_unlock(mapping);
430	}
431}
432
433static void
434__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435	struct vm_area_struct *prev, struct rb_node **rb_link,
436	struct rb_node *rb_parent)
437{
438	__vma_link_list(mm, vma, prev, rb_parent);
439	__vma_link_rb(mm, vma, rb_link, rb_parent);
440	__anon_vma_link(vma);
441}
442
443static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
444			struct vm_area_struct *prev, struct rb_node **rb_link,
445			struct rb_node *rb_parent)
446{
447	struct address_space *mapping = NULL;
448
449	if (vma->vm_file)
450		mapping = vma->vm_file->f_mapping;
451
452	if (mapping) {
453		spin_lock(&mapping->i_mmap_lock);
454		vma->vm_truncate_count = mapping->truncate_count;
455	}
456	anon_vma_lock(vma);
457
458	__vma_link(mm, vma, prev, rb_link, rb_parent);
459	__vma_link_file(vma);
460
461	anon_vma_unlock(vma);
462	if (mapping)
463		spin_unlock(&mapping->i_mmap_lock);
464
465	mm->map_count++;
466	validate_mm(mm);
467}
468
469/*
470 * Helper for vma_adjust in the split_vma insert case:
471 * insert vm structure into list and rbtree and anon_vma,
472 * but it has already been inserted into prio_tree earlier.
473 */
474static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
475{
476	struct vm_area_struct *__vma, *prev;
477	struct rb_node **rb_link, *rb_parent;
478
479	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
480	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
481	__vma_link(mm, vma, prev, rb_link, rb_parent);
482	mm->map_count++;
483}
484
485static inline void
486__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
487		struct vm_area_struct *prev)
488{
489	prev->vm_next = vma->vm_next;
490	rb_erase(&vma->vm_rb, &mm->mm_rb);
491	if (mm->mmap_cache == vma)
492		mm->mmap_cache = prev;
493}
494
495/*
496 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
497 * is already present in an i_mmap tree without adjusting the tree.
498 * The following helper function should be used when such adjustments
499 * are necessary.  The "insert" vma (if any) is to be inserted
500 * before we drop the necessary locks.
501 */
502void vma_adjust(struct vm_area_struct *vma, unsigned long start,
503	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
504{
505	struct mm_struct *mm = vma->vm_mm;
506	struct vm_area_struct *next = vma->vm_next;
507	struct vm_area_struct *importer = NULL;
508	struct address_space *mapping = NULL;
509	struct prio_tree_root *root = NULL;
510	struct file *file = vma->vm_file;
511	struct anon_vma *anon_vma = NULL;
512	long adjust_next = 0;
513	int remove_next = 0;
514
515	if (next && !insert) {
516		if (end >= next->vm_end) {
517			/*
518			 * vma expands, overlapping all the next, and
519			 * perhaps the one after too (mprotect case 6).
520			 */
521again:			remove_next = 1 + (end > next->vm_end);
522			end = next->vm_end;
523			anon_vma = next->anon_vma;
524			importer = vma;
525		} else if (end > next->vm_start) {
526			/*
527			 * vma expands, overlapping part of the next:
528			 * mprotect case 5 shifting the boundary up.
529			 */
530			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
531			anon_vma = next->anon_vma;
532			importer = vma;
533		} else if (end < vma->vm_end) {
534			/*
535			 * vma shrinks, and !insert tells it's not
536			 * split_vma inserting another: so it must be
537			 * mprotect case 4 shifting the boundary down.
538			 */
539			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
540			anon_vma = next->anon_vma;
541			importer = next;
542		}
543	}
544
545	if (file) {
546		mapping = file->f_mapping;
547		if (!(vma->vm_flags & VM_NONLINEAR))
548			root = &mapping->i_mmap;
549		spin_lock(&mapping->i_mmap_lock);
550		if (importer &&
551		    vma->vm_truncate_count != next->vm_truncate_count) {
552			/*
553			 * unmap_mapping_range might be in progress:
554			 * ensure that the expanding vma is rescanned.
555			 */
556			importer->vm_truncate_count = 0;
557		}
558		if (insert) {
559			insert->vm_truncate_count = vma->vm_truncate_count;
560			/*
561			 * Put into prio_tree now, so instantiated pages
562			 * are visible to arm/parisc __flush_dcache_page
563			 * throughout; but we cannot insert into address
564			 * space until vma start or end is updated.
565			 */
566			__vma_link_file(insert);
567		}
568	}
569
570	/*
571	 * When changing only vma->vm_end, we don't really need
572	 * anon_vma lock.
573	 */
574	if (vma->anon_vma && (insert || importer || start != vma->vm_start))
575		anon_vma = vma->anon_vma;
576	if (anon_vma) {
577		spin_lock(&anon_vma->lock);
578		/*
579		 * Easily overlooked: when mprotect shifts the boundary,
580		 * make sure the expanding vma has anon_vma set if the
581		 * shrinking vma had, to cover any anon pages imported.
582		 */
583		if (importer && !importer->anon_vma) {
584			importer->anon_vma = anon_vma;
585			__anon_vma_link(importer);
586		}
587	}
588
589	if (root) {
590		flush_dcache_mmap_lock(mapping);
591		vma_prio_tree_remove(vma, root);
592		if (adjust_next)
593			vma_prio_tree_remove(next, root);
594	}
595
596	vma->vm_start = start;
597	vma->vm_end = end;
598	vma->vm_pgoff = pgoff;
599	if (adjust_next) {
600		next->vm_start += adjust_next << PAGE_SHIFT;
601		next->vm_pgoff += adjust_next;
602	}
603
604	if (root) {
605		if (adjust_next)
606			vma_prio_tree_insert(next, root);
607		vma_prio_tree_insert(vma, root);
608		flush_dcache_mmap_unlock(mapping);
609	}
610
611	if (remove_next) {
612		/*
613		 * vma_merge has merged next into vma, and needs
614		 * us to remove next before dropping the locks.
615		 */
616		__vma_unlink(mm, next, vma);
617		if (file)
618			__remove_shared_vm_struct(next, file, mapping);
619		if (next->anon_vma)
620			__anon_vma_merge(vma, next);
621	} else if (insert) {
622		/*
623		 * split_vma has split insert from vma, and needs
624		 * us to insert it before dropping the locks
625		 * (it may either follow vma or precede it).
626		 */
627		__insert_vm_struct(mm, insert);
628	}
629
630	if (anon_vma)
631		spin_unlock(&anon_vma->lock);
632	if (mapping)
633		spin_unlock(&mapping->i_mmap_lock);
634
635	if (remove_next) {
636		if (file) {
637			fput(file);
638			if (next->vm_flags & VM_EXECUTABLE)
639				removed_exe_file_vma(mm);
640		}
641		mm->map_count--;
642		mpol_put(vma_policy(next));
643		kmem_cache_free(vm_area_cachep, next);
644		/*
645		 * In mprotect's case 6 (see comments on vma_merge),
646		 * we must remove another next too. It would clutter
647		 * up the code too much to do both in one go.
648		 */
649		if (remove_next == 2) {
650			next = vma->vm_next;
651			goto again;
652		}
653	}
654
655	validate_mm(mm);
656}
657
658/*
659 * If the vma has a ->close operation then the driver probably needs to release
660 * per-vma resources, so we don't attempt to merge those.
661 */
662static inline int is_mergeable_vma(struct vm_area_struct *vma,
663			struct file *file, unsigned long vm_flags)
664{
665	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
666	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
667		return 0;
668	if (vma->vm_file != file)
669		return 0;
670	if (vma->vm_ops && vma->vm_ops->close)
671		return 0;
672	return 1;
673}
674
675static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
676					struct anon_vma *anon_vma2)
677{
678	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
679}
680
681/*
682 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
683 * in front of (at a lower virtual address and file offset than) the vma.
684 *
685 * We cannot merge two vmas if they have differently assigned (non-NULL)
686 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
687 *
688 * We don't check here for the merged mmap wrapping around the end of pagecache
689 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
690 * wrap, nor mmaps which cover the final page at index -1UL.
691 */
692static int
693can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
694	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
695{
696	if (is_mergeable_vma(vma, file, vm_flags) &&
697	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
698		if (vma->vm_pgoff == vm_pgoff)
699			return 1;
700	}
701	return 0;
702}
703
704/*
705 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
706 * beyond (at a higher virtual address and file offset than) the vma.
707 *
708 * We cannot merge two vmas if they have differently assigned (non-NULL)
709 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
710 */
711static int
712can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
713	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
714{
715	if (is_mergeable_vma(vma, file, vm_flags) &&
716	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
717		pgoff_t vm_pglen;
718		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
719		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
720			return 1;
721	}
722	return 0;
723}
724
725/*
726 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
727 * whether that can be merged with its predecessor or its successor.
728 * Or both (it neatly fills a hole).
729 *
730 * In most cases - when called for mmap, brk or mremap - [addr,end) is
731 * certain not to be mapped by the time vma_merge is called; but when
732 * called for mprotect, it is certain to be already mapped (either at
733 * an offset within prev, or at the start of next), and the flags of
734 * this area are about to be changed to vm_flags - and the no-change
735 * case has already been eliminated.
736 *
737 * The following mprotect cases have to be considered, where AAAA is
738 * the area passed down from mprotect_fixup, never extending beyond one
739 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
740 *
741 *     AAAA             AAAA                AAAA          AAAA
742 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
743 *    cannot merge    might become    might become    might become
744 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
745 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
746 *    mremap move:                                    PPPPNNNNNNNN 8
747 *        AAAA
748 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
749 *    might become    case 1 below    case 2 below    case 3 below
750 *
751 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
752 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
753 */
754struct vm_area_struct *vma_merge(struct mm_struct *mm,
755			struct vm_area_struct *prev, unsigned long addr,
756			unsigned long end, unsigned long vm_flags,
757		     	struct anon_vma *anon_vma, struct file *file,
758			pgoff_t pgoff, struct mempolicy *policy)
759{
760	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
761	struct vm_area_struct *area, *next;
762
763	/*
764	 * We later require that vma->vm_flags == vm_flags,
765	 * so this tests vma->vm_flags & VM_SPECIAL, too.
766	 */
767	if (vm_flags & VM_SPECIAL)
768		return NULL;
769
770	if (prev)
771		next = prev->vm_next;
772	else
773		next = mm->mmap;
774	area = next;
775	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
776		next = next->vm_next;
777
778	/*
779	 * Can it merge with the predecessor?
780	 */
781	if (prev && prev->vm_end == addr &&
782  			mpol_equal(vma_policy(prev), policy) &&
783			can_vma_merge_after(prev, vm_flags,
784						anon_vma, file, pgoff)) {
785		/*
786		 * OK, it can.  Can we now merge in the successor as well?
787		 */
788		if (next && end == next->vm_start &&
789				mpol_equal(policy, vma_policy(next)) &&
790				can_vma_merge_before(next, vm_flags,
791					anon_vma, file, pgoff+pglen) &&
792				is_mergeable_anon_vma(prev->anon_vma,
793						      next->anon_vma)) {
794							/* cases 1, 6 */
795			vma_adjust(prev, prev->vm_start,
796				next->vm_end, prev->vm_pgoff, NULL);
797		} else					/* cases 2, 5, 7 */
798			vma_adjust(prev, prev->vm_start,
799				end, prev->vm_pgoff, NULL);
800		return prev;
801	}
802
803	/*
804	 * Can this new request be merged in front of next?
805	 */
806	if (next && end == next->vm_start &&
807 			mpol_equal(policy, vma_policy(next)) &&
808			can_vma_merge_before(next, vm_flags,
809					anon_vma, file, pgoff+pglen)) {
810		if (prev && addr < prev->vm_end)	/* case 4 */
811			vma_adjust(prev, prev->vm_start,
812				addr, prev->vm_pgoff, NULL);
813		else					/* cases 3, 8 */
814			vma_adjust(area, addr, next->vm_end,
815				next->vm_pgoff - pglen, NULL);
816		return area;
817	}
818
819	return NULL;
820}
821
822/*
823 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
824 * neighbouring vmas for a suitable anon_vma, before it goes off
825 * to allocate a new anon_vma.  It checks because a repetitive
826 * sequence of mprotects and faults may otherwise lead to distinct
827 * anon_vmas being allocated, preventing vma merge in subsequent
828 * mprotect.
829 */
830struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
831{
832	struct vm_area_struct *near;
833	unsigned long vm_flags;
834
835	near = vma->vm_next;
836	if (!near)
837		goto try_prev;
838
839	/*
840	 * Since only mprotect tries to remerge vmas, match flags
841	 * which might be mprotected into each other later on.
842	 * Neither mlock nor madvise tries to remerge at present,
843	 * so leave their flags as obstructing a merge.
844	 */
845	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
846	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
847
848	if (near->anon_vma && vma->vm_end == near->vm_start &&
849 			mpol_equal(vma_policy(vma), vma_policy(near)) &&
850			can_vma_merge_before(near, vm_flags,
851				NULL, vma->vm_file, vma->vm_pgoff +
852				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
853		return near->anon_vma;
854try_prev:
855	/*
856	 * It is potentially slow to have to call find_vma_prev here.
857	 * But it's only on the first write fault on the vma, not
858	 * every time, and we could devise a way to avoid it later
859	 * (e.g. stash info in next's anon_vma_node when assigning
860	 * an anon_vma, or when trying vma_merge).  Another time.
861	 */
862	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
863	if (!near)
864		goto none;
865
866	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
867	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
868
869	if (near->anon_vma && near->vm_end == vma->vm_start &&
870  			mpol_equal(vma_policy(near), vma_policy(vma)) &&
871			can_vma_merge_after(near, vm_flags,
872				NULL, vma->vm_file, vma->vm_pgoff))
873		return near->anon_vma;
874none:
875	/*
876	 * There's no absolute need to look only at touching neighbours:
877	 * we could search further afield for "compatible" anon_vmas.
878	 * But it would probably just be a waste of time searching,
879	 * or lead to too many vmas hanging off the same anon_vma.
880	 * We're trying to allow mprotect remerging later on,
881	 * not trying to minimize memory used for anon_vmas.
882	 */
883	return NULL;
884}
885
886#ifdef CONFIG_PROC_FS
887void vm_stat_account(struct mm_struct *mm, unsigned long flags,
888						struct file *file, long pages)
889{
890	const unsigned long stack_flags
891		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
892
893	if (file) {
894		mm->shared_vm += pages;
895		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
896			mm->exec_vm += pages;
897	} else if (flags & stack_flags)
898		mm->stack_vm += pages;
899	if (flags & (VM_RESERVED|VM_IO))
900		mm->reserved_vm += pages;
901}
902#endif /* CONFIG_PROC_FS */
903
904/*
905 * The caller must hold down_write(&current->mm->mmap_sem).
906 */
907
908unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
909			unsigned long len, unsigned long prot,
910			unsigned long flags, unsigned long pgoff)
911{
912	struct mm_struct * mm = current->mm;
913	struct inode *inode;
914	unsigned int vm_flags;
915	int error;
916	unsigned long reqprot = prot;
917
918	/*
919	 * Does the application expect PROT_READ to imply PROT_EXEC?
920	 *
921	 * (the exception is when the underlying filesystem is noexec
922	 *  mounted, in which case we dont add PROT_EXEC.)
923	 */
924	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
925		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
926			prot |= PROT_EXEC;
927
928	if (!len)
929		return -EINVAL;
930
931	if (!(flags & MAP_FIXED))
932		addr = round_hint_to_min(addr);
933
934	/* Careful about overflows.. */
935	len = PAGE_ALIGN(len);
936	if (!len)
937		return -ENOMEM;
938
939	/* offset overflow? */
940	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
941               return -EOVERFLOW;
942
943	/* Too many mappings? */
944	if (mm->map_count > sysctl_max_map_count)
945		return -ENOMEM;
946
947	/* Obtain the address to map to. we verify (or select) it and ensure
948	 * that it represents a valid section of the address space.
949	 */
950	addr = get_unmapped_area(file, addr, len, pgoff, flags);
951	if (addr & ~PAGE_MASK)
952		return addr;
953
954	/* Do simple checking here so the lower-level routines won't have
955	 * to. we assume access permissions have been handled by the open
956	 * of the memory object, so we don't do any here.
957	 */
958	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
959			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
960
961	if (flags & MAP_LOCKED)
962		if (!can_do_mlock())
963			return -EPERM;
964
965	/* mlock MCL_FUTURE? */
966	if (vm_flags & VM_LOCKED) {
967		unsigned long locked, lock_limit;
968		locked = len >> PAGE_SHIFT;
969		locked += mm->locked_vm;
970		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
971		lock_limit >>= PAGE_SHIFT;
972		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
973			return -EAGAIN;
974	}
975
976	inode = file ? file->f_path.dentry->d_inode : NULL;
977
978	if (file) {
979		switch (flags & MAP_TYPE) {
980		case MAP_SHARED:
981			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
982				return -EACCES;
983
984			/*
985			 * Make sure we don't allow writing to an append-only
986			 * file..
987			 */
988			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
989				return -EACCES;
990
991			/*
992			 * Make sure there are no mandatory locks on the file.
993			 */
994			if (locks_verify_locked(inode))
995				return -EAGAIN;
996
997			vm_flags |= VM_SHARED | VM_MAYSHARE;
998			if (!(file->f_mode & FMODE_WRITE))
999				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1000
1001			/* fall through */
1002		case MAP_PRIVATE:
1003			if (!(file->f_mode & FMODE_READ))
1004				return -EACCES;
1005			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1006				if (vm_flags & VM_EXEC)
1007					return -EPERM;
1008				vm_flags &= ~VM_MAYEXEC;
1009			}
1010
1011			if (!file->f_op || !file->f_op->mmap)
1012				return -ENODEV;
1013			break;
1014
1015		default:
1016			return -EINVAL;
1017		}
1018	} else {
1019		switch (flags & MAP_TYPE) {
1020		case MAP_SHARED:
1021			/*
1022			 * Ignore pgoff.
1023			 */
1024			pgoff = 0;
1025			vm_flags |= VM_SHARED | VM_MAYSHARE;
1026			break;
1027		case MAP_PRIVATE:
1028			/*
1029			 * Set pgoff according to addr for anon_vma.
1030			 */
1031			pgoff = addr >> PAGE_SHIFT;
1032			break;
1033		default:
1034			return -EINVAL;
1035		}
1036	}
1037
1038	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1039	if (error)
1040		return error;
1041
1042	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1043}
1044EXPORT_SYMBOL(do_mmap_pgoff);
1045
1046/*
1047 * Some shared mappigns will want the pages marked read-only
1048 * to track write events. If so, we'll downgrade vm_page_prot
1049 * to the private version (using protection_map[] without the
1050 * VM_SHARED bit).
1051 */
1052int vma_wants_writenotify(struct vm_area_struct *vma)
1053{
1054	unsigned int vm_flags = vma->vm_flags;
1055
1056	/* If it was private or non-writable, the write bit is already clear */
1057	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1058		return 0;
1059
1060	/* The backer wishes to know when pages are first written to? */
1061	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1062		return 1;
1063
1064	/* The open routine did something to the protections already? */
1065	if (pgprot_val(vma->vm_page_prot) !=
1066	    pgprot_val(vm_get_page_prot(vm_flags)))
1067		return 0;
1068
1069	/* Specialty mapping? */
1070	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1071		return 0;
1072
1073	/* Can the mapping track the dirty pages? */
1074	return vma->vm_file && vma->vm_file->f_mapping &&
1075		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1076}
1077
1078/*
1079 * We account for memory if it's a private writeable mapping,
1080 * not hugepages and VM_NORESERVE wasn't set.
1081 */
1082static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1083{
1084	/*
1085	 * hugetlb has its own accounting separate from the core VM
1086	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1087	 */
1088	if (file && is_file_hugepages(file))
1089		return 0;
1090
1091	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1092}
1093
1094unsigned long mmap_region(struct file *file, unsigned long addr,
1095			  unsigned long len, unsigned long flags,
1096			  unsigned int vm_flags, unsigned long pgoff)
1097{
1098	struct mm_struct *mm = current->mm;
1099	struct vm_area_struct *vma, *prev;
1100	int correct_wcount = 0;
1101	int error;
1102	struct rb_node **rb_link, *rb_parent;
1103	unsigned long charged = 0;
1104	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1105
1106	/* Clear old maps */
1107	error = -ENOMEM;
1108munmap_back:
1109	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1110	if (vma && vma->vm_start < addr + len) {
1111		if (do_munmap(mm, addr, len))
1112			return -ENOMEM;
1113		goto munmap_back;
1114	}
1115
1116	/* Check against address space limit. */
1117	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1118		return -ENOMEM;
1119
1120	/*
1121	 * Set 'VM_NORESERVE' if we should not account for the
1122	 * memory use of this mapping.
1123	 */
1124	if ((flags & MAP_NORESERVE)) {
1125		/* We honor MAP_NORESERVE if allowed to overcommit */
1126		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1127			vm_flags |= VM_NORESERVE;
1128
1129		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1130		if (file && is_file_hugepages(file))
1131			vm_flags |= VM_NORESERVE;
1132	}
1133
1134	/*
1135	 * Private writable mapping: check memory availability
1136	 */
1137	if (accountable_mapping(file, vm_flags)) {
1138		charged = len >> PAGE_SHIFT;
1139		if (security_vm_enough_memory(charged))
1140			return -ENOMEM;
1141		vm_flags |= VM_ACCOUNT;
1142	}
1143
1144	/*
1145	 * Can we just expand an old mapping?
1146	 */
1147	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1148	if (vma)
1149		goto out;
1150
1151	/*
1152	 * Determine the object being mapped and call the appropriate
1153	 * specific mapper. the address has already been validated, but
1154	 * not unmapped, but the maps are removed from the list.
1155	 */
1156	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1157	if (!vma) {
1158		error = -ENOMEM;
1159		goto unacct_error;
1160	}
1161
1162	vma->vm_mm = mm;
1163	vma->vm_start = addr;
1164	vma->vm_end = addr + len;
1165	vma->vm_flags = vm_flags;
1166	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1167	vma->vm_pgoff = pgoff;
1168
1169	if (file) {
1170		error = -EINVAL;
1171		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1172			goto free_vma;
1173		if (vm_flags & VM_DENYWRITE) {
1174			error = deny_write_access(file);
1175			if (error)
1176				goto free_vma;
1177			correct_wcount = 1;
1178		}
1179		vma->vm_file = file;
1180		get_file(file);
1181		error = file->f_op->mmap(file, vma);
1182		if (error)
1183			goto unmap_and_free_vma;
1184		if (vm_flags & VM_EXECUTABLE)
1185			added_exe_file_vma(mm);
1186
1187		/* Can addr have changed??
1188		 *
1189		 * Answer: Yes, several device drivers can do it in their
1190		 *         f_op->mmap method. -DaveM
1191		 */
1192		addr = vma->vm_start;
1193		pgoff = vma->vm_pgoff;
1194		vm_flags = vma->vm_flags;
1195	} else if (vm_flags & VM_SHARED) {
1196		error = shmem_zero_setup(vma);
1197		if (error)
1198			goto free_vma;
1199	}
1200
1201	if (vma_wants_writenotify(vma))
1202		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1203
1204	vma_link(mm, vma, prev, rb_link, rb_parent);
1205	file = vma->vm_file;
1206
1207	/* Once vma denies write, undo our temporary denial count */
1208	if (correct_wcount)
1209		atomic_inc(&inode->i_writecount);
1210out:
1211	perf_event_mmap(vma);
1212
1213	mm->total_vm += len >> PAGE_SHIFT;
1214	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1215	if (vm_flags & VM_LOCKED) {
1216		/*
1217		 * makes pages present; downgrades, drops, reacquires mmap_sem
1218		 */
1219		long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1220		if (nr_pages < 0)
1221			return nr_pages;	/* vma gone! */
1222		mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1223	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1224		make_pages_present(addr, addr + len);
1225	return addr;
1226
1227unmap_and_free_vma:
1228	if (correct_wcount)
1229		atomic_inc(&inode->i_writecount);
1230	vma->vm_file = NULL;
1231	fput(file);
1232
1233	/* Undo any partial mapping done by a device driver. */
1234	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1235	charged = 0;
1236free_vma:
1237	kmem_cache_free(vm_area_cachep, vma);
1238unacct_error:
1239	if (charged)
1240		vm_unacct_memory(charged);
1241	return error;
1242}
1243
1244/* Get an address range which is currently unmapped.
1245 * For shmat() with addr=0.
1246 *
1247 * Ugly calling convention alert:
1248 * Return value with the low bits set means error value,
1249 * ie
1250 *	if (ret & ~PAGE_MASK)
1251 *		error = ret;
1252 *
1253 * This function "knows" that -ENOMEM has the bits set.
1254 */
1255#ifndef HAVE_ARCH_UNMAPPED_AREA
1256unsigned long
1257arch_get_unmapped_area(struct file *filp, unsigned long addr,
1258		unsigned long len, unsigned long pgoff, unsigned long flags)
1259{
1260	struct mm_struct *mm = current->mm;
1261	struct vm_area_struct *vma;
1262	unsigned long start_addr;
1263
1264	if (len > TASK_SIZE)
1265		return -ENOMEM;
1266
1267	if (flags & MAP_FIXED)
1268		return addr;
1269
1270	if (addr) {
1271		addr = PAGE_ALIGN(addr);
1272		vma = find_vma(mm, addr);
1273		if (TASK_SIZE - len >= addr &&
1274		    (!vma || addr + len <= vma->vm_start))
1275			return addr;
1276	}
1277	if (len > mm->cached_hole_size) {
1278	        start_addr = addr = mm->free_area_cache;
1279	} else {
1280	        start_addr = addr = TASK_UNMAPPED_BASE;
1281	        mm->cached_hole_size = 0;
1282	}
1283
1284full_search:
1285	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1286		/* At this point:  (!vma || addr < vma->vm_end). */
1287		if (TASK_SIZE - len < addr) {
1288			/*
1289			 * Start a new search - just in case we missed
1290			 * some holes.
1291			 */
1292			if (start_addr != TASK_UNMAPPED_BASE) {
1293				addr = TASK_UNMAPPED_BASE;
1294			        start_addr = addr;
1295				mm->cached_hole_size = 0;
1296				goto full_search;
1297			}
1298			return -ENOMEM;
1299		}
1300		if (!vma || addr + len <= vma->vm_start) {
1301			/*
1302			 * Remember the place where we stopped the search:
1303			 */
1304			mm->free_area_cache = addr + len;
1305			return addr;
1306		}
1307		if (addr + mm->cached_hole_size < vma->vm_start)
1308		        mm->cached_hole_size = vma->vm_start - addr;
1309		addr = vma->vm_end;
1310	}
1311}
1312#endif
1313
1314void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1315{
1316	/*
1317	 * Is this a new hole at the lowest possible address?
1318	 */
1319	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1320		mm->free_area_cache = addr;
1321		mm->cached_hole_size = ~0UL;
1322	}
1323}
1324
1325/*
1326 * This mmap-allocator allocates new areas top-down from below the
1327 * stack's low limit (the base):
1328 */
1329#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1330unsigned long
1331arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1332			  const unsigned long len, const unsigned long pgoff,
1333			  const unsigned long flags)
1334{
1335	struct vm_area_struct *vma;
1336	struct mm_struct *mm = current->mm;
1337	unsigned long addr = addr0;
1338
1339	/* requested length too big for entire address space */
1340	if (len > TASK_SIZE)
1341		return -ENOMEM;
1342
1343	if (flags & MAP_FIXED)
1344		return addr;
1345
1346	/* requesting a specific address */
1347	if (addr) {
1348		addr = PAGE_ALIGN(addr);
1349		vma = find_vma(mm, addr);
1350		if (TASK_SIZE - len >= addr &&
1351				(!vma || addr + len <= vma->vm_start))
1352			return addr;
1353	}
1354
1355	/* check if free_area_cache is useful for us */
1356	if (len <= mm->cached_hole_size) {
1357 	        mm->cached_hole_size = 0;
1358 		mm->free_area_cache = mm->mmap_base;
1359 	}
1360
1361	/* either no address requested or can't fit in requested address hole */
1362	addr = mm->free_area_cache;
1363
1364	/* make sure it can fit in the remaining address space */
1365	if (addr > len) {
1366		vma = find_vma(mm, addr-len);
1367		if (!vma || addr <= vma->vm_start)
1368			/* remember the address as a hint for next time */
1369			return (mm->free_area_cache = addr-len);
1370	}
1371
1372	if (mm->mmap_base < len)
1373		goto bottomup;
1374
1375	addr = mm->mmap_base-len;
1376
1377	do {
1378		/*
1379		 * Lookup failure means no vma is above this address,
1380		 * else if new region fits below vma->vm_start,
1381		 * return with success:
1382		 */
1383		vma = find_vma(mm, addr);
1384		if (!vma || addr+len <= vma->vm_start)
1385			/* remember the address as a hint for next time */
1386			return (mm->free_area_cache = addr);
1387
1388 		/* remember the largest hole we saw so far */
1389 		if (addr + mm->cached_hole_size < vma->vm_start)
1390 		        mm->cached_hole_size = vma->vm_start - addr;
1391
1392		/* try just below the current vma->vm_start */
1393		addr = vma->vm_start-len;
1394	} while (len < vma->vm_start);
1395
1396bottomup:
1397	/*
1398	 * A failed mmap() very likely causes application failure,
1399	 * so fall back to the bottom-up function here. This scenario
1400	 * can happen with large stack limits and large mmap()
1401	 * allocations.
1402	 */
1403	mm->cached_hole_size = ~0UL;
1404  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1405	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1406	/*
1407	 * Restore the topdown base:
1408	 */
1409	mm->free_area_cache = mm->mmap_base;
1410	mm->cached_hole_size = ~0UL;
1411
1412	return addr;
1413}
1414#endif
1415
1416void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1417{
1418	/*
1419	 * Is this a new hole at the highest possible address?
1420	 */
1421	if (addr > mm->free_area_cache)
1422		mm->free_area_cache = addr;
1423
1424	/* dont allow allocations above current base */
1425	if (mm->free_area_cache > mm->mmap_base)
1426		mm->free_area_cache = mm->mmap_base;
1427}
1428
1429unsigned long
1430get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1431		unsigned long pgoff, unsigned long flags)
1432{
1433	unsigned long (*get_area)(struct file *, unsigned long,
1434				  unsigned long, unsigned long, unsigned long);
1435
1436	unsigned long error = arch_mmap_check(addr, len, flags);
1437	if (error)
1438		return error;
1439
1440	/* Careful about overflows.. */
1441	if (len > TASK_SIZE)
1442		return -ENOMEM;
1443
1444	get_area = current->mm->get_unmapped_area;
1445	if (file && file->f_op && file->f_op->get_unmapped_area)
1446		get_area = file->f_op->get_unmapped_area;
1447	addr = get_area(file, addr, len, pgoff, flags);
1448	if (IS_ERR_VALUE(addr))
1449		return addr;
1450
1451	if (addr > TASK_SIZE - len)
1452		return -ENOMEM;
1453	if (addr & ~PAGE_MASK)
1454		return -EINVAL;
1455
1456	return arch_rebalance_pgtables(addr, len);
1457}
1458
1459EXPORT_SYMBOL(get_unmapped_area);
1460
1461/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1462struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1463{
1464	struct vm_area_struct *vma = NULL;
1465
1466	if (mm) {
1467		/* Check the cache first. */
1468		/* (Cache hit rate is typically around 35%.) */
1469		vma = mm->mmap_cache;
1470		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1471			struct rb_node * rb_node;
1472
1473			rb_node = mm->mm_rb.rb_node;
1474			vma = NULL;
1475
1476			while (rb_node) {
1477				struct vm_area_struct * vma_tmp;
1478
1479				vma_tmp = rb_entry(rb_node,
1480						struct vm_area_struct, vm_rb);
1481
1482				if (vma_tmp->vm_end > addr) {
1483					vma = vma_tmp;
1484					if (vma_tmp->vm_start <= addr)
1485						break;
1486					rb_node = rb_node->rb_left;
1487				} else
1488					rb_node = rb_node->rb_right;
1489			}
1490			if (vma)
1491				mm->mmap_cache = vma;
1492		}
1493	}
1494	return vma;
1495}
1496
1497EXPORT_SYMBOL(find_vma);
1498
1499/* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1500struct vm_area_struct *
1501find_vma_prev(struct mm_struct *mm, unsigned long addr,
1502			struct vm_area_struct **pprev)
1503{
1504	struct vm_area_struct *vma = NULL, *prev = NULL;
1505	struct rb_node *rb_node;
1506	if (!mm)
1507		goto out;
1508
1509	/* Guard against addr being lower than the first VMA */
1510	vma = mm->mmap;
1511
1512	/* Go through the RB tree quickly. */
1513	rb_node = mm->mm_rb.rb_node;
1514
1515	while (rb_node) {
1516		struct vm_area_struct *vma_tmp;
1517		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1518
1519		if (addr < vma_tmp->vm_end) {
1520			rb_node = rb_node->rb_left;
1521		} else {
1522			prev = vma_tmp;
1523			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1524				break;
1525			rb_node = rb_node->rb_right;
1526		}
1527	}
1528
1529out:
1530	*pprev = prev;
1531	return prev ? prev->vm_next : vma;
1532}
1533
1534/*
1535 * Verify that the stack growth is acceptable and
1536 * update accounting. This is shared with both the
1537 * grow-up and grow-down cases.
1538 */
1539static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1540{
1541	struct mm_struct *mm = vma->vm_mm;
1542	struct rlimit *rlim = current->signal->rlim;
1543	unsigned long new_start;
1544
1545	/* address space limit tests */
1546	if (!may_expand_vm(mm, grow))
1547		return -ENOMEM;
1548
1549	/* Stack limit test */
1550	if (size > rlim[RLIMIT_STACK].rlim_cur)
1551		return -ENOMEM;
1552
1553	/* mlock limit tests */
1554	if (vma->vm_flags & VM_LOCKED) {
1555		unsigned long locked;
1556		unsigned long limit;
1557		locked = mm->locked_vm + grow;
1558		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1559		if (locked > limit && !capable(CAP_IPC_LOCK))
1560			return -ENOMEM;
1561	}
1562
1563	/* Check to ensure the stack will not grow into a hugetlb-only region */
1564	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1565			vma->vm_end - size;
1566	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1567		return -EFAULT;
1568
1569	/*
1570	 * Overcommit..  This must be the final test, as it will
1571	 * update security statistics.
1572	 */
1573	if (security_vm_enough_memory_mm(mm, grow))
1574		return -ENOMEM;
1575
1576	/* Ok, everything looks good - let it rip */
1577	mm->total_vm += grow;
1578	if (vma->vm_flags & VM_LOCKED)
1579		mm->locked_vm += grow;
1580	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1581	return 0;
1582}
1583
1584#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1585/*
1586 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1587 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1588 */
1589#ifndef CONFIG_IA64
1590static
1591#endif
1592int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1593{
1594	int error;
1595
1596	if (!(vma->vm_flags & VM_GROWSUP))
1597		return -EFAULT;
1598
1599	/*
1600	 * We must make sure the anon_vma is allocated
1601	 * so that the anon_vma locking is not a noop.
1602	 */
1603	if (unlikely(anon_vma_prepare(vma)))
1604		return -ENOMEM;
1605	anon_vma_lock(vma);
1606
1607	/*
1608	 * vma->vm_start/vm_end cannot change under us because the caller
1609	 * is required to hold the mmap_sem in read mode.  We need the
1610	 * anon_vma lock to serialize against concurrent expand_stacks.
1611	 * Also guard against wrapping around to address 0.
1612	 */
1613	if (address < PAGE_ALIGN(address+4))
1614		address = PAGE_ALIGN(address+4);
1615	else {
1616		anon_vma_unlock(vma);
1617		return -ENOMEM;
1618	}
1619	error = 0;
1620
1621	/* Somebody else might have raced and expanded it already */
1622	if (address > vma->vm_end) {
1623		unsigned long size, grow;
1624
1625		size = address - vma->vm_start;
1626		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1627
1628		error = acct_stack_growth(vma, size, grow);
1629		if (!error)
1630			vma->vm_end = address;
1631	}
1632	anon_vma_unlock(vma);
1633	return error;
1634}
1635#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1636
1637/*
1638 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1639 */
1640static int expand_downwards(struct vm_area_struct *vma,
1641				   unsigned long address)
1642{
1643	int error;
1644
1645	/*
1646	 * We must make sure the anon_vma is allocated
1647	 * so that the anon_vma locking is not a noop.
1648	 */
1649	if (unlikely(anon_vma_prepare(vma)))
1650		return -ENOMEM;
1651
1652	address &= PAGE_MASK;
1653	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1654	if (error)
1655		return error;
1656
1657	anon_vma_lock(vma);
1658
1659	/*
1660	 * vma->vm_start/vm_end cannot change under us because the caller
1661	 * is required to hold the mmap_sem in read mode.  We need the
1662	 * anon_vma lock to serialize against concurrent expand_stacks.
1663	 */
1664
1665	/* Somebody else might have raced and expanded it already */
1666	if (address < vma->vm_start) {
1667		unsigned long size, grow;
1668
1669		size = vma->vm_end - address;
1670		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1671
1672		error = acct_stack_growth(vma, size, grow);
1673		if (!error) {
1674			vma->vm_start = address;
1675			vma->vm_pgoff -= grow;
1676		}
1677	}
1678	anon_vma_unlock(vma);
1679	return error;
1680}
1681
1682int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1683{
1684	return expand_downwards(vma, address);
1685}
1686
1687#ifdef CONFIG_STACK_GROWSUP
1688int expand_stack(struct vm_area_struct *vma, unsigned long address)
1689{
1690	return expand_upwards(vma, address);
1691}
1692
1693struct vm_area_struct *
1694find_extend_vma(struct mm_struct *mm, unsigned long addr)
1695{
1696	struct vm_area_struct *vma, *prev;
1697
1698	addr &= PAGE_MASK;
1699	vma = find_vma_prev(mm, addr, &prev);
1700	if (vma && (vma->vm_start <= addr))
1701		return vma;
1702	if (!prev || expand_stack(prev, addr))
1703		return NULL;
1704	if (prev->vm_flags & VM_LOCKED) {
1705		if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1706			return NULL;	/* vma gone! */
1707	}
1708	return prev;
1709}
1710#else
1711int expand_stack(struct vm_area_struct *vma, unsigned long address)
1712{
1713	return expand_downwards(vma, address);
1714}
1715
1716struct vm_area_struct *
1717find_extend_vma(struct mm_struct * mm, unsigned long addr)
1718{
1719	struct vm_area_struct * vma;
1720	unsigned long start;
1721
1722	addr &= PAGE_MASK;
1723	vma = find_vma(mm,addr);
1724	if (!vma)
1725		return NULL;
1726	if (vma->vm_start <= addr)
1727		return vma;
1728	if (!(vma->vm_flags & VM_GROWSDOWN))
1729		return NULL;
1730	start = vma->vm_start;
1731	if (expand_stack(vma, addr))
1732		return NULL;
1733	if (vma->vm_flags & VM_LOCKED) {
1734		if (mlock_vma_pages_range(vma, addr, start) < 0)
1735			return NULL;	/* vma gone! */
1736	}
1737	return vma;
1738}
1739#endif
1740
1741/*
1742 * Ok - we have the memory areas we should free on the vma list,
1743 * so release them, and do the vma updates.
1744 *
1745 * Called with the mm semaphore held.
1746 */
1747static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1748{
1749	/* Update high watermark before we lower total_vm */
1750	update_hiwater_vm(mm);
1751	do {
1752		long nrpages = vma_pages(vma);
1753
1754		mm->total_vm -= nrpages;
1755		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1756		vma = remove_vma(vma);
1757	} while (vma);
1758	validate_mm(mm);
1759}
1760
1761/*
1762 * Get rid of page table information in the indicated region.
1763 *
1764 * Called with the mm semaphore held.
1765 */
1766static void unmap_region(struct mm_struct *mm,
1767		struct vm_area_struct *vma, struct vm_area_struct *prev,
1768		unsigned long start, unsigned long end)
1769{
1770	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1771	struct mmu_gather *tlb;
1772	unsigned long nr_accounted = 0;
1773
1774	lru_add_drain();
1775	tlb = tlb_gather_mmu(mm, 0);
1776	update_hiwater_rss(mm);
1777	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1778	vm_unacct_memory(nr_accounted);
1779	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1780				 next? next->vm_start: 0);
1781	tlb_finish_mmu(tlb, start, end);
1782}
1783
1784/*
1785 * Create a list of vma's touched by the unmap, removing them from the mm's
1786 * vma list as we go..
1787 */
1788static void
1789detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1790	struct vm_area_struct *prev, unsigned long end)
1791{
1792	struct vm_area_struct **insertion_point;
1793	struct vm_area_struct *tail_vma = NULL;
1794	unsigned long addr;
1795
1796	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1797	do {
1798		rb_erase(&vma->vm_rb, &mm->mm_rb);
1799		mm->map_count--;
1800		tail_vma = vma;
1801		vma = vma->vm_next;
1802	} while (vma && vma->vm_start < end);
1803	*insertion_point = vma;
1804	tail_vma->vm_next = NULL;
1805	if (mm->unmap_area == arch_unmap_area)
1806		addr = prev ? prev->vm_end : mm->mmap_base;
1807	else
1808		addr = vma ?  vma->vm_start : mm->mmap_base;
1809	mm->unmap_area(mm, addr);
1810	mm->mmap_cache = NULL;		/* Kill the cache. */
1811}
1812
1813/*
1814 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1815 * munmap path where it doesn't make sense to fail.
1816 */
1817static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1818	      unsigned long addr, int new_below)
1819{
1820	struct mempolicy *pol;
1821	struct vm_area_struct *new;
1822
1823	if (is_vm_hugetlb_page(vma) && (addr &
1824					~(huge_page_mask(hstate_vma(vma)))))
1825		return -EINVAL;
1826
1827	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1828	if (!new)
1829		return -ENOMEM;
1830
1831	/* most fields are the same, copy all, and then fixup */
1832	*new = *vma;
1833
1834	if (new_below)
1835		new->vm_end = addr;
1836	else {
1837		new->vm_start = addr;
1838		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1839	}
1840
1841	pol = mpol_dup(vma_policy(vma));
1842	if (IS_ERR(pol)) {
1843		kmem_cache_free(vm_area_cachep, new);
1844		return PTR_ERR(pol);
1845	}
1846	vma_set_policy(new, pol);
1847
1848	if (new->vm_file) {
1849		get_file(new->vm_file);
1850		if (vma->vm_flags & VM_EXECUTABLE)
1851			added_exe_file_vma(mm);
1852	}
1853
1854	if (new->vm_ops && new->vm_ops->open)
1855		new->vm_ops->open(new);
1856
1857	if (new_below)
1858		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1859			((addr - new->vm_start) >> PAGE_SHIFT), new);
1860	else
1861		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1862
1863	return 0;
1864}
1865
1866/*
1867 * Split a vma into two pieces at address 'addr', a new vma is allocated
1868 * either for the first part or the tail.
1869 */
1870int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1871	      unsigned long addr, int new_below)
1872{
1873	if (mm->map_count >= sysctl_max_map_count)
1874		return -ENOMEM;
1875
1876	return __split_vma(mm, vma, addr, new_below);
1877}
1878
1879/* Munmap is split into 2 main parts -- this part which finds
1880 * what needs doing, and the areas themselves, which do the
1881 * work.  This now handles partial unmappings.
1882 * Jeremy Fitzhardinge <jeremy@goop.org>
1883 */
1884int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1885{
1886	unsigned long end;
1887	struct vm_area_struct *vma, *prev, *last;
1888
1889	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1890		return -EINVAL;
1891
1892	if ((len = PAGE_ALIGN(len)) == 0)
1893		return -EINVAL;
1894
1895	/* Find the first overlapping VMA */
1896	vma = find_vma_prev(mm, start, &prev);
1897	if (!vma)
1898		return 0;
1899	/* we have  start < vma->vm_end  */
1900
1901	/* if it doesn't overlap, we have nothing.. */
1902	end = start + len;
1903	if (vma->vm_start >= end)
1904		return 0;
1905
1906	/*
1907	 * If we need to split any vma, do it now to save pain later.
1908	 *
1909	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1910	 * unmapped vm_area_struct will remain in use: so lower split_vma
1911	 * places tmp vma above, and higher split_vma places tmp vma below.
1912	 */
1913	if (start > vma->vm_start) {
1914		int error;
1915
1916		/*
1917		 * Make sure that map_count on return from munmap() will
1918		 * not exceed its limit; but let map_count go just above
1919		 * its limit temporarily, to help free resources as expected.
1920		 */
1921		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
1922			return -ENOMEM;
1923
1924		error = __split_vma(mm, vma, start, 0);
1925		if (error)
1926			return error;
1927		prev = vma;
1928	}
1929
1930	/* Does it split the last one? */
1931	last = find_vma(mm, end);
1932	if (last && end > last->vm_start) {
1933		int error = __split_vma(mm, last, end, 1);
1934		if (error)
1935			return error;
1936	}
1937	vma = prev? prev->vm_next: mm->mmap;
1938
1939	/*
1940	 * unlock any mlock()ed ranges before detaching vmas
1941	 */
1942	if (mm->locked_vm) {
1943		struct vm_area_struct *tmp = vma;
1944		while (tmp && tmp->vm_start < end) {
1945			if (tmp->vm_flags & VM_LOCKED) {
1946				mm->locked_vm -= vma_pages(tmp);
1947				munlock_vma_pages_all(tmp);
1948			}
1949			tmp = tmp->vm_next;
1950		}
1951	}
1952
1953	/*
1954	 * Remove the vma's, and unmap the actual pages
1955	 */
1956	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1957	unmap_region(mm, vma, prev, start, end);
1958
1959	/* Fix up all other VM information */
1960	remove_vma_list(mm, vma);
1961
1962	return 0;
1963}
1964
1965EXPORT_SYMBOL(do_munmap);
1966
1967SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1968{
1969	int ret;
1970	struct mm_struct *mm = current->mm;
1971
1972	profile_munmap(addr);
1973
1974	down_write(&mm->mmap_sem);
1975	ret = do_munmap(mm, addr, len);
1976	up_write(&mm->mmap_sem);
1977	return ret;
1978}
1979
1980static inline void verify_mm_writelocked(struct mm_struct *mm)
1981{
1982#ifdef CONFIG_DEBUG_VM
1983	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1984		WARN_ON(1);
1985		up_read(&mm->mmap_sem);
1986	}
1987#endif
1988}
1989
1990/*
1991 *  this is really a simplified "do_mmap".  it only handles
1992 *  anonymous maps.  eventually we may be able to do some
1993 *  brk-specific accounting here.
1994 */
1995unsigned long do_brk(unsigned long addr, unsigned long len)
1996{
1997	struct mm_struct * mm = current->mm;
1998	struct vm_area_struct * vma, * prev;
1999	unsigned long flags;
2000	struct rb_node ** rb_link, * rb_parent;
2001	pgoff_t pgoff = addr >> PAGE_SHIFT;
2002	int error;
2003
2004	len = PAGE_ALIGN(len);
2005	if (!len)
2006		return addr;
2007
2008	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2009	if (error)
2010		return error;
2011
2012	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2013
2014	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2015	if (error & ~PAGE_MASK)
2016		return error;
2017
2018	/*
2019	 * mlock MCL_FUTURE?
2020	 */
2021	if (mm->def_flags & VM_LOCKED) {
2022		unsigned long locked, lock_limit;
2023		locked = len >> PAGE_SHIFT;
2024		locked += mm->locked_vm;
2025		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2026		lock_limit >>= PAGE_SHIFT;
2027		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2028			return -EAGAIN;
2029	}
2030
2031	/*
2032	 * mm->mmap_sem is required to protect against another thread
2033	 * changing the mappings in case we sleep.
2034	 */
2035	verify_mm_writelocked(mm);
2036
2037	/*
2038	 * Clear old maps.  this also does some error checking for us
2039	 */
2040 munmap_back:
2041	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2042	if (vma && vma->vm_start < addr + len) {
2043		if (do_munmap(mm, addr, len))
2044			return -ENOMEM;
2045		goto munmap_back;
2046	}
2047
2048	/* Check against address space limits *after* clearing old maps... */
2049	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2050		return -ENOMEM;
2051
2052	if (mm->map_count > sysctl_max_map_count)
2053		return -ENOMEM;
2054
2055	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2056		return -ENOMEM;
2057
2058	/* Can we just expand an old private anonymous mapping? */
2059	vma = vma_merge(mm, prev, addr, addr + len, flags,
2060					NULL, NULL, pgoff, NULL);
2061	if (vma)
2062		goto out;
2063
2064	/*
2065	 * create a vma struct for an anonymous mapping
2066	 */
2067	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2068	if (!vma) {
2069		vm_unacct_memory(len >> PAGE_SHIFT);
2070		return -ENOMEM;
2071	}
2072
2073	vma->vm_mm = mm;
2074	vma->vm_start = addr;
2075	vma->vm_end = addr + len;
2076	vma->vm_pgoff = pgoff;
2077	vma->vm_flags = flags;
2078	vma->vm_page_prot = vm_get_page_prot(flags);
2079	vma_link(mm, vma, prev, rb_link, rb_parent);
2080out:
2081	mm->total_vm += len >> PAGE_SHIFT;
2082	if (flags & VM_LOCKED) {
2083		if (!mlock_vma_pages_range(vma, addr, addr + len))
2084			mm->locked_vm += (len >> PAGE_SHIFT);
2085	}
2086	return addr;
2087}
2088
2089EXPORT_SYMBOL(do_brk);
2090
2091/* Release all mmaps. */
2092void exit_mmap(struct mm_struct *mm)
2093{
2094	struct mmu_gather *tlb;
2095	struct vm_area_struct *vma;
2096	unsigned long nr_accounted = 0;
2097	unsigned long end;
2098
2099	/* mm's last user has gone, and its about to be pulled down */
2100	mmu_notifier_release(mm);
2101
2102	if (mm->locked_vm) {
2103		vma = mm->mmap;
2104		while (vma) {
2105			if (vma->vm_flags & VM_LOCKED)
2106				munlock_vma_pages_all(vma);
2107			vma = vma->vm_next;
2108		}
2109	}
2110
2111	arch_exit_mmap(mm);
2112
2113	vma = mm->mmap;
2114	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2115		return;
2116
2117	lru_add_drain();
2118	flush_cache_mm(mm);
2119	tlb = tlb_gather_mmu(mm, 1);
2120	/* update_hiwater_rss(mm) here? but nobody should be looking */
2121	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2122	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2123	vm_unacct_memory(nr_accounted);
2124
2125	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2126	tlb_finish_mmu(tlb, 0, end);
2127
2128	/*
2129	 * Walk the list again, actually closing and freeing it,
2130	 * with preemption enabled, without holding any MM locks.
2131	 */
2132	while (vma)
2133		vma = remove_vma(vma);
2134
2135	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2136}
2137
2138/* Insert vm structure into process list sorted by address
2139 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2140 * then i_mmap_lock is taken here.
2141 */
2142int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2143{
2144	struct vm_area_struct * __vma, * prev;
2145	struct rb_node ** rb_link, * rb_parent;
2146
2147	/*
2148	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2149	 * until its first write fault, when page's anon_vma and index
2150	 * are set.  But now set the vm_pgoff it will almost certainly
2151	 * end up with (unless mremap moves it elsewhere before that
2152	 * first wfault), so /proc/pid/maps tells a consistent story.
2153	 *
2154	 * By setting it to reflect the virtual start address of the
2155	 * vma, merges and splits can happen in a seamless way, just
2156	 * using the existing file pgoff checks and manipulations.
2157	 * Similarly in do_mmap_pgoff and in do_brk.
2158	 */
2159	if (!vma->vm_file) {
2160		BUG_ON(vma->anon_vma);
2161		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2162	}
2163	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2164	if (__vma && __vma->vm_start < vma->vm_end)
2165		return -ENOMEM;
2166	if ((vma->vm_flags & VM_ACCOUNT) &&
2167	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2168		return -ENOMEM;
2169	vma_link(mm, vma, prev, rb_link, rb_parent);
2170	return 0;
2171}
2172
2173/*
2174 * Copy the vma structure to a new location in the same mm,
2175 * prior to moving page table entries, to effect an mremap move.
2176 */
2177struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2178	unsigned long addr, unsigned long len, pgoff_t pgoff)
2179{
2180	struct vm_area_struct *vma = *vmap;
2181	unsigned long vma_start = vma->vm_start;
2182	struct mm_struct *mm = vma->vm_mm;
2183	struct vm_area_struct *new_vma, *prev;
2184	struct rb_node **rb_link, *rb_parent;
2185	struct mempolicy *pol;
2186
2187	/*
2188	 * If anonymous vma has not yet been faulted, update new pgoff
2189	 * to match new location, to increase its chance of merging.
2190	 */
2191	if (!vma->vm_file && !vma->anon_vma)
2192		pgoff = addr >> PAGE_SHIFT;
2193
2194	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2195	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2196			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2197	if (new_vma) {
2198		/*
2199		 * Source vma may have been merged into new_vma
2200		 */
2201		if (vma_start >= new_vma->vm_start &&
2202		    vma_start < new_vma->vm_end)
2203			*vmap = new_vma;
2204	} else {
2205		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2206		if (new_vma) {
2207			*new_vma = *vma;
2208			pol = mpol_dup(vma_policy(vma));
2209			if (IS_ERR(pol)) {
2210				kmem_cache_free(vm_area_cachep, new_vma);
2211				return NULL;
2212			}
2213			vma_set_policy(new_vma, pol);
2214			new_vma->vm_start = addr;
2215			new_vma->vm_end = addr + len;
2216			new_vma->vm_pgoff = pgoff;
2217			if (new_vma->vm_file) {
2218				get_file(new_vma->vm_file);
2219				if (vma->vm_flags & VM_EXECUTABLE)
2220					added_exe_file_vma(mm);
2221			}
2222			if (new_vma->vm_ops && new_vma->vm_ops->open)
2223				new_vma->vm_ops->open(new_vma);
2224			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2225		}
2226	}
2227	return new_vma;
2228}
2229
2230/*
2231 * Return true if the calling process may expand its vm space by the passed
2232 * number of pages
2233 */
2234int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2235{
2236	unsigned long cur = mm->total_vm;	/* pages */
2237	unsigned long lim;
2238
2239	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2240
2241	if (cur + npages > lim)
2242		return 0;
2243	return 1;
2244}
2245
2246
2247static int special_mapping_fault(struct vm_area_struct *vma,
2248				struct vm_fault *vmf)
2249{
2250	pgoff_t pgoff;
2251	struct page **pages;
2252
2253	/*
2254	 * special mappings have no vm_file, and in that case, the mm
2255	 * uses vm_pgoff internally. So we have to subtract it from here.
2256	 * We are allowed to do this because we are the mm; do not copy
2257	 * this code into drivers!
2258	 */
2259	pgoff = vmf->pgoff - vma->vm_pgoff;
2260
2261	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2262		pgoff--;
2263
2264	if (*pages) {
2265		struct page *page = *pages;
2266		get_page(page);
2267		vmf->page = page;
2268		return 0;
2269	}
2270
2271	return VM_FAULT_SIGBUS;
2272}
2273
2274/*
2275 * Having a close hook prevents vma merging regardless of flags.
2276 */
2277static void special_mapping_close(struct vm_area_struct *vma)
2278{
2279}
2280
2281static const struct vm_operations_struct special_mapping_vmops = {
2282	.close = special_mapping_close,
2283	.fault = special_mapping_fault,
2284};
2285
2286/*
2287 * Called with mm->mmap_sem held for writing.
2288 * Insert a new vma covering the given region, with the given flags.
2289 * Its pages are supplied by the given array of struct page *.
2290 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2291 * The region past the last page supplied will always produce SIGBUS.
2292 * The array pointer and the pages it points to are assumed to stay alive
2293 * for as long as this mapping might exist.
2294 */
2295int install_special_mapping(struct mm_struct *mm,
2296			    unsigned long addr, unsigned long len,
2297			    unsigned long vm_flags, struct page **pages)
2298{
2299	struct vm_area_struct *vma;
2300
2301	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2302	if (unlikely(vma == NULL))
2303		return -ENOMEM;
2304
2305	vma->vm_mm = mm;
2306	vma->vm_start = addr;
2307	vma->vm_end = addr + len;
2308
2309	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2310	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2311
2312	vma->vm_ops = &special_mapping_vmops;
2313	vma->vm_private_data = pages;
2314
2315	if (unlikely(insert_vm_struct(mm, vma))) {
2316		kmem_cache_free(vm_area_cachep, vma);
2317		return -ENOMEM;
2318	}
2319
2320	mm->total_vm += len >> PAGE_SHIFT;
2321
2322	perf_event_mmap(vma);
2323
2324	return 0;
2325}
2326
2327static DEFINE_MUTEX(mm_all_locks_mutex);
2328
2329static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2330{
2331	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2332		/*
2333		 * The LSB of head.next can't change from under us
2334		 * because we hold the mm_all_locks_mutex.
2335		 */
2336		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2337		/*
2338		 * We can safely modify head.next after taking the
2339		 * anon_vma->lock. If some other vma in this mm shares
2340		 * the same anon_vma we won't take it again.
2341		 *
2342		 * No need of atomic instructions here, head.next
2343		 * can't change from under us thanks to the
2344		 * anon_vma->lock.
2345		 */
2346		if (__test_and_set_bit(0, (unsigned long *)
2347				       &anon_vma->head.next))
2348			BUG();
2349	}
2350}
2351
2352static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2353{
2354	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2355		/*
2356		 * AS_MM_ALL_LOCKS can't change from under us because
2357		 * we hold the mm_all_locks_mutex.
2358		 *
2359		 * Operations on ->flags have to be atomic because
2360		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2361		 * mm_all_locks_mutex, there may be other cpus
2362		 * changing other bitflags in parallel to us.
2363		 */
2364		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2365			BUG();
2366		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2367	}
2368}
2369
2370/*
2371 * This operation locks against the VM for all pte/vma/mm related
2372 * operations that could ever happen on a certain mm. This includes
2373 * vmtruncate, try_to_unmap, and all page faults.
2374 *
2375 * The caller must take the mmap_sem in write mode before calling
2376 * mm_take_all_locks(). The caller isn't allowed to release the
2377 * mmap_sem until mm_drop_all_locks() returns.
2378 *
2379 * mmap_sem in write mode is required in order to block all operations
2380 * that could modify pagetables and free pages without need of
2381 * altering the vma layout (for example populate_range() with
2382 * nonlinear vmas). It's also needed in write mode to avoid new
2383 * anon_vmas to be associated with existing vmas.
2384 *
2385 * A single task can't take more than one mm_take_all_locks() in a row
2386 * or it would deadlock.
2387 *
2388 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2389 * mapping->flags avoid to take the same lock twice, if more than one
2390 * vma in this mm is backed by the same anon_vma or address_space.
2391 *
2392 * We can take all the locks in random order because the VM code
2393 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2394 * takes more than one of them in a row. Secondly we're protected
2395 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2396 *
2397 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2398 * that may have to take thousand of locks.
2399 *
2400 * mm_take_all_locks() can fail if it's interrupted by signals.
2401 */
2402int mm_take_all_locks(struct mm_struct *mm)
2403{
2404	struct vm_area_struct *vma;
2405	int ret = -EINTR;
2406
2407	BUG_ON(down_read_trylock(&mm->mmap_sem));
2408
2409	mutex_lock(&mm_all_locks_mutex);
2410
2411	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2412		if (signal_pending(current))
2413			goto out_unlock;
2414		if (vma->vm_file && vma->vm_file->f_mapping)
2415			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2416	}
2417
2418	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2419		if (signal_pending(current))
2420			goto out_unlock;
2421		if (vma->anon_vma)
2422			vm_lock_anon_vma(mm, vma->anon_vma);
2423	}
2424
2425	ret = 0;
2426
2427out_unlock:
2428	if (ret)
2429		mm_drop_all_locks(mm);
2430
2431	return ret;
2432}
2433
2434static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2435{
2436	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2437		/*
2438		 * The LSB of head.next can't change to 0 from under
2439		 * us because we hold the mm_all_locks_mutex.
2440		 *
2441		 * We must however clear the bitflag before unlocking
2442		 * the vma so the users using the anon_vma->head will
2443		 * never see our bitflag.
2444		 *
2445		 * No need of atomic instructions here, head.next
2446		 * can't change from under us until we release the
2447		 * anon_vma->lock.
2448		 */
2449		if (!__test_and_clear_bit(0, (unsigned long *)
2450					  &anon_vma->head.next))
2451			BUG();
2452		spin_unlock(&anon_vma->lock);
2453	}
2454}
2455
2456static void vm_unlock_mapping(struct address_space *mapping)
2457{
2458	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2459		/*
2460		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2461		 * because we hold the mm_all_locks_mutex.
2462		 */
2463		spin_unlock(&mapping->i_mmap_lock);
2464		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2465					&mapping->flags))
2466			BUG();
2467	}
2468}
2469
2470/*
2471 * The mmap_sem cannot be released by the caller until
2472 * mm_drop_all_locks() returns.
2473 */
2474void mm_drop_all_locks(struct mm_struct *mm)
2475{
2476	struct vm_area_struct *vma;
2477
2478	BUG_ON(down_read_trylock(&mm->mmap_sem));
2479	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2480
2481	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2482		if (vma->anon_vma)
2483			vm_unlock_anon_vma(vma->anon_vma);
2484		if (vma->vm_file && vma->vm_file->f_mapping)
2485			vm_unlock_mapping(vma->vm_file->f_mapping);
2486	}
2487
2488	mutex_unlock(&mm_all_locks_mutex);
2489}
2490
2491/*
2492 * initialise the VMA slab
2493 */
2494void __init mmap_init(void)
2495{
2496	int ret;
2497
2498	ret = percpu_counter_init(&vm_committed_as, 0);
2499	VM_BUG_ON(ret);
2500}
2501