shmem.c revision 0552f879d45cecc35d8e372a591fc5ed863bca58
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/swap.h>
32
33static struct vfsmount *shm_mnt;
34
35#ifdef CONFIG_SHMEM
36/*
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
40 */
41
42#include <linux/xattr.h>
43#include <linux/exportfs.h>
44#include <linux/generic_acl.h>
45#include <linux/mman.h>
46#include <linux/string.h>
47#include <linux/slab.h>
48#include <linux/backing-dev.h>
49#include <linux/shmem_fs.h>
50#include <linux/writeback.h>
51#include <linux/blkdev.h>
52#include <linux/security.h>
53#include <linux/swapops.h>
54#include <linux/mempolicy.h>
55#include <linux/namei.h>
56#include <linux/ctype.h>
57#include <linux/migrate.h>
58#include <linux/highmem.h>
59#include <linux/seq_file.h>
60#include <linux/magic.h>
61
62#include <asm/uaccess.h>
63#include <asm/div64.h>
64#include <asm/pgtable.h>
65
66/*
67 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
68 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
69 *
70 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
71 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
72 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
73 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
74 *
75 * We use / and * instead of shifts in the definitions below, so that the swap
76 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
77 */
78#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
79#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
80
81#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
82#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
83
84#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
85#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
86
87#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
88#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
89
90/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
91#define SHMEM_PAGEIN	 VM_READ
92#define SHMEM_TRUNCATE	 VM_WRITE
93
94/* Definition to limit shmem_truncate's steps between cond_rescheds */
95#define LATENCY_LIMIT	 64
96
97/* Pretend that each entry is of this size in directory's i_size */
98#define BOGO_DIRENT_SIZE 20
99
100/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
101enum sgp_type {
102	SGP_READ,	/* don't exceed i_size, don't allocate page */
103	SGP_CACHE,	/* don't exceed i_size, may allocate page */
104	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
105	SGP_WRITE,	/* may exceed i_size, may allocate page */
106};
107
108#ifdef CONFIG_TMPFS
109static unsigned long shmem_default_max_blocks(void)
110{
111	return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
118#endif
119
120static int shmem_getpage(struct inode *inode, unsigned long idx,
121			 struct page **pagep, enum sgp_type sgp, int *type);
122
123static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
124{
125	/*
126	 * The above definition of ENTRIES_PER_PAGE, and the use of
127	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
128	 * might be reconsidered if it ever diverges from PAGE_SIZE.
129	 *
130	 * Mobility flags are masked out as swap vectors cannot move
131	 */
132	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
133				PAGE_CACHE_SHIFT-PAGE_SHIFT);
134}
135
136static inline void shmem_dir_free(struct page *page)
137{
138	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
139}
140
141static struct page **shmem_dir_map(struct page *page)
142{
143	return (struct page **)kmap_atomic(page, KM_USER0);
144}
145
146static inline void shmem_dir_unmap(struct page **dir)
147{
148	kunmap_atomic(dir, KM_USER0);
149}
150
151static swp_entry_t *shmem_swp_map(struct page *page)
152{
153	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
154}
155
156static inline void shmem_swp_balance_unmap(void)
157{
158	/*
159	 * When passing a pointer to an i_direct entry, to code which
160	 * also handles indirect entries and so will shmem_swp_unmap,
161	 * we must arrange for the preempt count to remain in balance.
162	 * What kmap_atomic of a lowmem page does depends on config
163	 * and architecture, so pretend to kmap_atomic some lowmem page.
164	 */
165	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
166}
167
168static inline void shmem_swp_unmap(swp_entry_t *entry)
169{
170	kunmap_atomic(entry, KM_USER1);
171}
172
173static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
174{
175	return sb->s_fs_info;
176}
177
178/*
179 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
180 * for shared memory and for shared anonymous (/dev/zero) mappings
181 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
182 * consistent with the pre-accounting of private mappings ...
183 */
184static inline int shmem_acct_size(unsigned long flags, loff_t size)
185{
186	return (flags & VM_NORESERVE) ?
187		0 : security_vm_enough_memory_kern(VM_ACCT(size));
188}
189
190static inline void shmem_unacct_size(unsigned long flags, loff_t size)
191{
192	if (!(flags & VM_NORESERVE))
193		vm_unacct_memory(VM_ACCT(size));
194}
195
196/*
197 * ... whereas tmpfs objects are accounted incrementally as
198 * pages are allocated, in order to allow huge sparse files.
199 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
200 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
201 */
202static inline int shmem_acct_block(unsigned long flags)
203{
204	return (flags & VM_NORESERVE) ?
205		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
206}
207
208static inline void shmem_unacct_blocks(unsigned long flags, long pages)
209{
210	if (flags & VM_NORESERVE)
211		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
212}
213
214static const struct super_operations shmem_ops;
215static const struct address_space_operations shmem_aops;
216static const struct file_operations shmem_file_operations;
217static const struct inode_operations shmem_inode_operations;
218static const struct inode_operations shmem_dir_inode_operations;
219static const struct inode_operations shmem_special_inode_operations;
220static const struct vm_operations_struct shmem_vm_ops;
221
222static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
223	.ra_pages	= 0,	/* No readahead */
224	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
225	.unplug_io_fn	= default_unplug_io_fn,
226};
227
228static LIST_HEAD(shmem_swaplist);
229static DEFINE_MUTEX(shmem_swaplist_mutex);
230
231static void shmem_free_blocks(struct inode *inode, long pages)
232{
233	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
234	if (sbinfo->max_blocks) {
235		spin_lock(&sbinfo->stat_lock);
236		sbinfo->free_blocks += pages;
237		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
238		spin_unlock(&sbinfo->stat_lock);
239	}
240}
241
242static int shmem_reserve_inode(struct super_block *sb)
243{
244	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245	if (sbinfo->max_inodes) {
246		spin_lock(&sbinfo->stat_lock);
247		if (!sbinfo->free_inodes) {
248			spin_unlock(&sbinfo->stat_lock);
249			return -ENOSPC;
250		}
251		sbinfo->free_inodes--;
252		spin_unlock(&sbinfo->stat_lock);
253	}
254	return 0;
255}
256
257static void shmem_free_inode(struct super_block *sb)
258{
259	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260	if (sbinfo->max_inodes) {
261		spin_lock(&sbinfo->stat_lock);
262		sbinfo->free_inodes++;
263		spin_unlock(&sbinfo->stat_lock);
264	}
265}
266
267/**
268 * shmem_recalc_inode - recalculate the size of an inode
269 * @inode: inode to recalc
270 *
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
273 *
274 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 *
277 * It has to be called with the spinlock held.
278 */
279static void shmem_recalc_inode(struct inode *inode)
280{
281	struct shmem_inode_info *info = SHMEM_I(inode);
282	long freed;
283
284	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285	if (freed > 0) {
286		info->alloced -= freed;
287		shmem_unacct_blocks(info->flags, freed);
288		shmem_free_blocks(inode, freed);
289	}
290}
291
292/**
293 * shmem_swp_entry - find the swap vector position in the info structure
294 * @info:  info structure for the inode
295 * @index: index of the page to find
296 * @page:  optional page to add to the structure. Has to be preset to
297 *         all zeros
298 *
299 * If there is no space allocated yet it will return NULL when
300 * page is NULL, else it will use the page for the needed block,
301 * setting it to NULL on return to indicate that it has been used.
302 *
303 * The swap vector is organized the following way:
304 *
305 * There are SHMEM_NR_DIRECT entries directly stored in the
306 * shmem_inode_info structure. So small files do not need an addional
307 * allocation.
308 *
309 * For pages with index > SHMEM_NR_DIRECT there is the pointer
310 * i_indirect which points to a page which holds in the first half
311 * doubly indirect blocks, in the second half triple indirect blocks:
312 *
313 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
314 * following layout (for SHMEM_NR_DIRECT == 16):
315 *
316 * i_indirect -> dir --> 16-19
317 * 	      |	     +-> 20-23
318 * 	      |
319 * 	      +-->dir2 --> 24-27
320 * 	      |	       +-> 28-31
321 * 	      |	       +-> 32-35
322 * 	      |	       +-> 36-39
323 * 	      |
324 * 	      +-->dir3 --> 40-43
325 * 	       	       +-> 44-47
326 * 	      	       +-> 48-51
327 * 	      	       +-> 52-55
328 */
329static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
330{
331	unsigned long offset;
332	struct page **dir;
333	struct page *subdir;
334
335	if (index < SHMEM_NR_DIRECT) {
336		shmem_swp_balance_unmap();
337		return info->i_direct+index;
338	}
339	if (!info->i_indirect) {
340		if (page) {
341			info->i_indirect = *page;
342			*page = NULL;
343		}
344		return NULL;			/* need another page */
345	}
346
347	index -= SHMEM_NR_DIRECT;
348	offset = index % ENTRIES_PER_PAGE;
349	index /= ENTRIES_PER_PAGE;
350	dir = shmem_dir_map(info->i_indirect);
351
352	if (index >= ENTRIES_PER_PAGE/2) {
353		index -= ENTRIES_PER_PAGE/2;
354		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
355		index %= ENTRIES_PER_PAGE;
356		subdir = *dir;
357		if (!subdir) {
358			if (page) {
359				*dir = *page;
360				*page = NULL;
361			}
362			shmem_dir_unmap(dir);
363			return NULL;		/* need another page */
364		}
365		shmem_dir_unmap(dir);
366		dir = shmem_dir_map(subdir);
367	}
368
369	dir += index;
370	subdir = *dir;
371	if (!subdir) {
372		if (!page || !(subdir = *page)) {
373			shmem_dir_unmap(dir);
374			return NULL;		/* need a page */
375		}
376		*dir = subdir;
377		*page = NULL;
378	}
379	shmem_dir_unmap(dir);
380	return shmem_swp_map(subdir) + offset;
381}
382
383static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
384{
385	long incdec = value? 1: -1;
386
387	entry->val = value;
388	info->swapped += incdec;
389	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
390		struct page *page = kmap_atomic_to_page(entry);
391		set_page_private(page, page_private(page) + incdec);
392	}
393}
394
395/**
396 * shmem_swp_alloc - get the position of the swap entry for the page.
397 * @info:	info structure for the inode
398 * @index:	index of the page to find
399 * @sgp:	check and recheck i_size? skip allocation?
400 *
401 * If the entry does not exist, allocate it.
402 */
403static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
404{
405	struct inode *inode = &info->vfs_inode;
406	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
407	struct page *page = NULL;
408	swp_entry_t *entry;
409
410	if (sgp != SGP_WRITE &&
411	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
412		return ERR_PTR(-EINVAL);
413
414	while (!(entry = shmem_swp_entry(info, index, &page))) {
415		if (sgp == SGP_READ)
416			return shmem_swp_map(ZERO_PAGE(0));
417		/*
418		 * Test free_blocks against 1 not 0, since we have 1 data
419		 * page (and perhaps indirect index pages) yet to allocate:
420		 * a waste to allocate index if we cannot allocate data.
421		 */
422		if (sbinfo->max_blocks) {
423			spin_lock(&sbinfo->stat_lock);
424			if (sbinfo->free_blocks <= 1) {
425				spin_unlock(&sbinfo->stat_lock);
426				return ERR_PTR(-ENOSPC);
427			}
428			sbinfo->free_blocks--;
429			inode->i_blocks += BLOCKS_PER_PAGE;
430			spin_unlock(&sbinfo->stat_lock);
431		}
432
433		spin_unlock(&info->lock);
434		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
435		if (page)
436			set_page_private(page, 0);
437		spin_lock(&info->lock);
438
439		if (!page) {
440			shmem_free_blocks(inode, 1);
441			return ERR_PTR(-ENOMEM);
442		}
443		if (sgp != SGP_WRITE &&
444		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
445			entry = ERR_PTR(-EINVAL);
446			break;
447		}
448		if (info->next_index <= index)
449			info->next_index = index + 1;
450	}
451	if (page) {
452		/* another task gave its page, or truncated the file */
453		shmem_free_blocks(inode, 1);
454		shmem_dir_free(page);
455	}
456	if (info->next_index <= index && !IS_ERR(entry))
457		info->next_index = index + 1;
458	return entry;
459}
460
461/**
462 * shmem_free_swp - free some swap entries in a directory
463 * @dir:        pointer to the directory
464 * @edir:       pointer after last entry of the directory
465 * @punch_lock: pointer to spinlock when needed for the holepunch case
466 */
467static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
468						spinlock_t *punch_lock)
469{
470	spinlock_t *punch_unlock = NULL;
471	swp_entry_t *ptr;
472	int freed = 0;
473
474	for (ptr = dir; ptr < edir; ptr++) {
475		if (ptr->val) {
476			if (unlikely(punch_lock)) {
477				punch_unlock = punch_lock;
478				punch_lock = NULL;
479				spin_lock(punch_unlock);
480				if (!ptr->val)
481					continue;
482			}
483			free_swap_and_cache(*ptr);
484			*ptr = (swp_entry_t){0};
485			freed++;
486		}
487	}
488	if (punch_unlock)
489		spin_unlock(punch_unlock);
490	return freed;
491}
492
493static int shmem_map_and_free_swp(struct page *subdir, int offset,
494		int limit, struct page ***dir, spinlock_t *punch_lock)
495{
496	swp_entry_t *ptr;
497	int freed = 0;
498
499	ptr = shmem_swp_map(subdir);
500	for (; offset < limit; offset += LATENCY_LIMIT) {
501		int size = limit - offset;
502		if (size > LATENCY_LIMIT)
503			size = LATENCY_LIMIT;
504		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
505							punch_lock);
506		if (need_resched()) {
507			shmem_swp_unmap(ptr);
508			if (*dir) {
509				shmem_dir_unmap(*dir);
510				*dir = NULL;
511			}
512			cond_resched();
513			ptr = shmem_swp_map(subdir);
514		}
515	}
516	shmem_swp_unmap(ptr);
517	return freed;
518}
519
520static void shmem_free_pages(struct list_head *next)
521{
522	struct page *page;
523	int freed = 0;
524
525	do {
526		page = container_of(next, struct page, lru);
527		next = next->next;
528		shmem_dir_free(page);
529		freed++;
530		if (freed >= LATENCY_LIMIT) {
531			cond_resched();
532			freed = 0;
533		}
534	} while (next);
535}
536
537static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
538{
539	struct shmem_inode_info *info = SHMEM_I(inode);
540	unsigned long idx;
541	unsigned long size;
542	unsigned long limit;
543	unsigned long stage;
544	unsigned long diroff;
545	struct page **dir;
546	struct page *topdir;
547	struct page *middir;
548	struct page *subdir;
549	swp_entry_t *ptr;
550	LIST_HEAD(pages_to_free);
551	long nr_pages_to_free = 0;
552	long nr_swaps_freed = 0;
553	int offset;
554	int freed;
555	int punch_hole;
556	spinlock_t *needs_lock;
557	spinlock_t *punch_lock;
558	unsigned long upper_limit;
559
560	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
561	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
562	if (idx >= info->next_index)
563		return;
564
565	spin_lock(&info->lock);
566	info->flags |= SHMEM_TRUNCATE;
567	if (likely(end == (loff_t) -1)) {
568		limit = info->next_index;
569		upper_limit = SHMEM_MAX_INDEX;
570		info->next_index = idx;
571		needs_lock = NULL;
572		punch_hole = 0;
573	} else {
574		if (end + 1 >= inode->i_size) {	/* we may free a little more */
575			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
576							PAGE_CACHE_SHIFT;
577			upper_limit = SHMEM_MAX_INDEX;
578		} else {
579			limit = (end + 1) >> PAGE_CACHE_SHIFT;
580			upper_limit = limit;
581		}
582		needs_lock = &info->lock;
583		punch_hole = 1;
584	}
585
586	topdir = info->i_indirect;
587	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
588		info->i_indirect = NULL;
589		nr_pages_to_free++;
590		list_add(&topdir->lru, &pages_to_free);
591	}
592	spin_unlock(&info->lock);
593
594	if (info->swapped && idx < SHMEM_NR_DIRECT) {
595		ptr = info->i_direct;
596		size = limit;
597		if (size > SHMEM_NR_DIRECT)
598			size = SHMEM_NR_DIRECT;
599		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
600	}
601
602	/*
603	 * If there are no indirect blocks or we are punching a hole
604	 * below indirect blocks, nothing to be done.
605	 */
606	if (!topdir || limit <= SHMEM_NR_DIRECT)
607		goto done2;
608
609	/*
610	 * The truncation case has already dropped info->lock, and we're safe
611	 * because i_size and next_index have already been lowered, preventing
612	 * access beyond.  But in the punch_hole case, we still need to take
613	 * the lock when updating the swap directory, because there might be
614	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
615	 * shmem_writepage.  However, whenever we find we can remove a whole
616	 * directory page (not at the misaligned start or end of the range),
617	 * we first NULLify its pointer in the level above, and then have no
618	 * need to take the lock when updating its contents: needs_lock and
619	 * punch_lock (either pointing to info->lock or NULL) manage this.
620	 */
621
622	upper_limit -= SHMEM_NR_DIRECT;
623	limit -= SHMEM_NR_DIRECT;
624	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
625	offset = idx % ENTRIES_PER_PAGE;
626	idx -= offset;
627
628	dir = shmem_dir_map(topdir);
629	stage = ENTRIES_PER_PAGEPAGE/2;
630	if (idx < ENTRIES_PER_PAGEPAGE/2) {
631		middir = topdir;
632		diroff = idx/ENTRIES_PER_PAGE;
633	} else {
634		dir += ENTRIES_PER_PAGE/2;
635		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
636		while (stage <= idx)
637			stage += ENTRIES_PER_PAGEPAGE;
638		middir = *dir;
639		if (*dir) {
640			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
641				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
642			if (!diroff && !offset && upper_limit >= stage) {
643				if (needs_lock) {
644					spin_lock(needs_lock);
645					*dir = NULL;
646					spin_unlock(needs_lock);
647					needs_lock = NULL;
648				} else
649					*dir = NULL;
650				nr_pages_to_free++;
651				list_add(&middir->lru, &pages_to_free);
652			}
653			shmem_dir_unmap(dir);
654			dir = shmem_dir_map(middir);
655		} else {
656			diroff = 0;
657			offset = 0;
658			idx = stage;
659		}
660	}
661
662	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
663		if (unlikely(idx == stage)) {
664			shmem_dir_unmap(dir);
665			dir = shmem_dir_map(topdir) +
666			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
667			while (!*dir) {
668				dir++;
669				idx += ENTRIES_PER_PAGEPAGE;
670				if (idx >= limit)
671					goto done1;
672			}
673			stage = idx + ENTRIES_PER_PAGEPAGE;
674			middir = *dir;
675			if (punch_hole)
676				needs_lock = &info->lock;
677			if (upper_limit >= stage) {
678				if (needs_lock) {
679					spin_lock(needs_lock);
680					*dir = NULL;
681					spin_unlock(needs_lock);
682					needs_lock = NULL;
683				} else
684					*dir = NULL;
685				nr_pages_to_free++;
686				list_add(&middir->lru, &pages_to_free);
687			}
688			shmem_dir_unmap(dir);
689			cond_resched();
690			dir = shmem_dir_map(middir);
691			diroff = 0;
692		}
693		punch_lock = needs_lock;
694		subdir = dir[diroff];
695		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
696			if (needs_lock) {
697				spin_lock(needs_lock);
698				dir[diroff] = NULL;
699				spin_unlock(needs_lock);
700				punch_lock = NULL;
701			} else
702				dir[diroff] = NULL;
703			nr_pages_to_free++;
704			list_add(&subdir->lru, &pages_to_free);
705		}
706		if (subdir && page_private(subdir) /* has swap entries */) {
707			size = limit - idx;
708			if (size > ENTRIES_PER_PAGE)
709				size = ENTRIES_PER_PAGE;
710			freed = shmem_map_and_free_swp(subdir,
711					offset, size, &dir, punch_lock);
712			if (!dir)
713				dir = shmem_dir_map(middir);
714			nr_swaps_freed += freed;
715			if (offset || punch_lock) {
716				spin_lock(&info->lock);
717				set_page_private(subdir,
718					page_private(subdir) - freed);
719				spin_unlock(&info->lock);
720			} else
721				BUG_ON(page_private(subdir) != freed);
722		}
723		offset = 0;
724	}
725done1:
726	shmem_dir_unmap(dir);
727done2:
728	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
729		/*
730		 * Call truncate_inode_pages again: racing shmem_unuse_inode
731		 * may have swizzled a page in from swap since vmtruncate or
732		 * generic_delete_inode did it, before we lowered next_index.
733		 * Also, though shmem_getpage checks i_size before adding to
734		 * cache, no recheck after: so fix the narrow window there too.
735		 *
736		 * Recalling truncate_inode_pages_range and unmap_mapping_range
737		 * every time for punch_hole (which never got a chance to clear
738		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
739		 * yet hardly ever necessary: try to optimize them out later.
740		 */
741		truncate_inode_pages_range(inode->i_mapping, start, end);
742		if (punch_hole)
743			unmap_mapping_range(inode->i_mapping, start,
744							end - start, 1);
745	}
746
747	spin_lock(&info->lock);
748	info->flags &= ~SHMEM_TRUNCATE;
749	info->swapped -= nr_swaps_freed;
750	if (nr_pages_to_free)
751		shmem_free_blocks(inode, nr_pages_to_free);
752	shmem_recalc_inode(inode);
753	spin_unlock(&info->lock);
754
755	/*
756	 * Empty swap vector directory pages to be freed?
757	 */
758	if (!list_empty(&pages_to_free)) {
759		pages_to_free.prev->next = NULL;
760		shmem_free_pages(pages_to_free.next);
761	}
762}
763
764static void shmem_truncate(struct inode *inode)
765{
766	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
767}
768
769static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
770{
771	struct inode *inode = dentry->d_inode;
772	struct page *page = NULL;
773	int error;
774
775	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
776		if (attr->ia_size < inode->i_size) {
777			/*
778			 * If truncating down to a partial page, then
779			 * if that page is already allocated, hold it
780			 * in memory until the truncation is over, so
781			 * truncate_partial_page cannnot miss it were
782			 * it assigned to swap.
783			 */
784			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
785				(void) shmem_getpage(inode,
786					attr->ia_size>>PAGE_CACHE_SHIFT,
787						&page, SGP_READ, NULL);
788				if (page)
789					unlock_page(page);
790			}
791			/*
792			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
793			 * detect if any pages might have been added to cache
794			 * after truncate_inode_pages.  But we needn't bother
795			 * if it's being fully truncated to zero-length: the
796			 * nrpages check is efficient enough in that case.
797			 */
798			if (attr->ia_size) {
799				struct shmem_inode_info *info = SHMEM_I(inode);
800				spin_lock(&info->lock);
801				info->flags &= ~SHMEM_PAGEIN;
802				spin_unlock(&info->lock);
803			}
804		}
805	}
806
807	error = inode_change_ok(inode, attr);
808	if (!error)
809		error = inode_setattr(inode, attr);
810#ifdef CONFIG_TMPFS_POSIX_ACL
811	if (!error && (attr->ia_valid & ATTR_MODE))
812		error = generic_acl_chmod(inode, &shmem_acl_ops);
813#endif
814	if (page)
815		page_cache_release(page);
816	return error;
817}
818
819static void shmem_delete_inode(struct inode *inode)
820{
821	struct shmem_inode_info *info = SHMEM_I(inode);
822
823	if (inode->i_op->truncate == shmem_truncate) {
824		truncate_inode_pages(inode->i_mapping, 0);
825		shmem_unacct_size(info->flags, inode->i_size);
826		inode->i_size = 0;
827		shmem_truncate(inode);
828		if (!list_empty(&info->swaplist)) {
829			mutex_lock(&shmem_swaplist_mutex);
830			list_del_init(&info->swaplist);
831			mutex_unlock(&shmem_swaplist_mutex);
832		}
833	}
834	BUG_ON(inode->i_blocks);
835	shmem_free_inode(inode->i_sb);
836	clear_inode(inode);
837}
838
839static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
840{
841	swp_entry_t *ptr;
842
843	for (ptr = dir; ptr < edir; ptr++) {
844		if (ptr->val == entry.val)
845			return ptr - dir;
846	}
847	return -1;
848}
849
850static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
851{
852	struct inode *inode;
853	unsigned long idx;
854	unsigned long size;
855	unsigned long limit;
856	unsigned long stage;
857	struct page **dir;
858	struct page *subdir;
859	swp_entry_t *ptr;
860	int offset;
861	int error;
862
863	idx = 0;
864	ptr = info->i_direct;
865	spin_lock(&info->lock);
866	if (!info->swapped) {
867		list_del_init(&info->swaplist);
868		goto lost2;
869	}
870	limit = info->next_index;
871	size = limit;
872	if (size > SHMEM_NR_DIRECT)
873		size = SHMEM_NR_DIRECT;
874	offset = shmem_find_swp(entry, ptr, ptr+size);
875	if (offset >= 0)
876		goto found;
877	if (!info->i_indirect)
878		goto lost2;
879
880	dir = shmem_dir_map(info->i_indirect);
881	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
882
883	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
884		if (unlikely(idx == stage)) {
885			shmem_dir_unmap(dir-1);
886			if (cond_resched_lock(&info->lock)) {
887				/* check it has not been truncated */
888				if (limit > info->next_index) {
889					limit = info->next_index;
890					if (idx >= limit)
891						goto lost2;
892				}
893			}
894			dir = shmem_dir_map(info->i_indirect) +
895			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
896			while (!*dir) {
897				dir++;
898				idx += ENTRIES_PER_PAGEPAGE;
899				if (idx >= limit)
900					goto lost1;
901			}
902			stage = idx + ENTRIES_PER_PAGEPAGE;
903			subdir = *dir;
904			shmem_dir_unmap(dir);
905			dir = shmem_dir_map(subdir);
906		}
907		subdir = *dir;
908		if (subdir && page_private(subdir)) {
909			ptr = shmem_swp_map(subdir);
910			size = limit - idx;
911			if (size > ENTRIES_PER_PAGE)
912				size = ENTRIES_PER_PAGE;
913			offset = shmem_find_swp(entry, ptr, ptr+size);
914			shmem_swp_unmap(ptr);
915			if (offset >= 0) {
916				shmem_dir_unmap(dir);
917				goto found;
918			}
919		}
920	}
921lost1:
922	shmem_dir_unmap(dir-1);
923lost2:
924	spin_unlock(&info->lock);
925	return 0;
926found:
927	idx += offset;
928	inode = igrab(&info->vfs_inode);
929	spin_unlock(&info->lock);
930
931	/*
932	 * Move _head_ to start search for next from here.
933	 * But be careful: shmem_delete_inode checks list_empty without taking
934	 * mutex, and there's an instant in list_move_tail when info->swaplist
935	 * would appear empty, if it were the only one on shmem_swaplist.  We
936	 * could avoid doing it if inode NULL; or use this minor optimization.
937	 */
938	if (shmem_swaplist.next != &info->swaplist)
939		list_move_tail(&shmem_swaplist, &info->swaplist);
940	mutex_unlock(&shmem_swaplist_mutex);
941
942	error = 1;
943	if (!inode)
944		goto out;
945	/*
946	 * Charge page using GFP_KERNEL while we can wait.
947	 * Charged back to the user(not to caller) when swap account is used.
948	 * add_to_page_cache() will be called with GFP_NOWAIT.
949	 */
950	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
951	if (error)
952		goto out;
953	error = radix_tree_preload(GFP_KERNEL);
954	if (error) {
955		mem_cgroup_uncharge_cache_page(page);
956		goto out;
957	}
958	error = 1;
959
960	spin_lock(&info->lock);
961	ptr = shmem_swp_entry(info, idx, NULL);
962	if (ptr && ptr->val == entry.val) {
963		error = add_to_page_cache_locked(page, inode->i_mapping,
964						idx, GFP_NOWAIT);
965		/* does mem_cgroup_uncharge_cache_page on error */
966	} else	/* we must compensate for our precharge above */
967		mem_cgroup_uncharge_cache_page(page);
968
969	if (error == -EEXIST) {
970		struct page *filepage = find_get_page(inode->i_mapping, idx);
971		error = 1;
972		if (filepage) {
973			/*
974			 * There might be a more uptodate page coming down
975			 * from a stacked writepage: forget our swappage if so.
976			 */
977			if (PageUptodate(filepage))
978				error = 0;
979			page_cache_release(filepage);
980		}
981	}
982	if (!error) {
983		delete_from_swap_cache(page);
984		set_page_dirty(page);
985		info->flags |= SHMEM_PAGEIN;
986		shmem_swp_set(info, ptr, 0);
987		swap_free(entry);
988		error = 1;	/* not an error, but entry was found */
989	}
990	if (ptr)
991		shmem_swp_unmap(ptr);
992	spin_unlock(&info->lock);
993	radix_tree_preload_end();
994out:
995	unlock_page(page);
996	page_cache_release(page);
997	iput(inode);		/* allows for NULL */
998	return error;
999}
1000
1001/*
1002 * shmem_unuse() search for an eventually swapped out shmem page.
1003 */
1004int shmem_unuse(swp_entry_t entry, struct page *page)
1005{
1006	struct list_head *p, *next;
1007	struct shmem_inode_info *info;
1008	int found = 0;
1009
1010	mutex_lock(&shmem_swaplist_mutex);
1011	list_for_each_safe(p, next, &shmem_swaplist) {
1012		info = list_entry(p, struct shmem_inode_info, swaplist);
1013		found = shmem_unuse_inode(info, entry, page);
1014		cond_resched();
1015		if (found)
1016			goto out;
1017	}
1018	mutex_unlock(&shmem_swaplist_mutex);
1019	/*
1020	 * Can some race bring us here?  We've been holding page lock,
1021	 * so I think not; but would rather try again later than BUG()
1022	 */
1023	unlock_page(page);
1024	page_cache_release(page);
1025out:
1026	return (found < 0) ? found : 0;
1027}
1028
1029/*
1030 * Move the page from the page cache to the swap cache.
1031 */
1032static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1033{
1034	struct shmem_inode_info *info;
1035	swp_entry_t *entry, swap;
1036	struct address_space *mapping;
1037	unsigned long index;
1038	struct inode *inode;
1039
1040	BUG_ON(!PageLocked(page));
1041	mapping = page->mapping;
1042	index = page->index;
1043	inode = mapping->host;
1044	info = SHMEM_I(inode);
1045	if (info->flags & VM_LOCKED)
1046		goto redirty;
1047	if (!total_swap_pages)
1048		goto redirty;
1049
1050	/*
1051	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1052	 * sync from ever calling shmem_writepage; but a stacking filesystem
1053	 * may use the ->writepage of its underlying filesystem, in which case
1054	 * tmpfs should write out to swap only in response to memory pressure,
1055	 * and not for the writeback threads or sync.  However, in those cases,
1056	 * we do still want to check if there's a redundant swappage to be
1057	 * discarded.
1058	 */
1059	if (wbc->for_reclaim)
1060		swap = get_swap_page();
1061	else
1062		swap.val = 0;
1063
1064	spin_lock(&info->lock);
1065	if (index >= info->next_index) {
1066		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1067		goto unlock;
1068	}
1069	entry = shmem_swp_entry(info, index, NULL);
1070	if (entry->val) {
1071		/*
1072		 * The more uptodate page coming down from a stacked
1073		 * writepage should replace our old swappage.
1074		 */
1075		free_swap_and_cache(*entry);
1076		shmem_swp_set(info, entry, 0);
1077	}
1078	shmem_recalc_inode(inode);
1079
1080	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1081		remove_from_page_cache(page);
1082		shmem_swp_set(info, entry, swap.val);
1083		shmem_swp_unmap(entry);
1084		if (list_empty(&info->swaplist))
1085			inode = igrab(inode);
1086		else
1087			inode = NULL;
1088		spin_unlock(&info->lock);
1089		swap_shmem_alloc(swap);
1090		BUG_ON(page_mapped(page));
1091		page_cache_release(page);	/* pagecache ref */
1092		swap_writepage(page, wbc);
1093		if (inode) {
1094			mutex_lock(&shmem_swaplist_mutex);
1095			/* move instead of add in case we're racing */
1096			list_move_tail(&info->swaplist, &shmem_swaplist);
1097			mutex_unlock(&shmem_swaplist_mutex);
1098			iput(inode);
1099		}
1100		return 0;
1101	}
1102
1103	shmem_swp_unmap(entry);
1104unlock:
1105	spin_unlock(&info->lock);
1106	/*
1107	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1108	 * clear SWAP_HAS_CACHE flag.
1109	 */
1110	swapcache_free(swap, NULL);
1111redirty:
1112	set_page_dirty(page);
1113	if (wbc->for_reclaim)
1114		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1115	unlock_page(page);
1116	return 0;
1117}
1118
1119#ifdef CONFIG_NUMA
1120#ifdef CONFIG_TMPFS
1121static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1122{
1123	char buffer[64];
1124
1125	if (!mpol || mpol->mode == MPOL_DEFAULT)
1126		return;		/* show nothing */
1127
1128	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1129
1130	seq_printf(seq, ",mpol=%s", buffer);
1131}
1132
1133static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1134{
1135	struct mempolicy *mpol = NULL;
1136	if (sbinfo->mpol) {
1137		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1138		mpol = sbinfo->mpol;
1139		mpol_get(mpol);
1140		spin_unlock(&sbinfo->stat_lock);
1141	}
1142	return mpol;
1143}
1144#endif /* CONFIG_TMPFS */
1145
1146static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1147			struct shmem_inode_info *info, unsigned long idx)
1148{
1149	struct mempolicy mpol, *spol;
1150	struct vm_area_struct pvma;
1151	struct page *page;
1152
1153	spol = mpol_cond_copy(&mpol,
1154				mpol_shared_policy_lookup(&info->policy, idx));
1155
1156	/* Create a pseudo vma that just contains the policy */
1157	pvma.vm_start = 0;
1158	pvma.vm_pgoff = idx;
1159	pvma.vm_ops = NULL;
1160	pvma.vm_policy = spol;
1161	page = swapin_readahead(entry, gfp, &pvma, 0);
1162	return page;
1163}
1164
1165static struct page *shmem_alloc_page(gfp_t gfp,
1166			struct shmem_inode_info *info, unsigned long idx)
1167{
1168	struct vm_area_struct pvma;
1169
1170	/* Create a pseudo vma that just contains the policy */
1171	pvma.vm_start = 0;
1172	pvma.vm_pgoff = idx;
1173	pvma.vm_ops = NULL;
1174	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1175
1176	/*
1177	 * alloc_page_vma() will drop the shared policy reference
1178	 */
1179	return alloc_page_vma(gfp, &pvma, 0);
1180}
1181#else /* !CONFIG_NUMA */
1182#ifdef CONFIG_TMPFS
1183static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1184{
1185}
1186#endif /* CONFIG_TMPFS */
1187
1188static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1189			struct shmem_inode_info *info, unsigned long idx)
1190{
1191	return swapin_readahead(entry, gfp, NULL, 0);
1192}
1193
1194static inline struct page *shmem_alloc_page(gfp_t gfp,
1195			struct shmem_inode_info *info, unsigned long idx)
1196{
1197	return alloc_page(gfp);
1198}
1199#endif /* CONFIG_NUMA */
1200
1201#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1202static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1203{
1204	return NULL;
1205}
1206#endif
1207
1208/*
1209 * shmem_getpage - either get the page from swap or allocate a new one
1210 *
1211 * If we allocate a new one we do not mark it dirty. That's up to the
1212 * vm. If we swap it in we mark it dirty since we also free the swap
1213 * entry since a page cannot live in both the swap and page cache
1214 */
1215static int shmem_getpage(struct inode *inode, unsigned long idx,
1216			struct page **pagep, enum sgp_type sgp, int *type)
1217{
1218	struct address_space *mapping = inode->i_mapping;
1219	struct shmem_inode_info *info = SHMEM_I(inode);
1220	struct shmem_sb_info *sbinfo;
1221	struct page *filepage = *pagep;
1222	struct page *swappage;
1223	swp_entry_t *entry;
1224	swp_entry_t swap;
1225	gfp_t gfp;
1226	int error;
1227
1228	if (idx >= SHMEM_MAX_INDEX)
1229		return -EFBIG;
1230
1231	if (type)
1232		*type = 0;
1233
1234	/*
1235	 * Normally, filepage is NULL on entry, and either found
1236	 * uptodate immediately, or allocated and zeroed, or read
1237	 * in under swappage, which is then assigned to filepage.
1238	 * But shmem_readpage (required for splice) passes in a locked
1239	 * filepage, which may be found not uptodate by other callers
1240	 * too, and may need to be copied from the swappage read in.
1241	 */
1242repeat:
1243	if (!filepage)
1244		filepage = find_lock_page(mapping, idx);
1245	if (filepage && PageUptodate(filepage))
1246		goto done;
1247	error = 0;
1248	gfp = mapping_gfp_mask(mapping);
1249	if (!filepage) {
1250		/*
1251		 * Try to preload while we can wait, to not make a habit of
1252		 * draining atomic reserves; but don't latch on to this cpu.
1253		 */
1254		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1255		if (error)
1256			goto failed;
1257		radix_tree_preload_end();
1258	}
1259
1260	spin_lock(&info->lock);
1261	shmem_recalc_inode(inode);
1262	entry = shmem_swp_alloc(info, idx, sgp);
1263	if (IS_ERR(entry)) {
1264		spin_unlock(&info->lock);
1265		error = PTR_ERR(entry);
1266		goto failed;
1267	}
1268	swap = *entry;
1269
1270	if (swap.val) {
1271		/* Look it up and read it in.. */
1272		swappage = lookup_swap_cache(swap);
1273		if (!swappage) {
1274			shmem_swp_unmap(entry);
1275			/* here we actually do the io */
1276			if (type && !(*type & VM_FAULT_MAJOR)) {
1277				__count_vm_event(PGMAJFAULT);
1278				*type |= VM_FAULT_MAJOR;
1279			}
1280			spin_unlock(&info->lock);
1281			swappage = shmem_swapin(swap, gfp, info, idx);
1282			if (!swappage) {
1283				spin_lock(&info->lock);
1284				entry = shmem_swp_alloc(info, idx, sgp);
1285				if (IS_ERR(entry))
1286					error = PTR_ERR(entry);
1287				else {
1288					if (entry->val == swap.val)
1289						error = -ENOMEM;
1290					shmem_swp_unmap(entry);
1291				}
1292				spin_unlock(&info->lock);
1293				if (error)
1294					goto failed;
1295				goto repeat;
1296			}
1297			wait_on_page_locked(swappage);
1298			page_cache_release(swappage);
1299			goto repeat;
1300		}
1301
1302		/* We have to do this with page locked to prevent races */
1303		if (!trylock_page(swappage)) {
1304			shmem_swp_unmap(entry);
1305			spin_unlock(&info->lock);
1306			wait_on_page_locked(swappage);
1307			page_cache_release(swappage);
1308			goto repeat;
1309		}
1310		if (PageWriteback(swappage)) {
1311			shmem_swp_unmap(entry);
1312			spin_unlock(&info->lock);
1313			wait_on_page_writeback(swappage);
1314			unlock_page(swappage);
1315			page_cache_release(swappage);
1316			goto repeat;
1317		}
1318		if (!PageUptodate(swappage)) {
1319			shmem_swp_unmap(entry);
1320			spin_unlock(&info->lock);
1321			unlock_page(swappage);
1322			page_cache_release(swappage);
1323			error = -EIO;
1324			goto failed;
1325		}
1326
1327		if (filepage) {
1328			shmem_swp_set(info, entry, 0);
1329			shmem_swp_unmap(entry);
1330			delete_from_swap_cache(swappage);
1331			spin_unlock(&info->lock);
1332			copy_highpage(filepage, swappage);
1333			unlock_page(swappage);
1334			page_cache_release(swappage);
1335			flush_dcache_page(filepage);
1336			SetPageUptodate(filepage);
1337			set_page_dirty(filepage);
1338			swap_free(swap);
1339		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1340					idx, GFP_NOWAIT))) {
1341			info->flags |= SHMEM_PAGEIN;
1342			shmem_swp_set(info, entry, 0);
1343			shmem_swp_unmap(entry);
1344			delete_from_swap_cache(swappage);
1345			spin_unlock(&info->lock);
1346			filepage = swappage;
1347			set_page_dirty(filepage);
1348			swap_free(swap);
1349		} else {
1350			shmem_swp_unmap(entry);
1351			spin_unlock(&info->lock);
1352			if (error == -ENOMEM) {
1353				/*
1354				 * reclaim from proper memory cgroup and
1355				 * call memcg's OOM if needed.
1356				 */
1357				error = mem_cgroup_shmem_charge_fallback(
1358								swappage,
1359								current->mm,
1360								gfp);
1361				if (error) {
1362					unlock_page(swappage);
1363					page_cache_release(swappage);
1364					goto failed;
1365				}
1366			}
1367			unlock_page(swappage);
1368			page_cache_release(swappage);
1369			goto repeat;
1370		}
1371	} else if (sgp == SGP_READ && !filepage) {
1372		shmem_swp_unmap(entry);
1373		filepage = find_get_page(mapping, idx);
1374		if (filepage &&
1375		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1376			spin_unlock(&info->lock);
1377			wait_on_page_locked(filepage);
1378			page_cache_release(filepage);
1379			filepage = NULL;
1380			goto repeat;
1381		}
1382		spin_unlock(&info->lock);
1383	} else {
1384		shmem_swp_unmap(entry);
1385		sbinfo = SHMEM_SB(inode->i_sb);
1386		if (sbinfo->max_blocks) {
1387			spin_lock(&sbinfo->stat_lock);
1388			if (sbinfo->free_blocks == 0 ||
1389			    shmem_acct_block(info->flags)) {
1390				spin_unlock(&sbinfo->stat_lock);
1391				spin_unlock(&info->lock);
1392				error = -ENOSPC;
1393				goto failed;
1394			}
1395			sbinfo->free_blocks--;
1396			inode->i_blocks += BLOCKS_PER_PAGE;
1397			spin_unlock(&sbinfo->stat_lock);
1398		} else if (shmem_acct_block(info->flags)) {
1399			spin_unlock(&info->lock);
1400			error = -ENOSPC;
1401			goto failed;
1402		}
1403
1404		if (!filepage) {
1405			int ret;
1406
1407			spin_unlock(&info->lock);
1408			filepage = shmem_alloc_page(gfp, info, idx);
1409			if (!filepage) {
1410				shmem_unacct_blocks(info->flags, 1);
1411				shmem_free_blocks(inode, 1);
1412				error = -ENOMEM;
1413				goto failed;
1414			}
1415			SetPageSwapBacked(filepage);
1416
1417			/* Precharge page while we can wait, compensate after */
1418			error = mem_cgroup_cache_charge(filepage, current->mm,
1419					GFP_KERNEL);
1420			if (error) {
1421				page_cache_release(filepage);
1422				shmem_unacct_blocks(info->flags, 1);
1423				shmem_free_blocks(inode, 1);
1424				filepage = NULL;
1425				goto failed;
1426			}
1427
1428			spin_lock(&info->lock);
1429			entry = shmem_swp_alloc(info, idx, sgp);
1430			if (IS_ERR(entry))
1431				error = PTR_ERR(entry);
1432			else {
1433				swap = *entry;
1434				shmem_swp_unmap(entry);
1435			}
1436			ret = error || swap.val;
1437			if (ret)
1438				mem_cgroup_uncharge_cache_page(filepage);
1439			else
1440				ret = add_to_page_cache_lru(filepage, mapping,
1441						idx, GFP_NOWAIT);
1442			/*
1443			 * At add_to_page_cache_lru() failure, uncharge will
1444			 * be done automatically.
1445			 */
1446			if (ret) {
1447				spin_unlock(&info->lock);
1448				page_cache_release(filepage);
1449				shmem_unacct_blocks(info->flags, 1);
1450				shmem_free_blocks(inode, 1);
1451				filepage = NULL;
1452				if (error)
1453					goto failed;
1454				goto repeat;
1455			}
1456			info->flags |= SHMEM_PAGEIN;
1457		}
1458
1459		info->alloced++;
1460		spin_unlock(&info->lock);
1461		clear_highpage(filepage);
1462		flush_dcache_page(filepage);
1463		SetPageUptodate(filepage);
1464		if (sgp == SGP_DIRTY)
1465			set_page_dirty(filepage);
1466	}
1467done:
1468	*pagep = filepage;
1469	return 0;
1470
1471failed:
1472	if (*pagep != filepage) {
1473		unlock_page(filepage);
1474		page_cache_release(filepage);
1475	}
1476	return error;
1477}
1478
1479static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1480{
1481	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1482	int error;
1483	int ret;
1484
1485	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1486		return VM_FAULT_SIGBUS;
1487
1488	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1489	if (error)
1490		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1491
1492	return ret | VM_FAULT_LOCKED;
1493}
1494
1495#ifdef CONFIG_NUMA
1496static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1497{
1498	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1499	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1500}
1501
1502static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1503					  unsigned long addr)
1504{
1505	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1506	unsigned long idx;
1507
1508	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1509	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1510}
1511#endif
1512
1513int shmem_lock(struct file *file, int lock, struct user_struct *user)
1514{
1515	struct inode *inode = file->f_path.dentry->d_inode;
1516	struct shmem_inode_info *info = SHMEM_I(inode);
1517	int retval = -ENOMEM;
1518
1519	spin_lock(&info->lock);
1520	if (lock && !(info->flags & VM_LOCKED)) {
1521		if (!user_shm_lock(inode->i_size, user))
1522			goto out_nomem;
1523		info->flags |= VM_LOCKED;
1524		mapping_set_unevictable(file->f_mapping);
1525	}
1526	if (!lock && (info->flags & VM_LOCKED) && user) {
1527		user_shm_unlock(inode->i_size, user);
1528		info->flags &= ~VM_LOCKED;
1529		mapping_clear_unevictable(file->f_mapping);
1530		scan_mapping_unevictable_pages(file->f_mapping);
1531	}
1532	retval = 0;
1533
1534out_nomem:
1535	spin_unlock(&info->lock);
1536	return retval;
1537}
1538
1539static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1540{
1541	file_accessed(file);
1542	vma->vm_ops = &shmem_vm_ops;
1543	vma->vm_flags |= VM_CAN_NONLINEAR;
1544	return 0;
1545}
1546
1547static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1548					dev_t dev, unsigned long flags)
1549{
1550	struct inode *inode;
1551	struct shmem_inode_info *info;
1552	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1553
1554	if (shmem_reserve_inode(sb))
1555		return NULL;
1556
1557	inode = new_inode(sb);
1558	if (inode) {
1559		inode->i_mode = mode;
1560		inode->i_uid = current_fsuid();
1561		inode->i_gid = current_fsgid();
1562		inode->i_blocks = 0;
1563		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1564		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1565		inode->i_generation = get_seconds();
1566		info = SHMEM_I(inode);
1567		memset(info, 0, (char *)inode - (char *)info);
1568		spin_lock_init(&info->lock);
1569		info->flags = flags & VM_NORESERVE;
1570		INIT_LIST_HEAD(&info->swaplist);
1571		cache_no_acl(inode);
1572
1573		switch (mode & S_IFMT) {
1574		default:
1575			inode->i_op = &shmem_special_inode_operations;
1576			init_special_inode(inode, mode, dev);
1577			break;
1578		case S_IFREG:
1579			inode->i_mapping->a_ops = &shmem_aops;
1580			inode->i_op = &shmem_inode_operations;
1581			inode->i_fop = &shmem_file_operations;
1582			mpol_shared_policy_init(&info->policy,
1583						 shmem_get_sbmpol(sbinfo));
1584			break;
1585		case S_IFDIR:
1586			inc_nlink(inode);
1587			/* Some things misbehave if size == 0 on a directory */
1588			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1589			inode->i_op = &shmem_dir_inode_operations;
1590			inode->i_fop = &simple_dir_operations;
1591			break;
1592		case S_IFLNK:
1593			/*
1594			 * Must not load anything in the rbtree,
1595			 * mpol_free_shared_policy will not be called.
1596			 */
1597			mpol_shared_policy_init(&info->policy, NULL);
1598			break;
1599		}
1600	} else
1601		shmem_free_inode(sb);
1602	return inode;
1603}
1604
1605#ifdef CONFIG_TMPFS
1606static const struct inode_operations shmem_symlink_inode_operations;
1607static const struct inode_operations shmem_symlink_inline_operations;
1608
1609/*
1610 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1611 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1612 * below the loop driver, in the generic fashion that many filesystems support.
1613 */
1614static int shmem_readpage(struct file *file, struct page *page)
1615{
1616	struct inode *inode = page->mapping->host;
1617	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1618	unlock_page(page);
1619	return error;
1620}
1621
1622static int
1623shmem_write_begin(struct file *file, struct address_space *mapping,
1624			loff_t pos, unsigned len, unsigned flags,
1625			struct page **pagep, void **fsdata)
1626{
1627	struct inode *inode = mapping->host;
1628	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1629	*pagep = NULL;
1630	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1631}
1632
1633static int
1634shmem_write_end(struct file *file, struct address_space *mapping,
1635			loff_t pos, unsigned len, unsigned copied,
1636			struct page *page, void *fsdata)
1637{
1638	struct inode *inode = mapping->host;
1639
1640	if (pos + copied > inode->i_size)
1641		i_size_write(inode, pos + copied);
1642
1643	set_page_dirty(page);
1644	unlock_page(page);
1645	page_cache_release(page);
1646
1647	return copied;
1648}
1649
1650static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1651{
1652	struct inode *inode = filp->f_path.dentry->d_inode;
1653	struct address_space *mapping = inode->i_mapping;
1654	unsigned long index, offset;
1655	enum sgp_type sgp = SGP_READ;
1656
1657	/*
1658	 * Might this read be for a stacking filesystem?  Then when reading
1659	 * holes of a sparse file, we actually need to allocate those pages,
1660	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1661	 */
1662	if (segment_eq(get_fs(), KERNEL_DS))
1663		sgp = SGP_DIRTY;
1664
1665	index = *ppos >> PAGE_CACHE_SHIFT;
1666	offset = *ppos & ~PAGE_CACHE_MASK;
1667
1668	for (;;) {
1669		struct page *page = NULL;
1670		unsigned long end_index, nr, ret;
1671		loff_t i_size = i_size_read(inode);
1672
1673		end_index = i_size >> PAGE_CACHE_SHIFT;
1674		if (index > end_index)
1675			break;
1676		if (index == end_index) {
1677			nr = i_size & ~PAGE_CACHE_MASK;
1678			if (nr <= offset)
1679				break;
1680		}
1681
1682		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1683		if (desc->error) {
1684			if (desc->error == -EINVAL)
1685				desc->error = 0;
1686			break;
1687		}
1688		if (page)
1689			unlock_page(page);
1690
1691		/*
1692		 * We must evaluate after, since reads (unlike writes)
1693		 * are called without i_mutex protection against truncate
1694		 */
1695		nr = PAGE_CACHE_SIZE;
1696		i_size = i_size_read(inode);
1697		end_index = i_size >> PAGE_CACHE_SHIFT;
1698		if (index == end_index) {
1699			nr = i_size & ~PAGE_CACHE_MASK;
1700			if (nr <= offset) {
1701				if (page)
1702					page_cache_release(page);
1703				break;
1704			}
1705		}
1706		nr -= offset;
1707
1708		if (page) {
1709			/*
1710			 * If users can be writing to this page using arbitrary
1711			 * virtual addresses, take care about potential aliasing
1712			 * before reading the page on the kernel side.
1713			 */
1714			if (mapping_writably_mapped(mapping))
1715				flush_dcache_page(page);
1716			/*
1717			 * Mark the page accessed if we read the beginning.
1718			 */
1719			if (!offset)
1720				mark_page_accessed(page);
1721		} else {
1722			page = ZERO_PAGE(0);
1723			page_cache_get(page);
1724		}
1725
1726		/*
1727		 * Ok, we have the page, and it's up-to-date, so
1728		 * now we can copy it to user space...
1729		 *
1730		 * The actor routine returns how many bytes were actually used..
1731		 * NOTE! This may not be the same as how much of a user buffer
1732		 * we filled up (we may be padding etc), so we can only update
1733		 * "pos" here (the actor routine has to update the user buffer
1734		 * pointers and the remaining count).
1735		 */
1736		ret = actor(desc, page, offset, nr);
1737		offset += ret;
1738		index += offset >> PAGE_CACHE_SHIFT;
1739		offset &= ~PAGE_CACHE_MASK;
1740
1741		page_cache_release(page);
1742		if (ret != nr || !desc->count)
1743			break;
1744
1745		cond_resched();
1746	}
1747
1748	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1749	file_accessed(filp);
1750}
1751
1752static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1753		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1754{
1755	struct file *filp = iocb->ki_filp;
1756	ssize_t retval;
1757	unsigned long seg;
1758	size_t count;
1759	loff_t *ppos = &iocb->ki_pos;
1760
1761	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1762	if (retval)
1763		return retval;
1764
1765	for (seg = 0; seg < nr_segs; seg++) {
1766		read_descriptor_t desc;
1767
1768		desc.written = 0;
1769		desc.arg.buf = iov[seg].iov_base;
1770		desc.count = iov[seg].iov_len;
1771		if (desc.count == 0)
1772			continue;
1773		desc.error = 0;
1774		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1775		retval += desc.written;
1776		if (desc.error) {
1777			retval = retval ?: desc.error;
1778			break;
1779		}
1780		if (desc.count > 0)
1781			break;
1782	}
1783	return retval;
1784}
1785
1786static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1787{
1788	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1789
1790	buf->f_type = TMPFS_MAGIC;
1791	buf->f_bsize = PAGE_CACHE_SIZE;
1792	buf->f_namelen = NAME_MAX;
1793	spin_lock(&sbinfo->stat_lock);
1794	if (sbinfo->max_blocks) {
1795		buf->f_blocks = sbinfo->max_blocks;
1796		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1797	}
1798	if (sbinfo->max_inodes) {
1799		buf->f_files = sbinfo->max_inodes;
1800		buf->f_ffree = sbinfo->free_inodes;
1801	}
1802	/* else leave those fields 0 like simple_statfs */
1803	spin_unlock(&sbinfo->stat_lock);
1804	return 0;
1805}
1806
1807/*
1808 * File creation. Allocate an inode, and we're done..
1809 */
1810static int
1811shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1812{
1813	struct inode *inode;
1814	int error = -ENOSPC;
1815
1816	inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1817	if (inode) {
1818		error = security_inode_init_security(inode, dir, NULL, NULL,
1819						     NULL);
1820		if (error) {
1821			if (error != -EOPNOTSUPP) {
1822				iput(inode);
1823				return error;
1824			}
1825		}
1826		error = shmem_acl_init(inode, dir);
1827		if (error) {
1828			iput(inode);
1829			return error;
1830		}
1831		if (dir->i_mode & S_ISGID) {
1832			inode->i_gid = dir->i_gid;
1833			if (S_ISDIR(mode))
1834				inode->i_mode |= S_ISGID;
1835		}
1836		dir->i_size += BOGO_DIRENT_SIZE;
1837		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1838		d_instantiate(dentry, inode);
1839		dget(dentry); /* Extra count - pin the dentry in core */
1840	}
1841	return error;
1842}
1843
1844static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1845{
1846	int error;
1847
1848	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1849		return error;
1850	inc_nlink(dir);
1851	return 0;
1852}
1853
1854static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1855		struct nameidata *nd)
1856{
1857	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1858}
1859
1860/*
1861 * Link a file..
1862 */
1863static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1864{
1865	struct inode *inode = old_dentry->d_inode;
1866	int ret;
1867
1868	/*
1869	 * No ordinary (disk based) filesystem counts links as inodes;
1870	 * but each new link needs a new dentry, pinning lowmem, and
1871	 * tmpfs dentries cannot be pruned until they are unlinked.
1872	 */
1873	ret = shmem_reserve_inode(inode->i_sb);
1874	if (ret)
1875		goto out;
1876
1877	dir->i_size += BOGO_DIRENT_SIZE;
1878	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1879	inc_nlink(inode);
1880	atomic_inc(&inode->i_count);	/* New dentry reference */
1881	dget(dentry);		/* Extra pinning count for the created dentry */
1882	d_instantiate(dentry, inode);
1883out:
1884	return ret;
1885}
1886
1887static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1888{
1889	struct inode *inode = dentry->d_inode;
1890
1891	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1892		shmem_free_inode(inode->i_sb);
1893
1894	dir->i_size -= BOGO_DIRENT_SIZE;
1895	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1896	drop_nlink(inode);
1897	dput(dentry);	/* Undo the count from "create" - this does all the work */
1898	return 0;
1899}
1900
1901static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1902{
1903	if (!simple_empty(dentry))
1904		return -ENOTEMPTY;
1905
1906	drop_nlink(dentry->d_inode);
1907	drop_nlink(dir);
1908	return shmem_unlink(dir, dentry);
1909}
1910
1911/*
1912 * The VFS layer already does all the dentry stuff for rename,
1913 * we just have to decrement the usage count for the target if
1914 * it exists so that the VFS layer correctly free's it when it
1915 * gets overwritten.
1916 */
1917static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1918{
1919	struct inode *inode = old_dentry->d_inode;
1920	int they_are_dirs = S_ISDIR(inode->i_mode);
1921
1922	if (!simple_empty(new_dentry))
1923		return -ENOTEMPTY;
1924
1925	if (new_dentry->d_inode) {
1926		(void) shmem_unlink(new_dir, new_dentry);
1927		if (they_are_dirs)
1928			drop_nlink(old_dir);
1929	} else if (they_are_dirs) {
1930		drop_nlink(old_dir);
1931		inc_nlink(new_dir);
1932	}
1933
1934	old_dir->i_size -= BOGO_DIRENT_SIZE;
1935	new_dir->i_size += BOGO_DIRENT_SIZE;
1936	old_dir->i_ctime = old_dir->i_mtime =
1937	new_dir->i_ctime = new_dir->i_mtime =
1938	inode->i_ctime = CURRENT_TIME;
1939	return 0;
1940}
1941
1942static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1943{
1944	int error;
1945	int len;
1946	struct inode *inode;
1947	struct page *page = NULL;
1948	char *kaddr;
1949	struct shmem_inode_info *info;
1950
1951	len = strlen(symname) + 1;
1952	if (len > PAGE_CACHE_SIZE)
1953		return -ENAMETOOLONG;
1954
1955	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1956	if (!inode)
1957		return -ENOSPC;
1958
1959	error = security_inode_init_security(inode, dir, NULL, NULL,
1960					     NULL);
1961	if (error) {
1962		if (error != -EOPNOTSUPP) {
1963			iput(inode);
1964			return error;
1965		}
1966		error = 0;
1967	}
1968
1969	info = SHMEM_I(inode);
1970	inode->i_size = len-1;
1971	if (len <= (char *)inode - (char *)info) {
1972		/* do it inline */
1973		memcpy(info, symname, len);
1974		inode->i_op = &shmem_symlink_inline_operations;
1975	} else {
1976		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1977		if (error) {
1978			iput(inode);
1979			return error;
1980		}
1981		inode->i_mapping->a_ops = &shmem_aops;
1982		inode->i_op = &shmem_symlink_inode_operations;
1983		kaddr = kmap_atomic(page, KM_USER0);
1984		memcpy(kaddr, symname, len);
1985		kunmap_atomic(kaddr, KM_USER0);
1986		set_page_dirty(page);
1987		unlock_page(page);
1988		page_cache_release(page);
1989	}
1990	if (dir->i_mode & S_ISGID)
1991		inode->i_gid = dir->i_gid;
1992	dir->i_size += BOGO_DIRENT_SIZE;
1993	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1994	d_instantiate(dentry, inode);
1995	dget(dentry);
1996	return 0;
1997}
1998
1999static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2000{
2001	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2002	return NULL;
2003}
2004
2005static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2006{
2007	struct page *page = NULL;
2008	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2009	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2010	if (page)
2011		unlock_page(page);
2012	return page;
2013}
2014
2015static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2016{
2017	if (!IS_ERR(nd_get_link(nd))) {
2018		struct page *page = cookie;
2019		kunmap(page);
2020		mark_page_accessed(page);
2021		page_cache_release(page);
2022	}
2023}
2024
2025static const struct inode_operations shmem_symlink_inline_operations = {
2026	.readlink	= generic_readlink,
2027	.follow_link	= shmem_follow_link_inline,
2028};
2029
2030static const struct inode_operations shmem_symlink_inode_operations = {
2031	.truncate	= shmem_truncate,
2032	.readlink	= generic_readlink,
2033	.follow_link	= shmem_follow_link,
2034	.put_link	= shmem_put_link,
2035};
2036
2037#ifdef CONFIG_TMPFS_POSIX_ACL
2038/*
2039 * Superblocks without xattr inode operations will get security.* xattr
2040 * support from the VFS "for free". As soon as we have any other xattrs
2041 * like ACLs, we also need to implement the security.* handlers at
2042 * filesystem level, though.
2043 */
2044
2045static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2046					size_t list_len, const char *name,
2047					size_t name_len)
2048{
2049	return security_inode_listsecurity(inode, list, list_len);
2050}
2051
2052static int shmem_xattr_security_get(struct inode *inode, const char *name,
2053				    void *buffer, size_t size)
2054{
2055	if (strcmp(name, "") == 0)
2056		return -EINVAL;
2057	return xattr_getsecurity(inode, name, buffer, size);
2058}
2059
2060static int shmem_xattr_security_set(struct inode *inode, const char *name,
2061				    const void *value, size_t size, int flags)
2062{
2063	if (strcmp(name, "") == 0)
2064		return -EINVAL;
2065	return security_inode_setsecurity(inode, name, value, size, flags);
2066}
2067
2068static struct xattr_handler shmem_xattr_security_handler = {
2069	.prefix = XATTR_SECURITY_PREFIX,
2070	.list   = shmem_xattr_security_list,
2071	.get    = shmem_xattr_security_get,
2072	.set    = shmem_xattr_security_set,
2073};
2074
2075static struct xattr_handler *shmem_xattr_handlers[] = {
2076	&shmem_xattr_acl_access_handler,
2077	&shmem_xattr_acl_default_handler,
2078	&shmem_xattr_security_handler,
2079	NULL
2080};
2081#endif
2082
2083static struct dentry *shmem_get_parent(struct dentry *child)
2084{
2085	return ERR_PTR(-ESTALE);
2086}
2087
2088static int shmem_match(struct inode *ino, void *vfh)
2089{
2090	__u32 *fh = vfh;
2091	__u64 inum = fh[2];
2092	inum = (inum << 32) | fh[1];
2093	return ino->i_ino == inum && fh[0] == ino->i_generation;
2094}
2095
2096static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2097		struct fid *fid, int fh_len, int fh_type)
2098{
2099	struct inode *inode;
2100	struct dentry *dentry = NULL;
2101	u64 inum = fid->raw[2];
2102	inum = (inum << 32) | fid->raw[1];
2103
2104	if (fh_len < 3)
2105		return NULL;
2106
2107	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2108			shmem_match, fid->raw);
2109	if (inode) {
2110		dentry = d_find_alias(inode);
2111		iput(inode);
2112	}
2113
2114	return dentry;
2115}
2116
2117static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2118				int connectable)
2119{
2120	struct inode *inode = dentry->d_inode;
2121
2122	if (*len < 3)
2123		return 255;
2124
2125	if (hlist_unhashed(&inode->i_hash)) {
2126		/* Unfortunately insert_inode_hash is not idempotent,
2127		 * so as we hash inodes here rather than at creation
2128		 * time, we need a lock to ensure we only try
2129		 * to do it once
2130		 */
2131		static DEFINE_SPINLOCK(lock);
2132		spin_lock(&lock);
2133		if (hlist_unhashed(&inode->i_hash))
2134			__insert_inode_hash(inode,
2135					    inode->i_ino + inode->i_generation);
2136		spin_unlock(&lock);
2137	}
2138
2139	fh[0] = inode->i_generation;
2140	fh[1] = inode->i_ino;
2141	fh[2] = ((__u64)inode->i_ino) >> 32;
2142
2143	*len = 3;
2144	return 1;
2145}
2146
2147static const struct export_operations shmem_export_ops = {
2148	.get_parent     = shmem_get_parent,
2149	.encode_fh      = shmem_encode_fh,
2150	.fh_to_dentry	= shmem_fh_to_dentry,
2151};
2152
2153static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2154			       bool remount)
2155{
2156	char *this_char, *value, *rest;
2157
2158	while (options != NULL) {
2159		this_char = options;
2160		for (;;) {
2161			/*
2162			 * NUL-terminate this option: unfortunately,
2163			 * mount options form a comma-separated list,
2164			 * but mpol's nodelist may also contain commas.
2165			 */
2166			options = strchr(options, ',');
2167			if (options == NULL)
2168				break;
2169			options++;
2170			if (!isdigit(*options)) {
2171				options[-1] = '\0';
2172				break;
2173			}
2174		}
2175		if (!*this_char)
2176			continue;
2177		if ((value = strchr(this_char,'=')) != NULL) {
2178			*value++ = 0;
2179		} else {
2180			printk(KERN_ERR
2181			    "tmpfs: No value for mount option '%s'\n",
2182			    this_char);
2183			return 1;
2184		}
2185
2186		if (!strcmp(this_char,"size")) {
2187			unsigned long long size;
2188			size = memparse(value,&rest);
2189			if (*rest == '%') {
2190				size <<= PAGE_SHIFT;
2191				size *= totalram_pages;
2192				do_div(size, 100);
2193				rest++;
2194			}
2195			if (*rest)
2196				goto bad_val;
2197			sbinfo->max_blocks =
2198				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2199		} else if (!strcmp(this_char,"nr_blocks")) {
2200			sbinfo->max_blocks = memparse(value, &rest);
2201			if (*rest)
2202				goto bad_val;
2203		} else if (!strcmp(this_char,"nr_inodes")) {
2204			sbinfo->max_inodes = memparse(value, &rest);
2205			if (*rest)
2206				goto bad_val;
2207		} else if (!strcmp(this_char,"mode")) {
2208			if (remount)
2209				continue;
2210			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2211			if (*rest)
2212				goto bad_val;
2213		} else if (!strcmp(this_char,"uid")) {
2214			if (remount)
2215				continue;
2216			sbinfo->uid = simple_strtoul(value, &rest, 0);
2217			if (*rest)
2218				goto bad_val;
2219		} else if (!strcmp(this_char,"gid")) {
2220			if (remount)
2221				continue;
2222			sbinfo->gid = simple_strtoul(value, &rest, 0);
2223			if (*rest)
2224				goto bad_val;
2225		} else if (!strcmp(this_char,"mpol")) {
2226			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2227				goto bad_val;
2228		} else {
2229			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2230			       this_char);
2231			return 1;
2232		}
2233	}
2234	return 0;
2235
2236bad_val:
2237	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2238	       value, this_char);
2239	return 1;
2240
2241}
2242
2243static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2244{
2245	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2246	struct shmem_sb_info config = *sbinfo;
2247	unsigned long blocks;
2248	unsigned long inodes;
2249	int error = -EINVAL;
2250
2251	if (shmem_parse_options(data, &config, true))
2252		return error;
2253
2254	spin_lock(&sbinfo->stat_lock);
2255	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2256	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2257	if (config.max_blocks < blocks)
2258		goto out;
2259	if (config.max_inodes < inodes)
2260		goto out;
2261	/*
2262	 * Those tests also disallow limited->unlimited while any are in
2263	 * use, so i_blocks will always be zero when max_blocks is zero;
2264	 * but we must separately disallow unlimited->limited, because
2265	 * in that case we have no record of how much is already in use.
2266	 */
2267	if (config.max_blocks && !sbinfo->max_blocks)
2268		goto out;
2269	if (config.max_inodes && !sbinfo->max_inodes)
2270		goto out;
2271
2272	error = 0;
2273	sbinfo->max_blocks  = config.max_blocks;
2274	sbinfo->free_blocks = config.max_blocks - blocks;
2275	sbinfo->max_inodes  = config.max_inodes;
2276	sbinfo->free_inodes = config.max_inodes - inodes;
2277
2278	mpol_put(sbinfo->mpol);
2279	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2280out:
2281	spin_unlock(&sbinfo->stat_lock);
2282	return error;
2283}
2284
2285static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2286{
2287	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2288
2289	if (sbinfo->max_blocks != shmem_default_max_blocks())
2290		seq_printf(seq, ",size=%luk",
2291			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2292	if (sbinfo->max_inodes != shmem_default_max_inodes())
2293		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2294	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2295		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2296	if (sbinfo->uid != 0)
2297		seq_printf(seq, ",uid=%u", sbinfo->uid);
2298	if (sbinfo->gid != 0)
2299		seq_printf(seq, ",gid=%u", sbinfo->gid);
2300	shmem_show_mpol(seq, sbinfo->mpol);
2301	return 0;
2302}
2303#endif /* CONFIG_TMPFS */
2304
2305static void shmem_put_super(struct super_block *sb)
2306{
2307	kfree(sb->s_fs_info);
2308	sb->s_fs_info = NULL;
2309}
2310
2311int shmem_fill_super(struct super_block *sb, void *data, int silent)
2312{
2313	struct inode *inode;
2314	struct dentry *root;
2315	struct shmem_sb_info *sbinfo;
2316	int err = -ENOMEM;
2317
2318	/* Round up to L1_CACHE_BYTES to resist false sharing */
2319	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2320				L1_CACHE_BYTES), GFP_KERNEL);
2321	if (!sbinfo)
2322		return -ENOMEM;
2323
2324	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2325	sbinfo->uid = current_fsuid();
2326	sbinfo->gid = current_fsgid();
2327	sb->s_fs_info = sbinfo;
2328
2329#ifdef CONFIG_TMPFS
2330	/*
2331	 * Per default we only allow half of the physical ram per
2332	 * tmpfs instance, limiting inodes to one per page of lowmem;
2333	 * but the internal instance is left unlimited.
2334	 */
2335	if (!(sb->s_flags & MS_NOUSER)) {
2336		sbinfo->max_blocks = shmem_default_max_blocks();
2337		sbinfo->max_inodes = shmem_default_max_inodes();
2338		if (shmem_parse_options(data, sbinfo, false)) {
2339			err = -EINVAL;
2340			goto failed;
2341		}
2342	}
2343	sb->s_export_op = &shmem_export_ops;
2344#else
2345	sb->s_flags |= MS_NOUSER;
2346#endif
2347
2348	spin_lock_init(&sbinfo->stat_lock);
2349	sbinfo->free_blocks = sbinfo->max_blocks;
2350	sbinfo->free_inodes = sbinfo->max_inodes;
2351
2352	sb->s_maxbytes = SHMEM_MAX_BYTES;
2353	sb->s_blocksize = PAGE_CACHE_SIZE;
2354	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2355	sb->s_magic = TMPFS_MAGIC;
2356	sb->s_op = &shmem_ops;
2357	sb->s_time_gran = 1;
2358#ifdef CONFIG_TMPFS_POSIX_ACL
2359	sb->s_xattr = shmem_xattr_handlers;
2360	sb->s_flags |= MS_POSIXACL;
2361#endif
2362
2363	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2364	if (!inode)
2365		goto failed;
2366	inode->i_uid = sbinfo->uid;
2367	inode->i_gid = sbinfo->gid;
2368	root = d_alloc_root(inode);
2369	if (!root)
2370		goto failed_iput;
2371	sb->s_root = root;
2372	return 0;
2373
2374failed_iput:
2375	iput(inode);
2376failed:
2377	shmem_put_super(sb);
2378	return err;
2379}
2380
2381static struct kmem_cache *shmem_inode_cachep;
2382
2383static struct inode *shmem_alloc_inode(struct super_block *sb)
2384{
2385	struct shmem_inode_info *p;
2386	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2387	if (!p)
2388		return NULL;
2389	return &p->vfs_inode;
2390}
2391
2392static void shmem_destroy_inode(struct inode *inode)
2393{
2394	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2395		/* only struct inode is valid if it's an inline symlink */
2396		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2397	}
2398	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2399}
2400
2401static void init_once(void *foo)
2402{
2403	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2404
2405	inode_init_once(&p->vfs_inode);
2406}
2407
2408static int init_inodecache(void)
2409{
2410	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2411				sizeof(struct shmem_inode_info),
2412				0, SLAB_PANIC, init_once);
2413	return 0;
2414}
2415
2416static void destroy_inodecache(void)
2417{
2418	kmem_cache_destroy(shmem_inode_cachep);
2419}
2420
2421static const struct address_space_operations shmem_aops = {
2422	.writepage	= shmem_writepage,
2423	.set_page_dirty	= __set_page_dirty_no_writeback,
2424#ifdef CONFIG_TMPFS
2425	.readpage	= shmem_readpage,
2426	.write_begin	= shmem_write_begin,
2427	.write_end	= shmem_write_end,
2428#endif
2429	.migratepage	= migrate_page,
2430	.error_remove_page = generic_error_remove_page,
2431};
2432
2433static const struct file_operations shmem_file_operations = {
2434	.mmap		= shmem_mmap,
2435#ifdef CONFIG_TMPFS
2436	.llseek		= generic_file_llseek,
2437	.read		= do_sync_read,
2438	.write		= do_sync_write,
2439	.aio_read	= shmem_file_aio_read,
2440	.aio_write	= generic_file_aio_write,
2441	.fsync		= simple_sync_file,
2442	.splice_read	= generic_file_splice_read,
2443	.splice_write	= generic_file_splice_write,
2444#endif
2445};
2446
2447static const struct inode_operations shmem_inode_operations = {
2448	.truncate	= shmem_truncate,
2449	.setattr	= shmem_notify_change,
2450	.truncate_range	= shmem_truncate_range,
2451#ifdef CONFIG_TMPFS_POSIX_ACL
2452	.setxattr	= generic_setxattr,
2453	.getxattr	= generic_getxattr,
2454	.listxattr	= generic_listxattr,
2455	.removexattr	= generic_removexattr,
2456	.check_acl	= shmem_check_acl,
2457#endif
2458
2459};
2460
2461static const struct inode_operations shmem_dir_inode_operations = {
2462#ifdef CONFIG_TMPFS
2463	.create		= shmem_create,
2464	.lookup		= simple_lookup,
2465	.link		= shmem_link,
2466	.unlink		= shmem_unlink,
2467	.symlink	= shmem_symlink,
2468	.mkdir		= shmem_mkdir,
2469	.rmdir		= shmem_rmdir,
2470	.mknod		= shmem_mknod,
2471	.rename		= shmem_rename,
2472#endif
2473#ifdef CONFIG_TMPFS_POSIX_ACL
2474	.setattr	= shmem_notify_change,
2475	.setxattr	= generic_setxattr,
2476	.getxattr	= generic_getxattr,
2477	.listxattr	= generic_listxattr,
2478	.removexattr	= generic_removexattr,
2479	.check_acl	= shmem_check_acl,
2480#endif
2481};
2482
2483static const struct inode_operations shmem_special_inode_operations = {
2484#ifdef CONFIG_TMPFS_POSIX_ACL
2485	.setattr	= shmem_notify_change,
2486	.setxattr	= generic_setxattr,
2487	.getxattr	= generic_getxattr,
2488	.listxattr	= generic_listxattr,
2489	.removexattr	= generic_removexattr,
2490	.check_acl	= shmem_check_acl,
2491#endif
2492};
2493
2494static const struct super_operations shmem_ops = {
2495	.alloc_inode	= shmem_alloc_inode,
2496	.destroy_inode	= shmem_destroy_inode,
2497#ifdef CONFIG_TMPFS
2498	.statfs		= shmem_statfs,
2499	.remount_fs	= shmem_remount_fs,
2500	.show_options	= shmem_show_options,
2501#endif
2502	.delete_inode	= shmem_delete_inode,
2503	.drop_inode	= generic_delete_inode,
2504	.put_super	= shmem_put_super,
2505};
2506
2507static const struct vm_operations_struct shmem_vm_ops = {
2508	.fault		= shmem_fault,
2509#ifdef CONFIG_NUMA
2510	.set_policy     = shmem_set_policy,
2511	.get_policy     = shmem_get_policy,
2512#endif
2513};
2514
2515
2516static int shmem_get_sb(struct file_system_type *fs_type,
2517	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2518{
2519	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2520}
2521
2522static struct file_system_type tmpfs_fs_type = {
2523	.owner		= THIS_MODULE,
2524	.name		= "tmpfs",
2525	.get_sb		= shmem_get_sb,
2526	.kill_sb	= kill_litter_super,
2527};
2528
2529int __init init_tmpfs(void)
2530{
2531	int error;
2532
2533	error = bdi_init(&shmem_backing_dev_info);
2534	if (error)
2535		goto out4;
2536
2537	error = init_inodecache();
2538	if (error)
2539		goto out3;
2540
2541	error = register_filesystem(&tmpfs_fs_type);
2542	if (error) {
2543		printk(KERN_ERR "Could not register tmpfs\n");
2544		goto out2;
2545	}
2546
2547	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2548				tmpfs_fs_type.name, NULL);
2549	if (IS_ERR(shm_mnt)) {
2550		error = PTR_ERR(shm_mnt);
2551		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2552		goto out1;
2553	}
2554	return 0;
2555
2556out1:
2557	unregister_filesystem(&tmpfs_fs_type);
2558out2:
2559	destroy_inodecache();
2560out3:
2561	bdi_destroy(&shmem_backing_dev_info);
2562out4:
2563	shm_mnt = ERR_PTR(error);
2564	return error;
2565}
2566
2567#else /* !CONFIG_SHMEM */
2568
2569/*
2570 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2571 *
2572 * This is intended for small system where the benefits of the full
2573 * shmem code (swap-backed and resource-limited) are outweighed by
2574 * their complexity. On systems without swap this code should be
2575 * effectively equivalent, but much lighter weight.
2576 */
2577
2578#include <linux/ramfs.h>
2579
2580static struct file_system_type tmpfs_fs_type = {
2581	.name		= "tmpfs",
2582	.get_sb		= ramfs_get_sb,
2583	.kill_sb	= kill_litter_super,
2584};
2585
2586int __init init_tmpfs(void)
2587{
2588	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2589
2590	shm_mnt = kern_mount(&tmpfs_fs_type);
2591	BUG_ON(IS_ERR(shm_mnt));
2592
2593	return 0;
2594}
2595
2596int shmem_unuse(swp_entry_t entry, struct page *page)
2597{
2598	return 0;
2599}
2600
2601int shmem_lock(struct file *file, int lock, struct user_struct *user)
2602{
2603	return 0;
2604}
2605
2606#define shmem_vm_ops				generic_file_vm_ops
2607#define shmem_file_operations			ramfs_file_operations
2608#define shmem_get_inode(sb, mode, dev, flags)	ramfs_get_inode(sb, mode, dev)
2609#define shmem_acct_size(flags, size)		0
2610#define shmem_unacct_size(flags, size)		do {} while (0)
2611#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2612
2613#endif /* CONFIG_SHMEM */
2614
2615/* common code */
2616
2617/**
2618 * shmem_file_setup - get an unlinked file living in tmpfs
2619 * @name: name for dentry (to be seen in /proc/<pid>/maps
2620 * @size: size to be set for the file
2621 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2622 */
2623struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2624{
2625	int error;
2626	struct file *file;
2627	struct inode *inode;
2628	struct path path;
2629	struct dentry *root;
2630	struct qstr this;
2631
2632	if (IS_ERR(shm_mnt))
2633		return (void *)shm_mnt;
2634
2635	if (size < 0 || size > SHMEM_MAX_BYTES)
2636		return ERR_PTR(-EINVAL);
2637
2638	if (shmem_acct_size(flags, size))
2639		return ERR_PTR(-ENOMEM);
2640
2641	error = -ENOMEM;
2642	this.name = name;
2643	this.len = strlen(name);
2644	this.hash = 0; /* will go */
2645	root = shm_mnt->mnt_root;
2646	path.dentry = d_alloc(root, &this);
2647	if (!path.dentry)
2648		goto put_memory;
2649	path.mnt = mntget(shm_mnt);
2650
2651	error = -ENOSPC;
2652	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2653	if (!inode)
2654		goto put_dentry;
2655
2656	d_instantiate(path.dentry, inode);
2657	inode->i_size = size;
2658	inode->i_nlink = 0;	/* It is unlinked */
2659#ifndef CONFIG_MMU
2660	error = ramfs_nommu_expand_for_mapping(inode, size);
2661	if (error)
2662		goto put_dentry;
2663#endif
2664
2665	error = -ENFILE;
2666	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2667		  &shmem_file_operations);
2668	if (!file)
2669		goto put_dentry;
2670
2671	return file;
2672
2673put_dentry:
2674	path_put(&path);
2675put_memory:
2676	shmem_unacct_size(flags, size);
2677	return ERR_PTR(error);
2678}
2679EXPORT_SYMBOL_GPL(shmem_file_setup);
2680
2681/**
2682 * shmem_zero_setup - setup a shared anonymous mapping
2683 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2684 */
2685int shmem_zero_setup(struct vm_area_struct *vma)
2686{
2687	struct file *file;
2688	loff_t size = vma->vm_end - vma->vm_start;
2689
2690	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2691	if (IS_ERR(file))
2692		return PTR_ERR(file);
2693
2694	if (vma->vm_file)
2695		fput(vma->vm_file);
2696	vma->vm_file = file;
2697	vma->vm_ops = &shmem_vm_ops;
2698	return 0;
2699}
2700