shmem.c revision 0cd6144aadd2afd19d1aca880153530c52957604
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/aio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69
70#include <asm/uaccess.h>
71#include <asm/pgtable.h>
72
73#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
82/*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87struct shmem_falloc {
88	pgoff_t start;		/* start of range currently being fallocated */
89	pgoff_t next;		/* the next page offset to be fallocated */
90	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
91	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
92};
93
94/* Flag allocation requirements to shmem_getpage */
95enum sgp_type {
96	SGP_READ,	/* don't exceed i_size, don't allocate page */
97	SGP_CACHE,	/* don't exceed i_size, may allocate page */
98	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
99	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
100	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
101};
102
103#ifdef CONFIG_TMPFS
104static unsigned long shmem_default_max_blocks(void)
105{
106	return totalram_pages / 2;
107}
108
109static unsigned long shmem_default_max_inodes(void)
110{
111	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112}
113#endif
114
115static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117				struct shmem_inode_info *info, pgoff_t index);
118static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122	struct page **pagep, enum sgp_type sgp, int *fault_type)
123{
124	return shmem_getpage_gfp(inode, index, pagep, sgp,
125			mapping_gfp_mask(inode->i_mapping), fault_type);
126}
127
128static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129{
130	return sb->s_fs_info;
131}
132
133/*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139static inline int shmem_acct_size(unsigned long flags, loff_t size)
140{
141	return (flags & VM_NORESERVE) ?
142		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143}
144
145static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146{
147	if (!(flags & VM_NORESERVE))
148		vm_unacct_memory(VM_ACCT(size));
149}
150
151/*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157static inline int shmem_acct_block(unsigned long flags)
158{
159	return (flags & VM_NORESERVE) ?
160		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161}
162
163static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164{
165	if (flags & VM_NORESERVE)
166		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167}
168
169static const struct super_operations shmem_ops;
170static const struct address_space_operations shmem_aops;
171static const struct file_operations shmem_file_operations;
172static const struct inode_operations shmem_inode_operations;
173static const struct inode_operations shmem_dir_inode_operations;
174static const struct inode_operations shmem_special_inode_operations;
175static const struct vm_operations_struct shmem_vm_ops;
176
177static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
178	.ra_pages	= 0,	/* No readahead */
179	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180};
181
182static LIST_HEAD(shmem_swaplist);
183static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185static int shmem_reserve_inode(struct super_block *sb)
186{
187	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188	if (sbinfo->max_inodes) {
189		spin_lock(&sbinfo->stat_lock);
190		if (!sbinfo->free_inodes) {
191			spin_unlock(&sbinfo->stat_lock);
192			return -ENOSPC;
193		}
194		sbinfo->free_inodes--;
195		spin_unlock(&sbinfo->stat_lock);
196	}
197	return 0;
198}
199
200static void shmem_free_inode(struct super_block *sb)
201{
202	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203	if (sbinfo->max_inodes) {
204		spin_lock(&sbinfo->stat_lock);
205		sbinfo->free_inodes++;
206		spin_unlock(&sbinfo->stat_lock);
207	}
208}
209
210/**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222static void shmem_recalc_inode(struct inode *inode)
223{
224	struct shmem_inode_info *info = SHMEM_I(inode);
225	long freed;
226
227	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228	if (freed > 0) {
229		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230		if (sbinfo->max_blocks)
231			percpu_counter_add(&sbinfo->used_blocks, -freed);
232		info->alloced -= freed;
233		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234		shmem_unacct_blocks(info->flags, freed);
235	}
236}
237
238/*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241static int shmem_radix_tree_replace(struct address_space *mapping,
242			pgoff_t index, void *expected, void *replacement)
243{
244	void **pslot;
245	void *item;
246
247	VM_BUG_ON(!expected);
248	VM_BUG_ON(!replacement);
249	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250	if (!pslot)
251		return -ENOENT;
252	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
253	if (item != expected)
254		return -ENOENT;
255	radix_tree_replace_slot(pslot, replacement);
256	return 0;
257}
258
259/*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266static bool shmem_confirm_swap(struct address_space *mapping,
267			       pgoff_t index, swp_entry_t swap)
268{
269	void *item;
270
271	rcu_read_lock();
272	item = radix_tree_lookup(&mapping->page_tree, index);
273	rcu_read_unlock();
274	return item == swp_to_radix_entry(swap);
275}
276
277/*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280static int shmem_add_to_page_cache(struct page *page,
281				   struct address_space *mapping,
282				   pgoff_t index, gfp_t gfp, void *expected)
283{
284	int error;
285
286	VM_BUG_ON_PAGE(!PageLocked(page), page);
287	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
288
289	page_cache_get(page);
290	page->mapping = mapping;
291	page->index = index;
292
293	spin_lock_irq(&mapping->tree_lock);
294	if (!expected)
295		error = radix_tree_insert(&mapping->page_tree, index, page);
296	else
297		error = shmem_radix_tree_replace(mapping, index, expected,
298								 page);
299	if (!error) {
300		mapping->nrpages++;
301		__inc_zone_page_state(page, NR_FILE_PAGES);
302		__inc_zone_page_state(page, NR_SHMEM);
303		spin_unlock_irq(&mapping->tree_lock);
304	} else {
305		page->mapping = NULL;
306		spin_unlock_irq(&mapping->tree_lock);
307		page_cache_release(page);
308	}
309	return error;
310}
311
312/*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316{
317	struct address_space *mapping = page->mapping;
318	int error;
319
320	spin_lock_irq(&mapping->tree_lock);
321	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322	page->mapping = NULL;
323	mapping->nrpages--;
324	__dec_zone_page_state(page, NR_FILE_PAGES);
325	__dec_zone_page_state(page, NR_SHMEM);
326	spin_unlock_irq(&mapping->tree_lock);
327	page_cache_release(page);
328	BUG_ON(error);
329}
330
331/*
332 * Remove swap entry from radix tree, free the swap and its page cache.
333 */
334static int shmem_free_swap(struct address_space *mapping,
335			   pgoff_t index, void *radswap)
336{
337	void *old;
338
339	spin_lock_irq(&mapping->tree_lock);
340	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
341	spin_unlock_irq(&mapping->tree_lock);
342	if (old != radswap)
343		return -ENOENT;
344	free_swap_and_cache(radix_to_swp_entry(radswap));
345	return 0;
346}
347
348/*
349 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
350 */
351void shmem_unlock_mapping(struct address_space *mapping)
352{
353	struct pagevec pvec;
354	pgoff_t indices[PAGEVEC_SIZE];
355	pgoff_t index = 0;
356
357	pagevec_init(&pvec, 0);
358	/*
359	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
360	 */
361	while (!mapping_unevictable(mapping)) {
362		/*
363		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
364		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
365		 */
366		pvec.nr = find_get_entries(mapping, index,
367					   PAGEVEC_SIZE, pvec.pages, indices);
368		if (!pvec.nr)
369			break;
370		index = indices[pvec.nr - 1] + 1;
371		pagevec_remove_exceptionals(&pvec);
372		check_move_unevictable_pages(pvec.pages, pvec.nr);
373		pagevec_release(&pvec);
374		cond_resched();
375	}
376}
377
378/*
379 * Remove range of pages and swap entries from radix tree, and free them.
380 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
381 */
382static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
383								 bool unfalloc)
384{
385	struct address_space *mapping = inode->i_mapping;
386	struct shmem_inode_info *info = SHMEM_I(inode);
387	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
388	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
389	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
390	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
391	struct pagevec pvec;
392	pgoff_t indices[PAGEVEC_SIZE];
393	long nr_swaps_freed = 0;
394	pgoff_t index;
395	int i;
396
397	if (lend == -1)
398		end = -1;	/* unsigned, so actually very big */
399
400	pagevec_init(&pvec, 0);
401	index = start;
402	while (index < end) {
403		pvec.nr = find_get_entries(mapping, index,
404			min(end - index, (pgoff_t)PAGEVEC_SIZE),
405			pvec.pages, indices);
406		if (!pvec.nr)
407			break;
408		mem_cgroup_uncharge_start();
409		for (i = 0; i < pagevec_count(&pvec); i++) {
410			struct page *page = pvec.pages[i];
411
412			index = indices[i];
413			if (index >= end)
414				break;
415
416			if (radix_tree_exceptional_entry(page)) {
417				if (unfalloc)
418					continue;
419				nr_swaps_freed += !shmem_free_swap(mapping,
420								index, page);
421				continue;
422			}
423
424			if (!trylock_page(page))
425				continue;
426			if (!unfalloc || !PageUptodate(page)) {
427				if (page->mapping == mapping) {
428					VM_BUG_ON_PAGE(PageWriteback(page), page);
429					truncate_inode_page(mapping, page);
430				}
431			}
432			unlock_page(page);
433		}
434		pagevec_remove_exceptionals(&pvec);
435		pagevec_release(&pvec);
436		mem_cgroup_uncharge_end();
437		cond_resched();
438		index++;
439	}
440
441	if (partial_start) {
442		struct page *page = NULL;
443		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
444		if (page) {
445			unsigned int top = PAGE_CACHE_SIZE;
446			if (start > end) {
447				top = partial_end;
448				partial_end = 0;
449			}
450			zero_user_segment(page, partial_start, top);
451			set_page_dirty(page);
452			unlock_page(page);
453			page_cache_release(page);
454		}
455	}
456	if (partial_end) {
457		struct page *page = NULL;
458		shmem_getpage(inode, end, &page, SGP_READ, NULL);
459		if (page) {
460			zero_user_segment(page, 0, partial_end);
461			set_page_dirty(page);
462			unlock_page(page);
463			page_cache_release(page);
464		}
465	}
466	if (start >= end)
467		return;
468
469	index = start;
470	for ( ; ; ) {
471		cond_resched();
472
473		pvec.nr = find_get_entries(mapping, index,
474				min(end - index, (pgoff_t)PAGEVEC_SIZE),
475				pvec.pages, indices);
476		if (!pvec.nr) {
477			if (index == start || unfalloc)
478				break;
479			index = start;
480			continue;
481		}
482		if ((index == start || unfalloc) && indices[0] >= end) {
483			pagevec_remove_exceptionals(&pvec);
484			pagevec_release(&pvec);
485			break;
486		}
487		mem_cgroup_uncharge_start();
488		for (i = 0; i < pagevec_count(&pvec); i++) {
489			struct page *page = pvec.pages[i];
490
491			index = indices[i];
492			if (index >= end)
493				break;
494
495			if (radix_tree_exceptional_entry(page)) {
496				if (unfalloc)
497					continue;
498				nr_swaps_freed += !shmem_free_swap(mapping,
499								index, page);
500				continue;
501			}
502
503			lock_page(page);
504			if (!unfalloc || !PageUptodate(page)) {
505				if (page->mapping == mapping) {
506					VM_BUG_ON_PAGE(PageWriteback(page), page);
507					truncate_inode_page(mapping, page);
508				}
509			}
510			unlock_page(page);
511		}
512		pagevec_remove_exceptionals(&pvec);
513		pagevec_release(&pvec);
514		mem_cgroup_uncharge_end();
515		index++;
516	}
517
518	spin_lock(&info->lock);
519	info->swapped -= nr_swaps_freed;
520	shmem_recalc_inode(inode);
521	spin_unlock(&info->lock);
522}
523
524void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
525{
526	shmem_undo_range(inode, lstart, lend, false);
527	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
528}
529EXPORT_SYMBOL_GPL(shmem_truncate_range);
530
531static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
532{
533	struct inode *inode = dentry->d_inode;
534	int error;
535
536	error = inode_change_ok(inode, attr);
537	if (error)
538		return error;
539
540	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
541		loff_t oldsize = inode->i_size;
542		loff_t newsize = attr->ia_size;
543
544		if (newsize != oldsize) {
545			i_size_write(inode, newsize);
546			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547		}
548		if (newsize < oldsize) {
549			loff_t holebegin = round_up(newsize, PAGE_SIZE);
550			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
551			shmem_truncate_range(inode, newsize, (loff_t)-1);
552			/* unmap again to remove racily COWed private pages */
553			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
554		}
555	}
556
557	setattr_copy(inode, attr);
558	if (attr->ia_valid & ATTR_MODE)
559		error = posix_acl_chmod(inode, inode->i_mode);
560	return error;
561}
562
563static void shmem_evict_inode(struct inode *inode)
564{
565	struct shmem_inode_info *info = SHMEM_I(inode);
566
567	if (inode->i_mapping->a_ops == &shmem_aops) {
568		shmem_unacct_size(info->flags, inode->i_size);
569		inode->i_size = 0;
570		shmem_truncate_range(inode, 0, (loff_t)-1);
571		if (!list_empty(&info->swaplist)) {
572			mutex_lock(&shmem_swaplist_mutex);
573			list_del_init(&info->swaplist);
574			mutex_unlock(&shmem_swaplist_mutex);
575		}
576	} else
577		kfree(info->symlink);
578
579	simple_xattrs_free(&info->xattrs);
580	WARN_ON(inode->i_blocks);
581	shmem_free_inode(inode->i_sb);
582	clear_inode(inode);
583}
584
585/*
586 * If swap found in inode, free it and move page from swapcache to filecache.
587 */
588static int shmem_unuse_inode(struct shmem_inode_info *info,
589			     swp_entry_t swap, struct page **pagep)
590{
591	struct address_space *mapping = info->vfs_inode.i_mapping;
592	void *radswap;
593	pgoff_t index;
594	gfp_t gfp;
595	int error = 0;
596
597	radswap = swp_to_radix_entry(swap);
598	index = radix_tree_locate_item(&mapping->page_tree, radswap);
599	if (index == -1)
600		return 0;
601
602	/*
603	 * Move _head_ to start search for next from here.
604	 * But be careful: shmem_evict_inode checks list_empty without taking
605	 * mutex, and there's an instant in list_move_tail when info->swaplist
606	 * would appear empty, if it were the only one on shmem_swaplist.
607	 */
608	if (shmem_swaplist.next != &info->swaplist)
609		list_move_tail(&shmem_swaplist, &info->swaplist);
610
611	gfp = mapping_gfp_mask(mapping);
612	if (shmem_should_replace_page(*pagep, gfp)) {
613		mutex_unlock(&shmem_swaplist_mutex);
614		error = shmem_replace_page(pagep, gfp, info, index);
615		mutex_lock(&shmem_swaplist_mutex);
616		/*
617		 * We needed to drop mutex to make that restrictive page
618		 * allocation, but the inode might have been freed while we
619		 * dropped it: although a racing shmem_evict_inode() cannot
620		 * complete without emptying the radix_tree, our page lock
621		 * on this swapcache page is not enough to prevent that -
622		 * free_swap_and_cache() of our swap entry will only
623		 * trylock_page(), removing swap from radix_tree whatever.
624		 *
625		 * We must not proceed to shmem_add_to_page_cache() if the
626		 * inode has been freed, but of course we cannot rely on
627		 * inode or mapping or info to check that.  However, we can
628		 * safely check if our swap entry is still in use (and here
629		 * it can't have got reused for another page): if it's still
630		 * in use, then the inode cannot have been freed yet, and we
631		 * can safely proceed (if it's no longer in use, that tells
632		 * nothing about the inode, but we don't need to unuse swap).
633		 */
634		if (!page_swapcount(*pagep))
635			error = -ENOENT;
636	}
637
638	/*
639	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
640	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
641	 * beneath us (pagelock doesn't help until the page is in pagecache).
642	 */
643	if (!error)
644		error = shmem_add_to_page_cache(*pagep, mapping, index,
645						GFP_NOWAIT, radswap);
646	if (error != -ENOMEM) {
647		/*
648		 * Truncation and eviction use free_swap_and_cache(), which
649		 * only does trylock page: if we raced, best clean up here.
650		 */
651		delete_from_swap_cache(*pagep);
652		set_page_dirty(*pagep);
653		if (!error) {
654			spin_lock(&info->lock);
655			info->swapped--;
656			spin_unlock(&info->lock);
657			swap_free(swap);
658		}
659		error = 1;	/* not an error, but entry was found */
660	}
661	return error;
662}
663
664/*
665 * Search through swapped inodes to find and replace swap by page.
666 */
667int shmem_unuse(swp_entry_t swap, struct page *page)
668{
669	struct list_head *this, *next;
670	struct shmem_inode_info *info;
671	int found = 0;
672	int error = 0;
673
674	/*
675	 * There's a faint possibility that swap page was replaced before
676	 * caller locked it: caller will come back later with the right page.
677	 */
678	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
679		goto out;
680
681	/*
682	 * Charge page using GFP_KERNEL while we can wait, before taking
683	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
684	 * Charged back to the user (not to caller) when swap account is used.
685	 */
686	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
687	if (error)
688		goto out;
689	/* No radix_tree_preload: swap entry keeps a place for page in tree */
690
691	mutex_lock(&shmem_swaplist_mutex);
692	list_for_each_safe(this, next, &shmem_swaplist) {
693		info = list_entry(this, struct shmem_inode_info, swaplist);
694		if (info->swapped)
695			found = shmem_unuse_inode(info, swap, &page);
696		else
697			list_del_init(&info->swaplist);
698		cond_resched();
699		if (found)
700			break;
701	}
702	mutex_unlock(&shmem_swaplist_mutex);
703
704	if (found < 0)
705		error = found;
706out:
707	unlock_page(page);
708	page_cache_release(page);
709	return error;
710}
711
712/*
713 * Move the page from the page cache to the swap cache.
714 */
715static int shmem_writepage(struct page *page, struct writeback_control *wbc)
716{
717	struct shmem_inode_info *info;
718	struct address_space *mapping;
719	struct inode *inode;
720	swp_entry_t swap;
721	pgoff_t index;
722
723	BUG_ON(!PageLocked(page));
724	mapping = page->mapping;
725	index = page->index;
726	inode = mapping->host;
727	info = SHMEM_I(inode);
728	if (info->flags & VM_LOCKED)
729		goto redirty;
730	if (!total_swap_pages)
731		goto redirty;
732
733	/*
734	 * shmem_backing_dev_info's capabilities prevent regular writeback or
735	 * sync from ever calling shmem_writepage; but a stacking filesystem
736	 * might use ->writepage of its underlying filesystem, in which case
737	 * tmpfs should write out to swap only in response to memory pressure,
738	 * and not for the writeback threads or sync.
739	 */
740	if (!wbc->for_reclaim) {
741		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
742		goto redirty;
743	}
744
745	/*
746	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
747	 * value into swapfile.c, the only way we can correctly account for a
748	 * fallocated page arriving here is now to initialize it and write it.
749	 *
750	 * That's okay for a page already fallocated earlier, but if we have
751	 * not yet completed the fallocation, then (a) we want to keep track
752	 * of this page in case we have to undo it, and (b) it may not be a
753	 * good idea to continue anyway, once we're pushing into swap.  So
754	 * reactivate the page, and let shmem_fallocate() quit when too many.
755	 */
756	if (!PageUptodate(page)) {
757		if (inode->i_private) {
758			struct shmem_falloc *shmem_falloc;
759			spin_lock(&inode->i_lock);
760			shmem_falloc = inode->i_private;
761			if (shmem_falloc &&
762			    index >= shmem_falloc->start &&
763			    index < shmem_falloc->next)
764				shmem_falloc->nr_unswapped++;
765			else
766				shmem_falloc = NULL;
767			spin_unlock(&inode->i_lock);
768			if (shmem_falloc)
769				goto redirty;
770		}
771		clear_highpage(page);
772		flush_dcache_page(page);
773		SetPageUptodate(page);
774	}
775
776	swap = get_swap_page();
777	if (!swap.val)
778		goto redirty;
779
780	/*
781	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
782	 * if it's not already there.  Do it now before the page is
783	 * moved to swap cache, when its pagelock no longer protects
784	 * the inode from eviction.  But don't unlock the mutex until
785	 * we've incremented swapped, because shmem_unuse_inode() will
786	 * prune a !swapped inode from the swaplist under this mutex.
787	 */
788	mutex_lock(&shmem_swaplist_mutex);
789	if (list_empty(&info->swaplist))
790		list_add_tail(&info->swaplist, &shmem_swaplist);
791
792	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
793		swap_shmem_alloc(swap);
794		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
795
796		spin_lock(&info->lock);
797		info->swapped++;
798		shmem_recalc_inode(inode);
799		spin_unlock(&info->lock);
800
801		mutex_unlock(&shmem_swaplist_mutex);
802		BUG_ON(page_mapped(page));
803		swap_writepage(page, wbc);
804		return 0;
805	}
806
807	mutex_unlock(&shmem_swaplist_mutex);
808	swapcache_free(swap, NULL);
809redirty:
810	set_page_dirty(page);
811	if (wbc->for_reclaim)
812		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
813	unlock_page(page);
814	return 0;
815}
816
817#ifdef CONFIG_NUMA
818#ifdef CONFIG_TMPFS
819static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
820{
821	char buffer[64];
822
823	if (!mpol || mpol->mode == MPOL_DEFAULT)
824		return;		/* show nothing */
825
826	mpol_to_str(buffer, sizeof(buffer), mpol);
827
828	seq_printf(seq, ",mpol=%s", buffer);
829}
830
831static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
832{
833	struct mempolicy *mpol = NULL;
834	if (sbinfo->mpol) {
835		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
836		mpol = sbinfo->mpol;
837		mpol_get(mpol);
838		spin_unlock(&sbinfo->stat_lock);
839	}
840	return mpol;
841}
842#endif /* CONFIG_TMPFS */
843
844static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
845			struct shmem_inode_info *info, pgoff_t index)
846{
847	struct vm_area_struct pvma;
848	struct page *page;
849
850	/* Create a pseudo vma that just contains the policy */
851	pvma.vm_start = 0;
852	/* Bias interleave by inode number to distribute better across nodes */
853	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
854	pvma.vm_ops = NULL;
855	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
856
857	page = swapin_readahead(swap, gfp, &pvma, 0);
858
859	/* Drop reference taken by mpol_shared_policy_lookup() */
860	mpol_cond_put(pvma.vm_policy);
861
862	return page;
863}
864
865static struct page *shmem_alloc_page(gfp_t gfp,
866			struct shmem_inode_info *info, pgoff_t index)
867{
868	struct vm_area_struct pvma;
869	struct page *page;
870
871	/* Create a pseudo vma that just contains the policy */
872	pvma.vm_start = 0;
873	/* Bias interleave by inode number to distribute better across nodes */
874	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
875	pvma.vm_ops = NULL;
876	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
877
878	page = alloc_page_vma(gfp, &pvma, 0);
879
880	/* Drop reference taken by mpol_shared_policy_lookup() */
881	mpol_cond_put(pvma.vm_policy);
882
883	return page;
884}
885#else /* !CONFIG_NUMA */
886#ifdef CONFIG_TMPFS
887static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888{
889}
890#endif /* CONFIG_TMPFS */
891
892static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
893			struct shmem_inode_info *info, pgoff_t index)
894{
895	return swapin_readahead(swap, gfp, NULL, 0);
896}
897
898static inline struct page *shmem_alloc_page(gfp_t gfp,
899			struct shmem_inode_info *info, pgoff_t index)
900{
901	return alloc_page(gfp);
902}
903#endif /* CONFIG_NUMA */
904
905#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
906static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907{
908	return NULL;
909}
910#endif
911
912/*
913 * When a page is moved from swapcache to shmem filecache (either by the
914 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
915 * shmem_unuse_inode()), it may have been read in earlier from swap, in
916 * ignorance of the mapping it belongs to.  If that mapping has special
917 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
918 * we may need to copy to a suitable page before moving to filecache.
919 *
920 * In a future release, this may well be extended to respect cpuset and
921 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
922 * but for now it is a simple matter of zone.
923 */
924static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
925{
926	return page_zonenum(page) > gfp_zone(gfp);
927}
928
929static int shmem_replace_page(struct page **pagep, gfp_t gfp,
930				struct shmem_inode_info *info, pgoff_t index)
931{
932	struct page *oldpage, *newpage;
933	struct address_space *swap_mapping;
934	pgoff_t swap_index;
935	int error;
936
937	oldpage = *pagep;
938	swap_index = page_private(oldpage);
939	swap_mapping = page_mapping(oldpage);
940
941	/*
942	 * We have arrived here because our zones are constrained, so don't
943	 * limit chance of success by further cpuset and node constraints.
944	 */
945	gfp &= ~GFP_CONSTRAINT_MASK;
946	newpage = shmem_alloc_page(gfp, info, index);
947	if (!newpage)
948		return -ENOMEM;
949
950	page_cache_get(newpage);
951	copy_highpage(newpage, oldpage);
952	flush_dcache_page(newpage);
953
954	__set_page_locked(newpage);
955	SetPageUptodate(newpage);
956	SetPageSwapBacked(newpage);
957	set_page_private(newpage, swap_index);
958	SetPageSwapCache(newpage);
959
960	/*
961	 * Our caller will very soon move newpage out of swapcache, but it's
962	 * a nice clean interface for us to replace oldpage by newpage there.
963	 */
964	spin_lock_irq(&swap_mapping->tree_lock);
965	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
966								   newpage);
967	if (!error) {
968		__inc_zone_page_state(newpage, NR_FILE_PAGES);
969		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
970	}
971	spin_unlock_irq(&swap_mapping->tree_lock);
972
973	if (unlikely(error)) {
974		/*
975		 * Is this possible?  I think not, now that our callers check
976		 * both PageSwapCache and page_private after getting page lock;
977		 * but be defensive.  Reverse old to newpage for clear and free.
978		 */
979		oldpage = newpage;
980	} else {
981		mem_cgroup_replace_page_cache(oldpage, newpage);
982		lru_cache_add_anon(newpage);
983		*pagep = newpage;
984	}
985
986	ClearPageSwapCache(oldpage);
987	set_page_private(oldpage, 0);
988
989	unlock_page(oldpage);
990	page_cache_release(oldpage);
991	page_cache_release(oldpage);
992	return error;
993}
994
995/*
996 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
997 *
998 * If we allocate a new one we do not mark it dirty. That's up to the
999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1001 */
1002static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1003	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1004{
1005	struct address_space *mapping = inode->i_mapping;
1006	struct shmem_inode_info *info;
1007	struct shmem_sb_info *sbinfo;
1008	struct page *page;
1009	swp_entry_t swap;
1010	int error;
1011	int once = 0;
1012	int alloced = 0;
1013
1014	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1015		return -EFBIG;
1016repeat:
1017	swap.val = 0;
1018	page = find_lock_entry(mapping, index);
1019	if (radix_tree_exceptional_entry(page)) {
1020		swap = radix_to_swp_entry(page);
1021		page = NULL;
1022	}
1023
1024	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1025	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026		error = -EINVAL;
1027		goto failed;
1028	}
1029
1030	/* fallocated page? */
1031	if (page && !PageUptodate(page)) {
1032		if (sgp != SGP_READ)
1033			goto clear;
1034		unlock_page(page);
1035		page_cache_release(page);
1036		page = NULL;
1037	}
1038	if (page || (sgp == SGP_READ && !swap.val)) {
1039		*pagep = page;
1040		return 0;
1041	}
1042
1043	/*
1044	 * Fast cache lookup did not find it:
1045	 * bring it back from swap or allocate.
1046	 */
1047	info = SHMEM_I(inode);
1048	sbinfo = SHMEM_SB(inode->i_sb);
1049
1050	if (swap.val) {
1051		/* Look it up and read it in.. */
1052		page = lookup_swap_cache(swap);
1053		if (!page) {
1054			/* here we actually do the io */
1055			if (fault_type)
1056				*fault_type |= VM_FAULT_MAJOR;
1057			page = shmem_swapin(swap, gfp, info, index);
1058			if (!page) {
1059				error = -ENOMEM;
1060				goto failed;
1061			}
1062		}
1063
1064		/* We have to do this with page locked to prevent races */
1065		lock_page(page);
1066		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1067		    !shmem_confirm_swap(mapping, index, swap)) {
1068			error = -EEXIST;	/* try again */
1069			goto unlock;
1070		}
1071		if (!PageUptodate(page)) {
1072			error = -EIO;
1073			goto failed;
1074		}
1075		wait_on_page_writeback(page);
1076
1077		if (shmem_should_replace_page(page, gfp)) {
1078			error = shmem_replace_page(&page, gfp, info, index);
1079			if (error)
1080				goto failed;
1081		}
1082
1083		error = mem_cgroup_cache_charge(page, current->mm,
1084						gfp & GFP_RECLAIM_MASK);
1085		if (!error) {
1086			error = shmem_add_to_page_cache(page, mapping, index,
1087						gfp, swp_to_radix_entry(swap));
1088			/*
1089			 * We already confirmed swap under page lock, and make
1090			 * no memory allocation here, so usually no possibility
1091			 * of error; but free_swap_and_cache() only trylocks a
1092			 * page, so it is just possible that the entry has been
1093			 * truncated or holepunched since swap was confirmed.
1094			 * shmem_undo_range() will have done some of the
1095			 * unaccounting, now delete_from_swap_cache() will do
1096			 * the rest (including mem_cgroup_uncharge_swapcache).
1097			 * Reset swap.val? No, leave it so "failed" goes back to
1098			 * "repeat": reading a hole and writing should succeed.
1099			 */
1100			if (error)
1101				delete_from_swap_cache(page);
1102		}
1103		if (error)
1104			goto failed;
1105
1106		spin_lock(&info->lock);
1107		info->swapped--;
1108		shmem_recalc_inode(inode);
1109		spin_unlock(&info->lock);
1110
1111		delete_from_swap_cache(page);
1112		set_page_dirty(page);
1113		swap_free(swap);
1114
1115	} else {
1116		if (shmem_acct_block(info->flags)) {
1117			error = -ENOSPC;
1118			goto failed;
1119		}
1120		if (sbinfo->max_blocks) {
1121			if (percpu_counter_compare(&sbinfo->used_blocks,
1122						sbinfo->max_blocks) >= 0) {
1123				error = -ENOSPC;
1124				goto unacct;
1125			}
1126			percpu_counter_inc(&sbinfo->used_blocks);
1127		}
1128
1129		page = shmem_alloc_page(gfp, info, index);
1130		if (!page) {
1131			error = -ENOMEM;
1132			goto decused;
1133		}
1134
1135		SetPageSwapBacked(page);
1136		__set_page_locked(page);
1137		error = mem_cgroup_cache_charge(page, current->mm,
1138						gfp & GFP_RECLAIM_MASK);
1139		if (error)
1140			goto decused;
1141		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1142		if (!error) {
1143			error = shmem_add_to_page_cache(page, mapping, index,
1144							gfp, NULL);
1145			radix_tree_preload_end();
1146		}
1147		if (error) {
1148			mem_cgroup_uncharge_cache_page(page);
1149			goto decused;
1150		}
1151		lru_cache_add_anon(page);
1152
1153		spin_lock(&info->lock);
1154		info->alloced++;
1155		inode->i_blocks += BLOCKS_PER_PAGE;
1156		shmem_recalc_inode(inode);
1157		spin_unlock(&info->lock);
1158		alloced = true;
1159
1160		/*
1161		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1162		 */
1163		if (sgp == SGP_FALLOC)
1164			sgp = SGP_WRITE;
1165clear:
1166		/*
1167		 * Let SGP_WRITE caller clear ends if write does not fill page;
1168		 * but SGP_FALLOC on a page fallocated earlier must initialize
1169		 * it now, lest undo on failure cancel our earlier guarantee.
1170		 */
1171		if (sgp != SGP_WRITE) {
1172			clear_highpage(page);
1173			flush_dcache_page(page);
1174			SetPageUptodate(page);
1175		}
1176		if (sgp == SGP_DIRTY)
1177			set_page_dirty(page);
1178	}
1179
1180	/* Perhaps the file has been truncated since we checked */
1181	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1182	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183		error = -EINVAL;
1184		if (alloced)
1185			goto trunc;
1186		else
1187			goto failed;
1188	}
1189	*pagep = page;
1190	return 0;
1191
1192	/*
1193	 * Error recovery.
1194	 */
1195trunc:
1196	info = SHMEM_I(inode);
1197	ClearPageDirty(page);
1198	delete_from_page_cache(page);
1199	spin_lock(&info->lock);
1200	info->alloced--;
1201	inode->i_blocks -= BLOCKS_PER_PAGE;
1202	spin_unlock(&info->lock);
1203decused:
1204	sbinfo = SHMEM_SB(inode->i_sb);
1205	if (sbinfo->max_blocks)
1206		percpu_counter_add(&sbinfo->used_blocks, -1);
1207unacct:
1208	shmem_unacct_blocks(info->flags, 1);
1209failed:
1210	if (swap.val && error != -EINVAL &&
1211	    !shmem_confirm_swap(mapping, index, swap))
1212		error = -EEXIST;
1213unlock:
1214	if (page) {
1215		unlock_page(page);
1216		page_cache_release(page);
1217	}
1218	if (error == -ENOSPC && !once++) {
1219		info = SHMEM_I(inode);
1220		spin_lock(&info->lock);
1221		shmem_recalc_inode(inode);
1222		spin_unlock(&info->lock);
1223		goto repeat;
1224	}
1225	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1226		goto repeat;
1227	return error;
1228}
1229
1230static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231{
1232	struct inode *inode = file_inode(vma->vm_file);
1233	int error;
1234	int ret = VM_FAULT_LOCKED;
1235
1236	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1237	if (error)
1238		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1239
1240	if (ret & VM_FAULT_MAJOR) {
1241		count_vm_event(PGMAJFAULT);
1242		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1243	}
1244	return ret;
1245}
1246
1247#ifdef CONFIG_NUMA
1248static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1249{
1250	struct inode *inode = file_inode(vma->vm_file);
1251	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1252}
1253
1254static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255					  unsigned long addr)
1256{
1257	struct inode *inode = file_inode(vma->vm_file);
1258	pgoff_t index;
1259
1260	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1262}
1263#endif
1264
1265int shmem_lock(struct file *file, int lock, struct user_struct *user)
1266{
1267	struct inode *inode = file_inode(file);
1268	struct shmem_inode_info *info = SHMEM_I(inode);
1269	int retval = -ENOMEM;
1270
1271	spin_lock(&info->lock);
1272	if (lock && !(info->flags & VM_LOCKED)) {
1273		if (!user_shm_lock(inode->i_size, user))
1274			goto out_nomem;
1275		info->flags |= VM_LOCKED;
1276		mapping_set_unevictable(file->f_mapping);
1277	}
1278	if (!lock && (info->flags & VM_LOCKED) && user) {
1279		user_shm_unlock(inode->i_size, user);
1280		info->flags &= ~VM_LOCKED;
1281		mapping_clear_unevictable(file->f_mapping);
1282	}
1283	retval = 0;
1284
1285out_nomem:
1286	spin_unlock(&info->lock);
1287	return retval;
1288}
1289
1290static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1291{
1292	file_accessed(file);
1293	vma->vm_ops = &shmem_vm_ops;
1294	return 0;
1295}
1296
1297static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1298				     umode_t mode, dev_t dev, unsigned long flags)
1299{
1300	struct inode *inode;
1301	struct shmem_inode_info *info;
1302	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1303
1304	if (shmem_reserve_inode(sb))
1305		return NULL;
1306
1307	inode = new_inode(sb);
1308	if (inode) {
1309		inode->i_ino = get_next_ino();
1310		inode_init_owner(inode, dir, mode);
1311		inode->i_blocks = 0;
1312		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1314		inode->i_generation = get_seconds();
1315		info = SHMEM_I(inode);
1316		memset(info, 0, (char *)inode - (char *)info);
1317		spin_lock_init(&info->lock);
1318		info->flags = flags & VM_NORESERVE;
1319		INIT_LIST_HEAD(&info->swaplist);
1320		simple_xattrs_init(&info->xattrs);
1321		cache_no_acl(inode);
1322
1323		switch (mode & S_IFMT) {
1324		default:
1325			inode->i_op = &shmem_special_inode_operations;
1326			init_special_inode(inode, mode, dev);
1327			break;
1328		case S_IFREG:
1329			inode->i_mapping->a_ops = &shmem_aops;
1330			inode->i_op = &shmem_inode_operations;
1331			inode->i_fop = &shmem_file_operations;
1332			mpol_shared_policy_init(&info->policy,
1333						 shmem_get_sbmpol(sbinfo));
1334			break;
1335		case S_IFDIR:
1336			inc_nlink(inode);
1337			/* Some things misbehave if size == 0 on a directory */
1338			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339			inode->i_op = &shmem_dir_inode_operations;
1340			inode->i_fop = &simple_dir_operations;
1341			break;
1342		case S_IFLNK:
1343			/*
1344			 * Must not load anything in the rbtree,
1345			 * mpol_free_shared_policy will not be called.
1346			 */
1347			mpol_shared_policy_init(&info->policy, NULL);
1348			break;
1349		}
1350	} else
1351		shmem_free_inode(sb);
1352	return inode;
1353}
1354
1355bool shmem_mapping(struct address_space *mapping)
1356{
1357	return mapping->backing_dev_info == &shmem_backing_dev_info;
1358}
1359
1360#ifdef CONFIG_TMPFS
1361static const struct inode_operations shmem_symlink_inode_operations;
1362static const struct inode_operations shmem_short_symlink_operations;
1363
1364#ifdef CONFIG_TMPFS_XATTR
1365static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366#else
1367#define shmem_initxattrs NULL
1368#endif
1369
1370static int
1371shmem_write_begin(struct file *file, struct address_space *mapping,
1372			loff_t pos, unsigned len, unsigned flags,
1373			struct page **pagep, void **fsdata)
1374{
1375	struct inode *inode = mapping->host;
1376	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1377	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1378}
1379
1380static int
1381shmem_write_end(struct file *file, struct address_space *mapping,
1382			loff_t pos, unsigned len, unsigned copied,
1383			struct page *page, void *fsdata)
1384{
1385	struct inode *inode = mapping->host;
1386
1387	if (pos + copied > inode->i_size)
1388		i_size_write(inode, pos + copied);
1389
1390	if (!PageUptodate(page)) {
1391		if (copied < PAGE_CACHE_SIZE) {
1392			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1393			zero_user_segments(page, 0, from,
1394					from + copied, PAGE_CACHE_SIZE);
1395		}
1396		SetPageUptodate(page);
1397	}
1398	set_page_dirty(page);
1399	unlock_page(page);
1400	page_cache_release(page);
1401
1402	return copied;
1403}
1404
1405static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1406{
1407	struct inode *inode = file_inode(filp);
1408	struct address_space *mapping = inode->i_mapping;
1409	pgoff_t index;
1410	unsigned long offset;
1411	enum sgp_type sgp = SGP_READ;
1412
1413	/*
1414	 * Might this read be for a stacking filesystem?  Then when reading
1415	 * holes of a sparse file, we actually need to allocate those pages,
1416	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1417	 */
1418	if (segment_eq(get_fs(), KERNEL_DS))
1419		sgp = SGP_DIRTY;
1420
1421	index = *ppos >> PAGE_CACHE_SHIFT;
1422	offset = *ppos & ~PAGE_CACHE_MASK;
1423
1424	for (;;) {
1425		struct page *page = NULL;
1426		pgoff_t end_index;
1427		unsigned long nr, ret;
1428		loff_t i_size = i_size_read(inode);
1429
1430		end_index = i_size >> PAGE_CACHE_SHIFT;
1431		if (index > end_index)
1432			break;
1433		if (index == end_index) {
1434			nr = i_size & ~PAGE_CACHE_MASK;
1435			if (nr <= offset)
1436				break;
1437		}
1438
1439		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1440		if (desc->error) {
1441			if (desc->error == -EINVAL)
1442				desc->error = 0;
1443			break;
1444		}
1445		if (page)
1446			unlock_page(page);
1447
1448		/*
1449		 * We must evaluate after, since reads (unlike writes)
1450		 * are called without i_mutex protection against truncate
1451		 */
1452		nr = PAGE_CACHE_SIZE;
1453		i_size = i_size_read(inode);
1454		end_index = i_size >> PAGE_CACHE_SHIFT;
1455		if (index == end_index) {
1456			nr = i_size & ~PAGE_CACHE_MASK;
1457			if (nr <= offset) {
1458				if (page)
1459					page_cache_release(page);
1460				break;
1461			}
1462		}
1463		nr -= offset;
1464
1465		if (page) {
1466			/*
1467			 * If users can be writing to this page using arbitrary
1468			 * virtual addresses, take care about potential aliasing
1469			 * before reading the page on the kernel side.
1470			 */
1471			if (mapping_writably_mapped(mapping))
1472				flush_dcache_page(page);
1473			/*
1474			 * Mark the page accessed if we read the beginning.
1475			 */
1476			if (!offset)
1477				mark_page_accessed(page);
1478		} else {
1479			page = ZERO_PAGE(0);
1480			page_cache_get(page);
1481		}
1482
1483		/*
1484		 * Ok, we have the page, and it's up-to-date, so
1485		 * now we can copy it to user space...
1486		 *
1487		 * The actor routine returns how many bytes were actually used..
1488		 * NOTE! This may not be the same as how much of a user buffer
1489		 * we filled up (we may be padding etc), so we can only update
1490		 * "pos" here (the actor routine has to update the user buffer
1491		 * pointers and the remaining count).
1492		 */
1493		ret = actor(desc, page, offset, nr);
1494		offset += ret;
1495		index += offset >> PAGE_CACHE_SHIFT;
1496		offset &= ~PAGE_CACHE_MASK;
1497
1498		page_cache_release(page);
1499		if (ret != nr || !desc->count)
1500			break;
1501
1502		cond_resched();
1503	}
1504
1505	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1506	file_accessed(filp);
1507}
1508
1509static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1510		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1511{
1512	struct file *filp = iocb->ki_filp;
1513	ssize_t retval;
1514	unsigned long seg;
1515	size_t count;
1516	loff_t *ppos = &iocb->ki_pos;
1517
1518	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1519	if (retval)
1520		return retval;
1521
1522	for (seg = 0; seg < nr_segs; seg++) {
1523		read_descriptor_t desc;
1524
1525		desc.written = 0;
1526		desc.arg.buf = iov[seg].iov_base;
1527		desc.count = iov[seg].iov_len;
1528		if (desc.count == 0)
1529			continue;
1530		desc.error = 0;
1531		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1532		retval += desc.written;
1533		if (desc.error) {
1534			retval = retval ?: desc.error;
1535			break;
1536		}
1537		if (desc.count > 0)
1538			break;
1539	}
1540	return retval;
1541}
1542
1543static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1544				struct pipe_inode_info *pipe, size_t len,
1545				unsigned int flags)
1546{
1547	struct address_space *mapping = in->f_mapping;
1548	struct inode *inode = mapping->host;
1549	unsigned int loff, nr_pages, req_pages;
1550	struct page *pages[PIPE_DEF_BUFFERS];
1551	struct partial_page partial[PIPE_DEF_BUFFERS];
1552	struct page *page;
1553	pgoff_t index, end_index;
1554	loff_t isize, left;
1555	int error, page_nr;
1556	struct splice_pipe_desc spd = {
1557		.pages = pages,
1558		.partial = partial,
1559		.nr_pages_max = PIPE_DEF_BUFFERS,
1560		.flags = flags,
1561		.ops = &page_cache_pipe_buf_ops,
1562		.spd_release = spd_release_page,
1563	};
1564
1565	isize = i_size_read(inode);
1566	if (unlikely(*ppos >= isize))
1567		return 0;
1568
1569	left = isize - *ppos;
1570	if (unlikely(left < len))
1571		len = left;
1572
1573	if (splice_grow_spd(pipe, &spd))
1574		return -ENOMEM;
1575
1576	index = *ppos >> PAGE_CACHE_SHIFT;
1577	loff = *ppos & ~PAGE_CACHE_MASK;
1578	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1579	nr_pages = min(req_pages, pipe->buffers);
1580
1581	spd.nr_pages = find_get_pages_contig(mapping, index,
1582						nr_pages, spd.pages);
1583	index += spd.nr_pages;
1584	error = 0;
1585
1586	while (spd.nr_pages < nr_pages) {
1587		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1588		if (error)
1589			break;
1590		unlock_page(page);
1591		spd.pages[spd.nr_pages++] = page;
1592		index++;
1593	}
1594
1595	index = *ppos >> PAGE_CACHE_SHIFT;
1596	nr_pages = spd.nr_pages;
1597	spd.nr_pages = 0;
1598
1599	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1600		unsigned int this_len;
1601
1602		if (!len)
1603			break;
1604
1605		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1606		page = spd.pages[page_nr];
1607
1608		if (!PageUptodate(page) || page->mapping != mapping) {
1609			error = shmem_getpage(inode, index, &page,
1610							SGP_CACHE, NULL);
1611			if (error)
1612				break;
1613			unlock_page(page);
1614			page_cache_release(spd.pages[page_nr]);
1615			spd.pages[page_nr] = page;
1616		}
1617
1618		isize = i_size_read(inode);
1619		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1620		if (unlikely(!isize || index > end_index))
1621			break;
1622
1623		if (end_index == index) {
1624			unsigned int plen;
1625
1626			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1627			if (plen <= loff)
1628				break;
1629
1630			this_len = min(this_len, plen - loff);
1631			len = this_len;
1632		}
1633
1634		spd.partial[page_nr].offset = loff;
1635		spd.partial[page_nr].len = this_len;
1636		len -= this_len;
1637		loff = 0;
1638		spd.nr_pages++;
1639		index++;
1640	}
1641
1642	while (page_nr < nr_pages)
1643		page_cache_release(spd.pages[page_nr++]);
1644
1645	if (spd.nr_pages)
1646		error = splice_to_pipe(pipe, &spd);
1647
1648	splice_shrink_spd(&spd);
1649
1650	if (error > 0) {
1651		*ppos += error;
1652		file_accessed(in);
1653	}
1654	return error;
1655}
1656
1657/*
1658 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1659 */
1660static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1661				    pgoff_t index, pgoff_t end, int whence)
1662{
1663	struct page *page;
1664	struct pagevec pvec;
1665	pgoff_t indices[PAGEVEC_SIZE];
1666	bool done = false;
1667	int i;
1668
1669	pagevec_init(&pvec, 0);
1670	pvec.nr = 1;		/* start small: we may be there already */
1671	while (!done) {
1672		pvec.nr = find_get_entries(mapping, index,
1673					pvec.nr, pvec.pages, indices);
1674		if (!pvec.nr) {
1675			if (whence == SEEK_DATA)
1676				index = end;
1677			break;
1678		}
1679		for (i = 0; i < pvec.nr; i++, index++) {
1680			if (index < indices[i]) {
1681				if (whence == SEEK_HOLE) {
1682					done = true;
1683					break;
1684				}
1685				index = indices[i];
1686			}
1687			page = pvec.pages[i];
1688			if (page && !radix_tree_exceptional_entry(page)) {
1689				if (!PageUptodate(page))
1690					page = NULL;
1691			}
1692			if (index >= end ||
1693			    (page && whence == SEEK_DATA) ||
1694			    (!page && whence == SEEK_HOLE)) {
1695				done = true;
1696				break;
1697			}
1698		}
1699		pagevec_remove_exceptionals(&pvec);
1700		pagevec_release(&pvec);
1701		pvec.nr = PAGEVEC_SIZE;
1702		cond_resched();
1703	}
1704	return index;
1705}
1706
1707static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1708{
1709	struct address_space *mapping = file->f_mapping;
1710	struct inode *inode = mapping->host;
1711	pgoff_t start, end;
1712	loff_t new_offset;
1713
1714	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1715		return generic_file_llseek_size(file, offset, whence,
1716					MAX_LFS_FILESIZE, i_size_read(inode));
1717	mutex_lock(&inode->i_mutex);
1718	/* We're holding i_mutex so we can access i_size directly */
1719
1720	if (offset < 0)
1721		offset = -EINVAL;
1722	else if (offset >= inode->i_size)
1723		offset = -ENXIO;
1724	else {
1725		start = offset >> PAGE_CACHE_SHIFT;
1726		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1727		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1728		new_offset <<= PAGE_CACHE_SHIFT;
1729		if (new_offset > offset) {
1730			if (new_offset < inode->i_size)
1731				offset = new_offset;
1732			else if (whence == SEEK_DATA)
1733				offset = -ENXIO;
1734			else
1735				offset = inode->i_size;
1736		}
1737	}
1738
1739	if (offset >= 0)
1740		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1741	mutex_unlock(&inode->i_mutex);
1742	return offset;
1743}
1744
1745static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1746							 loff_t len)
1747{
1748	struct inode *inode = file_inode(file);
1749	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1750	struct shmem_falloc shmem_falloc;
1751	pgoff_t start, index, end;
1752	int error;
1753
1754	mutex_lock(&inode->i_mutex);
1755
1756	if (mode & FALLOC_FL_PUNCH_HOLE) {
1757		struct address_space *mapping = file->f_mapping;
1758		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1759		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1760
1761		if ((u64)unmap_end > (u64)unmap_start)
1762			unmap_mapping_range(mapping, unmap_start,
1763					    1 + unmap_end - unmap_start, 0);
1764		shmem_truncate_range(inode, offset, offset + len - 1);
1765		/* No need to unmap again: hole-punching leaves COWed pages */
1766		error = 0;
1767		goto out;
1768	}
1769
1770	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1771	error = inode_newsize_ok(inode, offset + len);
1772	if (error)
1773		goto out;
1774
1775	start = offset >> PAGE_CACHE_SHIFT;
1776	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1777	/* Try to avoid a swapstorm if len is impossible to satisfy */
1778	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1779		error = -ENOSPC;
1780		goto out;
1781	}
1782
1783	shmem_falloc.start = start;
1784	shmem_falloc.next  = start;
1785	shmem_falloc.nr_falloced = 0;
1786	shmem_falloc.nr_unswapped = 0;
1787	spin_lock(&inode->i_lock);
1788	inode->i_private = &shmem_falloc;
1789	spin_unlock(&inode->i_lock);
1790
1791	for (index = start; index < end; index++) {
1792		struct page *page;
1793
1794		/*
1795		 * Good, the fallocate(2) manpage permits EINTR: we may have
1796		 * been interrupted because we are using up too much memory.
1797		 */
1798		if (signal_pending(current))
1799			error = -EINTR;
1800		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1801			error = -ENOMEM;
1802		else
1803			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1804									NULL);
1805		if (error) {
1806			/* Remove the !PageUptodate pages we added */
1807			shmem_undo_range(inode,
1808				(loff_t)start << PAGE_CACHE_SHIFT,
1809				(loff_t)index << PAGE_CACHE_SHIFT, true);
1810			goto undone;
1811		}
1812
1813		/*
1814		 * Inform shmem_writepage() how far we have reached.
1815		 * No need for lock or barrier: we have the page lock.
1816		 */
1817		shmem_falloc.next++;
1818		if (!PageUptodate(page))
1819			shmem_falloc.nr_falloced++;
1820
1821		/*
1822		 * If !PageUptodate, leave it that way so that freeable pages
1823		 * can be recognized if we need to rollback on error later.
1824		 * But set_page_dirty so that memory pressure will swap rather
1825		 * than free the pages we are allocating (and SGP_CACHE pages
1826		 * might still be clean: we now need to mark those dirty too).
1827		 */
1828		set_page_dirty(page);
1829		unlock_page(page);
1830		page_cache_release(page);
1831		cond_resched();
1832	}
1833
1834	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1835		i_size_write(inode, offset + len);
1836	inode->i_ctime = CURRENT_TIME;
1837undone:
1838	spin_lock(&inode->i_lock);
1839	inode->i_private = NULL;
1840	spin_unlock(&inode->i_lock);
1841out:
1842	mutex_unlock(&inode->i_mutex);
1843	return error;
1844}
1845
1846static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1847{
1848	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1849
1850	buf->f_type = TMPFS_MAGIC;
1851	buf->f_bsize = PAGE_CACHE_SIZE;
1852	buf->f_namelen = NAME_MAX;
1853	if (sbinfo->max_blocks) {
1854		buf->f_blocks = sbinfo->max_blocks;
1855		buf->f_bavail =
1856		buf->f_bfree  = sbinfo->max_blocks -
1857				percpu_counter_sum(&sbinfo->used_blocks);
1858	}
1859	if (sbinfo->max_inodes) {
1860		buf->f_files = sbinfo->max_inodes;
1861		buf->f_ffree = sbinfo->free_inodes;
1862	}
1863	/* else leave those fields 0 like simple_statfs */
1864	return 0;
1865}
1866
1867/*
1868 * File creation. Allocate an inode, and we're done..
1869 */
1870static int
1871shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1872{
1873	struct inode *inode;
1874	int error = -ENOSPC;
1875
1876	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1877	if (inode) {
1878		error = simple_acl_create(dir, inode);
1879		if (error)
1880			goto out_iput;
1881		error = security_inode_init_security(inode, dir,
1882						     &dentry->d_name,
1883						     shmem_initxattrs, NULL);
1884		if (error && error != -EOPNOTSUPP)
1885			goto out_iput;
1886
1887		error = 0;
1888		dir->i_size += BOGO_DIRENT_SIZE;
1889		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1890		d_instantiate(dentry, inode);
1891		dget(dentry); /* Extra count - pin the dentry in core */
1892	}
1893	return error;
1894out_iput:
1895	iput(inode);
1896	return error;
1897}
1898
1899static int
1900shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1901{
1902	struct inode *inode;
1903	int error = -ENOSPC;
1904
1905	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1906	if (inode) {
1907		error = security_inode_init_security(inode, dir,
1908						     NULL,
1909						     shmem_initxattrs, NULL);
1910		if (error && error != -EOPNOTSUPP)
1911			goto out_iput;
1912		error = simple_acl_create(dir, inode);
1913		if (error)
1914			goto out_iput;
1915		d_tmpfile(dentry, inode);
1916	}
1917	return error;
1918out_iput:
1919	iput(inode);
1920	return error;
1921}
1922
1923static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1924{
1925	int error;
1926
1927	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1928		return error;
1929	inc_nlink(dir);
1930	return 0;
1931}
1932
1933static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1934		bool excl)
1935{
1936	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1937}
1938
1939/*
1940 * Link a file..
1941 */
1942static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1943{
1944	struct inode *inode = old_dentry->d_inode;
1945	int ret;
1946
1947	/*
1948	 * No ordinary (disk based) filesystem counts links as inodes;
1949	 * but each new link needs a new dentry, pinning lowmem, and
1950	 * tmpfs dentries cannot be pruned until they are unlinked.
1951	 */
1952	ret = shmem_reserve_inode(inode->i_sb);
1953	if (ret)
1954		goto out;
1955
1956	dir->i_size += BOGO_DIRENT_SIZE;
1957	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1958	inc_nlink(inode);
1959	ihold(inode);	/* New dentry reference */
1960	dget(dentry);		/* Extra pinning count for the created dentry */
1961	d_instantiate(dentry, inode);
1962out:
1963	return ret;
1964}
1965
1966static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1967{
1968	struct inode *inode = dentry->d_inode;
1969
1970	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1971		shmem_free_inode(inode->i_sb);
1972
1973	dir->i_size -= BOGO_DIRENT_SIZE;
1974	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1975	drop_nlink(inode);
1976	dput(dentry);	/* Undo the count from "create" - this does all the work */
1977	return 0;
1978}
1979
1980static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1981{
1982	if (!simple_empty(dentry))
1983		return -ENOTEMPTY;
1984
1985	drop_nlink(dentry->d_inode);
1986	drop_nlink(dir);
1987	return shmem_unlink(dir, dentry);
1988}
1989
1990/*
1991 * The VFS layer already does all the dentry stuff for rename,
1992 * we just have to decrement the usage count for the target if
1993 * it exists so that the VFS layer correctly free's it when it
1994 * gets overwritten.
1995 */
1996static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1997{
1998	struct inode *inode = old_dentry->d_inode;
1999	int they_are_dirs = S_ISDIR(inode->i_mode);
2000
2001	if (!simple_empty(new_dentry))
2002		return -ENOTEMPTY;
2003
2004	if (new_dentry->d_inode) {
2005		(void) shmem_unlink(new_dir, new_dentry);
2006		if (they_are_dirs)
2007			drop_nlink(old_dir);
2008	} else if (they_are_dirs) {
2009		drop_nlink(old_dir);
2010		inc_nlink(new_dir);
2011	}
2012
2013	old_dir->i_size -= BOGO_DIRENT_SIZE;
2014	new_dir->i_size += BOGO_DIRENT_SIZE;
2015	old_dir->i_ctime = old_dir->i_mtime =
2016	new_dir->i_ctime = new_dir->i_mtime =
2017	inode->i_ctime = CURRENT_TIME;
2018	return 0;
2019}
2020
2021static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2022{
2023	int error;
2024	int len;
2025	struct inode *inode;
2026	struct page *page;
2027	char *kaddr;
2028	struct shmem_inode_info *info;
2029
2030	len = strlen(symname) + 1;
2031	if (len > PAGE_CACHE_SIZE)
2032		return -ENAMETOOLONG;
2033
2034	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2035	if (!inode)
2036		return -ENOSPC;
2037
2038	error = security_inode_init_security(inode, dir, &dentry->d_name,
2039					     shmem_initxattrs, NULL);
2040	if (error) {
2041		if (error != -EOPNOTSUPP) {
2042			iput(inode);
2043			return error;
2044		}
2045		error = 0;
2046	}
2047
2048	info = SHMEM_I(inode);
2049	inode->i_size = len-1;
2050	if (len <= SHORT_SYMLINK_LEN) {
2051		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2052		if (!info->symlink) {
2053			iput(inode);
2054			return -ENOMEM;
2055		}
2056		inode->i_op = &shmem_short_symlink_operations;
2057	} else {
2058		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2059		if (error) {
2060			iput(inode);
2061			return error;
2062		}
2063		inode->i_mapping->a_ops = &shmem_aops;
2064		inode->i_op = &shmem_symlink_inode_operations;
2065		kaddr = kmap_atomic(page);
2066		memcpy(kaddr, symname, len);
2067		kunmap_atomic(kaddr);
2068		SetPageUptodate(page);
2069		set_page_dirty(page);
2070		unlock_page(page);
2071		page_cache_release(page);
2072	}
2073	dir->i_size += BOGO_DIRENT_SIZE;
2074	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2075	d_instantiate(dentry, inode);
2076	dget(dentry);
2077	return 0;
2078}
2079
2080static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2081{
2082	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2083	return NULL;
2084}
2085
2086static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2087{
2088	struct page *page = NULL;
2089	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2090	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2091	if (page)
2092		unlock_page(page);
2093	return page;
2094}
2095
2096static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2097{
2098	if (!IS_ERR(nd_get_link(nd))) {
2099		struct page *page = cookie;
2100		kunmap(page);
2101		mark_page_accessed(page);
2102		page_cache_release(page);
2103	}
2104}
2105
2106#ifdef CONFIG_TMPFS_XATTR
2107/*
2108 * Superblocks without xattr inode operations may get some security.* xattr
2109 * support from the LSM "for free". As soon as we have any other xattrs
2110 * like ACLs, we also need to implement the security.* handlers at
2111 * filesystem level, though.
2112 */
2113
2114/*
2115 * Callback for security_inode_init_security() for acquiring xattrs.
2116 */
2117static int shmem_initxattrs(struct inode *inode,
2118			    const struct xattr *xattr_array,
2119			    void *fs_info)
2120{
2121	struct shmem_inode_info *info = SHMEM_I(inode);
2122	const struct xattr *xattr;
2123	struct simple_xattr *new_xattr;
2124	size_t len;
2125
2126	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2127		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2128		if (!new_xattr)
2129			return -ENOMEM;
2130
2131		len = strlen(xattr->name) + 1;
2132		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2133					  GFP_KERNEL);
2134		if (!new_xattr->name) {
2135			kfree(new_xattr);
2136			return -ENOMEM;
2137		}
2138
2139		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2140		       XATTR_SECURITY_PREFIX_LEN);
2141		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2142		       xattr->name, len);
2143
2144		simple_xattr_list_add(&info->xattrs, new_xattr);
2145	}
2146
2147	return 0;
2148}
2149
2150static const struct xattr_handler *shmem_xattr_handlers[] = {
2151#ifdef CONFIG_TMPFS_POSIX_ACL
2152	&posix_acl_access_xattr_handler,
2153	&posix_acl_default_xattr_handler,
2154#endif
2155	NULL
2156};
2157
2158static int shmem_xattr_validate(const char *name)
2159{
2160	struct { const char *prefix; size_t len; } arr[] = {
2161		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2162		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2163	};
2164	int i;
2165
2166	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2167		size_t preflen = arr[i].len;
2168		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2169			if (!name[preflen])
2170				return -EINVAL;
2171			return 0;
2172		}
2173	}
2174	return -EOPNOTSUPP;
2175}
2176
2177static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2178			      void *buffer, size_t size)
2179{
2180	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2181	int err;
2182
2183	/*
2184	 * If this is a request for a synthetic attribute in the system.*
2185	 * namespace use the generic infrastructure to resolve a handler
2186	 * for it via sb->s_xattr.
2187	 */
2188	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2189		return generic_getxattr(dentry, name, buffer, size);
2190
2191	err = shmem_xattr_validate(name);
2192	if (err)
2193		return err;
2194
2195	return simple_xattr_get(&info->xattrs, name, buffer, size);
2196}
2197
2198static int shmem_setxattr(struct dentry *dentry, const char *name,
2199			  const void *value, size_t size, int flags)
2200{
2201	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2202	int err;
2203
2204	/*
2205	 * If this is a request for a synthetic attribute in the system.*
2206	 * namespace use the generic infrastructure to resolve a handler
2207	 * for it via sb->s_xattr.
2208	 */
2209	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2210		return generic_setxattr(dentry, name, value, size, flags);
2211
2212	err = shmem_xattr_validate(name);
2213	if (err)
2214		return err;
2215
2216	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2217}
2218
2219static int shmem_removexattr(struct dentry *dentry, const char *name)
2220{
2221	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2222	int err;
2223
2224	/*
2225	 * If this is a request for a synthetic attribute in the system.*
2226	 * namespace use the generic infrastructure to resolve a handler
2227	 * for it via sb->s_xattr.
2228	 */
2229	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2230		return generic_removexattr(dentry, name);
2231
2232	err = shmem_xattr_validate(name);
2233	if (err)
2234		return err;
2235
2236	return simple_xattr_remove(&info->xattrs, name);
2237}
2238
2239static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2240{
2241	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2242	return simple_xattr_list(&info->xattrs, buffer, size);
2243}
2244#endif /* CONFIG_TMPFS_XATTR */
2245
2246static const struct inode_operations shmem_short_symlink_operations = {
2247	.readlink	= generic_readlink,
2248	.follow_link	= shmem_follow_short_symlink,
2249#ifdef CONFIG_TMPFS_XATTR
2250	.setxattr	= shmem_setxattr,
2251	.getxattr	= shmem_getxattr,
2252	.listxattr	= shmem_listxattr,
2253	.removexattr	= shmem_removexattr,
2254#endif
2255};
2256
2257static const struct inode_operations shmem_symlink_inode_operations = {
2258	.readlink	= generic_readlink,
2259	.follow_link	= shmem_follow_link,
2260	.put_link	= shmem_put_link,
2261#ifdef CONFIG_TMPFS_XATTR
2262	.setxattr	= shmem_setxattr,
2263	.getxattr	= shmem_getxattr,
2264	.listxattr	= shmem_listxattr,
2265	.removexattr	= shmem_removexattr,
2266#endif
2267};
2268
2269static struct dentry *shmem_get_parent(struct dentry *child)
2270{
2271	return ERR_PTR(-ESTALE);
2272}
2273
2274static int shmem_match(struct inode *ino, void *vfh)
2275{
2276	__u32 *fh = vfh;
2277	__u64 inum = fh[2];
2278	inum = (inum << 32) | fh[1];
2279	return ino->i_ino == inum && fh[0] == ino->i_generation;
2280}
2281
2282static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2283		struct fid *fid, int fh_len, int fh_type)
2284{
2285	struct inode *inode;
2286	struct dentry *dentry = NULL;
2287	u64 inum;
2288
2289	if (fh_len < 3)
2290		return NULL;
2291
2292	inum = fid->raw[2];
2293	inum = (inum << 32) | fid->raw[1];
2294
2295	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2296			shmem_match, fid->raw);
2297	if (inode) {
2298		dentry = d_find_alias(inode);
2299		iput(inode);
2300	}
2301
2302	return dentry;
2303}
2304
2305static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2306				struct inode *parent)
2307{
2308	if (*len < 3) {
2309		*len = 3;
2310		return FILEID_INVALID;
2311	}
2312
2313	if (inode_unhashed(inode)) {
2314		/* Unfortunately insert_inode_hash is not idempotent,
2315		 * so as we hash inodes here rather than at creation
2316		 * time, we need a lock to ensure we only try
2317		 * to do it once
2318		 */
2319		static DEFINE_SPINLOCK(lock);
2320		spin_lock(&lock);
2321		if (inode_unhashed(inode))
2322			__insert_inode_hash(inode,
2323					    inode->i_ino + inode->i_generation);
2324		spin_unlock(&lock);
2325	}
2326
2327	fh[0] = inode->i_generation;
2328	fh[1] = inode->i_ino;
2329	fh[2] = ((__u64)inode->i_ino) >> 32;
2330
2331	*len = 3;
2332	return 1;
2333}
2334
2335static const struct export_operations shmem_export_ops = {
2336	.get_parent     = shmem_get_parent,
2337	.encode_fh      = shmem_encode_fh,
2338	.fh_to_dentry	= shmem_fh_to_dentry,
2339};
2340
2341static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2342			       bool remount)
2343{
2344	char *this_char, *value, *rest;
2345	struct mempolicy *mpol = NULL;
2346	uid_t uid;
2347	gid_t gid;
2348
2349	while (options != NULL) {
2350		this_char = options;
2351		for (;;) {
2352			/*
2353			 * NUL-terminate this option: unfortunately,
2354			 * mount options form a comma-separated list,
2355			 * but mpol's nodelist may also contain commas.
2356			 */
2357			options = strchr(options, ',');
2358			if (options == NULL)
2359				break;
2360			options++;
2361			if (!isdigit(*options)) {
2362				options[-1] = '\0';
2363				break;
2364			}
2365		}
2366		if (!*this_char)
2367			continue;
2368		if ((value = strchr(this_char,'=')) != NULL) {
2369			*value++ = 0;
2370		} else {
2371			printk(KERN_ERR
2372			    "tmpfs: No value for mount option '%s'\n",
2373			    this_char);
2374			goto error;
2375		}
2376
2377		if (!strcmp(this_char,"size")) {
2378			unsigned long long size;
2379			size = memparse(value,&rest);
2380			if (*rest == '%') {
2381				size <<= PAGE_SHIFT;
2382				size *= totalram_pages;
2383				do_div(size, 100);
2384				rest++;
2385			}
2386			if (*rest)
2387				goto bad_val;
2388			sbinfo->max_blocks =
2389				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2390		} else if (!strcmp(this_char,"nr_blocks")) {
2391			sbinfo->max_blocks = memparse(value, &rest);
2392			if (*rest)
2393				goto bad_val;
2394		} else if (!strcmp(this_char,"nr_inodes")) {
2395			sbinfo->max_inodes = memparse(value, &rest);
2396			if (*rest)
2397				goto bad_val;
2398		} else if (!strcmp(this_char,"mode")) {
2399			if (remount)
2400				continue;
2401			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2402			if (*rest)
2403				goto bad_val;
2404		} else if (!strcmp(this_char,"uid")) {
2405			if (remount)
2406				continue;
2407			uid = simple_strtoul(value, &rest, 0);
2408			if (*rest)
2409				goto bad_val;
2410			sbinfo->uid = make_kuid(current_user_ns(), uid);
2411			if (!uid_valid(sbinfo->uid))
2412				goto bad_val;
2413		} else if (!strcmp(this_char,"gid")) {
2414			if (remount)
2415				continue;
2416			gid = simple_strtoul(value, &rest, 0);
2417			if (*rest)
2418				goto bad_val;
2419			sbinfo->gid = make_kgid(current_user_ns(), gid);
2420			if (!gid_valid(sbinfo->gid))
2421				goto bad_val;
2422		} else if (!strcmp(this_char,"mpol")) {
2423			mpol_put(mpol);
2424			mpol = NULL;
2425			if (mpol_parse_str(value, &mpol))
2426				goto bad_val;
2427		} else {
2428			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2429			       this_char);
2430			goto error;
2431		}
2432	}
2433	sbinfo->mpol = mpol;
2434	return 0;
2435
2436bad_val:
2437	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2438	       value, this_char);
2439error:
2440	mpol_put(mpol);
2441	return 1;
2442
2443}
2444
2445static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2446{
2447	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2448	struct shmem_sb_info config = *sbinfo;
2449	unsigned long inodes;
2450	int error = -EINVAL;
2451
2452	config.mpol = NULL;
2453	if (shmem_parse_options(data, &config, true))
2454		return error;
2455
2456	spin_lock(&sbinfo->stat_lock);
2457	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2458	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2459		goto out;
2460	if (config.max_inodes < inodes)
2461		goto out;
2462	/*
2463	 * Those tests disallow limited->unlimited while any are in use;
2464	 * but we must separately disallow unlimited->limited, because
2465	 * in that case we have no record of how much is already in use.
2466	 */
2467	if (config.max_blocks && !sbinfo->max_blocks)
2468		goto out;
2469	if (config.max_inodes && !sbinfo->max_inodes)
2470		goto out;
2471
2472	error = 0;
2473	sbinfo->max_blocks  = config.max_blocks;
2474	sbinfo->max_inodes  = config.max_inodes;
2475	sbinfo->free_inodes = config.max_inodes - inodes;
2476
2477	/*
2478	 * Preserve previous mempolicy unless mpol remount option was specified.
2479	 */
2480	if (config.mpol) {
2481		mpol_put(sbinfo->mpol);
2482		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2483	}
2484out:
2485	spin_unlock(&sbinfo->stat_lock);
2486	return error;
2487}
2488
2489static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2490{
2491	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2492
2493	if (sbinfo->max_blocks != shmem_default_max_blocks())
2494		seq_printf(seq, ",size=%luk",
2495			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2496	if (sbinfo->max_inodes != shmem_default_max_inodes())
2497		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2498	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2499		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2500	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2501		seq_printf(seq, ",uid=%u",
2502				from_kuid_munged(&init_user_ns, sbinfo->uid));
2503	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2504		seq_printf(seq, ",gid=%u",
2505				from_kgid_munged(&init_user_ns, sbinfo->gid));
2506	shmem_show_mpol(seq, sbinfo->mpol);
2507	return 0;
2508}
2509#endif /* CONFIG_TMPFS */
2510
2511static void shmem_put_super(struct super_block *sb)
2512{
2513	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2514
2515	percpu_counter_destroy(&sbinfo->used_blocks);
2516	mpol_put(sbinfo->mpol);
2517	kfree(sbinfo);
2518	sb->s_fs_info = NULL;
2519}
2520
2521int shmem_fill_super(struct super_block *sb, void *data, int silent)
2522{
2523	struct inode *inode;
2524	struct shmem_sb_info *sbinfo;
2525	int err = -ENOMEM;
2526
2527	/* Round up to L1_CACHE_BYTES to resist false sharing */
2528	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2529				L1_CACHE_BYTES), GFP_KERNEL);
2530	if (!sbinfo)
2531		return -ENOMEM;
2532
2533	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2534	sbinfo->uid = current_fsuid();
2535	sbinfo->gid = current_fsgid();
2536	sb->s_fs_info = sbinfo;
2537
2538#ifdef CONFIG_TMPFS
2539	/*
2540	 * Per default we only allow half of the physical ram per
2541	 * tmpfs instance, limiting inodes to one per page of lowmem;
2542	 * but the internal instance is left unlimited.
2543	 */
2544	if (!(sb->s_flags & MS_KERNMOUNT)) {
2545		sbinfo->max_blocks = shmem_default_max_blocks();
2546		sbinfo->max_inodes = shmem_default_max_inodes();
2547		if (shmem_parse_options(data, sbinfo, false)) {
2548			err = -EINVAL;
2549			goto failed;
2550		}
2551	} else {
2552		sb->s_flags |= MS_NOUSER;
2553	}
2554	sb->s_export_op = &shmem_export_ops;
2555	sb->s_flags |= MS_NOSEC;
2556#else
2557	sb->s_flags |= MS_NOUSER;
2558#endif
2559
2560	spin_lock_init(&sbinfo->stat_lock);
2561	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2562		goto failed;
2563	sbinfo->free_inodes = sbinfo->max_inodes;
2564
2565	sb->s_maxbytes = MAX_LFS_FILESIZE;
2566	sb->s_blocksize = PAGE_CACHE_SIZE;
2567	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2568	sb->s_magic = TMPFS_MAGIC;
2569	sb->s_op = &shmem_ops;
2570	sb->s_time_gran = 1;
2571#ifdef CONFIG_TMPFS_XATTR
2572	sb->s_xattr = shmem_xattr_handlers;
2573#endif
2574#ifdef CONFIG_TMPFS_POSIX_ACL
2575	sb->s_flags |= MS_POSIXACL;
2576#endif
2577
2578	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2579	if (!inode)
2580		goto failed;
2581	inode->i_uid = sbinfo->uid;
2582	inode->i_gid = sbinfo->gid;
2583	sb->s_root = d_make_root(inode);
2584	if (!sb->s_root)
2585		goto failed;
2586	return 0;
2587
2588failed:
2589	shmem_put_super(sb);
2590	return err;
2591}
2592
2593static struct kmem_cache *shmem_inode_cachep;
2594
2595static struct inode *shmem_alloc_inode(struct super_block *sb)
2596{
2597	struct shmem_inode_info *info;
2598	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2599	if (!info)
2600		return NULL;
2601	return &info->vfs_inode;
2602}
2603
2604static void shmem_destroy_callback(struct rcu_head *head)
2605{
2606	struct inode *inode = container_of(head, struct inode, i_rcu);
2607	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2608}
2609
2610static void shmem_destroy_inode(struct inode *inode)
2611{
2612	if (S_ISREG(inode->i_mode))
2613		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2614	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2615}
2616
2617static void shmem_init_inode(void *foo)
2618{
2619	struct shmem_inode_info *info = foo;
2620	inode_init_once(&info->vfs_inode);
2621}
2622
2623static int shmem_init_inodecache(void)
2624{
2625	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2626				sizeof(struct shmem_inode_info),
2627				0, SLAB_PANIC, shmem_init_inode);
2628	return 0;
2629}
2630
2631static void shmem_destroy_inodecache(void)
2632{
2633	kmem_cache_destroy(shmem_inode_cachep);
2634}
2635
2636static const struct address_space_operations shmem_aops = {
2637	.writepage	= shmem_writepage,
2638	.set_page_dirty	= __set_page_dirty_no_writeback,
2639#ifdef CONFIG_TMPFS
2640	.write_begin	= shmem_write_begin,
2641	.write_end	= shmem_write_end,
2642#endif
2643	.migratepage	= migrate_page,
2644	.error_remove_page = generic_error_remove_page,
2645};
2646
2647static const struct file_operations shmem_file_operations = {
2648	.mmap		= shmem_mmap,
2649#ifdef CONFIG_TMPFS
2650	.llseek		= shmem_file_llseek,
2651	.read		= do_sync_read,
2652	.write		= do_sync_write,
2653	.aio_read	= shmem_file_aio_read,
2654	.aio_write	= generic_file_aio_write,
2655	.fsync		= noop_fsync,
2656	.splice_read	= shmem_file_splice_read,
2657	.splice_write	= generic_file_splice_write,
2658	.fallocate	= shmem_fallocate,
2659#endif
2660};
2661
2662static const struct inode_operations shmem_inode_operations = {
2663	.setattr	= shmem_setattr,
2664#ifdef CONFIG_TMPFS_XATTR
2665	.setxattr	= shmem_setxattr,
2666	.getxattr	= shmem_getxattr,
2667	.listxattr	= shmem_listxattr,
2668	.removexattr	= shmem_removexattr,
2669	.set_acl	= simple_set_acl,
2670#endif
2671};
2672
2673static const struct inode_operations shmem_dir_inode_operations = {
2674#ifdef CONFIG_TMPFS
2675	.create		= shmem_create,
2676	.lookup		= simple_lookup,
2677	.link		= shmem_link,
2678	.unlink		= shmem_unlink,
2679	.symlink	= shmem_symlink,
2680	.mkdir		= shmem_mkdir,
2681	.rmdir		= shmem_rmdir,
2682	.mknod		= shmem_mknod,
2683	.rename		= shmem_rename,
2684	.tmpfile	= shmem_tmpfile,
2685#endif
2686#ifdef CONFIG_TMPFS_XATTR
2687	.setxattr	= shmem_setxattr,
2688	.getxattr	= shmem_getxattr,
2689	.listxattr	= shmem_listxattr,
2690	.removexattr	= shmem_removexattr,
2691#endif
2692#ifdef CONFIG_TMPFS_POSIX_ACL
2693	.setattr	= shmem_setattr,
2694	.set_acl	= simple_set_acl,
2695#endif
2696};
2697
2698static const struct inode_operations shmem_special_inode_operations = {
2699#ifdef CONFIG_TMPFS_XATTR
2700	.setxattr	= shmem_setxattr,
2701	.getxattr	= shmem_getxattr,
2702	.listxattr	= shmem_listxattr,
2703	.removexattr	= shmem_removexattr,
2704#endif
2705#ifdef CONFIG_TMPFS_POSIX_ACL
2706	.setattr	= shmem_setattr,
2707	.set_acl	= simple_set_acl,
2708#endif
2709};
2710
2711static const struct super_operations shmem_ops = {
2712	.alloc_inode	= shmem_alloc_inode,
2713	.destroy_inode	= shmem_destroy_inode,
2714#ifdef CONFIG_TMPFS
2715	.statfs		= shmem_statfs,
2716	.remount_fs	= shmem_remount_fs,
2717	.show_options	= shmem_show_options,
2718#endif
2719	.evict_inode	= shmem_evict_inode,
2720	.drop_inode	= generic_delete_inode,
2721	.put_super	= shmem_put_super,
2722};
2723
2724static const struct vm_operations_struct shmem_vm_ops = {
2725	.fault		= shmem_fault,
2726#ifdef CONFIG_NUMA
2727	.set_policy     = shmem_set_policy,
2728	.get_policy     = shmem_get_policy,
2729#endif
2730	.remap_pages	= generic_file_remap_pages,
2731};
2732
2733static struct dentry *shmem_mount(struct file_system_type *fs_type,
2734	int flags, const char *dev_name, void *data)
2735{
2736	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2737}
2738
2739static struct file_system_type shmem_fs_type = {
2740	.owner		= THIS_MODULE,
2741	.name		= "tmpfs",
2742	.mount		= shmem_mount,
2743	.kill_sb	= kill_litter_super,
2744	.fs_flags	= FS_USERNS_MOUNT,
2745};
2746
2747int __init shmem_init(void)
2748{
2749	int error;
2750
2751	/* If rootfs called this, don't re-init */
2752	if (shmem_inode_cachep)
2753		return 0;
2754
2755	error = bdi_init(&shmem_backing_dev_info);
2756	if (error)
2757		goto out4;
2758
2759	error = shmem_init_inodecache();
2760	if (error)
2761		goto out3;
2762
2763	error = register_filesystem(&shmem_fs_type);
2764	if (error) {
2765		printk(KERN_ERR "Could not register tmpfs\n");
2766		goto out2;
2767	}
2768
2769	shm_mnt = kern_mount(&shmem_fs_type);
2770	if (IS_ERR(shm_mnt)) {
2771		error = PTR_ERR(shm_mnt);
2772		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2773		goto out1;
2774	}
2775	return 0;
2776
2777out1:
2778	unregister_filesystem(&shmem_fs_type);
2779out2:
2780	shmem_destroy_inodecache();
2781out3:
2782	bdi_destroy(&shmem_backing_dev_info);
2783out4:
2784	shm_mnt = ERR_PTR(error);
2785	return error;
2786}
2787
2788#else /* !CONFIG_SHMEM */
2789
2790/*
2791 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2792 *
2793 * This is intended for small system where the benefits of the full
2794 * shmem code (swap-backed and resource-limited) are outweighed by
2795 * their complexity. On systems without swap this code should be
2796 * effectively equivalent, but much lighter weight.
2797 */
2798
2799static struct file_system_type shmem_fs_type = {
2800	.name		= "tmpfs",
2801	.mount		= ramfs_mount,
2802	.kill_sb	= kill_litter_super,
2803	.fs_flags	= FS_USERNS_MOUNT,
2804};
2805
2806int __init shmem_init(void)
2807{
2808	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2809
2810	shm_mnt = kern_mount(&shmem_fs_type);
2811	BUG_ON(IS_ERR(shm_mnt));
2812
2813	return 0;
2814}
2815
2816int shmem_unuse(swp_entry_t swap, struct page *page)
2817{
2818	return 0;
2819}
2820
2821int shmem_lock(struct file *file, int lock, struct user_struct *user)
2822{
2823	return 0;
2824}
2825
2826void shmem_unlock_mapping(struct address_space *mapping)
2827{
2828}
2829
2830void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2831{
2832	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2833}
2834EXPORT_SYMBOL_GPL(shmem_truncate_range);
2835
2836#define shmem_vm_ops				generic_file_vm_ops
2837#define shmem_file_operations			ramfs_file_operations
2838#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2839#define shmem_acct_size(flags, size)		0
2840#define shmem_unacct_size(flags, size)		do {} while (0)
2841
2842#endif /* CONFIG_SHMEM */
2843
2844/* common code */
2845
2846static struct dentry_operations anon_ops = {
2847	.d_dname = simple_dname
2848};
2849
2850static struct file *__shmem_file_setup(const char *name, loff_t size,
2851				       unsigned long flags, unsigned int i_flags)
2852{
2853	struct file *res;
2854	struct inode *inode;
2855	struct path path;
2856	struct super_block *sb;
2857	struct qstr this;
2858
2859	if (IS_ERR(shm_mnt))
2860		return ERR_CAST(shm_mnt);
2861
2862	if (size < 0 || size > MAX_LFS_FILESIZE)
2863		return ERR_PTR(-EINVAL);
2864
2865	if (shmem_acct_size(flags, size))
2866		return ERR_PTR(-ENOMEM);
2867
2868	res = ERR_PTR(-ENOMEM);
2869	this.name = name;
2870	this.len = strlen(name);
2871	this.hash = 0; /* will go */
2872	sb = shm_mnt->mnt_sb;
2873	path.dentry = d_alloc_pseudo(sb, &this);
2874	if (!path.dentry)
2875		goto put_memory;
2876	d_set_d_op(path.dentry, &anon_ops);
2877	path.mnt = mntget(shm_mnt);
2878
2879	res = ERR_PTR(-ENOSPC);
2880	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2881	if (!inode)
2882		goto put_dentry;
2883
2884	inode->i_flags |= i_flags;
2885	d_instantiate(path.dentry, inode);
2886	inode->i_size = size;
2887	clear_nlink(inode);	/* It is unlinked */
2888	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2889	if (IS_ERR(res))
2890		goto put_dentry;
2891
2892	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2893		  &shmem_file_operations);
2894	if (IS_ERR(res))
2895		goto put_dentry;
2896
2897	return res;
2898
2899put_dentry:
2900	path_put(&path);
2901put_memory:
2902	shmem_unacct_size(flags, size);
2903	return res;
2904}
2905
2906/**
2907 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2908 * 	kernel internal.  There will be NO LSM permission checks against the
2909 * 	underlying inode.  So users of this interface must do LSM checks at a
2910 * 	higher layer.  The one user is the big_key implementation.  LSM checks
2911 * 	are provided at the key level rather than the inode level.
2912 * @name: name for dentry (to be seen in /proc/<pid>/maps
2913 * @size: size to be set for the file
2914 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2915 */
2916struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2917{
2918	return __shmem_file_setup(name, size, flags, S_PRIVATE);
2919}
2920
2921/**
2922 * shmem_file_setup - get an unlinked file living in tmpfs
2923 * @name: name for dentry (to be seen in /proc/<pid>/maps
2924 * @size: size to be set for the file
2925 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2926 */
2927struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2928{
2929	return __shmem_file_setup(name, size, flags, 0);
2930}
2931EXPORT_SYMBOL_GPL(shmem_file_setup);
2932
2933/**
2934 * shmem_zero_setup - setup a shared anonymous mapping
2935 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2936 */
2937int shmem_zero_setup(struct vm_area_struct *vma)
2938{
2939	struct file *file;
2940	loff_t size = vma->vm_end - vma->vm_start;
2941
2942	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2943	if (IS_ERR(file))
2944		return PTR_ERR(file);
2945
2946	if (vma->vm_file)
2947		fput(vma->vm_file);
2948	vma->vm_file = file;
2949	vma->vm_ops = &shmem_vm_ops;
2950	return 0;
2951}
2952
2953/**
2954 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2955 * @mapping:	the page's address_space
2956 * @index:	the page index
2957 * @gfp:	the page allocator flags to use if allocating
2958 *
2959 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2960 * with any new page allocations done using the specified allocation flags.
2961 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2962 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2963 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2964 *
2965 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2966 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2967 */
2968struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2969					 pgoff_t index, gfp_t gfp)
2970{
2971#ifdef CONFIG_SHMEM
2972	struct inode *inode = mapping->host;
2973	struct page *page;
2974	int error;
2975
2976	BUG_ON(mapping->a_ops != &shmem_aops);
2977	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2978	if (error)
2979		page = ERR_PTR(error);
2980	else
2981		unlock_page(page);
2982	return page;
2983#else
2984	/*
2985	 * The tiny !SHMEM case uses ramfs without swap
2986	 */
2987	return read_cache_page_gfp(mapping, index, gfp);
2988#endif
2989}
2990EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2991