shmem.c revision 0f3c42f522dc1ad7e27affc0a4aa8c790bce0a66
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/file.h>
30#include <linux/mm.h>
31#include <linux/export.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/pagevec.h>
55#include <linux/percpu_counter.h>
56#include <linux/falloc.h>
57#include <linux/splice.h>
58#include <linux/security.h>
59#include <linux/swapops.h>
60#include <linux/mempolicy.h>
61#include <linux/namei.h>
62#include <linux/ctype.h>
63#include <linux/migrate.h>
64#include <linux/highmem.h>
65#include <linux/seq_file.h>
66#include <linux/magic.h>
67
68#include <asm/uaccess.h>
69#include <asm/pgtable.h>
70
71#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74/* Pretend that each entry is of this size in directory's i_size */
75#define BOGO_DIRENT_SIZE 20
76
77/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78#define SHORT_SYMLINK_LEN 128
79
80/*
81 * shmem_fallocate and shmem_writepage communicate via inode->i_private
82 * (with i_mutex making sure that it has only one user at a time):
83 * we would prefer not to enlarge the shmem inode just for that.
84 */
85struct shmem_falloc {
86	pgoff_t start;		/* start of range currently being fallocated */
87	pgoff_t next;		/* the next page offset to be fallocated */
88	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
89	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
90};
91
92/* Flag allocation requirements to shmem_getpage */
93enum sgp_type {
94	SGP_READ,	/* don't exceed i_size, don't allocate page */
95	SGP_CACHE,	/* don't exceed i_size, may allocate page */
96	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
97	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
98	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
99};
100
101#ifdef CONFIG_TMPFS
102static unsigned long shmem_default_max_blocks(void)
103{
104	return totalram_pages / 2;
105}
106
107static unsigned long shmem_default_max_inodes(void)
108{
109	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110}
111#endif
112
113static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115				struct shmem_inode_info *info, pgoff_t index);
116static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
118
119static inline int shmem_getpage(struct inode *inode, pgoff_t index,
120	struct page **pagep, enum sgp_type sgp, int *fault_type)
121{
122	return shmem_getpage_gfp(inode, index, pagep, sgp,
123			mapping_gfp_mask(inode->i_mapping), fault_type);
124}
125
126static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
127{
128	return sb->s_fs_info;
129}
130
131/*
132 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133 * for shared memory and for shared anonymous (/dev/zero) mappings
134 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135 * consistent with the pre-accounting of private mappings ...
136 */
137static inline int shmem_acct_size(unsigned long flags, loff_t size)
138{
139	return (flags & VM_NORESERVE) ?
140		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
141}
142
143static inline void shmem_unacct_size(unsigned long flags, loff_t size)
144{
145	if (!(flags & VM_NORESERVE))
146		vm_unacct_memory(VM_ACCT(size));
147}
148
149/*
150 * ... whereas tmpfs objects are accounted incrementally as
151 * pages are allocated, in order to allow huge sparse files.
152 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
154 */
155static inline int shmem_acct_block(unsigned long flags)
156{
157	return (flags & VM_NORESERVE) ?
158		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
159}
160
161static inline void shmem_unacct_blocks(unsigned long flags, long pages)
162{
163	if (flags & VM_NORESERVE)
164		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
165}
166
167static const struct super_operations shmem_ops;
168static const struct address_space_operations shmem_aops;
169static const struct file_operations shmem_file_operations;
170static const struct inode_operations shmem_inode_operations;
171static const struct inode_operations shmem_dir_inode_operations;
172static const struct inode_operations shmem_special_inode_operations;
173static const struct vm_operations_struct shmem_vm_ops;
174
175static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
176	.ra_pages	= 0,	/* No readahead */
177	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
178};
179
180static LIST_HEAD(shmem_swaplist);
181static DEFINE_MUTEX(shmem_swaplist_mutex);
182
183static int shmem_reserve_inode(struct super_block *sb)
184{
185	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
186	if (sbinfo->max_inodes) {
187		spin_lock(&sbinfo->stat_lock);
188		if (!sbinfo->free_inodes) {
189			spin_unlock(&sbinfo->stat_lock);
190			return -ENOSPC;
191		}
192		sbinfo->free_inodes--;
193		spin_unlock(&sbinfo->stat_lock);
194	}
195	return 0;
196}
197
198static void shmem_free_inode(struct super_block *sb)
199{
200	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201	if (sbinfo->max_inodes) {
202		spin_lock(&sbinfo->stat_lock);
203		sbinfo->free_inodes++;
204		spin_unlock(&sbinfo->stat_lock);
205	}
206}
207
208/**
209 * shmem_recalc_inode - recalculate the block usage of an inode
210 * @inode: inode to recalc
211 *
212 * We have to calculate the free blocks since the mm can drop
213 * undirtied hole pages behind our back.
214 *
215 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
216 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
217 *
218 * It has to be called with the spinlock held.
219 */
220static void shmem_recalc_inode(struct inode *inode)
221{
222	struct shmem_inode_info *info = SHMEM_I(inode);
223	long freed;
224
225	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
226	if (freed > 0) {
227		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228		if (sbinfo->max_blocks)
229			percpu_counter_add(&sbinfo->used_blocks, -freed);
230		info->alloced -= freed;
231		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
232		shmem_unacct_blocks(info->flags, freed);
233	}
234}
235
236/*
237 * Replace item expected in radix tree by a new item, while holding tree lock.
238 */
239static int shmem_radix_tree_replace(struct address_space *mapping,
240			pgoff_t index, void *expected, void *replacement)
241{
242	void **pslot;
243	void *item = NULL;
244
245	VM_BUG_ON(!expected);
246	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
247	if (pslot)
248		item = radix_tree_deref_slot_protected(pslot,
249							&mapping->tree_lock);
250	if (item != expected)
251		return -ENOENT;
252	if (replacement)
253		radix_tree_replace_slot(pslot, replacement);
254	else
255		radix_tree_delete(&mapping->page_tree, index);
256	return 0;
257}
258
259/*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266static bool shmem_confirm_swap(struct address_space *mapping,
267			       pgoff_t index, swp_entry_t swap)
268{
269	void *item;
270
271	rcu_read_lock();
272	item = radix_tree_lookup(&mapping->page_tree, index);
273	rcu_read_unlock();
274	return item == swp_to_radix_entry(swap);
275}
276
277/*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280static int shmem_add_to_page_cache(struct page *page,
281				   struct address_space *mapping,
282				   pgoff_t index, gfp_t gfp, void *expected)
283{
284	int error;
285
286	VM_BUG_ON(!PageLocked(page));
287	VM_BUG_ON(!PageSwapBacked(page));
288
289	page_cache_get(page);
290	page->mapping = mapping;
291	page->index = index;
292
293	spin_lock_irq(&mapping->tree_lock);
294	if (!expected)
295		error = radix_tree_insert(&mapping->page_tree, index, page);
296	else
297		error = shmem_radix_tree_replace(mapping, index, expected,
298								 page);
299	if (!error) {
300		mapping->nrpages++;
301		__inc_zone_page_state(page, NR_FILE_PAGES);
302		__inc_zone_page_state(page, NR_SHMEM);
303		spin_unlock_irq(&mapping->tree_lock);
304	} else {
305		page->mapping = NULL;
306		spin_unlock_irq(&mapping->tree_lock);
307		page_cache_release(page);
308	}
309	return error;
310}
311
312/*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316{
317	struct address_space *mapping = page->mapping;
318	int error;
319
320	spin_lock_irq(&mapping->tree_lock);
321	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322	page->mapping = NULL;
323	mapping->nrpages--;
324	__dec_zone_page_state(page, NR_FILE_PAGES);
325	__dec_zone_page_state(page, NR_SHMEM);
326	spin_unlock_irq(&mapping->tree_lock);
327	page_cache_release(page);
328	BUG_ON(error);
329}
330
331/*
332 * Like find_get_pages, but collecting swap entries as well as pages.
333 */
334static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335					pgoff_t start, unsigned int nr_pages,
336					struct page **pages, pgoff_t *indices)
337{
338	unsigned int i;
339	unsigned int ret;
340	unsigned int nr_found;
341
342	rcu_read_lock();
343restart:
344	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
345				(void ***)pages, indices, start, nr_pages);
346	ret = 0;
347	for (i = 0; i < nr_found; i++) {
348		struct page *page;
349repeat:
350		page = radix_tree_deref_slot((void **)pages[i]);
351		if (unlikely(!page))
352			continue;
353		if (radix_tree_exception(page)) {
354			if (radix_tree_deref_retry(page))
355				goto restart;
356			/*
357			 * Otherwise, we must be storing a swap entry
358			 * here as an exceptional entry: so return it
359			 * without attempting to raise page count.
360			 */
361			goto export;
362		}
363		if (!page_cache_get_speculative(page))
364			goto repeat;
365
366		/* Has the page moved? */
367		if (unlikely(page != *((void **)pages[i]))) {
368			page_cache_release(page);
369			goto repeat;
370		}
371export:
372		indices[ret] = indices[i];
373		pages[ret] = page;
374		ret++;
375	}
376	if (unlikely(!ret && nr_found))
377		goto restart;
378	rcu_read_unlock();
379	return ret;
380}
381
382/*
383 * Remove swap entry from radix tree, free the swap and its page cache.
384 */
385static int shmem_free_swap(struct address_space *mapping,
386			   pgoff_t index, void *radswap)
387{
388	int error;
389
390	spin_lock_irq(&mapping->tree_lock);
391	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
392	spin_unlock_irq(&mapping->tree_lock);
393	if (!error)
394		free_swap_and_cache(radix_to_swp_entry(radswap));
395	return error;
396}
397
398/*
399 * Pagevec may contain swap entries, so shuffle up pages before releasing.
400 */
401static void shmem_deswap_pagevec(struct pagevec *pvec)
402{
403	int i, j;
404
405	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
406		struct page *page = pvec->pages[i];
407		if (!radix_tree_exceptional_entry(page))
408			pvec->pages[j++] = page;
409	}
410	pvec->nr = j;
411}
412
413/*
414 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
415 */
416void shmem_unlock_mapping(struct address_space *mapping)
417{
418	struct pagevec pvec;
419	pgoff_t indices[PAGEVEC_SIZE];
420	pgoff_t index = 0;
421
422	pagevec_init(&pvec, 0);
423	/*
424	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
425	 */
426	while (!mapping_unevictable(mapping)) {
427		/*
428		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
430		 */
431		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
432					PAGEVEC_SIZE, pvec.pages, indices);
433		if (!pvec.nr)
434			break;
435		index = indices[pvec.nr - 1] + 1;
436		shmem_deswap_pagevec(&pvec);
437		check_move_unevictable_pages(pvec.pages, pvec.nr);
438		pagevec_release(&pvec);
439		cond_resched();
440	}
441}
442
443/*
444 * Remove range of pages and swap entries from radix tree, and free them.
445 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
446 */
447static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448								 bool unfalloc)
449{
450	struct address_space *mapping = inode->i_mapping;
451	struct shmem_inode_info *info = SHMEM_I(inode);
452	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
453	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
454	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
455	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
456	struct pagevec pvec;
457	pgoff_t indices[PAGEVEC_SIZE];
458	long nr_swaps_freed = 0;
459	pgoff_t index;
460	int i;
461
462	if (lend == -1)
463		end = -1;	/* unsigned, so actually very big */
464
465	pagevec_init(&pvec, 0);
466	index = start;
467	while (index < end) {
468		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
469				min(end - index, (pgoff_t)PAGEVEC_SIZE),
470							pvec.pages, indices);
471		if (!pvec.nr)
472			break;
473		mem_cgroup_uncharge_start();
474		for (i = 0; i < pagevec_count(&pvec); i++) {
475			struct page *page = pvec.pages[i];
476
477			index = indices[i];
478			if (index >= end)
479				break;
480
481			if (radix_tree_exceptional_entry(page)) {
482				if (unfalloc)
483					continue;
484				nr_swaps_freed += !shmem_free_swap(mapping,
485								index, page);
486				continue;
487			}
488
489			if (!trylock_page(page))
490				continue;
491			if (!unfalloc || !PageUptodate(page)) {
492				if (page->mapping == mapping) {
493					VM_BUG_ON(PageWriteback(page));
494					truncate_inode_page(mapping, page);
495				}
496			}
497			unlock_page(page);
498		}
499		shmem_deswap_pagevec(&pvec);
500		pagevec_release(&pvec);
501		mem_cgroup_uncharge_end();
502		cond_resched();
503		index++;
504	}
505
506	if (partial_start) {
507		struct page *page = NULL;
508		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
509		if (page) {
510			unsigned int top = PAGE_CACHE_SIZE;
511			if (start > end) {
512				top = partial_end;
513				partial_end = 0;
514			}
515			zero_user_segment(page, partial_start, top);
516			set_page_dirty(page);
517			unlock_page(page);
518			page_cache_release(page);
519		}
520	}
521	if (partial_end) {
522		struct page *page = NULL;
523		shmem_getpage(inode, end, &page, SGP_READ, NULL);
524		if (page) {
525			zero_user_segment(page, 0, partial_end);
526			set_page_dirty(page);
527			unlock_page(page);
528			page_cache_release(page);
529		}
530	}
531	if (start >= end)
532		return;
533
534	index = start;
535	for ( ; ; ) {
536		cond_resched();
537		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
538				min(end - index, (pgoff_t)PAGEVEC_SIZE),
539							pvec.pages, indices);
540		if (!pvec.nr) {
541			if (index == start || unfalloc)
542				break;
543			index = start;
544			continue;
545		}
546		if ((index == start || unfalloc) && indices[0] >= end) {
547			shmem_deswap_pagevec(&pvec);
548			pagevec_release(&pvec);
549			break;
550		}
551		mem_cgroup_uncharge_start();
552		for (i = 0; i < pagevec_count(&pvec); i++) {
553			struct page *page = pvec.pages[i];
554
555			index = indices[i];
556			if (index >= end)
557				break;
558
559			if (radix_tree_exceptional_entry(page)) {
560				if (unfalloc)
561					continue;
562				nr_swaps_freed += !shmem_free_swap(mapping,
563								index, page);
564				continue;
565			}
566
567			lock_page(page);
568			if (!unfalloc || !PageUptodate(page)) {
569				if (page->mapping == mapping) {
570					VM_BUG_ON(PageWriteback(page));
571					truncate_inode_page(mapping, page);
572				}
573			}
574			unlock_page(page);
575		}
576		shmem_deswap_pagevec(&pvec);
577		pagevec_release(&pvec);
578		mem_cgroup_uncharge_end();
579		index++;
580	}
581
582	spin_lock(&info->lock);
583	info->swapped -= nr_swaps_freed;
584	shmem_recalc_inode(inode);
585	spin_unlock(&info->lock);
586}
587
588void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
589{
590	shmem_undo_range(inode, lstart, lend, false);
591	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
592}
593EXPORT_SYMBOL_GPL(shmem_truncate_range);
594
595static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
596{
597	struct inode *inode = dentry->d_inode;
598	int error;
599
600	error = inode_change_ok(inode, attr);
601	if (error)
602		return error;
603
604	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
605		loff_t oldsize = inode->i_size;
606		loff_t newsize = attr->ia_size;
607
608		if (newsize != oldsize) {
609			i_size_write(inode, newsize);
610			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
611		}
612		if (newsize < oldsize) {
613			loff_t holebegin = round_up(newsize, PAGE_SIZE);
614			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
615			shmem_truncate_range(inode, newsize, (loff_t)-1);
616			/* unmap again to remove racily COWed private pages */
617			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
618		}
619	}
620
621	setattr_copy(inode, attr);
622#ifdef CONFIG_TMPFS_POSIX_ACL
623	if (attr->ia_valid & ATTR_MODE)
624		error = generic_acl_chmod(inode);
625#endif
626	return error;
627}
628
629static void shmem_evict_inode(struct inode *inode)
630{
631	struct shmem_inode_info *info = SHMEM_I(inode);
632
633	if (inode->i_mapping->a_ops == &shmem_aops) {
634		shmem_unacct_size(info->flags, inode->i_size);
635		inode->i_size = 0;
636		shmem_truncate_range(inode, 0, (loff_t)-1);
637		if (!list_empty(&info->swaplist)) {
638			mutex_lock(&shmem_swaplist_mutex);
639			list_del_init(&info->swaplist);
640			mutex_unlock(&shmem_swaplist_mutex);
641		}
642	} else
643		kfree(info->symlink);
644
645	simple_xattrs_free(&info->xattrs);
646	WARN_ON(inode->i_blocks);
647	shmem_free_inode(inode->i_sb);
648	clear_inode(inode);
649}
650
651/*
652 * If swap found in inode, free it and move page from swapcache to filecache.
653 */
654static int shmem_unuse_inode(struct shmem_inode_info *info,
655			     swp_entry_t swap, struct page **pagep)
656{
657	struct address_space *mapping = info->vfs_inode.i_mapping;
658	void *radswap;
659	pgoff_t index;
660	gfp_t gfp;
661	int error = 0;
662
663	radswap = swp_to_radix_entry(swap);
664	index = radix_tree_locate_item(&mapping->page_tree, radswap);
665	if (index == -1)
666		return 0;
667
668	/*
669	 * Move _head_ to start search for next from here.
670	 * But be careful: shmem_evict_inode checks list_empty without taking
671	 * mutex, and there's an instant in list_move_tail when info->swaplist
672	 * would appear empty, if it were the only one on shmem_swaplist.
673	 */
674	if (shmem_swaplist.next != &info->swaplist)
675		list_move_tail(&shmem_swaplist, &info->swaplist);
676
677	gfp = mapping_gfp_mask(mapping);
678	if (shmem_should_replace_page(*pagep, gfp)) {
679		mutex_unlock(&shmem_swaplist_mutex);
680		error = shmem_replace_page(pagep, gfp, info, index);
681		mutex_lock(&shmem_swaplist_mutex);
682		/*
683		 * We needed to drop mutex to make that restrictive page
684		 * allocation, but the inode might have been freed while we
685		 * dropped it: although a racing shmem_evict_inode() cannot
686		 * complete without emptying the radix_tree, our page lock
687		 * on this swapcache page is not enough to prevent that -
688		 * free_swap_and_cache() of our swap entry will only
689		 * trylock_page(), removing swap from radix_tree whatever.
690		 *
691		 * We must not proceed to shmem_add_to_page_cache() if the
692		 * inode has been freed, but of course we cannot rely on
693		 * inode or mapping or info to check that.  However, we can
694		 * safely check if our swap entry is still in use (and here
695		 * it can't have got reused for another page): if it's still
696		 * in use, then the inode cannot have been freed yet, and we
697		 * can safely proceed (if it's no longer in use, that tells
698		 * nothing about the inode, but we don't need to unuse swap).
699		 */
700		if (!page_swapcount(*pagep))
701			error = -ENOENT;
702	}
703
704	/*
705	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
707	 * beneath us (pagelock doesn't help until the page is in pagecache).
708	 */
709	if (!error)
710		error = shmem_add_to_page_cache(*pagep, mapping, index,
711						GFP_NOWAIT, radswap);
712	if (error != -ENOMEM) {
713		/*
714		 * Truncation and eviction use free_swap_and_cache(), which
715		 * only does trylock page: if we raced, best clean up here.
716		 */
717		delete_from_swap_cache(*pagep);
718		set_page_dirty(*pagep);
719		if (!error) {
720			spin_lock(&info->lock);
721			info->swapped--;
722			spin_unlock(&info->lock);
723			swap_free(swap);
724		}
725		error = 1;	/* not an error, but entry was found */
726	}
727	return error;
728}
729
730/*
731 * Search through swapped inodes to find and replace swap by page.
732 */
733int shmem_unuse(swp_entry_t swap, struct page *page)
734{
735	struct list_head *this, *next;
736	struct shmem_inode_info *info;
737	int found = 0;
738	int error = 0;
739
740	/*
741	 * There's a faint possibility that swap page was replaced before
742	 * caller locked it: caller will come back later with the right page.
743	 */
744	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
745		goto out;
746
747	/*
748	 * Charge page using GFP_KERNEL while we can wait, before taking
749	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
750	 * Charged back to the user (not to caller) when swap account is used.
751	 */
752	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753	if (error)
754		goto out;
755	/* No radix_tree_preload: swap entry keeps a place for page in tree */
756
757	mutex_lock(&shmem_swaplist_mutex);
758	list_for_each_safe(this, next, &shmem_swaplist) {
759		info = list_entry(this, struct shmem_inode_info, swaplist);
760		if (info->swapped)
761			found = shmem_unuse_inode(info, swap, &page);
762		else
763			list_del_init(&info->swaplist);
764		cond_resched();
765		if (found)
766			break;
767	}
768	mutex_unlock(&shmem_swaplist_mutex);
769
770	if (found < 0)
771		error = found;
772out:
773	unlock_page(page);
774	page_cache_release(page);
775	return error;
776}
777
778/*
779 * Move the page from the page cache to the swap cache.
780 */
781static int shmem_writepage(struct page *page, struct writeback_control *wbc)
782{
783	struct shmem_inode_info *info;
784	struct address_space *mapping;
785	struct inode *inode;
786	swp_entry_t swap;
787	pgoff_t index;
788
789	BUG_ON(!PageLocked(page));
790	mapping = page->mapping;
791	index = page->index;
792	inode = mapping->host;
793	info = SHMEM_I(inode);
794	if (info->flags & VM_LOCKED)
795		goto redirty;
796	if (!total_swap_pages)
797		goto redirty;
798
799	/*
800	 * shmem_backing_dev_info's capabilities prevent regular writeback or
801	 * sync from ever calling shmem_writepage; but a stacking filesystem
802	 * might use ->writepage of its underlying filesystem, in which case
803	 * tmpfs should write out to swap only in response to memory pressure,
804	 * and not for the writeback threads or sync.
805	 */
806	if (!wbc->for_reclaim) {
807		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
808		goto redirty;
809	}
810
811	/*
812	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813	 * value into swapfile.c, the only way we can correctly account for a
814	 * fallocated page arriving here is now to initialize it and write it.
815	 *
816	 * That's okay for a page already fallocated earlier, but if we have
817	 * not yet completed the fallocation, then (a) we want to keep track
818	 * of this page in case we have to undo it, and (b) it may not be a
819	 * good idea to continue anyway, once we're pushing into swap.  So
820	 * reactivate the page, and let shmem_fallocate() quit when too many.
821	 */
822	if (!PageUptodate(page)) {
823		if (inode->i_private) {
824			struct shmem_falloc *shmem_falloc;
825			spin_lock(&inode->i_lock);
826			shmem_falloc = inode->i_private;
827			if (shmem_falloc &&
828			    index >= shmem_falloc->start &&
829			    index < shmem_falloc->next)
830				shmem_falloc->nr_unswapped++;
831			else
832				shmem_falloc = NULL;
833			spin_unlock(&inode->i_lock);
834			if (shmem_falloc)
835				goto redirty;
836		}
837		clear_highpage(page);
838		flush_dcache_page(page);
839		SetPageUptodate(page);
840	}
841
842	swap = get_swap_page();
843	if (!swap.val)
844		goto redirty;
845
846	/*
847	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
848	 * if it's not already there.  Do it now before the page is
849	 * moved to swap cache, when its pagelock no longer protects
850	 * the inode from eviction.  But don't unlock the mutex until
851	 * we've incremented swapped, because shmem_unuse_inode() will
852	 * prune a !swapped inode from the swaplist under this mutex.
853	 */
854	mutex_lock(&shmem_swaplist_mutex);
855	if (list_empty(&info->swaplist))
856		list_add_tail(&info->swaplist, &shmem_swaplist);
857
858	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
859		swap_shmem_alloc(swap);
860		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
861
862		spin_lock(&info->lock);
863		info->swapped++;
864		shmem_recalc_inode(inode);
865		spin_unlock(&info->lock);
866
867		mutex_unlock(&shmem_swaplist_mutex);
868		BUG_ON(page_mapped(page));
869		swap_writepage(page, wbc);
870		return 0;
871	}
872
873	mutex_unlock(&shmem_swaplist_mutex);
874	swapcache_free(swap, NULL);
875redirty:
876	set_page_dirty(page);
877	if (wbc->for_reclaim)
878		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
879	unlock_page(page);
880	return 0;
881}
882
883#ifdef CONFIG_NUMA
884#ifdef CONFIG_TMPFS
885static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
886{
887	char buffer[64];
888
889	if (!mpol || mpol->mode == MPOL_DEFAULT)
890		return;		/* show nothing */
891
892	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
893
894	seq_printf(seq, ",mpol=%s", buffer);
895}
896
897static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
898{
899	struct mempolicy *mpol = NULL;
900	if (sbinfo->mpol) {
901		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
902		mpol = sbinfo->mpol;
903		mpol_get(mpol);
904		spin_unlock(&sbinfo->stat_lock);
905	}
906	return mpol;
907}
908#endif /* CONFIG_TMPFS */
909
910static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
911			struct shmem_inode_info *info, pgoff_t index)
912{
913	struct mempolicy mpol, *spol;
914	struct vm_area_struct pvma;
915
916	spol = mpol_cond_copy(&mpol,
917			mpol_shared_policy_lookup(&info->policy, index));
918
919	/* Create a pseudo vma that just contains the policy */
920	pvma.vm_start = 0;
921	/* Bias interleave by inode number to distribute better across nodes */
922	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
923	pvma.vm_ops = NULL;
924	pvma.vm_policy = spol;
925	return swapin_readahead(swap, gfp, &pvma, 0);
926}
927
928static struct page *shmem_alloc_page(gfp_t gfp,
929			struct shmem_inode_info *info, pgoff_t index)
930{
931	struct vm_area_struct pvma;
932
933	/* Create a pseudo vma that just contains the policy */
934	pvma.vm_start = 0;
935	/* Bias interleave by inode number to distribute better across nodes */
936	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
937	pvma.vm_ops = NULL;
938	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
939
940	/*
941	 * alloc_page_vma() will drop the shared policy reference
942	 */
943	return alloc_page_vma(gfp, &pvma, 0);
944}
945#else /* !CONFIG_NUMA */
946#ifdef CONFIG_TMPFS
947static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
948{
949}
950#endif /* CONFIG_TMPFS */
951
952static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
953			struct shmem_inode_info *info, pgoff_t index)
954{
955	return swapin_readahead(swap, gfp, NULL, 0);
956}
957
958static inline struct page *shmem_alloc_page(gfp_t gfp,
959			struct shmem_inode_info *info, pgoff_t index)
960{
961	return alloc_page(gfp);
962}
963#endif /* CONFIG_NUMA */
964
965#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967{
968	return NULL;
969}
970#endif
971
972/*
973 * When a page is moved from swapcache to shmem filecache (either by the
974 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975 * shmem_unuse_inode()), it may have been read in earlier from swap, in
976 * ignorance of the mapping it belongs to.  If that mapping has special
977 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978 * we may need to copy to a suitable page before moving to filecache.
979 *
980 * In a future release, this may well be extended to respect cpuset and
981 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982 * but for now it is a simple matter of zone.
983 */
984static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
985{
986	return page_zonenum(page) > gfp_zone(gfp);
987}
988
989static int shmem_replace_page(struct page **pagep, gfp_t gfp,
990				struct shmem_inode_info *info, pgoff_t index)
991{
992	struct page *oldpage, *newpage;
993	struct address_space *swap_mapping;
994	pgoff_t swap_index;
995	int error;
996
997	oldpage = *pagep;
998	swap_index = page_private(oldpage);
999	swap_mapping = page_mapping(oldpage);
1000
1001	/*
1002	 * We have arrived here because our zones are constrained, so don't
1003	 * limit chance of success by further cpuset and node constraints.
1004	 */
1005	gfp &= ~GFP_CONSTRAINT_MASK;
1006	newpage = shmem_alloc_page(gfp, info, index);
1007	if (!newpage)
1008		return -ENOMEM;
1009
1010	page_cache_get(newpage);
1011	copy_highpage(newpage, oldpage);
1012	flush_dcache_page(newpage);
1013
1014	__set_page_locked(newpage);
1015	SetPageUptodate(newpage);
1016	SetPageSwapBacked(newpage);
1017	set_page_private(newpage, swap_index);
1018	SetPageSwapCache(newpage);
1019
1020	/*
1021	 * Our caller will very soon move newpage out of swapcache, but it's
1022	 * a nice clean interface for us to replace oldpage by newpage there.
1023	 */
1024	spin_lock_irq(&swap_mapping->tree_lock);
1025	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1026								   newpage);
1027	if (!error) {
1028		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1029		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1030	}
1031	spin_unlock_irq(&swap_mapping->tree_lock);
1032
1033	if (unlikely(error)) {
1034		/*
1035		 * Is this possible?  I think not, now that our callers check
1036		 * both PageSwapCache and page_private after getting page lock;
1037		 * but be defensive.  Reverse old to newpage for clear and free.
1038		 */
1039		oldpage = newpage;
1040	} else {
1041		mem_cgroup_replace_page_cache(oldpage, newpage);
1042		lru_cache_add_anon(newpage);
1043		*pagep = newpage;
1044	}
1045
1046	ClearPageSwapCache(oldpage);
1047	set_page_private(oldpage, 0);
1048
1049	unlock_page(oldpage);
1050	page_cache_release(oldpage);
1051	page_cache_release(oldpage);
1052	return error;
1053}
1054
1055/*
1056 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1057 *
1058 * If we allocate a new one we do not mark it dirty. That's up to the
1059 * vm. If we swap it in we mark it dirty since we also free the swap
1060 * entry since a page cannot live in both the swap and page cache
1061 */
1062static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1063	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1064{
1065	struct address_space *mapping = inode->i_mapping;
1066	struct shmem_inode_info *info;
1067	struct shmem_sb_info *sbinfo;
1068	struct page *page;
1069	swp_entry_t swap;
1070	int error;
1071	int once = 0;
1072	int alloced = 0;
1073
1074	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1075		return -EFBIG;
1076repeat:
1077	swap.val = 0;
1078	page = find_lock_page(mapping, index);
1079	if (radix_tree_exceptional_entry(page)) {
1080		swap = radix_to_swp_entry(page);
1081		page = NULL;
1082	}
1083
1084	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1085	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1086		error = -EINVAL;
1087		goto failed;
1088	}
1089
1090	/* fallocated page? */
1091	if (page && !PageUptodate(page)) {
1092		if (sgp != SGP_READ)
1093			goto clear;
1094		unlock_page(page);
1095		page_cache_release(page);
1096		page = NULL;
1097	}
1098	if (page || (sgp == SGP_READ && !swap.val)) {
1099		*pagep = page;
1100		return 0;
1101	}
1102
1103	/*
1104	 * Fast cache lookup did not find it:
1105	 * bring it back from swap or allocate.
1106	 */
1107	info = SHMEM_I(inode);
1108	sbinfo = SHMEM_SB(inode->i_sb);
1109
1110	if (swap.val) {
1111		/* Look it up and read it in.. */
1112		page = lookup_swap_cache(swap);
1113		if (!page) {
1114			/* here we actually do the io */
1115			if (fault_type)
1116				*fault_type |= VM_FAULT_MAJOR;
1117			page = shmem_swapin(swap, gfp, info, index);
1118			if (!page) {
1119				error = -ENOMEM;
1120				goto failed;
1121			}
1122		}
1123
1124		/* We have to do this with page locked to prevent races */
1125		lock_page(page);
1126		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1127		    !shmem_confirm_swap(mapping, index, swap)) {
1128			error = -EEXIST;	/* try again */
1129			goto unlock;
1130		}
1131		if (!PageUptodate(page)) {
1132			error = -EIO;
1133			goto failed;
1134		}
1135		wait_on_page_writeback(page);
1136
1137		if (shmem_should_replace_page(page, gfp)) {
1138			error = shmem_replace_page(&page, gfp, info, index);
1139			if (error)
1140				goto failed;
1141		}
1142
1143		error = mem_cgroup_cache_charge(page, current->mm,
1144						gfp & GFP_RECLAIM_MASK);
1145		if (!error) {
1146			error = shmem_add_to_page_cache(page, mapping, index,
1147						gfp, swp_to_radix_entry(swap));
1148			/*
1149			 * We already confirmed swap under page lock, and make
1150			 * no memory allocation here, so usually no possibility
1151			 * of error; but free_swap_and_cache() only trylocks a
1152			 * page, so it is just possible that the entry has been
1153			 * truncated or holepunched since swap was confirmed.
1154			 * shmem_undo_range() will have done some of the
1155			 * unaccounting, now delete_from_swap_cache() will do
1156			 * the rest (including mem_cgroup_uncharge_swapcache).
1157			 * Reset swap.val? No, leave it so "failed" goes back to
1158			 * "repeat": reading a hole and writing should succeed.
1159			 */
1160			if (error)
1161				delete_from_swap_cache(page);
1162		}
1163		if (error)
1164			goto failed;
1165
1166		spin_lock(&info->lock);
1167		info->swapped--;
1168		shmem_recalc_inode(inode);
1169		spin_unlock(&info->lock);
1170
1171		delete_from_swap_cache(page);
1172		set_page_dirty(page);
1173		swap_free(swap);
1174
1175	} else {
1176		if (shmem_acct_block(info->flags)) {
1177			error = -ENOSPC;
1178			goto failed;
1179		}
1180		if (sbinfo->max_blocks) {
1181			if (percpu_counter_compare(&sbinfo->used_blocks,
1182						sbinfo->max_blocks) >= 0) {
1183				error = -ENOSPC;
1184				goto unacct;
1185			}
1186			percpu_counter_inc(&sbinfo->used_blocks);
1187		}
1188
1189		page = shmem_alloc_page(gfp, info, index);
1190		if (!page) {
1191			error = -ENOMEM;
1192			goto decused;
1193		}
1194
1195		SetPageSwapBacked(page);
1196		__set_page_locked(page);
1197		error = mem_cgroup_cache_charge(page, current->mm,
1198						gfp & GFP_RECLAIM_MASK);
1199		if (error)
1200			goto decused;
1201		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1202		if (!error) {
1203			error = shmem_add_to_page_cache(page, mapping, index,
1204							gfp, NULL);
1205			radix_tree_preload_end();
1206		}
1207		if (error) {
1208			mem_cgroup_uncharge_cache_page(page);
1209			goto decused;
1210		}
1211		lru_cache_add_anon(page);
1212
1213		spin_lock(&info->lock);
1214		info->alloced++;
1215		inode->i_blocks += BLOCKS_PER_PAGE;
1216		shmem_recalc_inode(inode);
1217		spin_unlock(&info->lock);
1218		alloced = true;
1219
1220		/*
1221		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1222		 */
1223		if (sgp == SGP_FALLOC)
1224			sgp = SGP_WRITE;
1225clear:
1226		/*
1227		 * Let SGP_WRITE caller clear ends if write does not fill page;
1228		 * but SGP_FALLOC on a page fallocated earlier must initialize
1229		 * it now, lest undo on failure cancel our earlier guarantee.
1230		 */
1231		if (sgp != SGP_WRITE) {
1232			clear_highpage(page);
1233			flush_dcache_page(page);
1234			SetPageUptodate(page);
1235		}
1236		if (sgp == SGP_DIRTY)
1237			set_page_dirty(page);
1238	}
1239
1240	/* Perhaps the file has been truncated since we checked */
1241	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1242	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1243		error = -EINVAL;
1244		if (alloced)
1245			goto trunc;
1246		else
1247			goto failed;
1248	}
1249	*pagep = page;
1250	return 0;
1251
1252	/*
1253	 * Error recovery.
1254	 */
1255trunc:
1256	info = SHMEM_I(inode);
1257	ClearPageDirty(page);
1258	delete_from_page_cache(page);
1259	spin_lock(&info->lock);
1260	info->alloced--;
1261	inode->i_blocks -= BLOCKS_PER_PAGE;
1262	spin_unlock(&info->lock);
1263decused:
1264	sbinfo = SHMEM_SB(inode->i_sb);
1265	if (sbinfo->max_blocks)
1266		percpu_counter_add(&sbinfo->used_blocks, -1);
1267unacct:
1268	shmem_unacct_blocks(info->flags, 1);
1269failed:
1270	if (swap.val && error != -EINVAL &&
1271	    !shmem_confirm_swap(mapping, index, swap))
1272		error = -EEXIST;
1273unlock:
1274	if (page) {
1275		unlock_page(page);
1276		page_cache_release(page);
1277	}
1278	if (error == -ENOSPC && !once++) {
1279		info = SHMEM_I(inode);
1280		spin_lock(&info->lock);
1281		shmem_recalc_inode(inode);
1282		spin_unlock(&info->lock);
1283		goto repeat;
1284	}
1285	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1286		goto repeat;
1287	return error;
1288}
1289
1290static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1291{
1292	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1293	int error;
1294	int ret = VM_FAULT_LOCKED;
1295
1296	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1297	if (error)
1298		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1299
1300	if (ret & VM_FAULT_MAJOR) {
1301		count_vm_event(PGMAJFAULT);
1302		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1303	}
1304	return ret;
1305}
1306
1307#ifdef CONFIG_NUMA
1308static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1309{
1310	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1311	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1312}
1313
1314static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1315					  unsigned long addr)
1316{
1317	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1318	pgoff_t index;
1319
1320	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1321	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1322}
1323#endif
1324
1325int shmem_lock(struct file *file, int lock, struct user_struct *user)
1326{
1327	struct inode *inode = file->f_path.dentry->d_inode;
1328	struct shmem_inode_info *info = SHMEM_I(inode);
1329	int retval = -ENOMEM;
1330
1331	spin_lock(&info->lock);
1332	if (lock && !(info->flags & VM_LOCKED)) {
1333		if (!user_shm_lock(inode->i_size, user))
1334			goto out_nomem;
1335		info->flags |= VM_LOCKED;
1336		mapping_set_unevictable(file->f_mapping);
1337	}
1338	if (!lock && (info->flags & VM_LOCKED) && user) {
1339		user_shm_unlock(inode->i_size, user);
1340		info->flags &= ~VM_LOCKED;
1341		mapping_clear_unevictable(file->f_mapping);
1342	}
1343	retval = 0;
1344
1345out_nomem:
1346	spin_unlock(&info->lock);
1347	return retval;
1348}
1349
1350static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1351{
1352	file_accessed(file);
1353	vma->vm_ops = &shmem_vm_ops;
1354	return 0;
1355}
1356
1357static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1358				     umode_t mode, dev_t dev, unsigned long flags)
1359{
1360	struct inode *inode;
1361	struct shmem_inode_info *info;
1362	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1363
1364	if (shmem_reserve_inode(sb))
1365		return NULL;
1366
1367	inode = new_inode(sb);
1368	if (inode) {
1369		inode->i_ino = get_next_ino();
1370		inode_init_owner(inode, dir, mode);
1371		inode->i_blocks = 0;
1372		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1373		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1374		inode->i_generation = get_seconds();
1375		info = SHMEM_I(inode);
1376		memset(info, 0, (char *)inode - (char *)info);
1377		spin_lock_init(&info->lock);
1378		info->flags = flags & VM_NORESERVE;
1379		INIT_LIST_HEAD(&info->swaplist);
1380		simple_xattrs_init(&info->xattrs);
1381		cache_no_acl(inode);
1382
1383		switch (mode & S_IFMT) {
1384		default:
1385			inode->i_op = &shmem_special_inode_operations;
1386			init_special_inode(inode, mode, dev);
1387			break;
1388		case S_IFREG:
1389			inode->i_mapping->a_ops = &shmem_aops;
1390			inode->i_op = &shmem_inode_operations;
1391			inode->i_fop = &shmem_file_operations;
1392			mpol_shared_policy_init(&info->policy,
1393						 shmem_get_sbmpol(sbinfo));
1394			break;
1395		case S_IFDIR:
1396			inc_nlink(inode);
1397			/* Some things misbehave if size == 0 on a directory */
1398			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1399			inode->i_op = &shmem_dir_inode_operations;
1400			inode->i_fop = &simple_dir_operations;
1401			break;
1402		case S_IFLNK:
1403			/*
1404			 * Must not load anything in the rbtree,
1405			 * mpol_free_shared_policy will not be called.
1406			 */
1407			mpol_shared_policy_init(&info->policy, NULL);
1408			break;
1409		}
1410	} else
1411		shmem_free_inode(sb);
1412	return inode;
1413}
1414
1415#ifdef CONFIG_TMPFS
1416static const struct inode_operations shmem_symlink_inode_operations;
1417static const struct inode_operations shmem_short_symlink_operations;
1418
1419#ifdef CONFIG_TMPFS_XATTR
1420static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1421#else
1422#define shmem_initxattrs NULL
1423#endif
1424
1425static int
1426shmem_write_begin(struct file *file, struct address_space *mapping,
1427			loff_t pos, unsigned len, unsigned flags,
1428			struct page **pagep, void **fsdata)
1429{
1430	struct inode *inode = mapping->host;
1431	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1432	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1433}
1434
1435static int
1436shmem_write_end(struct file *file, struct address_space *mapping,
1437			loff_t pos, unsigned len, unsigned copied,
1438			struct page *page, void *fsdata)
1439{
1440	struct inode *inode = mapping->host;
1441
1442	if (pos + copied > inode->i_size)
1443		i_size_write(inode, pos + copied);
1444
1445	if (!PageUptodate(page)) {
1446		if (copied < PAGE_CACHE_SIZE) {
1447			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1448			zero_user_segments(page, 0, from,
1449					from + copied, PAGE_CACHE_SIZE);
1450		}
1451		SetPageUptodate(page);
1452	}
1453	set_page_dirty(page);
1454	unlock_page(page);
1455	page_cache_release(page);
1456
1457	return copied;
1458}
1459
1460static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1461{
1462	struct inode *inode = filp->f_path.dentry->d_inode;
1463	struct address_space *mapping = inode->i_mapping;
1464	pgoff_t index;
1465	unsigned long offset;
1466	enum sgp_type sgp = SGP_READ;
1467
1468	/*
1469	 * Might this read be for a stacking filesystem?  Then when reading
1470	 * holes of a sparse file, we actually need to allocate those pages,
1471	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1472	 */
1473	if (segment_eq(get_fs(), KERNEL_DS))
1474		sgp = SGP_DIRTY;
1475
1476	index = *ppos >> PAGE_CACHE_SHIFT;
1477	offset = *ppos & ~PAGE_CACHE_MASK;
1478
1479	for (;;) {
1480		struct page *page = NULL;
1481		pgoff_t end_index;
1482		unsigned long nr, ret;
1483		loff_t i_size = i_size_read(inode);
1484
1485		end_index = i_size >> PAGE_CACHE_SHIFT;
1486		if (index > end_index)
1487			break;
1488		if (index == end_index) {
1489			nr = i_size & ~PAGE_CACHE_MASK;
1490			if (nr <= offset)
1491				break;
1492		}
1493
1494		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1495		if (desc->error) {
1496			if (desc->error == -EINVAL)
1497				desc->error = 0;
1498			break;
1499		}
1500		if (page)
1501			unlock_page(page);
1502
1503		/*
1504		 * We must evaluate after, since reads (unlike writes)
1505		 * are called without i_mutex protection against truncate
1506		 */
1507		nr = PAGE_CACHE_SIZE;
1508		i_size = i_size_read(inode);
1509		end_index = i_size >> PAGE_CACHE_SHIFT;
1510		if (index == end_index) {
1511			nr = i_size & ~PAGE_CACHE_MASK;
1512			if (nr <= offset) {
1513				if (page)
1514					page_cache_release(page);
1515				break;
1516			}
1517		}
1518		nr -= offset;
1519
1520		if (page) {
1521			/*
1522			 * If users can be writing to this page using arbitrary
1523			 * virtual addresses, take care about potential aliasing
1524			 * before reading the page on the kernel side.
1525			 */
1526			if (mapping_writably_mapped(mapping))
1527				flush_dcache_page(page);
1528			/*
1529			 * Mark the page accessed if we read the beginning.
1530			 */
1531			if (!offset)
1532				mark_page_accessed(page);
1533		} else {
1534			page = ZERO_PAGE(0);
1535			page_cache_get(page);
1536		}
1537
1538		/*
1539		 * Ok, we have the page, and it's up-to-date, so
1540		 * now we can copy it to user space...
1541		 *
1542		 * The actor routine returns how many bytes were actually used..
1543		 * NOTE! This may not be the same as how much of a user buffer
1544		 * we filled up (we may be padding etc), so we can only update
1545		 * "pos" here (the actor routine has to update the user buffer
1546		 * pointers and the remaining count).
1547		 */
1548		ret = actor(desc, page, offset, nr);
1549		offset += ret;
1550		index += offset >> PAGE_CACHE_SHIFT;
1551		offset &= ~PAGE_CACHE_MASK;
1552
1553		page_cache_release(page);
1554		if (ret != nr || !desc->count)
1555			break;
1556
1557		cond_resched();
1558	}
1559
1560	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1561	file_accessed(filp);
1562}
1563
1564static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1565		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1566{
1567	struct file *filp = iocb->ki_filp;
1568	ssize_t retval;
1569	unsigned long seg;
1570	size_t count;
1571	loff_t *ppos = &iocb->ki_pos;
1572
1573	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1574	if (retval)
1575		return retval;
1576
1577	for (seg = 0; seg < nr_segs; seg++) {
1578		read_descriptor_t desc;
1579
1580		desc.written = 0;
1581		desc.arg.buf = iov[seg].iov_base;
1582		desc.count = iov[seg].iov_len;
1583		if (desc.count == 0)
1584			continue;
1585		desc.error = 0;
1586		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1587		retval += desc.written;
1588		if (desc.error) {
1589			retval = retval ?: desc.error;
1590			break;
1591		}
1592		if (desc.count > 0)
1593			break;
1594	}
1595	return retval;
1596}
1597
1598static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1599				struct pipe_inode_info *pipe, size_t len,
1600				unsigned int flags)
1601{
1602	struct address_space *mapping = in->f_mapping;
1603	struct inode *inode = mapping->host;
1604	unsigned int loff, nr_pages, req_pages;
1605	struct page *pages[PIPE_DEF_BUFFERS];
1606	struct partial_page partial[PIPE_DEF_BUFFERS];
1607	struct page *page;
1608	pgoff_t index, end_index;
1609	loff_t isize, left;
1610	int error, page_nr;
1611	struct splice_pipe_desc spd = {
1612		.pages = pages,
1613		.partial = partial,
1614		.nr_pages_max = PIPE_DEF_BUFFERS,
1615		.flags = flags,
1616		.ops = &page_cache_pipe_buf_ops,
1617		.spd_release = spd_release_page,
1618	};
1619
1620	isize = i_size_read(inode);
1621	if (unlikely(*ppos >= isize))
1622		return 0;
1623
1624	left = isize - *ppos;
1625	if (unlikely(left < len))
1626		len = left;
1627
1628	if (splice_grow_spd(pipe, &spd))
1629		return -ENOMEM;
1630
1631	index = *ppos >> PAGE_CACHE_SHIFT;
1632	loff = *ppos & ~PAGE_CACHE_MASK;
1633	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1634	nr_pages = min(req_pages, pipe->buffers);
1635
1636	spd.nr_pages = find_get_pages_contig(mapping, index,
1637						nr_pages, spd.pages);
1638	index += spd.nr_pages;
1639	error = 0;
1640
1641	while (spd.nr_pages < nr_pages) {
1642		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1643		if (error)
1644			break;
1645		unlock_page(page);
1646		spd.pages[spd.nr_pages++] = page;
1647		index++;
1648	}
1649
1650	index = *ppos >> PAGE_CACHE_SHIFT;
1651	nr_pages = spd.nr_pages;
1652	spd.nr_pages = 0;
1653
1654	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1655		unsigned int this_len;
1656
1657		if (!len)
1658			break;
1659
1660		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1661		page = spd.pages[page_nr];
1662
1663		if (!PageUptodate(page) || page->mapping != mapping) {
1664			error = shmem_getpage(inode, index, &page,
1665							SGP_CACHE, NULL);
1666			if (error)
1667				break;
1668			unlock_page(page);
1669			page_cache_release(spd.pages[page_nr]);
1670			spd.pages[page_nr] = page;
1671		}
1672
1673		isize = i_size_read(inode);
1674		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1675		if (unlikely(!isize || index > end_index))
1676			break;
1677
1678		if (end_index == index) {
1679			unsigned int plen;
1680
1681			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1682			if (plen <= loff)
1683				break;
1684
1685			this_len = min(this_len, plen - loff);
1686			len = this_len;
1687		}
1688
1689		spd.partial[page_nr].offset = loff;
1690		spd.partial[page_nr].len = this_len;
1691		len -= this_len;
1692		loff = 0;
1693		spd.nr_pages++;
1694		index++;
1695	}
1696
1697	while (page_nr < nr_pages)
1698		page_cache_release(spd.pages[page_nr++]);
1699
1700	if (spd.nr_pages)
1701		error = splice_to_pipe(pipe, &spd);
1702
1703	splice_shrink_spd(&spd);
1704
1705	if (error > 0) {
1706		*ppos += error;
1707		file_accessed(in);
1708	}
1709	return error;
1710}
1711
1712static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1713							 loff_t len)
1714{
1715	struct inode *inode = file->f_path.dentry->d_inode;
1716	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1717	struct shmem_falloc shmem_falloc;
1718	pgoff_t start, index, end;
1719	int error;
1720
1721	mutex_lock(&inode->i_mutex);
1722
1723	if (mode & FALLOC_FL_PUNCH_HOLE) {
1724		struct address_space *mapping = file->f_mapping;
1725		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1726		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1727
1728		if ((u64)unmap_end > (u64)unmap_start)
1729			unmap_mapping_range(mapping, unmap_start,
1730					    1 + unmap_end - unmap_start, 0);
1731		shmem_truncate_range(inode, offset, offset + len - 1);
1732		/* No need to unmap again: hole-punching leaves COWed pages */
1733		error = 0;
1734		goto out;
1735	}
1736
1737	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1738	error = inode_newsize_ok(inode, offset + len);
1739	if (error)
1740		goto out;
1741
1742	start = offset >> PAGE_CACHE_SHIFT;
1743	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1744	/* Try to avoid a swapstorm if len is impossible to satisfy */
1745	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1746		error = -ENOSPC;
1747		goto out;
1748	}
1749
1750	shmem_falloc.start = start;
1751	shmem_falloc.next  = start;
1752	shmem_falloc.nr_falloced = 0;
1753	shmem_falloc.nr_unswapped = 0;
1754	spin_lock(&inode->i_lock);
1755	inode->i_private = &shmem_falloc;
1756	spin_unlock(&inode->i_lock);
1757
1758	for (index = start; index < end; index++) {
1759		struct page *page;
1760
1761		/*
1762		 * Good, the fallocate(2) manpage permits EINTR: we may have
1763		 * been interrupted because we are using up too much memory.
1764		 */
1765		if (signal_pending(current))
1766			error = -EINTR;
1767		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1768			error = -ENOMEM;
1769		else
1770			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1771									NULL);
1772		if (error) {
1773			/* Remove the !PageUptodate pages we added */
1774			shmem_undo_range(inode,
1775				(loff_t)start << PAGE_CACHE_SHIFT,
1776				(loff_t)index << PAGE_CACHE_SHIFT, true);
1777			goto undone;
1778		}
1779
1780		/*
1781		 * Inform shmem_writepage() how far we have reached.
1782		 * No need for lock or barrier: we have the page lock.
1783		 */
1784		shmem_falloc.next++;
1785		if (!PageUptodate(page))
1786			shmem_falloc.nr_falloced++;
1787
1788		/*
1789		 * If !PageUptodate, leave it that way so that freeable pages
1790		 * can be recognized if we need to rollback on error later.
1791		 * But set_page_dirty so that memory pressure will swap rather
1792		 * than free the pages we are allocating (and SGP_CACHE pages
1793		 * might still be clean: we now need to mark those dirty too).
1794		 */
1795		set_page_dirty(page);
1796		unlock_page(page);
1797		page_cache_release(page);
1798		cond_resched();
1799	}
1800
1801	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1802		i_size_write(inode, offset + len);
1803	inode->i_ctime = CURRENT_TIME;
1804undone:
1805	spin_lock(&inode->i_lock);
1806	inode->i_private = NULL;
1807	spin_unlock(&inode->i_lock);
1808out:
1809	mutex_unlock(&inode->i_mutex);
1810	return error;
1811}
1812
1813static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1814{
1815	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1816
1817	buf->f_type = TMPFS_MAGIC;
1818	buf->f_bsize = PAGE_CACHE_SIZE;
1819	buf->f_namelen = NAME_MAX;
1820	if (sbinfo->max_blocks) {
1821		buf->f_blocks = sbinfo->max_blocks;
1822		buf->f_bavail =
1823		buf->f_bfree  = sbinfo->max_blocks -
1824				percpu_counter_sum(&sbinfo->used_blocks);
1825	}
1826	if (sbinfo->max_inodes) {
1827		buf->f_files = sbinfo->max_inodes;
1828		buf->f_ffree = sbinfo->free_inodes;
1829	}
1830	/* else leave those fields 0 like simple_statfs */
1831	return 0;
1832}
1833
1834/*
1835 * File creation. Allocate an inode, and we're done..
1836 */
1837static int
1838shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1839{
1840	struct inode *inode;
1841	int error = -ENOSPC;
1842
1843	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1844	if (inode) {
1845		error = security_inode_init_security(inode, dir,
1846						     &dentry->d_name,
1847						     shmem_initxattrs, NULL);
1848		if (error) {
1849			if (error != -EOPNOTSUPP) {
1850				iput(inode);
1851				return error;
1852			}
1853		}
1854#ifdef CONFIG_TMPFS_POSIX_ACL
1855		error = generic_acl_init(inode, dir);
1856		if (error) {
1857			iput(inode);
1858			return error;
1859		}
1860#else
1861		error = 0;
1862#endif
1863		dir->i_size += BOGO_DIRENT_SIZE;
1864		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1865		d_instantiate(dentry, inode);
1866		dget(dentry); /* Extra count - pin the dentry in core */
1867	}
1868	return error;
1869}
1870
1871static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1872{
1873	int error;
1874
1875	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1876		return error;
1877	inc_nlink(dir);
1878	return 0;
1879}
1880
1881static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1882		bool excl)
1883{
1884	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1885}
1886
1887/*
1888 * Link a file..
1889 */
1890static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1891{
1892	struct inode *inode = old_dentry->d_inode;
1893	int ret;
1894
1895	/*
1896	 * No ordinary (disk based) filesystem counts links as inodes;
1897	 * but each new link needs a new dentry, pinning lowmem, and
1898	 * tmpfs dentries cannot be pruned until they are unlinked.
1899	 */
1900	ret = shmem_reserve_inode(inode->i_sb);
1901	if (ret)
1902		goto out;
1903
1904	dir->i_size += BOGO_DIRENT_SIZE;
1905	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1906	inc_nlink(inode);
1907	ihold(inode);	/* New dentry reference */
1908	dget(dentry);		/* Extra pinning count for the created dentry */
1909	d_instantiate(dentry, inode);
1910out:
1911	return ret;
1912}
1913
1914static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1915{
1916	struct inode *inode = dentry->d_inode;
1917
1918	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1919		shmem_free_inode(inode->i_sb);
1920
1921	dir->i_size -= BOGO_DIRENT_SIZE;
1922	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1923	drop_nlink(inode);
1924	dput(dentry);	/* Undo the count from "create" - this does all the work */
1925	return 0;
1926}
1927
1928static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1929{
1930	if (!simple_empty(dentry))
1931		return -ENOTEMPTY;
1932
1933	drop_nlink(dentry->d_inode);
1934	drop_nlink(dir);
1935	return shmem_unlink(dir, dentry);
1936}
1937
1938/*
1939 * The VFS layer already does all the dentry stuff for rename,
1940 * we just have to decrement the usage count for the target if
1941 * it exists so that the VFS layer correctly free's it when it
1942 * gets overwritten.
1943 */
1944static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1945{
1946	struct inode *inode = old_dentry->d_inode;
1947	int they_are_dirs = S_ISDIR(inode->i_mode);
1948
1949	if (!simple_empty(new_dentry))
1950		return -ENOTEMPTY;
1951
1952	if (new_dentry->d_inode) {
1953		(void) shmem_unlink(new_dir, new_dentry);
1954		if (they_are_dirs)
1955			drop_nlink(old_dir);
1956	} else if (they_are_dirs) {
1957		drop_nlink(old_dir);
1958		inc_nlink(new_dir);
1959	}
1960
1961	old_dir->i_size -= BOGO_DIRENT_SIZE;
1962	new_dir->i_size += BOGO_DIRENT_SIZE;
1963	old_dir->i_ctime = old_dir->i_mtime =
1964	new_dir->i_ctime = new_dir->i_mtime =
1965	inode->i_ctime = CURRENT_TIME;
1966	return 0;
1967}
1968
1969static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1970{
1971	int error;
1972	int len;
1973	struct inode *inode;
1974	struct page *page;
1975	char *kaddr;
1976	struct shmem_inode_info *info;
1977
1978	len = strlen(symname) + 1;
1979	if (len > PAGE_CACHE_SIZE)
1980		return -ENAMETOOLONG;
1981
1982	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1983	if (!inode)
1984		return -ENOSPC;
1985
1986	error = security_inode_init_security(inode, dir, &dentry->d_name,
1987					     shmem_initxattrs, NULL);
1988	if (error) {
1989		if (error != -EOPNOTSUPP) {
1990			iput(inode);
1991			return error;
1992		}
1993		error = 0;
1994	}
1995
1996	info = SHMEM_I(inode);
1997	inode->i_size = len-1;
1998	if (len <= SHORT_SYMLINK_LEN) {
1999		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2000		if (!info->symlink) {
2001			iput(inode);
2002			return -ENOMEM;
2003		}
2004		inode->i_op = &shmem_short_symlink_operations;
2005	} else {
2006		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2007		if (error) {
2008			iput(inode);
2009			return error;
2010		}
2011		inode->i_mapping->a_ops = &shmem_aops;
2012		inode->i_op = &shmem_symlink_inode_operations;
2013		kaddr = kmap_atomic(page);
2014		memcpy(kaddr, symname, len);
2015		kunmap_atomic(kaddr);
2016		SetPageUptodate(page);
2017		set_page_dirty(page);
2018		unlock_page(page);
2019		page_cache_release(page);
2020	}
2021	dir->i_size += BOGO_DIRENT_SIZE;
2022	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2023	d_instantiate(dentry, inode);
2024	dget(dentry);
2025	return 0;
2026}
2027
2028static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2029{
2030	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2031	return NULL;
2032}
2033
2034static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2035{
2036	struct page *page = NULL;
2037	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2038	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2039	if (page)
2040		unlock_page(page);
2041	return page;
2042}
2043
2044static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2045{
2046	if (!IS_ERR(nd_get_link(nd))) {
2047		struct page *page = cookie;
2048		kunmap(page);
2049		mark_page_accessed(page);
2050		page_cache_release(page);
2051	}
2052}
2053
2054#ifdef CONFIG_TMPFS_XATTR
2055/*
2056 * Superblocks without xattr inode operations may get some security.* xattr
2057 * support from the LSM "for free". As soon as we have any other xattrs
2058 * like ACLs, we also need to implement the security.* handlers at
2059 * filesystem level, though.
2060 */
2061
2062/*
2063 * Callback for security_inode_init_security() for acquiring xattrs.
2064 */
2065static int shmem_initxattrs(struct inode *inode,
2066			    const struct xattr *xattr_array,
2067			    void *fs_info)
2068{
2069	struct shmem_inode_info *info = SHMEM_I(inode);
2070	const struct xattr *xattr;
2071	struct simple_xattr *new_xattr;
2072	size_t len;
2073
2074	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2075		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2076		if (!new_xattr)
2077			return -ENOMEM;
2078
2079		len = strlen(xattr->name) + 1;
2080		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2081					  GFP_KERNEL);
2082		if (!new_xattr->name) {
2083			kfree(new_xattr);
2084			return -ENOMEM;
2085		}
2086
2087		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2088		       XATTR_SECURITY_PREFIX_LEN);
2089		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2090		       xattr->name, len);
2091
2092		simple_xattr_list_add(&info->xattrs, new_xattr);
2093	}
2094
2095	return 0;
2096}
2097
2098static const struct xattr_handler *shmem_xattr_handlers[] = {
2099#ifdef CONFIG_TMPFS_POSIX_ACL
2100	&generic_acl_access_handler,
2101	&generic_acl_default_handler,
2102#endif
2103	NULL
2104};
2105
2106static int shmem_xattr_validate(const char *name)
2107{
2108	struct { const char *prefix; size_t len; } arr[] = {
2109		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2110		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2111	};
2112	int i;
2113
2114	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2115		size_t preflen = arr[i].len;
2116		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2117			if (!name[preflen])
2118				return -EINVAL;
2119			return 0;
2120		}
2121	}
2122	return -EOPNOTSUPP;
2123}
2124
2125static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2126			      void *buffer, size_t size)
2127{
2128	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2129	int err;
2130
2131	/*
2132	 * If this is a request for a synthetic attribute in the system.*
2133	 * namespace use the generic infrastructure to resolve a handler
2134	 * for it via sb->s_xattr.
2135	 */
2136	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2137		return generic_getxattr(dentry, name, buffer, size);
2138
2139	err = shmem_xattr_validate(name);
2140	if (err)
2141		return err;
2142
2143	return simple_xattr_get(&info->xattrs, name, buffer, size);
2144}
2145
2146static int shmem_setxattr(struct dentry *dentry, const char *name,
2147			  const void *value, size_t size, int flags)
2148{
2149	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2150	int err;
2151
2152	/*
2153	 * If this is a request for a synthetic attribute in the system.*
2154	 * namespace use the generic infrastructure to resolve a handler
2155	 * for it via sb->s_xattr.
2156	 */
2157	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2158		return generic_setxattr(dentry, name, value, size, flags);
2159
2160	err = shmem_xattr_validate(name);
2161	if (err)
2162		return err;
2163
2164	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2165}
2166
2167static int shmem_removexattr(struct dentry *dentry, const char *name)
2168{
2169	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2170	int err;
2171
2172	/*
2173	 * If this is a request for a synthetic attribute in the system.*
2174	 * namespace use the generic infrastructure to resolve a handler
2175	 * for it via sb->s_xattr.
2176	 */
2177	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2178		return generic_removexattr(dentry, name);
2179
2180	err = shmem_xattr_validate(name);
2181	if (err)
2182		return err;
2183
2184	return simple_xattr_remove(&info->xattrs, name);
2185}
2186
2187static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2188{
2189	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2190	return simple_xattr_list(&info->xattrs, buffer, size);
2191}
2192#endif /* CONFIG_TMPFS_XATTR */
2193
2194static const struct inode_operations shmem_short_symlink_operations = {
2195	.readlink	= generic_readlink,
2196	.follow_link	= shmem_follow_short_symlink,
2197#ifdef CONFIG_TMPFS_XATTR
2198	.setxattr	= shmem_setxattr,
2199	.getxattr	= shmem_getxattr,
2200	.listxattr	= shmem_listxattr,
2201	.removexattr	= shmem_removexattr,
2202#endif
2203};
2204
2205static const struct inode_operations shmem_symlink_inode_operations = {
2206	.readlink	= generic_readlink,
2207	.follow_link	= shmem_follow_link,
2208	.put_link	= shmem_put_link,
2209#ifdef CONFIG_TMPFS_XATTR
2210	.setxattr	= shmem_setxattr,
2211	.getxattr	= shmem_getxattr,
2212	.listxattr	= shmem_listxattr,
2213	.removexattr	= shmem_removexattr,
2214#endif
2215};
2216
2217static struct dentry *shmem_get_parent(struct dentry *child)
2218{
2219	return ERR_PTR(-ESTALE);
2220}
2221
2222static int shmem_match(struct inode *ino, void *vfh)
2223{
2224	__u32 *fh = vfh;
2225	__u64 inum = fh[2];
2226	inum = (inum << 32) | fh[1];
2227	return ino->i_ino == inum && fh[0] == ino->i_generation;
2228}
2229
2230static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2231		struct fid *fid, int fh_len, int fh_type)
2232{
2233	struct inode *inode;
2234	struct dentry *dentry = NULL;
2235	u64 inum;
2236
2237	if (fh_len < 3)
2238		return NULL;
2239
2240	inum = fid->raw[2];
2241	inum = (inum << 32) | fid->raw[1];
2242
2243	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2244			shmem_match, fid->raw);
2245	if (inode) {
2246		dentry = d_find_alias(inode);
2247		iput(inode);
2248	}
2249
2250	return dentry;
2251}
2252
2253static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2254				struct inode *parent)
2255{
2256	if (*len < 3) {
2257		*len = 3;
2258		return 255;
2259	}
2260
2261	if (inode_unhashed(inode)) {
2262		/* Unfortunately insert_inode_hash is not idempotent,
2263		 * so as we hash inodes here rather than at creation
2264		 * time, we need a lock to ensure we only try
2265		 * to do it once
2266		 */
2267		static DEFINE_SPINLOCK(lock);
2268		spin_lock(&lock);
2269		if (inode_unhashed(inode))
2270			__insert_inode_hash(inode,
2271					    inode->i_ino + inode->i_generation);
2272		spin_unlock(&lock);
2273	}
2274
2275	fh[0] = inode->i_generation;
2276	fh[1] = inode->i_ino;
2277	fh[2] = ((__u64)inode->i_ino) >> 32;
2278
2279	*len = 3;
2280	return 1;
2281}
2282
2283static const struct export_operations shmem_export_ops = {
2284	.get_parent     = shmem_get_parent,
2285	.encode_fh      = shmem_encode_fh,
2286	.fh_to_dentry	= shmem_fh_to_dentry,
2287};
2288
2289static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2290			       bool remount)
2291{
2292	char *this_char, *value, *rest;
2293	uid_t uid;
2294	gid_t gid;
2295
2296	while (options != NULL) {
2297		this_char = options;
2298		for (;;) {
2299			/*
2300			 * NUL-terminate this option: unfortunately,
2301			 * mount options form a comma-separated list,
2302			 * but mpol's nodelist may also contain commas.
2303			 */
2304			options = strchr(options, ',');
2305			if (options == NULL)
2306				break;
2307			options++;
2308			if (!isdigit(*options)) {
2309				options[-1] = '\0';
2310				break;
2311			}
2312		}
2313		if (!*this_char)
2314			continue;
2315		if ((value = strchr(this_char,'=')) != NULL) {
2316			*value++ = 0;
2317		} else {
2318			printk(KERN_ERR
2319			    "tmpfs: No value for mount option '%s'\n",
2320			    this_char);
2321			return 1;
2322		}
2323
2324		if (!strcmp(this_char,"size")) {
2325			unsigned long long size;
2326			size = memparse(value,&rest);
2327			if (*rest == '%') {
2328				size <<= PAGE_SHIFT;
2329				size *= totalram_pages;
2330				do_div(size, 100);
2331				rest++;
2332			}
2333			if (*rest)
2334				goto bad_val;
2335			sbinfo->max_blocks =
2336				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2337		} else if (!strcmp(this_char,"nr_blocks")) {
2338			sbinfo->max_blocks = memparse(value, &rest);
2339			if (*rest)
2340				goto bad_val;
2341		} else if (!strcmp(this_char,"nr_inodes")) {
2342			sbinfo->max_inodes = memparse(value, &rest);
2343			if (*rest)
2344				goto bad_val;
2345		} else if (!strcmp(this_char,"mode")) {
2346			if (remount)
2347				continue;
2348			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2349			if (*rest)
2350				goto bad_val;
2351		} else if (!strcmp(this_char,"uid")) {
2352			if (remount)
2353				continue;
2354			uid = simple_strtoul(value, &rest, 0);
2355			if (*rest)
2356				goto bad_val;
2357			sbinfo->uid = make_kuid(current_user_ns(), uid);
2358			if (!uid_valid(sbinfo->uid))
2359				goto bad_val;
2360		} else if (!strcmp(this_char,"gid")) {
2361			if (remount)
2362				continue;
2363			gid = simple_strtoul(value, &rest, 0);
2364			if (*rest)
2365				goto bad_val;
2366			sbinfo->gid = make_kgid(current_user_ns(), gid);
2367			if (!gid_valid(sbinfo->gid))
2368				goto bad_val;
2369		} else if (!strcmp(this_char,"mpol")) {
2370			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2371				goto bad_val;
2372		} else {
2373			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2374			       this_char);
2375			return 1;
2376		}
2377	}
2378	return 0;
2379
2380bad_val:
2381	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2382	       value, this_char);
2383	return 1;
2384
2385}
2386
2387static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2388{
2389	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2390	struct shmem_sb_info config = *sbinfo;
2391	unsigned long inodes;
2392	int error = -EINVAL;
2393
2394	if (shmem_parse_options(data, &config, true))
2395		return error;
2396
2397	spin_lock(&sbinfo->stat_lock);
2398	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2399	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2400		goto out;
2401	if (config.max_inodes < inodes)
2402		goto out;
2403	/*
2404	 * Those tests disallow limited->unlimited while any are in use;
2405	 * but we must separately disallow unlimited->limited, because
2406	 * in that case we have no record of how much is already in use.
2407	 */
2408	if (config.max_blocks && !sbinfo->max_blocks)
2409		goto out;
2410	if (config.max_inodes && !sbinfo->max_inodes)
2411		goto out;
2412
2413	error = 0;
2414	sbinfo->max_blocks  = config.max_blocks;
2415	sbinfo->max_inodes  = config.max_inodes;
2416	sbinfo->free_inodes = config.max_inodes - inodes;
2417
2418	mpol_put(sbinfo->mpol);
2419	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2420out:
2421	spin_unlock(&sbinfo->stat_lock);
2422	return error;
2423}
2424
2425static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2426{
2427	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2428
2429	if (sbinfo->max_blocks != shmem_default_max_blocks())
2430		seq_printf(seq, ",size=%luk",
2431			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2432	if (sbinfo->max_inodes != shmem_default_max_inodes())
2433		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2434	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2435		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2436	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2437		seq_printf(seq, ",uid=%u",
2438				from_kuid_munged(&init_user_ns, sbinfo->uid));
2439	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2440		seq_printf(seq, ",gid=%u",
2441				from_kgid_munged(&init_user_ns, sbinfo->gid));
2442	shmem_show_mpol(seq, sbinfo->mpol);
2443	return 0;
2444}
2445#endif /* CONFIG_TMPFS */
2446
2447static void shmem_put_super(struct super_block *sb)
2448{
2449	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2450
2451	percpu_counter_destroy(&sbinfo->used_blocks);
2452	kfree(sbinfo);
2453	sb->s_fs_info = NULL;
2454}
2455
2456int shmem_fill_super(struct super_block *sb, void *data, int silent)
2457{
2458	struct inode *inode;
2459	struct shmem_sb_info *sbinfo;
2460	int err = -ENOMEM;
2461
2462	/* Round up to L1_CACHE_BYTES to resist false sharing */
2463	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2464				L1_CACHE_BYTES), GFP_KERNEL);
2465	if (!sbinfo)
2466		return -ENOMEM;
2467
2468	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2469	sbinfo->uid = current_fsuid();
2470	sbinfo->gid = current_fsgid();
2471	sb->s_fs_info = sbinfo;
2472
2473#ifdef CONFIG_TMPFS
2474	/*
2475	 * Per default we only allow half of the physical ram per
2476	 * tmpfs instance, limiting inodes to one per page of lowmem;
2477	 * but the internal instance is left unlimited.
2478	 */
2479	if (!(sb->s_flags & MS_NOUSER)) {
2480		sbinfo->max_blocks = shmem_default_max_blocks();
2481		sbinfo->max_inodes = shmem_default_max_inodes();
2482		if (shmem_parse_options(data, sbinfo, false)) {
2483			err = -EINVAL;
2484			goto failed;
2485		}
2486	}
2487	sb->s_export_op = &shmem_export_ops;
2488	sb->s_flags |= MS_NOSEC;
2489#else
2490	sb->s_flags |= MS_NOUSER;
2491#endif
2492
2493	spin_lock_init(&sbinfo->stat_lock);
2494	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2495		goto failed;
2496	sbinfo->free_inodes = sbinfo->max_inodes;
2497
2498	sb->s_maxbytes = MAX_LFS_FILESIZE;
2499	sb->s_blocksize = PAGE_CACHE_SIZE;
2500	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2501	sb->s_magic = TMPFS_MAGIC;
2502	sb->s_op = &shmem_ops;
2503	sb->s_time_gran = 1;
2504#ifdef CONFIG_TMPFS_XATTR
2505	sb->s_xattr = shmem_xattr_handlers;
2506#endif
2507#ifdef CONFIG_TMPFS_POSIX_ACL
2508	sb->s_flags |= MS_POSIXACL;
2509#endif
2510
2511	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2512	if (!inode)
2513		goto failed;
2514	inode->i_uid = sbinfo->uid;
2515	inode->i_gid = sbinfo->gid;
2516	sb->s_root = d_make_root(inode);
2517	if (!sb->s_root)
2518		goto failed;
2519	return 0;
2520
2521failed:
2522	shmem_put_super(sb);
2523	return err;
2524}
2525
2526static struct kmem_cache *shmem_inode_cachep;
2527
2528static struct inode *shmem_alloc_inode(struct super_block *sb)
2529{
2530	struct shmem_inode_info *info;
2531	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2532	if (!info)
2533		return NULL;
2534	return &info->vfs_inode;
2535}
2536
2537static void shmem_destroy_callback(struct rcu_head *head)
2538{
2539	struct inode *inode = container_of(head, struct inode, i_rcu);
2540	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2541}
2542
2543static void shmem_destroy_inode(struct inode *inode)
2544{
2545	if (S_ISREG(inode->i_mode))
2546		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2547	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2548}
2549
2550static void shmem_init_inode(void *foo)
2551{
2552	struct shmem_inode_info *info = foo;
2553	inode_init_once(&info->vfs_inode);
2554}
2555
2556static int shmem_init_inodecache(void)
2557{
2558	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2559				sizeof(struct shmem_inode_info),
2560				0, SLAB_PANIC, shmem_init_inode);
2561	return 0;
2562}
2563
2564static void shmem_destroy_inodecache(void)
2565{
2566	kmem_cache_destroy(shmem_inode_cachep);
2567}
2568
2569static const struct address_space_operations shmem_aops = {
2570	.writepage	= shmem_writepage,
2571	.set_page_dirty	= __set_page_dirty_no_writeback,
2572#ifdef CONFIG_TMPFS
2573	.write_begin	= shmem_write_begin,
2574	.write_end	= shmem_write_end,
2575#endif
2576	.migratepage	= migrate_page,
2577	.error_remove_page = generic_error_remove_page,
2578};
2579
2580static const struct file_operations shmem_file_operations = {
2581	.mmap		= shmem_mmap,
2582#ifdef CONFIG_TMPFS
2583	.llseek		= generic_file_llseek,
2584	.read		= do_sync_read,
2585	.write		= do_sync_write,
2586	.aio_read	= shmem_file_aio_read,
2587	.aio_write	= generic_file_aio_write,
2588	.fsync		= noop_fsync,
2589	.splice_read	= shmem_file_splice_read,
2590	.splice_write	= generic_file_splice_write,
2591	.fallocate	= shmem_fallocate,
2592#endif
2593};
2594
2595static const struct inode_operations shmem_inode_operations = {
2596	.setattr	= shmem_setattr,
2597#ifdef CONFIG_TMPFS_XATTR
2598	.setxattr	= shmem_setxattr,
2599	.getxattr	= shmem_getxattr,
2600	.listxattr	= shmem_listxattr,
2601	.removexattr	= shmem_removexattr,
2602#endif
2603};
2604
2605static const struct inode_operations shmem_dir_inode_operations = {
2606#ifdef CONFIG_TMPFS
2607	.create		= shmem_create,
2608	.lookup		= simple_lookup,
2609	.link		= shmem_link,
2610	.unlink		= shmem_unlink,
2611	.symlink	= shmem_symlink,
2612	.mkdir		= shmem_mkdir,
2613	.rmdir		= shmem_rmdir,
2614	.mknod		= shmem_mknod,
2615	.rename		= shmem_rename,
2616#endif
2617#ifdef CONFIG_TMPFS_XATTR
2618	.setxattr	= shmem_setxattr,
2619	.getxattr	= shmem_getxattr,
2620	.listxattr	= shmem_listxattr,
2621	.removexattr	= shmem_removexattr,
2622#endif
2623#ifdef CONFIG_TMPFS_POSIX_ACL
2624	.setattr	= shmem_setattr,
2625#endif
2626};
2627
2628static const struct inode_operations shmem_special_inode_operations = {
2629#ifdef CONFIG_TMPFS_XATTR
2630	.setxattr	= shmem_setxattr,
2631	.getxattr	= shmem_getxattr,
2632	.listxattr	= shmem_listxattr,
2633	.removexattr	= shmem_removexattr,
2634#endif
2635#ifdef CONFIG_TMPFS_POSIX_ACL
2636	.setattr	= shmem_setattr,
2637#endif
2638};
2639
2640static const struct super_operations shmem_ops = {
2641	.alloc_inode	= shmem_alloc_inode,
2642	.destroy_inode	= shmem_destroy_inode,
2643#ifdef CONFIG_TMPFS
2644	.statfs		= shmem_statfs,
2645	.remount_fs	= shmem_remount_fs,
2646	.show_options	= shmem_show_options,
2647#endif
2648	.evict_inode	= shmem_evict_inode,
2649	.drop_inode	= generic_delete_inode,
2650	.put_super	= shmem_put_super,
2651};
2652
2653static const struct vm_operations_struct shmem_vm_ops = {
2654	.fault		= shmem_fault,
2655#ifdef CONFIG_NUMA
2656	.set_policy     = shmem_set_policy,
2657	.get_policy     = shmem_get_policy,
2658#endif
2659	.remap_pages	= generic_file_remap_pages,
2660};
2661
2662static struct dentry *shmem_mount(struct file_system_type *fs_type,
2663	int flags, const char *dev_name, void *data)
2664{
2665	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2666}
2667
2668static struct file_system_type shmem_fs_type = {
2669	.owner		= THIS_MODULE,
2670	.name		= "tmpfs",
2671	.mount		= shmem_mount,
2672	.kill_sb	= kill_litter_super,
2673};
2674
2675int __init shmem_init(void)
2676{
2677	int error;
2678
2679	error = bdi_init(&shmem_backing_dev_info);
2680	if (error)
2681		goto out4;
2682
2683	error = shmem_init_inodecache();
2684	if (error)
2685		goto out3;
2686
2687	error = register_filesystem(&shmem_fs_type);
2688	if (error) {
2689		printk(KERN_ERR "Could not register tmpfs\n");
2690		goto out2;
2691	}
2692
2693	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2694				 shmem_fs_type.name, NULL);
2695	if (IS_ERR(shm_mnt)) {
2696		error = PTR_ERR(shm_mnt);
2697		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2698		goto out1;
2699	}
2700	return 0;
2701
2702out1:
2703	unregister_filesystem(&shmem_fs_type);
2704out2:
2705	shmem_destroy_inodecache();
2706out3:
2707	bdi_destroy(&shmem_backing_dev_info);
2708out4:
2709	shm_mnt = ERR_PTR(error);
2710	return error;
2711}
2712
2713#else /* !CONFIG_SHMEM */
2714
2715/*
2716 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2717 *
2718 * This is intended for small system where the benefits of the full
2719 * shmem code (swap-backed and resource-limited) are outweighed by
2720 * their complexity. On systems without swap this code should be
2721 * effectively equivalent, but much lighter weight.
2722 */
2723
2724#include <linux/ramfs.h>
2725
2726static struct file_system_type shmem_fs_type = {
2727	.name		= "tmpfs",
2728	.mount		= ramfs_mount,
2729	.kill_sb	= kill_litter_super,
2730};
2731
2732int __init shmem_init(void)
2733{
2734	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2735
2736	shm_mnt = kern_mount(&shmem_fs_type);
2737	BUG_ON(IS_ERR(shm_mnt));
2738
2739	return 0;
2740}
2741
2742int shmem_unuse(swp_entry_t swap, struct page *page)
2743{
2744	return 0;
2745}
2746
2747int shmem_lock(struct file *file, int lock, struct user_struct *user)
2748{
2749	return 0;
2750}
2751
2752void shmem_unlock_mapping(struct address_space *mapping)
2753{
2754}
2755
2756void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2757{
2758	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2759}
2760EXPORT_SYMBOL_GPL(shmem_truncate_range);
2761
2762#define shmem_vm_ops				generic_file_vm_ops
2763#define shmem_file_operations			ramfs_file_operations
2764#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2765#define shmem_acct_size(flags, size)		0
2766#define shmem_unacct_size(flags, size)		do {} while (0)
2767
2768#endif /* CONFIG_SHMEM */
2769
2770/* common code */
2771
2772/**
2773 * shmem_file_setup - get an unlinked file living in tmpfs
2774 * @name: name for dentry (to be seen in /proc/<pid>/maps
2775 * @size: size to be set for the file
2776 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2777 */
2778struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2779{
2780	int error;
2781	struct file *file;
2782	struct inode *inode;
2783	struct path path;
2784	struct dentry *root;
2785	struct qstr this;
2786
2787	if (IS_ERR(shm_mnt))
2788		return (void *)shm_mnt;
2789
2790	if (size < 0 || size > MAX_LFS_FILESIZE)
2791		return ERR_PTR(-EINVAL);
2792
2793	if (shmem_acct_size(flags, size))
2794		return ERR_PTR(-ENOMEM);
2795
2796	error = -ENOMEM;
2797	this.name = name;
2798	this.len = strlen(name);
2799	this.hash = 0; /* will go */
2800	root = shm_mnt->mnt_root;
2801	path.dentry = d_alloc(root, &this);
2802	if (!path.dentry)
2803		goto put_memory;
2804	path.mnt = mntget(shm_mnt);
2805
2806	error = -ENOSPC;
2807	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2808	if (!inode)
2809		goto put_dentry;
2810
2811	d_instantiate(path.dentry, inode);
2812	inode->i_size = size;
2813	clear_nlink(inode);	/* It is unlinked */
2814#ifndef CONFIG_MMU
2815	error = ramfs_nommu_expand_for_mapping(inode, size);
2816	if (error)
2817		goto put_dentry;
2818#endif
2819
2820	error = -ENFILE;
2821	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2822		  &shmem_file_operations);
2823	if (!file)
2824		goto put_dentry;
2825
2826	return file;
2827
2828put_dentry:
2829	path_put(&path);
2830put_memory:
2831	shmem_unacct_size(flags, size);
2832	return ERR_PTR(error);
2833}
2834EXPORT_SYMBOL_GPL(shmem_file_setup);
2835
2836/**
2837 * shmem_zero_setup - setup a shared anonymous mapping
2838 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2839 */
2840int shmem_zero_setup(struct vm_area_struct *vma)
2841{
2842	struct file *file;
2843	loff_t size = vma->vm_end - vma->vm_start;
2844
2845	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2846	if (IS_ERR(file))
2847		return PTR_ERR(file);
2848
2849	if (vma->vm_file)
2850		fput(vma->vm_file);
2851	vma->vm_file = file;
2852	vma->vm_ops = &shmem_vm_ops;
2853	return 0;
2854}
2855
2856/**
2857 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2858 * @mapping:	the page's address_space
2859 * @index:	the page index
2860 * @gfp:	the page allocator flags to use if allocating
2861 *
2862 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2863 * with any new page allocations done using the specified allocation flags.
2864 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2865 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2866 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2867 *
2868 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2869 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2870 */
2871struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2872					 pgoff_t index, gfp_t gfp)
2873{
2874#ifdef CONFIG_SHMEM
2875	struct inode *inode = mapping->host;
2876	struct page *page;
2877	int error;
2878
2879	BUG_ON(mapping->a_ops != &shmem_aops);
2880	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2881	if (error)
2882		page = ERR_PTR(error);
2883	else
2884		unlock_page(page);
2885	return page;
2886#else
2887	/*
2888	 * The tiny !SHMEM case uses ramfs without swap
2889	 */
2890	return read_cache_page_gfp(mapping, index, gfp);
2891#endif
2892}
2893EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2894