shmem.c revision 1df9f0a73178718969ae47d813b8e7aab2cf073c
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52#include <linux/seq_file.h>
53#include <linux/magic.h>
54#include <linux/ima.h>
55
56#include <asm/uaccess.h>
57#include <asm/div64.h>
58#include <asm/pgtable.h>
59
60#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70#define SHMEM_PAGEIN	 VM_READ
71#define SHMEM_TRUNCATE	 VM_WRITE
72
73/* Definition to limit shmem_truncate's steps between cond_rescheds */
74#define LATENCY_LIMIT	 64
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80enum sgp_type {
81	SGP_READ,	/* don't exceed i_size, don't allocate page */
82	SGP_CACHE,	/* don't exceed i_size, may allocate page */
83	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
84	SGP_WRITE,	/* may exceed i_size, may allocate page */
85};
86
87#ifdef CONFIG_TMPFS
88static unsigned long shmem_default_max_blocks(void)
89{
90	return totalram_pages / 2;
91}
92
93static unsigned long shmem_default_max_inodes(void)
94{
95	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
96}
97#endif
98
99static int shmem_getpage(struct inode *inode, unsigned long idx,
100			 struct page **pagep, enum sgp_type sgp, int *type);
101
102static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
103{
104	/*
105	 * The above definition of ENTRIES_PER_PAGE, and the use of
106	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
107	 * might be reconsidered if it ever diverges from PAGE_SIZE.
108	 *
109	 * Mobility flags are masked out as swap vectors cannot move
110	 */
111	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
112				PAGE_CACHE_SHIFT-PAGE_SHIFT);
113}
114
115static inline void shmem_dir_free(struct page *page)
116{
117	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
118}
119
120static struct page **shmem_dir_map(struct page *page)
121{
122	return (struct page **)kmap_atomic(page, KM_USER0);
123}
124
125static inline void shmem_dir_unmap(struct page **dir)
126{
127	kunmap_atomic(dir, KM_USER0);
128}
129
130static swp_entry_t *shmem_swp_map(struct page *page)
131{
132	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
133}
134
135static inline void shmem_swp_balance_unmap(void)
136{
137	/*
138	 * When passing a pointer to an i_direct entry, to code which
139	 * also handles indirect entries and so will shmem_swp_unmap,
140	 * we must arrange for the preempt count to remain in balance.
141	 * What kmap_atomic of a lowmem page does depends on config
142	 * and architecture, so pretend to kmap_atomic some lowmem page.
143	 */
144	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
145}
146
147static inline void shmem_swp_unmap(swp_entry_t *entry)
148{
149	kunmap_atomic(entry, KM_USER1);
150}
151
152static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
153{
154	return sb->s_fs_info;
155}
156
157/*
158 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
159 * for shared memory and for shared anonymous (/dev/zero) mappings
160 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
161 * consistent with the pre-accounting of private mappings ...
162 */
163static inline int shmem_acct_size(unsigned long flags, loff_t size)
164{
165	return (flags & VM_ACCOUNT) ?
166		security_vm_enough_memory_kern(VM_ACCT(size)) : 0;
167}
168
169static inline void shmem_unacct_size(unsigned long flags, loff_t size)
170{
171	if (flags & VM_ACCOUNT)
172		vm_unacct_memory(VM_ACCT(size));
173}
174
175/*
176 * ... whereas tmpfs objects are accounted incrementally as
177 * pages are allocated, in order to allow huge sparse files.
178 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
179 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
180 */
181static inline int shmem_acct_block(unsigned long flags)
182{
183	return (flags & VM_ACCOUNT) ?
184		0 : security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE));
185}
186
187static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188{
189	if (!(flags & VM_ACCOUNT))
190		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
191}
192
193static const struct super_operations shmem_ops;
194static const struct address_space_operations shmem_aops;
195static const struct file_operations shmem_file_operations;
196static const struct inode_operations shmem_inode_operations;
197static const struct inode_operations shmem_dir_inode_operations;
198static const struct inode_operations shmem_special_inode_operations;
199static struct vm_operations_struct shmem_vm_ops;
200
201static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
202	.ra_pages	= 0,	/* No readahead */
203	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
204	.unplug_io_fn	= default_unplug_io_fn,
205};
206
207static LIST_HEAD(shmem_swaplist);
208static DEFINE_MUTEX(shmem_swaplist_mutex);
209
210static void shmem_free_blocks(struct inode *inode, long pages)
211{
212	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
213	if (sbinfo->max_blocks) {
214		spin_lock(&sbinfo->stat_lock);
215		sbinfo->free_blocks += pages;
216		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
217		spin_unlock(&sbinfo->stat_lock);
218	}
219}
220
221static int shmem_reserve_inode(struct super_block *sb)
222{
223	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
224	if (sbinfo->max_inodes) {
225		spin_lock(&sbinfo->stat_lock);
226		if (!sbinfo->free_inodes) {
227			spin_unlock(&sbinfo->stat_lock);
228			return -ENOSPC;
229		}
230		sbinfo->free_inodes--;
231		spin_unlock(&sbinfo->stat_lock);
232	}
233	return 0;
234}
235
236static void shmem_free_inode(struct super_block *sb)
237{
238	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
239	if (sbinfo->max_inodes) {
240		spin_lock(&sbinfo->stat_lock);
241		sbinfo->free_inodes++;
242		spin_unlock(&sbinfo->stat_lock);
243	}
244}
245
246/**
247 * shmem_recalc_inode - recalculate the size of an inode
248 * @inode: inode to recalc
249 *
250 * We have to calculate the free blocks since the mm can drop
251 * undirtied hole pages behind our back.
252 *
253 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
254 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
255 *
256 * It has to be called with the spinlock held.
257 */
258static void shmem_recalc_inode(struct inode *inode)
259{
260	struct shmem_inode_info *info = SHMEM_I(inode);
261	long freed;
262
263	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
264	if (freed > 0) {
265		info->alloced -= freed;
266		shmem_unacct_blocks(info->flags, freed);
267		shmem_free_blocks(inode, freed);
268	}
269}
270
271/**
272 * shmem_swp_entry - find the swap vector position in the info structure
273 * @info:  info structure for the inode
274 * @index: index of the page to find
275 * @page:  optional page to add to the structure. Has to be preset to
276 *         all zeros
277 *
278 * If there is no space allocated yet it will return NULL when
279 * page is NULL, else it will use the page for the needed block,
280 * setting it to NULL on return to indicate that it has been used.
281 *
282 * The swap vector is organized the following way:
283 *
284 * There are SHMEM_NR_DIRECT entries directly stored in the
285 * shmem_inode_info structure. So small files do not need an addional
286 * allocation.
287 *
288 * For pages with index > SHMEM_NR_DIRECT there is the pointer
289 * i_indirect which points to a page which holds in the first half
290 * doubly indirect blocks, in the second half triple indirect blocks:
291 *
292 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
293 * following layout (for SHMEM_NR_DIRECT == 16):
294 *
295 * i_indirect -> dir --> 16-19
296 * 	      |	     +-> 20-23
297 * 	      |
298 * 	      +-->dir2 --> 24-27
299 * 	      |	       +-> 28-31
300 * 	      |	       +-> 32-35
301 * 	      |	       +-> 36-39
302 * 	      |
303 * 	      +-->dir3 --> 40-43
304 * 	       	       +-> 44-47
305 * 	      	       +-> 48-51
306 * 	      	       +-> 52-55
307 */
308static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
309{
310	unsigned long offset;
311	struct page **dir;
312	struct page *subdir;
313
314	if (index < SHMEM_NR_DIRECT) {
315		shmem_swp_balance_unmap();
316		return info->i_direct+index;
317	}
318	if (!info->i_indirect) {
319		if (page) {
320			info->i_indirect = *page;
321			*page = NULL;
322		}
323		return NULL;			/* need another page */
324	}
325
326	index -= SHMEM_NR_DIRECT;
327	offset = index % ENTRIES_PER_PAGE;
328	index /= ENTRIES_PER_PAGE;
329	dir = shmem_dir_map(info->i_indirect);
330
331	if (index >= ENTRIES_PER_PAGE/2) {
332		index -= ENTRIES_PER_PAGE/2;
333		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
334		index %= ENTRIES_PER_PAGE;
335		subdir = *dir;
336		if (!subdir) {
337			if (page) {
338				*dir = *page;
339				*page = NULL;
340			}
341			shmem_dir_unmap(dir);
342			return NULL;		/* need another page */
343		}
344		shmem_dir_unmap(dir);
345		dir = shmem_dir_map(subdir);
346	}
347
348	dir += index;
349	subdir = *dir;
350	if (!subdir) {
351		if (!page || !(subdir = *page)) {
352			shmem_dir_unmap(dir);
353			return NULL;		/* need a page */
354		}
355		*dir = subdir;
356		*page = NULL;
357	}
358	shmem_dir_unmap(dir);
359	return shmem_swp_map(subdir) + offset;
360}
361
362static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
363{
364	long incdec = value? 1: -1;
365
366	entry->val = value;
367	info->swapped += incdec;
368	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
369		struct page *page = kmap_atomic_to_page(entry);
370		set_page_private(page, page_private(page) + incdec);
371	}
372}
373
374/**
375 * shmem_swp_alloc - get the position of the swap entry for the page.
376 * @info:	info structure for the inode
377 * @index:	index of the page to find
378 * @sgp:	check and recheck i_size? skip allocation?
379 *
380 * If the entry does not exist, allocate it.
381 */
382static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
383{
384	struct inode *inode = &info->vfs_inode;
385	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
386	struct page *page = NULL;
387	swp_entry_t *entry;
388
389	if (sgp != SGP_WRITE &&
390	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
391		return ERR_PTR(-EINVAL);
392
393	while (!(entry = shmem_swp_entry(info, index, &page))) {
394		if (sgp == SGP_READ)
395			return shmem_swp_map(ZERO_PAGE(0));
396		/*
397		 * Test free_blocks against 1 not 0, since we have 1 data
398		 * page (and perhaps indirect index pages) yet to allocate:
399		 * a waste to allocate index if we cannot allocate data.
400		 */
401		if (sbinfo->max_blocks) {
402			spin_lock(&sbinfo->stat_lock);
403			if (sbinfo->free_blocks <= 1) {
404				spin_unlock(&sbinfo->stat_lock);
405				return ERR_PTR(-ENOSPC);
406			}
407			sbinfo->free_blocks--;
408			inode->i_blocks += BLOCKS_PER_PAGE;
409			spin_unlock(&sbinfo->stat_lock);
410		}
411
412		spin_unlock(&info->lock);
413		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
414		if (page)
415			set_page_private(page, 0);
416		spin_lock(&info->lock);
417
418		if (!page) {
419			shmem_free_blocks(inode, 1);
420			return ERR_PTR(-ENOMEM);
421		}
422		if (sgp != SGP_WRITE &&
423		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
424			entry = ERR_PTR(-EINVAL);
425			break;
426		}
427		if (info->next_index <= index)
428			info->next_index = index + 1;
429	}
430	if (page) {
431		/* another task gave its page, or truncated the file */
432		shmem_free_blocks(inode, 1);
433		shmem_dir_free(page);
434	}
435	if (info->next_index <= index && !IS_ERR(entry))
436		info->next_index = index + 1;
437	return entry;
438}
439
440/**
441 * shmem_free_swp - free some swap entries in a directory
442 * @dir:        pointer to the directory
443 * @edir:       pointer after last entry of the directory
444 * @punch_lock: pointer to spinlock when needed for the holepunch case
445 */
446static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
447						spinlock_t *punch_lock)
448{
449	spinlock_t *punch_unlock = NULL;
450	swp_entry_t *ptr;
451	int freed = 0;
452
453	for (ptr = dir; ptr < edir; ptr++) {
454		if (ptr->val) {
455			if (unlikely(punch_lock)) {
456				punch_unlock = punch_lock;
457				punch_lock = NULL;
458				spin_lock(punch_unlock);
459				if (!ptr->val)
460					continue;
461			}
462			free_swap_and_cache(*ptr);
463			*ptr = (swp_entry_t){0};
464			freed++;
465		}
466	}
467	if (punch_unlock)
468		spin_unlock(punch_unlock);
469	return freed;
470}
471
472static int shmem_map_and_free_swp(struct page *subdir, int offset,
473		int limit, struct page ***dir, spinlock_t *punch_lock)
474{
475	swp_entry_t *ptr;
476	int freed = 0;
477
478	ptr = shmem_swp_map(subdir);
479	for (; offset < limit; offset += LATENCY_LIMIT) {
480		int size = limit - offset;
481		if (size > LATENCY_LIMIT)
482			size = LATENCY_LIMIT;
483		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
484							punch_lock);
485		if (need_resched()) {
486			shmem_swp_unmap(ptr);
487			if (*dir) {
488				shmem_dir_unmap(*dir);
489				*dir = NULL;
490			}
491			cond_resched();
492			ptr = shmem_swp_map(subdir);
493		}
494	}
495	shmem_swp_unmap(ptr);
496	return freed;
497}
498
499static void shmem_free_pages(struct list_head *next)
500{
501	struct page *page;
502	int freed = 0;
503
504	do {
505		page = container_of(next, struct page, lru);
506		next = next->next;
507		shmem_dir_free(page);
508		freed++;
509		if (freed >= LATENCY_LIMIT) {
510			cond_resched();
511			freed = 0;
512		}
513	} while (next);
514}
515
516static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
517{
518	struct shmem_inode_info *info = SHMEM_I(inode);
519	unsigned long idx;
520	unsigned long size;
521	unsigned long limit;
522	unsigned long stage;
523	unsigned long diroff;
524	struct page **dir;
525	struct page *topdir;
526	struct page *middir;
527	struct page *subdir;
528	swp_entry_t *ptr;
529	LIST_HEAD(pages_to_free);
530	long nr_pages_to_free = 0;
531	long nr_swaps_freed = 0;
532	int offset;
533	int freed;
534	int punch_hole;
535	spinlock_t *needs_lock;
536	spinlock_t *punch_lock;
537	unsigned long upper_limit;
538
539	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
540	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
541	if (idx >= info->next_index)
542		return;
543
544	spin_lock(&info->lock);
545	info->flags |= SHMEM_TRUNCATE;
546	if (likely(end == (loff_t) -1)) {
547		limit = info->next_index;
548		upper_limit = SHMEM_MAX_INDEX;
549		info->next_index = idx;
550		needs_lock = NULL;
551		punch_hole = 0;
552	} else {
553		if (end + 1 >= inode->i_size) {	/* we may free a little more */
554			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
555							PAGE_CACHE_SHIFT;
556			upper_limit = SHMEM_MAX_INDEX;
557		} else {
558			limit = (end + 1) >> PAGE_CACHE_SHIFT;
559			upper_limit = limit;
560		}
561		needs_lock = &info->lock;
562		punch_hole = 1;
563	}
564
565	topdir = info->i_indirect;
566	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
567		info->i_indirect = NULL;
568		nr_pages_to_free++;
569		list_add(&topdir->lru, &pages_to_free);
570	}
571	spin_unlock(&info->lock);
572
573	if (info->swapped && idx < SHMEM_NR_DIRECT) {
574		ptr = info->i_direct;
575		size = limit;
576		if (size > SHMEM_NR_DIRECT)
577			size = SHMEM_NR_DIRECT;
578		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
579	}
580
581	/*
582	 * If there are no indirect blocks or we are punching a hole
583	 * below indirect blocks, nothing to be done.
584	 */
585	if (!topdir || limit <= SHMEM_NR_DIRECT)
586		goto done2;
587
588	/*
589	 * The truncation case has already dropped info->lock, and we're safe
590	 * because i_size and next_index have already been lowered, preventing
591	 * access beyond.  But in the punch_hole case, we still need to take
592	 * the lock when updating the swap directory, because there might be
593	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
594	 * shmem_writepage.  However, whenever we find we can remove a whole
595	 * directory page (not at the misaligned start or end of the range),
596	 * we first NULLify its pointer in the level above, and then have no
597	 * need to take the lock when updating its contents: needs_lock and
598	 * punch_lock (either pointing to info->lock or NULL) manage this.
599	 */
600
601	upper_limit -= SHMEM_NR_DIRECT;
602	limit -= SHMEM_NR_DIRECT;
603	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
604	offset = idx % ENTRIES_PER_PAGE;
605	idx -= offset;
606
607	dir = shmem_dir_map(topdir);
608	stage = ENTRIES_PER_PAGEPAGE/2;
609	if (idx < ENTRIES_PER_PAGEPAGE/2) {
610		middir = topdir;
611		diroff = idx/ENTRIES_PER_PAGE;
612	} else {
613		dir += ENTRIES_PER_PAGE/2;
614		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
615		while (stage <= idx)
616			stage += ENTRIES_PER_PAGEPAGE;
617		middir = *dir;
618		if (*dir) {
619			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
620				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
621			if (!diroff && !offset && upper_limit >= stage) {
622				if (needs_lock) {
623					spin_lock(needs_lock);
624					*dir = NULL;
625					spin_unlock(needs_lock);
626					needs_lock = NULL;
627				} else
628					*dir = NULL;
629				nr_pages_to_free++;
630				list_add(&middir->lru, &pages_to_free);
631			}
632			shmem_dir_unmap(dir);
633			dir = shmem_dir_map(middir);
634		} else {
635			diroff = 0;
636			offset = 0;
637			idx = stage;
638		}
639	}
640
641	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
642		if (unlikely(idx == stage)) {
643			shmem_dir_unmap(dir);
644			dir = shmem_dir_map(topdir) +
645			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
646			while (!*dir) {
647				dir++;
648				idx += ENTRIES_PER_PAGEPAGE;
649				if (idx >= limit)
650					goto done1;
651			}
652			stage = idx + ENTRIES_PER_PAGEPAGE;
653			middir = *dir;
654			if (punch_hole)
655				needs_lock = &info->lock;
656			if (upper_limit >= stage) {
657				if (needs_lock) {
658					spin_lock(needs_lock);
659					*dir = NULL;
660					spin_unlock(needs_lock);
661					needs_lock = NULL;
662				} else
663					*dir = NULL;
664				nr_pages_to_free++;
665				list_add(&middir->lru, &pages_to_free);
666			}
667			shmem_dir_unmap(dir);
668			cond_resched();
669			dir = shmem_dir_map(middir);
670			diroff = 0;
671		}
672		punch_lock = needs_lock;
673		subdir = dir[diroff];
674		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
675			if (needs_lock) {
676				spin_lock(needs_lock);
677				dir[diroff] = NULL;
678				spin_unlock(needs_lock);
679				punch_lock = NULL;
680			} else
681				dir[diroff] = NULL;
682			nr_pages_to_free++;
683			list_add(&subdir->lru, &pages_to_free);
684		}
685		if (subdir && page_private(subdir) /* has swap entries */) {
686			size = limit - idx;
687			if (size > ENTRIES_PER_PAGE)
688				size = ENTRIES_PER_PAGE;
689			freed = shmem_map_and_free_swp(subdir,
690					offset, size, &dir, punch_lock);
691			if (!dir)
692				dir = shmem_dir_map(middir);
693			nr_swaps_freed += freed;
694			if (offset || punch_lock) {
695				spin_lock(&info->lock);
696				set_page_private(subdir,
697					page_private(subdir) - freed);
698				spin_unlock(&info->lock);
699			} else
700				BUG_ON(page_private(subdir) != freed);
701		}
702		offset = 0;
703	}
704done1:
705	shmem_dir_unmap(dir);
706done2:
707	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
708		/*
709		 * Call truncate_inode_pages again: racing shmem_unuse_inode
710		 * may have swizzled a page in from swap since vmtruncate or
711		 * generic_delete_inode did it, before we lowered next_index.
712		 * Also, though shmem_getpage checks i_size before adding to
713		 * cache, no recheck after: so fix the narrow window there too.
714		 *
715		 * Recalling truncate_inode_pages_range and unmap_mapping_range
716		 * every time for punch_hole (which never got a chance to clear
717		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
718		 * yet hardly ever necessary: try to optimize them out later.
719		 */
720		truncate_inode_pages_range(inode->i_mapping, start, end);
721		if (punch_hole)
722			unmap_mapping_range(inode->i_mapping, start,
723							end - start, 1);
724	}
725
726	spin_lock(&info->lock);
727	info->flags &= ~SHMEM_TRUNCATE;
728	info->swapped -= nr_swaps_freed;
729	if (nr_pages_to_free)
730		shmem_free_blocks(inode, nr_pages_to_free);
731	shmem_recalc_inode(inode);
732	spin_unlock(&info->lock);
733
734	/*
735	 * Empty swap vector directory pages to be freed?
736	 */
737	if (!list_empty(&pages_to_free)) {
738		pages_to_free.prev->next = NULL;
739		shmem_free_pages(pages_to_free.next);
740	}
741}
742
743static void shmem_truncate(struct inode *inode)
744{
745	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
746}
747
748static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
749{
750	struct inode *inode = dentry->d_inode;
751	struct page *page = NULL;
752	int error;
753
754	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
755		if (attr->ia_size < inode->i_size) {
756			/*
757			 * If truncating down to a partial page, then
758			 * if that page is already allocated, hold it
759			 * in memory until the truncation is over, so
760			 * truncate_partial_page cannnot miss it were
761			 * it assigned to swap.
762			 */
763			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
764				(void) shmem_getpage(inode,
765					attr->ia_size>>PAGE_CACHE_SHIFT,
766						&page, SGP_READ, NULL);
767				if (page)
768					unlock_page(page);
769			}
770			/*
771			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
772			 * detect if any pages might have been added to cache
773			 * after truncate_inode_pages.  But we needn't bother
774			 * if it's being fully truncated to zero-length: the
775			 * nrpages check is efficient enough in that case.
776			 */
777			if (attr->ia_size) {
778				struct shmem_inode_info *info = SHMEM_I(inode);
779				spin_lock(&info->lock);
780				info->flags &= ~SHMEM_PAGEIN;
781				spin_unlock(&info->lock);
782			}
783		}
784	}
785
786	error = inode_change_ok(inode, attr);
787	if (!error)
788		error = inode_setattr(inode, attr);
789#ifdef CONFIG_TMPFS_POSIX_ACL
790	if (!error && (attr->ia_valid & ATTR_MODE))
791		error = generic_acl_chmod(inode, &shmem_acl_ops);
792#endif
793	if (page)
794		page_cache_release(page);
795	return error;
796}
797
798static void shmem_delete_inode(struct inode *inode)
799{
800	struct shmem_inode_info *info = SHMEM_I(inode);
801
802	if (inode->i_op->truncate == shmem_truncate) {
803		truncate_inode_pages(inode->i_mapping, 0);
804		shmem_unacct_size(info->flags, inode->i_size);
805		inode->i_size = 0;
806		shmem_truncate(inode);
807		if (!list_empty(&info->swaplist)) {
808			mutex_lock(&shmem_swaplist_mutex);
809			list_del_init(&info->swaplist);
810			mutex_unlock(&shmem_swaplist_mutex);
811		}
812	}
813	BUG_ON(inode->i_blocks);
814	shmem_free_inode(inode->i_sb);
815	clear_inode(inode);
816}
817
818static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
819{
820	swp_entry_t *ptr;
821
822	for (ptr = dir; ptr < edir; ptr++) {
823		if (ptr->val == entry.val)
824			return ptr - dir;
825	}
826	return -1;
827}
828
829static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
830{
831	struct inode *inode;
832	unsigned long idx;
833	unsigned long size;
834	unsigned long limit;
835	unsigned long stage;
836	struct page **dir;
837	struct page *subdir;
838	swp_entry_t *ptr;
839	int offset;
840	int error;
841
842	idx = 0;
843	ptr = info->i_direct;
844	spin_lock(&info->lock);
845	if (!info->swapped) {
846		list_del_init(&info->swaplist);
847		goto lost2;
848	}
849	limit = info->next_index;
850	size = limit;
851	if (size > SHMEM_NR_DIRECT)
852		size = SHMEM_NR_DIRECT;
853	offset = shmem_find_swp(entry, ptr, ptr+size);
854	if (offset >= 0)
855		goto found;
856	if (!info->i_indirect)
857		goto lost2;
858
859	dir = shmem_dir_map(info->i_indirect);
860	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
861
862	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
863		if (unlikely(idx == stage)) {
864			shmem_dir_unmap(dir-1);
865			if (cond_resched_lock(&info->lock)) {
866				/* check it has not been truncated */
867				if (limit > info->next_index) {
868					limit = info->next_index;
869					if (idx >= limit)
870						goto lost2;
871				}
872			}
873			dir = shmem_dir_map(info->i_indirect) +
874			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
875			while (!*dir) {
876				dir++;
877				idx += ENTRIES_PER_PAGEPAGE;
878				if (idx >= limit)
879					goto lost1;
880			}
881			stage = idx + ENTRIES_PER_PAGEPAGE;
882			subdir = *dir;
883			shmem_dir_unmap(dir);
884			dir = shmem_dir_map(subdir);
885		}
886		subdir = *dir;
887		if (subdir && page_private(subdir)) {
888			ptr = shmem_swp_map(subdir);
889			size = limit - idx;
890			if (size > ENTRIES_PER_PAGE)
891				size = ENTRIES_PER_PAGE;
892			offset = shmem_find_swp(entry, ptr, ptr+size);
893			shmem_swp_unmap(ptr);
894			if (offset >= 0) {
895				shmem_dir_unmap(dir);
896				goto found;
897			}
898		}
899	}
900lost1:
901	shmem_dir_unmap(dir-1);
902lost2:
903	spin_unlock(&info->lock);
904	return 0;
905found:
906	idx += offset;
907	inode = igrab(&info->vfs_inode);
908	spin_unlock(&info->lock);
909
910	/*
911	 * Move _head_ to start search for next from here.
912	 * But be careful: shmem_delete_inode checks list_empty without taking
913	 * mutex, and there's an instant in list_move_tail when info->swaplist
914	 * would appear empty, if it were the only one on shmem_swaplist.  We
915	 * could avoid doing it if inode NULL; or use this minor optimization.
916	 */
917	if (shmem_swaplist.next != &info->swaplist)
918		list_move_tail(&shmem_swaplist, &info->swaplist);
919	mutex_unlock(&shmem_swaplist_mutex);
920
921	error = 1;
922	if (!inode)
923		goto out;
924	/* Precharge page using GFP_KERNEL while we can wait */
925	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
926	if (error)
927		goto out;
928	error = radix_tree_preload(GFP_KERNEL);
929	if (error) {
930		mem_cgroup_uncharge_cache_page(page);
931		goto out;
932	}
933	error = 1;
934
935	spin_lock(&info->lock);
936	ptr = shmem_swp_entry(info, idx, NULL);
937	if (ptr && ptr->val == entry.val) {
938		error = add_to_page_cache_locked(page, inode->i_mapping,
939						idx, GFP_NOWAIT);
940		/* does mem_cgroup_uncharge_cache_page on error */
941	} else	/* we must compensate for our precharge above */
942		mem_cgroup_uncharge_cache_page(page);
943
944	if (error == -EEXIST) {
945		struct page *filepage = find_get_page(inode->i_mapping, idx);
946		error = 1;
947		if (filepage) {
948			/*
949			 * There might be a more uptodate page coming down
950			 * from a stacked writepage: forget our swappage if so.
951			 */
952			if (PageUptodate(filepage))
953				error = 0;
954			page_cache_release(filepage);
955		}
956	}
957	if (!error) {
958		delete_from_swap_cache(page);
959		set_page_dirty(page);
960		info->flags |= SHMEM_PAGEIN;
961		shmem_swp_set(info, ptr, 0);
962		swap_free(entry);
963		error = 1;	/* not an error, but entry was found */
964	}
965	if (ptr)
966		shmem_swp_unmap(ptr);
967	spin_unlock(&info->lock);
968	radix_tree_preload_end();
969out:
970	unlock_page(page);
971	page_cache_release(page);
972	iput(inode);		/* allows for NULL */
973	return error;
974}
975
976/*
977 * shmem_unuse() search for an eventually swapped out shmem page.
978 */
979int shmem_unuse(swp_entry_t entry, struct page *page)
980{
981	struct list_head *p, *next;
982	struct shmem_inode_info *info;
983	int found = 0;
984
985	mutex_lock(&shmem_swaplist_mutex);
986	list_for_each_safe(p, next, &shmem_swaplist) {
987		info = list_entry(p, struct shmem_inode_info, swaplist);
988		found = shmem_unuse_inode(info, entry, page);
989		cond_resched();
990		if (found)
991			goto out;
992	}
993	mutex_unlock(&shmem_swaplist_mutex);
994out:	return found;	/* 0 or 1 or -ENOMEM */
995}
996
997/*
998 * Move the page from the page cache to the swap cache.
999 */
1000static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1001{
1002	struct shmem_inode_info *info;
1003	swp_entry_t *entry, swap;
1004	struct address_space *mapping;
1005	unsigned long index;
1006	struct inode *inode;
1007
1008	BUG_ON(!PageLocked(page));
1009	mapping = page->mapping;
1010	index = page->index;
1011	inode = mapping->host;
1012	info = SHMEM_I(inode);
1013	if (info->flags & VM_LOCKED)
1014		goto redirty;
1015	if (!total_swap_pages)
1016		goto redirty;
1017
1018	/*
1019	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1020	 * sync from ever calling shmem_writepage; but a stacking filesystem
1021	 * may use the ->writepage of its underlying filesystem, in which case
1022	 * tmpfs should write out to swap only in response to memory pressure,
1023	 * and not for pdflush or sync.  However, in those cases, we do still
1024	 * want to check if there's a redundant swappage to be discarded.
1025	 */
1026	if (wbc->for_reclaim)
1027		swap = get_swap_page();
1028	else
1029		swap.val = 0;
1030
1031	spin_lock(&info->lock);
1032	if (index >= info->next_index) {
1033		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1034		goto unlock;
1035	}
1036	entry = shmem_swp_entry(info, index, NULL);
1037	if (entry->val) {
1038		/*
1039		 * The more uptodate page coming down from a stacked
1040		 * writepage should replace our old swappage.
1041		 */
1042		free_swap_and_cache(*entry);
1043		shmem_swp_set(info, entry, 0);
1044	}
1045	shmem_recalc_inode(inode);
1046
1047	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1048		remove_from_page_cache(page);
1049		shmem_swp_set(info, entry, swap.val);
1050		shmem_swp_unmap(entry);
1051		if (list_empty(&info->swaplist))
1052			inode = igrab(inode);
1053		else
1054			inode = NULL;
1055		spin_unlock(&info->lock);
1056		swap_duplicate(swap);
1057		BUG_ON(page_mapped(page));
1058		page_cache_release(page);	/* pagecache ref */
1059		set_page_dirty(page);
1060		unlock_page(page);
1061		if (inode) {
1062			mutex_lock(&shmem_swaplist_mutex);
1063			/* move instead of add in case we're racing */
1064			list_move_tail(&info->swaplist, &shmem_swaplist);
1065			mutex_unlock(&shmem_swaplist_mutex);
1066			iput(inode);
1067		}
1068		return 0;
1069	}
1070
1071	shmem_swp_unmap(entry);
1072unlock:
1073	spin_unlock(&info->lock);
1074	swap_free(swap);
1075redirty:
1076	set_page_dirty(page);
1077	if (wbc->for_reclaim)
1078		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1079	unlock_page(page);
1080	return 0;
1081}
1082
1083#ifdef CONFIG_NUMA
1084#ifdef CONFIG_TMPFS
1085static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1086{
1087	char buffer[64];
1088
1089	if (!mpol || mpol->mode == MPOL_DEFAULT)
1090		return;		/* show nothing */
1091
1092	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1093
1094	seq_printf(seq, ",mpol=%s", buffer);
1095}
1096
1097static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1098{
1099	struct mempolicy *mpol = NULL;
1100	if (sbinfo->mpol) {
1101		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1102		mpol = sbinfo->mpol;
1103		mpol_get(mpol);
1104		spin_unlock(&sbinfo->stat_lock);
1105	}
1106	return mpol;
1107}
1108#endif /* CONFIG_TMPFS */
1109
1110static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1111			struct shmem_inode_info *info, unsigned long idx)
1112{
1113	struct mempolicy mpol, *spol;
1114	struct vm_area_struct pvma;
1115	struct page *page;
1116
1117	spol = mpol_cond_copy(&mpol,
1118				mpol_shared_policy_lookup(&info->policy, idx));
1119
1120	/* Create a pseudo vma that just contains the policy */
1121	pvma.vm_start = 0;
1122	pvma.vm_pgoff = idx;
1123	pvma.vm_ops = NULL;
1124	pvma.vm_policy = spol;
1125	page = swapin_readahead(entry, gfp, &pvma, 0);
1126	return page;
1127}
1128
1129static struct page *shmem_alloc_page(gfp_t gfp,
1130			struct shmem_inode_info *info, unsigned long idx)
1131{
1132	struct vm_area_struct pvma;
1133
1134	/* Create a pseudo vma that just contains the policy */
1135	pvma.vm_start = 0;
1136	pvma.vm_pgoff = idx;
1137	pvma.vm_ops = NULL;
1138	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1139
1140	/*
1141	 * alloc_page_vma() will drop the shared policy reference
1142	 */
1143	return alloc_page_vma(gfp, &pvma, 0);
1144}
1145#else /* !CONFIG_NUMA */
1146#ifdef CONFIG_TMPFS
1147static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1148{
1149}
1150#endif /* CONFIG_TMPFS */
1151
1152static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1153			struct shmem_inode_info *info, unsigned long idx)
1154{
1155	return swapin_readahead(entry, gfp, NULL, 0);
1156}
1157
1158static inline struct page *shmem_alloc_page(gfp_t gfp,
1159			struct shmem_inode_info *info, unsigned long idx)
1160{
1161	return alloc_page(gfp);
1162}
1163#endif /* CONFIG_NUMA */
1164
1165#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1166static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1167{
1168	return NULL;
1169}
1170#endif
1171
1172/*
1173 * shmem_getpage - either get the page from swap or allocate a new one
1174 *
1175 * If we allocate a new one we do not mark it dirty. That's up to the
1176 * vm. If we swap it in we mark it dirty since we also free the swap
1177 * entry since a page cannot live in both the swap and page cache
1178 */
1179static int shmem_getpage(struct inode *inode, unsigned long idx,
1180			struct page **pagep, enum sgp_type sgp, int *type)
1181{
1182	struct address_space *mapping = inode->i_mapping;
1183	struct shmem_inode_info *info = SHMEM_I(inode);
1184	struct shmem_sb_info *sbinfo;
1185	struct page *filepage = *pagep;
1186	struct page *swappage;
1187	swp_entry_t *entry;
1188	swp_entry_t swap;
1189	gfp_t gfp;
1190	int error;
1191
1192	if (idx >= SHMEM_MAX_INDEX)
1193		return -EFBIG;
1194
1195	if (type)
1196		*type = 0;
1197
1198	/*
1199	 * Normally, filepage is NULL on entry, and either found
1200	 * uptodate immediately, or allocated and zeroed, or read
1201	 * in under swappage, which is then assigned to filepage.
1202	 * But shmem_readpage (required for splice) passes in a locked
1203	 * filepage, which may be found not uptodate by other callers
1204	 * too, and may need to be copied from the swappage read in.
1205	 */
1206repeat:
1207	if (!filepage)
1208		filepage = find_lock_page(mapping, idx);
1209	if (filepage && PageUptodate(filepage))
1210		goto done;
1211	error = 0;
1212	gfp = mapping_gfp_mask(mapping);
1213	if (!filepage) {
1214		/*
1215		 * Try to preload while we can wait, to not make a habit of
1216		 * draining atomic reserves; but don't latch on to this cpu.
1217		 */
1218		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1219		if (error)
1220			goto failed;
1221		radix_tree_preload_end();
1222	}
1223
1224	spin_lock(&info->lock);
1225	shmem_recalc_inode(inode);
1226	entry = shmem_swp_alloc(info, idx, sgp);
1227	if (IS_ERR(entry)) {
1228		spin_unlock(&info->lock);
1229		error = PTR_ERR(entry);
1230		goto failed;
1231	}
1232	swap = *entry;
1233
1234	if (swap.val) {
1235		/* Look it up and read it in.. */
1236		swappage = lookup_swap_cache(swap);
1237		if (!swappage) {
1238			shmem_swp_unmap(entry);
1239			/* here we actually do the io */
1240			if (type && !(*type & VM_FAULT_MAJOR)) {
1241				__count_vm_event(PGMAJFAULT);
1242				*type |= VM_FAULT_MAJOR;
1243			}
1244			spin_unlock(&info->lock);
1245			swappage = shmem_swapin(swap, gfp, info, idx);
1246			if (!swappage) {
1247				spin_lock(&info->lock);
1248				entry = shmem_swp_alloc(info, idx, sgp);
1249				if (IS_ERR(entry))
1250					error = PTR_ERR(entry);
1251				else {
1252					if (entry->val == swap.val)
1253						error = -ENOMEM;
1254					shmem_swp_unmap(entry);
1255				}
1256				spin_unlock(&info->lock);
1257				if (error)
1258					goto failed;
1259				goto repeat;
1260			}
1261			wait_on_page_locked(swappage);
1262			page_cache_release(swappage);
1263			goto repeat;
1264		}
1265
1266		/* We have to do this with page locked to prevent races */
1267		if (!trylock_page(swappage)) {
1268			shmem_swp_unmap(entry);
1269			spin_unlock(&info->lock);
1270			wait_on_page_locked(swappage);
1271			page_cache_release(swappage);
1272			goto repeat;
1273		}
1274		if (PageWriteback(swappage)) {
1275			shmem_swp_unmap(entry);
1276			spin_unlock(&info->lock);
1277			wait_on_page_writeback(swappage);
1278			unlock_page(swappage);
1279			page_cache_release(swappage);
1280			goto repeat;
1281		}
1282		if (!PageUptodate(swappage)) {
1283			shmem_swp_unmap(entry);
1284			spin_unlock(&info->lock);
1285			unlock_page(swappage);
1286			page_cache_release(swappage);
1287			error = -EIO;
1288			goto failed;
1289		}
1290
1291		if (filepage) {
1292			shmem_swp_set(info, entry, 0);
1293			shmem_swp_unmap(entry);
1294			delete_from_swap_cache(swappage);
1295			spin_unlock(&info->lock);
1296			copy_highpage(filepage, swappage);
1297			unlock_page(swappage);
1298			page_cache_release(swappage);
1299			flush_dcache_page(filepage);
1300			SetPageUptodate(filepage);
1301			set_page_dirty(filepage);
1302			swap_free(swap);
1303		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1304					idx, GFP_NOWAIT))) {
1305			info->flags |= SHMEM_PAGEIN;
1306			shmem_swp_set(info, entry, 0);
1307			shmem_swp_unmap(entry);
1308			delete_from_swap_cache(swappage);
1309			spin_unlock(&info->lock);
1310			filepage = swappage;
1311			set_page_dirty(filepage);
1312			swap_free(swap);
1313		} else {
1314			shmem_swp_unmap(entry);
1315			spin_unlock(&info->lock);
1316			unlock_page(swappage);
1317			page_cache_release(swappage);
1318			if (error == -ENOMEM) {
1319				/* allow reclaim from this memory cgroup */
1320				error = mem_cgroup_shrink_usage(current->mm,
1321								gfp);
1322				if (error)
1323					goto failed;
1324			}
1325			goto repeat;
1326		}
1327	} else if (sgp == SGP_READ && !filepage) {
1328		shmem_swp_unmap(entry);
1329		filepage = find_get_page(mapping, idx);
1330		if (filepage &&
1331		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1332			spin_unlock(&info->lock);
1333			wait_on_page_locked(filepage);
1334			page_cache_release(filepage);
1335			filepage = NULL;
1336			goto repeat;
1337		}
1338		spin_unlock(&info->lock);
1339	} else {
1340		shmem_swp_unmap(entry);
1341		sbinfo = SHMEM_SB(inode->i_sb);
1342		if (sbinfo->max_blocks) {
1343			spin_lock(&sbinfo->stat_lock);
1344			if (sbinfo->free_blocks == 0 ||
1345			    shmem_acct_block(info->flags)) {
1346				spin_unlock(&sbinfo->stat_lock);
1347				spin_unlock(&info->lock);
1348				error = -ENOSPC;
1349				goto failed;
1350			}
1351			sbinfo->free_blocks--;
1352			inode->i_blocks += BLOCKS_PER_PAGE;
1353			spin_unlock(&sbinfo->stat_lock);
1354		} else if (shmem_acct_block(info->flags)) {
1355			spin_unlock(&info->lock);
1356			error = -ENOSPC;
1357			goto failed;
1358		}
1359
1360		if (!filepage) {
1361			int ret;
1362
1363			spin_unlock(&info->lock);
1364			filepage = shmem_alloc_page(gfp, info, idx);
1365			if (!filepage) {
1366				shmem_unacct_blocks(info->flags, 1);
1367				shmem_free_blocks(inode, 1);
1368				error = -ENOMEM;
1369				goto failed;
1370			}
1371			SetPageSwapBacked(filepage);
1372
1373			/* Precharge page while we can wait, compensate after */
1374			error = mem_cgroup_cache_charge(filepage, current->mm,
1375							gfp & ~__GFP_HIGHMEM);
1376			if (error) {
1377				page_cache_release(filepage);
1378				shmem_unacct_blocks(info->flags, 1);
1379				shmem_free_blocks(inode, 1);
1380				filepage = NULL;
1381				goto failed;
1382			}
1383
1384			spin_lock(&info->lock);
1385			entry = shmem_swp_alloc(info, idx, sgp);
1386			if (IS_ERR(entry))
1387				error = PTR_ERR(entry);
1388			else {
1389				swap = *entry;
1390				shmem_swp_unmap(entry);
1391			}
1392			ret = error || swap.val;
1393			if (ret)
1394				mem_cgroup_uncharge_cache_page(filepage);
1395			else
1396				ret = add_to_page_cache_lru(filepage, mapping,
1397						idx, GFP_NOWAIT);
1398			/*
1399			 * At add_to_page_cache_lru() failure, uncharge will
1400			 * be done automatically.
1401			 */
1402			if (ret) {
1403				spin_unlock(&info->lock);
1404				page_cache_release(filepage);
1405				shmem_unacct_blocks(info->flags, 1);
1406				shmem_free_blocks(inode, 1);
1407				filepage = NULL;
1408				if (error)
1409					goto failed;
1410				goto repeat;
1411			}
1412			info->flags |= SHMEM_PAGEIN;
1413		}
1414
1415		info->alloced++;
1416		spin_unlock(&info->lock);
1417		clear_highpage(filepage);
1418		flush_dcache_page(filepage);
1419		SetPageUptodate(filepage);
1420		if (sgp == SGP_DIRTY)
1421			set_page_dirty(filepage);
1422	}
1423done:
1424	*pagep = filepage;
1425	return 0;
1426
1427failed:
1428	if (*pagep != filepage) {
1429		unlock_page(filepage);
1430		page_cache_release(filepage);
1431	}
1432	return error;
1433}
1434
1435static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1436{
1437	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1438	int error;
1439	int ret;
1440
1441	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1442		return VM_FAULT_SIGBUS;
1443
1444	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1445	if (error)
1446		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1447
1448	mark_page_accessed(vmf->page);
1449	return ret | VM_FAULT_LOCKED;
1450}
1451
1452#ifdef CONFIG_NUMA
1453static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1454{
1455	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1456	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1457}
1458
1459static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1460					  unsigned long addr)
1461{
1462	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1463	unsigned long idx;
1464
1465	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1466	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1467}
1468#endif
1469
1470int shmem_lock(struct file *file, int lock, struct user_struct *user)
1471{
1472	struct inode *inode = file->f_path.dentry->d_inode;
1473	struct shmem_inode_info *info = SHMEM_I(inode);
1474	int retval = -ENOMEM;
1475
1476	spin_lock(&info->lock);
1477	if (lock && !(info->flags & VM_LOCKED)) {
1478		if (!user_shm_lock(inode->i_size, user))
1479			goto out_nomem;
1480		info->flags |= VM_LOCKED;
1481		mapping_set_unevictable(file->f_mapping);
1482	}
1483	if (!lock && (info->flags & VM_LOCKED) && user) {
1484		user_shm_unlock(inode->i_size, user);
1485		info->flags &= ~VM_LOCKED;
1486		mapping_clear_unevictable(file->f_mapping);
1487		scan_mapping_unevictable_pages(file->f_mapping);
1488	}
1489	retval = 0;
1490
1491out_nomem:
1492	spin_unlock(&info->lock);
1493	return retval;
1494}
1495
1496static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1497{
1498	file_accessed(file);
1499	vma->vm_ops = &shmem_vm_ops;
1500	vma->vm_flags |= VM_CAN_NONLINEAR;
1501	return 0;
1502}
1503
1504static struct inode *
1505shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1506{
1507	struct inode *inode;
1508	struct shmem_inode_info *info;
1509	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1510
1511	if (shmem_reserve_inode(sb))
1512		return NULL;
1513
1514	inode = new_inode(sb);
1515	if (inode) {
1516		inode->i_mode = mode;
1517		inode->i_uid = current_fsuid();
1518		inode->i_gid = current_fsgid();
1519		inode->i_blocks = 0;
1520		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1521		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1522		inode->i_generation = get_seconds();
1523		info = SHMEM_I(inode);
1524		memset(info, 0, (char *)inode - (char *)info);
1525		spin_lock_init(&info->lock);
1526		INIT_LIST_HEAD(&info->swaplist);
1527
1528		switch (mode & S_IFMT) {
1529		default:
1530			inode->i_op = &shmem_special_inode_operations;
1531			init_special_inode(inode, mode, dev);
1532			break;
1533		case S_IFREG:
1534			inode->i_mapping->a_ops = &shmem_aops;
1535			inode->i_op = &shmem_inode_operations;
1536			inode->i_fop = &shmem_file_operations;
1537			mpol_shared_policy_init(&info->policy,
1538						 shmem_get_sbmpol(sbinfo));
1539			break;
1540		case S_IFDIR:
1541			inc_nlink(inode);
1542			/* Some things misbehave if size == 0 on a directory */
1543			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1544			inode->i_op = &shmem_dir_inode_operations;
1545			inode->i_fop = &simple_dir_operations;
1546			break;
1547		case S_IFLNK:
1548			/*
1549			 * Must not load anything in the rbtree,
1550			 * mpol_free_shared_policy will not be called.
1551			 */
1552			mpol_shared_policy_init(&info->policy, NULL);
1553			break;
1554		}
1555	} else
1556		shmem_free_inode(sb);
1557	return inode;
1558}
1559
1560#ifdef CONFIG_TMPFS
1561static const struct inode_operations shmem_symlink_inode_operations;
1562static const struct inode_operations shmem_symlink_inline_operations;
1563
1564/*
1565 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1566 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1567 * below the loop driver, in the generic fashion that many filesystems support.
1568 */
1569static int shmem_readpage(struct file *file, struct page *page)
1570{
1571	struct inode *inode = page->mapping->host;
1572	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1573	unlock_page(page);
1574	return error;
1575}
1576
1577static int
1578shmem_write_begin(struct file *file, struct address_space *mapping,
1579			loff_t pos, unsigned len, unsigned flags,
1580			struct page **pagep, void **fsdata)
1581{
1582	struct inode *inode = mapping->host;
1583	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1584	*pagep = NULL;
1585	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1586}
1587
1588static int
1589shmem_write_end(struct file *file, struct address_space *mapping,
1590			loff_t pos, unsigned len, unsigned copied,
1591			struct page *page, void *fsdata)
1592{
1593	struct inode *inode = mapping->host;
1594
1595	if (pos + copied > inode->i_size)
1596		i_size_write(inode, pos + copied);
1597
1598	unlock_page(page);
1599	set_page_dirty(page);
1600	page_cache_release(page);
1601
1602	return copied;
1603}
1604
1605static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1606{
1607	struct inode *inode = filp->f_path.dentry->d_inode;
1608	struct address_space *mapping = inode->i_mapping;
1609	unsigned long index, offset;
1610	enum sgp_type sgp = SGP_READ;
1611
1612	/*
1613	 * Might this read be for a stacking filesystem?  Then when reading
1614	 * holes of a sparse file, we actually need to allocate those pages,
1615	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1616	 */
1617	if (segment_eq(get_fs(), KERNEL_DS))
1618		sgp = SGP_DIRTY;
1619
1620	index = *ppos >> PAGE_CACHE_SHIFT;
1621	offset = *ppos & ~PAGE_CACHE_MASK;
1622
1623	for (;;) {
1624		struct page *page = NULL;
1625		unsigned long end_index, nr, ret;
1626		loff_t i_size = i_size_read(inode);
1627
1628		end_index = i_size >> PAGE_CACHE_SHIFT;
1629		if (index > end_index)
1630			break;
1631		if (index == end_index) {
1632			nr = i_size & ~PAGE_CACHE_MASK;
1633			if (nr <= offset)
1634				break;
1635		}
1636
1637		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1638		if (desc->error) {
1639			if (desc->error == -EINVAL)
1640				desc->error = 0;
1641			break;
1642		}
1643		if (page)
1644			unlock_page(page);
1645
1646		/*
1647		 * We must evaluate after, since reads (unlike writes)
1648		 * are called without i_mutex protection against truncate
1649		 */
1650		nr = PAGE_CACHE_SIZE;
1651		i_size = i_size_read(inode);
1652		end_index = i_size >> PAGE_CACHE_SHIFT;
1653		if (index == end_index) {
1654			nr = i_size & ~PAGE_CACHE_MASK;
1655			if (nr <= offset) {
1656				if (page)
1657					page_cache_release(page);
1658				break;
1659			}
1660		}
1661		nr -= offset;
1662
1663		if (page) {
1664			/*
1665			 * If users can be writing to this page using arbitrary
1666			 * virtual addresses, take care about potential aliasing
1667			 * before reading the page on the kernel side.
1668			 */
1669			if (mapping_writably_mapped(mapping))
1670				flush_dcache_page(page);
1671			/*
1672			 * Mark the page accessed if we read the beginning.
1673			 */
1674			if (!offset)
1675				mark_page_accessed(page);
1676		} else {
1677			page = ZERO_PAGE(0);
1678			page_cache_get(page);
1679		}
1680
1681		/*
1682		 * Ok, we have the page, and it's up-to-date, so
1683		 * now we can copy it to user space...
1684		 *
1685		 * The actor routine returns how many bytes were actually used..
1686		 * NOTE! This may not be the same as how much of a user buffer
1687		 * we filled up (we may be padding etc), so we can only update
1688		 * "pos" here (the actor routine has to update the user buffer
1689		 * pointers and the remaining count).
1690		 */
1691		ret = actor(desc, page, offset, nr);
1692		offset += ret;
1693		index += offset >> PAGE_CACHE_SHIFT;
1694		offset &= ~PAGE_CACHE_MASK;
1695
1696		page_cache_release(page);
1697		if (ret != nr || !desc->count)
1698			break;
1699
1700		cond_resched();
1701	}
1702
1703	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1704	file_accessed(filp);
1705}
1706
1707static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1708		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1709{
1710	struct file *filp = iocb->ki_filp;
1711	ssize_t retval;
1712	unsigned long seg;
1713	size_t count;
1714	loff_t *ppos = &iocb->ki_pos;
1715
1716	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1717	if (retval)
1718		return retval;
1719
1720	for (seg = 0; seg < nr_segs; seg++) {
1721		read_descriptor_t desc;
1722
1723		desc.written = 0;
1724		desc.arg.buf = iov[seg].iov_base;
1725		desc.count = iov[seg].iov_len;
1726		if (desc.count == 0)
1727			continue;
1728		desc.error = 0;
1729		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1730		retval += desc.written;
1731		if (desc.error) {
1732			retval = retval ?: desc.error;
1733			break;
1734		}
1735		if (desc.count > 0)
1736			break;
1737	}
1738	return retval;
1739}
1740
1741static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1742{
1743	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1744
1745	buf->f_type = TMPFS_MAGIC;
1746	buf->f_bsize = PAGE_CACHE_SIZE;
1747	buf->f_namelen = NAME_MAX;
1748	spin_lock(&sbinfo->stat_lock);
1749	if (sbinfo->max_blocks) {
1750		buf->f_blocks = sbinfo->max_blocks;
1751		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1752	}
1753	if (sbinfo->max_inodes) {
1754		buf->f_files = sbinfo->max_inodes;
1755		buf->f_ffree = sbinfo->free_inodes;
1756	}
1757	/* else leave those fields 0 like simple_statfs */
1758	spin_unlock(&sbinfo->stat_lock);
1759	return 0;
1760}
1761
1762/*
1763 * File creation. Allocate an inode, and we're done..
1764 */
1765static int
1766shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1767{
1768	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1769	int error = -ENOSPC;
1770
1771	if (inode) {
1772		error = security_inode_init_security(inode, dir, NULL, NULL,
1773						     NULL);
1774		if (error) {
1775			if (error != -EOPNOTSUPP) {
1776				iput(inode);
1777				return error;
1778			}
1779		}
1780		error = shmem_acl_init(inode, dir);
1781		if (error) {
1782			iput(inode);
1783			return error;
1784		}
1785		if (dir->i_mode & S_ISGID) {
1786			inode->i_gid = dir->i_gid;
1787			if (S_ISDIR(mode))
1788				inode->i_mode |= S_ISGID;
1789		}
1790		dir->i_size += BOGO_DIRENT_SIZE;
1791		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1792		d_instantiate(dentry, inode);
1793		dget(dentry); /* Extra count - pin the dentry in core */
1794	}
1795	return error;
1796}
1797
1798static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1799{
1800	int error;
1801
1802	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1803		return error;
1804	inc_nlink(dir);
1805	return 0;
1806}
1807
1808static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1809		struct nameidata *nd)
1810{
1811	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1812}
1813
1814/*
1815 * Link a file..
1816 */
1817static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1818{
1819	struct inode *inode = old_dentry->d_inode;
1820	int ret;
1821
1822	/*
1823	 * No ordinary (disk based) filesystem counts links as inodes;
1824	 * but each new link needs a new dentry, pinning lowmem, and
1825	 * tmpfs dentries cannot be pruned until they are unlinked.
1826	 */
1827	ret = shmem_reserve_inode(inode->i_sb);
1828	if (ret)
1829		goto out;
1830
1831	dir->i_size += BOGO_DIRENT_SIZE;
1832	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1833	inc_nlink(inode);
1834	atomic_inc(&inode->i_count);	/* New dentry reference */
1835	dget(dentry);		/* Extra pinning count for the created dentry */
1836	d_instantiate(dentry, inode);
1837out:
1838	return ret;
1839}
1840
1841static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1842{
1843	struct inode *inode = dentry->d_inode;
1844
1845	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1846		shmem_free_inode(inode->i_sb);
1847
1848	dir->i_size -= BOGO_DIRENT_SIZE;
1849	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1850	drop_nlink(inode);
1851	dput(dentry);	/* Undo the count from "create" - this does all the work */
1852	return 0;
1853}
1854
1855static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1856{
1857	if (!simple_empty(dentry))
1858		return -ENOTEMPTY;
1859
1860	drop_nlink(dentry->d_inode);
1861	drop_nlink(dir);
1862	return shmem_unlink(dir, dentry);
1863}
1864
1865/*
1866 * The VFS layer already does all the dentry stuff for rename,
1867 * we just have to decrement the usage count for the target if
1868 * it exists so that the VFS layer correctly free's it when it
1869 * gets overwritten.
1870 */
1871static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1872{
1873	struct inode *inode = old_dentry->d_inode;
1874	int they_are_dirs = S_ISDIR(inode->i_mode);
1875
1876	if (!simple_empty(new_dentry))
1877		return -ENOTEMPTY;
1878
1879	if (new_dentry->d_inode) {
1880		(void) shmem_unlink(new_dir, new_dentry);
1881		if (they_are_dirs)
1882			drop_nlink(old_dir);
1883	} else if (they_are_dirs) {
1884		drop_nlink(old_dir);
1885		inc_nlink(new_dir);
1886	}
1887
1888	old_dir->i_size -= BOGO_DIRENT_SIZE;
1889	new_dir->i_size += BOGO_DIRENT_SIZE;
1890	old_dir->i_ctime = old_dir->i_mtime =
1891	new_dir->i_ctime = new_dir->i_mtime =
1892	inode->i_ctime = CURRENT_TIME;
1893	return 0;
1894}
1895
1896static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1897{
1898	int error;
1899	int len;
1900	struct inode *inode;
1901	struct page *page = NULL;
1902	char *kaddr;
1903	struct shmem_inode_info *info;
1904
1905	len = strlen(symname) + 1;
1906	if (len > PAGE_CACHE_SIZE)
1907		return -ENAMETOOLONG;
1908
1909	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1910	if (!inode)
1911		return -ENOSPC;
1912
1913	error = security_inode_init_security(inode, dir, NULL, NULL,
1914					     NULL);
1915	if (error) {
1916		if (error != -EOPNOTSUPP) {
1917			iput(inode);
1918			return error;
1919		}
1920		error = 0;
1921	}
1922
1923	info = SHMEM_I(inode);
1924	inode->i_size = len-1;
1925	if (len <= (char *)inode - (char *)info) {
1926		/* do it inline */
1927		memcpy(info, symname, len);
1928		inode->i_op = &shmem_symlink_inline_operations;
1929	} else {
1930		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1931		if (error) {
1932			iput(inode);
1933			return error;
1934		}
1935		unlock_page(page);
1936		inode->i_mapping->a_ops = &shmem_aops;
1937		inode->i_op = &shmem_symlink_inode_operations;
1938		kaddr = kmap_atomic(page, KM_USER0);
1939		memcpy(kaddr, symname, len);
1940		kunmap_atomic(kaddr, KM_USER0);
1941		set_page_dirty(page);
1942		page_cache_release(page);
1943	}
1944	if (dir->i_mode & S_ISGID)
1945		inode->i_gid = dir->i_gid;
1946	dir->i_size += BOGO_DIRENT_SIZE;
1947	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1948	d_instantiate(dentry, inode);
1949	dget(dentry);
1950	return 0;
1951}
1952
1953static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1954{
1955	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1956	return NULL;
1957}
1958
1959static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1960{
1961	struct page *page = NULL;
1962	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1963	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1964	if (page)
1965		unlock_page(page);
1966	return page;
1967}
1968
1969static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1970{
1971	if (!IS_ERR(nd_get_link(nd))) {
1972		struct page *page = cookie;
1973		kunmap(page);
1974		mark_page_accessed(page);
1975		page_cache_release(page);
1976	}
1977}
1978
1979static const struct inode_operations shmem_symlink_inline_operations = {
1980	.readlink	= generic_readlink,
1981	.follow_link	= shmem_follow_link_inline,
1982};
1983
1984static const struct inode_operations shmem_symlink_inode_operations = {
1985	.truncate	= shmem_truncate,
1986	.readlink	= generic_readlink,
1987	.follow_link	= shmem_follow_link,
1988	.put_link	= shmem_put_link,
1989};
1990
1991#ifdef CONFIG_TMPFS_POSIX_ACL
1992/*
1993 * Superblocks without xattr inode operations will get security.* xattr
1994 * support from the VFS "for free". As soon as we have any other xattrs
1995 * like ACLs, we also need to implement the security.* handlers at
1996 * filesystem level, though.
1997 */
1998
1999static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2000					size_t list_len, const char *name,
2001					size_t name_len)
2002{
2003	return security_inode_listsecurity(inode, list, list_len);
2004}
2005
2006static int shmem_xattr_security_get(struct inode *inode, const char *name,
2007				    void *buffer, size_t size)
2008{
2009	if (strcmp(name, "") == 0)
2010		return -EINVAL;
2011	return xattr_getsecurity(inode, name, buffer, size);
2012}
2013
2014static int shmem_xattr_security_set(struct inode *inode, const char *name,
2015				    const void *value, size_t size, int flags)
2016{
2017	if (strcmp(name, "") == 0)
2018		return -EINVAL;
2019	return security_inode_setsecurity(inode, name, value, size, flags);
2020}
2021
2022static struct xattr_handler shmem_xattr_security_handler = {
2023	.prefix = XATTR_SECURITY_PREFIX,
2024	.list   = shmem_xattr_security_list,
2025	.get    = shmem_xattr_security_get,
2026	.set    = shmem_xattr_security_set,
2027};
2028
2029static struct xattr_handler *shmem_xattr_handlers[] = {
2030	&shmem_xattr_acl_access_handler,
2031	&shmem_xattr_acl_default_handler,
2032	&shmem_xattr_security_handler,
2033	NULL
2034};
2035#endif
2036
2037static struct dentry *shmem_get_parent(struct dentry *child)
2038{
2039	return ERR_PTR(-ESTALE);
2040}
2041
2042static int shmem_match(struct inode *ino, void *vfh)
2043{
2044	__u32 *fh = vfh;
2045	__u64 inum = fh[2];
2046	inum = (inum << 32) | fh[1];
2047	return ino->i_ino == inum && fh[0] == ino->i_generation;
2048}
2049
2050static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2051		struct fid *fid, int fh_len, int fh_type)
2052{
2053	struct inode *inode;
2054	struct dentry *dentry = NULL;
2055	u64 inum = fid->raw[2];
2056	inum = (inum << 32) | fid->raw[1];
2057
2058	if (fh_len < 3)
2059		return NULL;
2060
2061	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2062			shmem_match, fid->raw);
2063	if (inode) {
2064		dentry = d_find_alias(inode);
2065		iput(inode);
2066	}
2067
2068	return dentry;
2069}
2070
2071static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2072				int connectable)
2073{
2074	struct inode *inode = dentry->d_inode;
2075
2076	if (*len < 3)
2077		return 255;
2078
2079	if (hlist_unhashed(&inode->i_hash)) {
2080		/* Unfortunately insert_inode_hash is not idempotent,
2081		 * so as we hash inodes here rather than at creation
2082		 * time, we need a lock to ensure we only try
2083		 * to do it once
2084		 */
2085		static DEFINE_SPINLOCK(lock);
2086		spin_lock(&lock);
2087		if (hlist_unhashed(&inode->i_hash))
2088			__insert_inode_hash(inode,
2089					    inode->i_ino + inode->i_generation);
2090		spin_unlock(&lock);
2091	}
2092
2093	fh[0] = inode->i_generation;
2094	fh[1] = inode->i_ino;
2095	fh[2] = ((__u64)inode->i_ino) >> 32;
2096
2097	*len = 3;
2098	return 1;
2099}
2100
2101static const struct export_operations shmem_export_ops = {
2102	.get_parent     = shmem_get_parent,
2103	.encode_fh      = shmem_encode_fh,
2104	.fh_to_dentry	= shmem_fh_to_dentry,
2105};
2106
2107static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2108			       bool remount)
2109{
2110	char *this_char, *value, *rest;
2111
2112	while (options != NULL) {
2113		this_char = options;
2114		for (;;) {
2115			/*
2116			 * NUL-terminate this option: unfortunately,
2117			 * mount options form a comma-separated list,
2118			 * but mpol's nodelist may also contain commas.
2119			 */
2120			options = strchr(options, ',');
2121			if (options == NULL)
2122				break;
2123			options++;
2124			if (!isdigit(*options)) {
2125				options[-1] = '\0';
2126				break;
2127			}
2128		}
2129		if (!*this_char)
2130			continue;
2131		if ((value = strchr(this_char,'=')) != NULL) {
2132			*value++ = 0;
2133		} else {
2134			printk(KERN_ERR
2135			    "tmpfs: No value for mount option '%s'\n",
2136			    this_char);
2137			return 1;
2138		}
2139
2140		if (!strcmp(this_char,"size")) {
2141			unsigned long long size;
2142			size = memparse(value,&rest);
2143			if (*rest == '%') {
2144				size <<= PAGE_SHIFT;
2145				size *= totalram_pages;
2146				do_div(size, 100);
2147				rest++;
2148			}
2149			if (*rest)
2150				goto bad_val;
2151			sbinfo->max_blocks =
2152				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2153		} else if (!strcmp(this_char,"nr_blocks")) {
2154			sbinfo->max_blocks = memparse(value, &rest);
2155			if (*rest)
2156				goto bad_val;
2157		} else if (!strcmp(this_char,"nr_inodes")) {
2158			sbinfo->max_inodes = memparse(value, &rest);
2159			if (*rest)
2160				goto bad_val;
2161		} else if (!strcmp(this_char,"mode")) {
2162			if (remount)
2163				continue;
2164			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2165			if (*rest)
2166				goto bad_val;
2167		} else if (!strcmp(this_char,"uid")) {
2168			if (remount)
2169				continue;
2170			sbinfo->uid = simple_strtoul(value, &rest, 0);
2171			if (*rest)
2172				goto bad_val;
2173		} else if (!strcmp(this_char,"gid")) {
2174			if (remount)
2175				continue;
2176			sbinfo->gid = simple_strtoul(value, &rest, 0);
2177			if (*rest)
2178				goto bad_val;
2179		} else if (!strcmp(this_char,"mpol")) {
2180			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2181				goto bad_val;
2182		} else {
2183			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2184			       this_char);
2185			return 1;
2186		}
2187	}
2188	return 0;
2189
2190bad_val:
2191	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2192	       value, this_char);
2193	return 1;
2194
2195}
2196
2197static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2198{
2199	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2200	struct shmem_sb_info config = *sbinfo;
2201	unsigned long blocks;
2202	unsigned long inodes;
2203	int error = -EINVAL;
2204
2205	if (shmem_parse_options(data, &config, true))
2206		return error;
2207
2208	spin_lock(&sbinfo->stat_lock);
2209	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2210	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2211	if (config.max_blocks < blocks)
2212		goto out;
2213	if (config.max_inodes < inodes)
2214		goto out;
2215	/*
2216	 * Those tests also disallow limited->unlimited while any are in
2217	 * use, so i_blocks will always be zero when max_blocks is zero;
2218	 * but we must separately disallow unlimited->limited, because
2219	 * in that case we have no record of how much is already in use.
2220	 */
2221	if (config.max_blocks && !sbinfo->max_blocks)
2222		goto out;
2223	if (config.max_inodes && !sbinfo->max_inodes)
2224		goto out;
2225
2226	error = 0;
2227	sbinfo->max_blocks  = config.max_blocks;
2228	sbinfo->free_blocks = config.max_blocks - blocks;
2229	sbinfo->max_inodes  = config.max_inodes;
2230	sbinfo->free_inodes = config.max_inodes - inodes;
2231
2232	mpol_put(sbinfo->mpol);
2233	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2234out:
2235	spin_unlock(&sbinfo->stat_lock);
2236	return error;
2237}
2238
2239static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2240{
2241	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2242
2243	if (sbinfo->max_blocks != shmem_default_max_blocks())
2244		seq_printf(seq, ",size=%luk",
2245			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2246	if (sbinfo->max_inodes != shmem_default_max_inodes())
2247		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2248	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2249		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2250	if (sbinfo->uid != 0)
2251		seq_printf(seq, ",uid=%u", sbinfo->uid);
2252	if (sbinfo->gid != 0)
2253		seq_printf(seq, ",gid=%u", sbinfo->gid);
2254	shmem_show_mpol(seq, sbinfo->mpol);
2255	return 0;
2256}
2257#endif /* CONFIG_TMPFS */
2258
2259static void shmem_put_super(struct super_block *sb)
2260{
2261	kfree(sb->s_fs_info);
2262	sb->s_fs_info = NULL;
2263}
2264
2265static int shmem_fill_super(struct super_block *sb,
2266			    void *data, int silent)
2267{
2268	struct inode *inode;
2269	struct dentry *root;
2270	struct shmem_sb_info *sbinfo;
2271	int err = -ENOMEM;
2272
2273	/* Round up to L1_CACHE_BYTES to resist false sharing */
2274	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2275				L1_CACHE_BYTES), GFP_KERNEL);
2276	if (!sbinfo)
2277		return -ENOMEM;
2278
2279	sbinfo->max_blocks = 0;
2280	sbinfo->max_inodes = 0;
2281	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2282	sbinfo->uid = current_fsuid();
2283	sbinfo->gid = current_fsgid();
2284	sbinfo->mpol = NULL;
2285	sb->s_fs_info = sbinfo;
2286
2287#ifdef CONFIG_TMPFS
2288	/*
2289	 * Per default we only allow half of the physical ram per
2290	 * tmpfs instance, limiting inodes to one per page of lowmem;
2291	 * but the internal instance is left unlimited.
2292	 */
2293	if (!(sb->s_flags & MS_NOUSER)) {
2294		sbinfo->max_blocks = shmem_default_max_blocks();
2295		sbinfo->max_inodes = shmem_default_max_inodes();
2296		if (shmem_parse_options(data, sbinfo, false)) {
2297			err = -EINVAL;
2298			goto failed;
2299		}
2300	}
2301	sb->s_export_op = &shmem_export_ops;
2302#else
2303	sb->s_flags |= MS_NOUSER;
2304#endif
2305
2306	spin_lock_init(&sbinfo->stat_lock);
2307	sbinfo->free_blocks = sbinfo->max_blocks;
2308	sbinfo->free_inodes = sbinfo->max_inodes;
2309
2310	sb->s_maxbytes = SHMEM_MAX_BYTES;
2311	sb->s_blocksize = PAGE_CACHE_SIZE;
2312	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2313	sb->s_magic = TMPFS_MAGIC;
2314	sb->s_op = &shmem_ops;
2315	sb->s_time_gran = 1;
2316#ifdef CONFIG_TMPFS_POSIX_ACL
2317	sb->s_xattr = shmem_xattr_handlers;
2318	sb->s_flags |= MS_POSIXACL;
2319#endif
2320
2321	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2322	if (!inode)
2323		goto failed;
2324	inode->i_uid = sbinfo->uid;
2325	inode->i_gid = sbinfo->gid;
2326	root = d_alloc_root(inode);
2327	if (!root)
2328		goto failed_iput;
2329	sb->s_root = root;
2330	return 0;
2331
2332failed_iput:
2333	iput(inode);
2334failed:
2335	shmem_put_super(sb);
2336	return err;
2337}
2338
2339static struct kmem_cache *shmem_inode_cachep;
2340
2341static struct inode *shmem_alloc_inode(struct super_block *sb)
2342{
2343	struct shmem_inode_info *p;
2344	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2345	if (!p)
2346		return NULL;
2347	return &p->vfs_inode;
2348}
2349
2350static void shmem_destroy_inode(struct inode *inode)
2351{
2352	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2353		/* only struct inode is valid if it's an inline symlink */
2354		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2355	}
2356	shmem_acl_destroy_inode(inode);
2357	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2358}
2359
2360static void init_once(void *foo)
2361{
2362	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2363
2364	inode_init_once(&p->vfs_inode);
2365#ifdef CONFIG_TMPFS_POSIX_ACL
2366	p->i_acl = NULL;
2367	p->i_default_acl = NULL;
2368#endif
2369}
2370
2371static int init_inodecache(void)
2372{
2373	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2374				sizeof(struct shmem_inode_info),
2375				0, SLAB_PANIC, init_once);
2376	return 0;
2377}
2378
2379static void destroy_inodecache(void)
2380{
2381	kmem_cache_destroy(shmem_inode_cachep);
2382}
2383
2384static const struct address_space_operations shmem_aops = {
2385	.writepage	= shmem_writepage,
2386	.set_page_dirty	= __set_page_dirty_no_writeback,
2387#ifdef CONFIG_TMPFS
2388	.readpage	= shmem_readpage,
2389	.write_begin	= shmem_write_begin,
2390	.write_end	= shmem_write_end,
2391#endif
2392	.migratepage	= migrate_page,
2393};
2394
2395static const struct file_operations shmem_file_operations = {
2396	.mmap		= shmem_mmap,
2397#ifdef CONFIG_TMPFS
2398	.llseek		= generic_file_llseek,
2399	.read		= do_sync_read,
2400	.write		= do_sync_write,
2401	.aio_read	= shmem_file_aio_read,
2402	.aio_write	= generic_file_aio_write,
2403	.fsync		= simple_sync_file,
2404	.splice_read	= generic_file_splice_read,
2405	.splice_write	= generic_file_splice_write,
2406#endif
2407};
2408
2409static const struct inode_operations shmem_inode_operations = {
2410	.truncate	= shmem_truncate,
2411	.setattr	= shmem_notify_change,
2412	.truncate_range	= shmem_truncate_range,
2413#ifdef CONFIG_TMPFS_POSIX_ACL
2414	.setxattr	= generic_setxattr,
2415	.getxattr	= generic_getxattr,
2416	.listxattr	= generic_listxattr,
2417	.removexattr	= generic_removexattr,
2418	.permission	= shmem_permission,
2419#endif
2420
2421};
2422
2423static const struct inode_operations shmem_dir_inode_operations = {
2424#ifdef CONFIG_TMPFS
2425	.create		= shmem_create,
2426	.lookup		= simple_lookup,
2427	.link		= shmem_link,
2428	.unlink		= shmem_unlink,
2429	.symlink	= shmem_symlink,
2430	.mkdir		= shmem_mkdir,
2431	.rmdir		= shmem_rmdir,
2432	.mknod		= shmem_mknod,
2433	.rename		= shmem_rename,
2434#endif
2435#ifdef CONFIG_TMPFS_POSIX_ACL
2436	.setattr	= shmem_notify_change,
2437	.setxattr	= generic_setxattr,
2438	.getxattr	= generic_getxattr,
2439	.listxattr	= generic_listxattr,
2440	.removexattr	= generic_removexattr,
2441	.permission	= shmem_permission,
2442#endif
2443};
2444
2445static const struct inode_operations shmem_special_inode_operations = {
2446#ifdef CONFIG_TMPFS_POSIX_ACL
2447	.setattr	= shmem_notify_change,
2448	.setxattr	= generic_setxattr,
2449	.getxattr	= generic_getxattr,
2450	.listxattr	= generic_listxattr,
2451	.removexattr	= generic_removexattr,
2452	.permission	= shmem_permission,
2453#endif
2454};
2455
2456static const struct super_operations shmem_ops = {
2457	.alloc_inode	= shmem_alloc_inode,
2458	.destroy_inode	= shmem_destroy_inode,
2459#ifdef CONFIG_TMPFS
2460	.statfs		= shmem_statfs,
2461	.remount_fs	= shmem_remount_fs,
2462	.show_options	= shmem_show_options,
2463#endif
2464	.delete_inode	= shmem_delete_inode,
2465	.drop_inode	= generic_delete_inode,
2466	.put_super	= shmem_put_super,
2467};
2468
2469static struct vm_operations_struct shmem_vm_ops = {
2470	.fault		= shmem_fault,
2471#ifdef CONFIG_NUMA
2472	.set_policy     = shmem_set_policy,
2473	.get_policy     = shmem_get_policy,
2474#endif
2475};
2476
2477
2478static int shmem_get_sb(struct file_system_type *fs_type,
2479	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2480{
2481	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2482}
2483
2484static struct file_system_type tmpfs_fs_type = {
2485	.owner		= THIS_MODULE,
2486	.name		= "tmpfs",
2487	.get_sb		= shmem_get_sb,
2488	.kill_sb	= kill_litter_super,
2489};
2490static struct vfsmount *shm_mnt;
2491
2492static int __init init_tmpfs(void)
2493{
2494	int error;
2495
2496	error = bdi_init(&shmem_backing_dev_info);
2497	if (error)
2498		goto out4;
2499
2500	error = init_inodecache();
2501	if (error)
2502		goto out3;
2503
2504	error = register_filesystem(&tmpfs_fs_type);
2505	if (error) {
2506		printk(KERN_ERR "Could not register tmpfs\n");
2507		goto out2;
2508	}
2509
2510	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2511				tmpfs_fs_type.name, NULL);
2512	if (IS_ERR(shm_mnt)) {
2513		error = PTR_ERR(shm_mnt);
2514		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2515		goto out1;
2516	}
2517	return 0;
2518
2519out1:
2520	unregister_filesystem(&tmpfs_fs_type);
2521out2:
2522	destroy_inodecache();
2523out3:
2524	bdi_destroy(&shmem_backing_dev_info);
2525out4:
2526	shm_mnt = ERR_PTR(error);
2527	return error;
2528}
2529module_init(init_tmpfs)
2530
2531/**
2532 * shmem_file_setup - get an unlinked file living in tmpfs
2533 * @name: name for dentry (to be seen in /proc/<pid>/maps
2534 * @size: size to be set for the file
2535 * @flags: vm_flags
2536 */
2537struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2538{
2539	int error;
2540	struct file *file;
2541	struct inode *inode;
2542	struct dentry *dentry, *root;
2543	struct qstr this;
2544
2545	if (IS_ERR(shm_mnt))
2546		return (void *)shm_mnt;
2547
2548	if (size < 0 || size > SHMEM_MAX_BYTES)
2549		return ERR_PTR(-EINVAL);
2550
2551	if (shmem_acct_size(flags, size))
2552		return ERR_PTR(-ENOMEM);
2553
2554	error = -ENOMEM;
2555	this.name = name;
2556	this.len = strlen(name);
2557	this.hash = 0; /* will go */
2558	root = shm_mnt->mnt_root;
2559	dentry = d_alloc(root, &this);
2560	if (!dentry)
2561		goto put_memory;
2562
2563	error = -ENFILE;
2564	file = get_empty_filp();
2565	if (!file)
2566		goto put_dentry;
2567
2568	error = -ENOSPC;
2569	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2570	if (!inode)
2571		goto close_file;
2572
2573	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2574	d_instantiate(dentry, inode);
2575	inode->i_size = size;
2576	inode->i_nlink = 0;	/* It is unlinked */
2577	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2578			&shmem_file_operations);
2579	return file;
2580
2581close_file:
2582	put_filp(file);
2583put_dentry:
2584	dput(dentry);
2585put_memory:
2586	shmem_unacct_size(flags, size);
2587	return ERR_PTR(error);
2588}
2589EXPORT_SYMBOL_GPL(shmem_file_setup);
2590
2591/**
2592 * shmem_zero_setup - setup a shared anonymous mapping
2593 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2594 */
2595int shmem_zero_setup(struct vm_area_struct *vma)
2596{
2597	struct file *file;
2598	loff_t size = vma->vm_end - vma->vm_start;
2599
2600	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2601	if (IS_ERR(file))
2602		return PTR_ERR(file);
2603
2604	ima_shm_check(file);
2605	if (vma->vm_file)
2606		fput(vma->vm_file);
2607	vma->vm_file = file;
2608	vma->vm_ops = &shmem_vm_ops;
2609	return 0;
2610}
2611