shmem.c revision 20c2df83d25c6a95affe6157a4c9cac4cf5ffaac
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52#include <linux/backing-dev.h>
53
54#include <asm/uaccess.h>
55#include <asm/div64.h>
56#include <asm/pgtable.h>
57
58/* This magic number is used in glibc for posix shared memory */
59#define TMPFS_MAGIC	0x01021994
60
61#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
64
65#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67
68#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69
70/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71#define SHMEM_PAGEIN	 VM_READ
72#define SHMEM_TRUNCATE	 VM_WRITE
73
74/* Definition to limit shmem_truncate's steps between cond_rescheds */
75#define LATENCY_LIMIT	 64
76
77/* Pretend that each entry is of this size in directory's i_size */
78#define BOGO_DIRENT_SIZE 20
79
80/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81enum sgp_type {
82	SGP_QUICK,	/* don't try more than file page cache lookup */
83	SGP_READ,	/* don't exceed i_size, don't allocate page */
84	SGP_CACHE,	/* don't exceed i_size, may allocate page */
85	SGP_WRITE,	/* may exceed i_size, may allocate page */
86	SGP_FAULT,	/* same as SGP_CACHE, return with page locked */
87};
88
89static int shmem_getpage(struct inode *inode, unsigned long idx,
90			 struct page **pagep, enum sgp_type sgp, int *type);
91
92static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
93{
94	/*
95	 * The above definition of ENTRIES_PER_PAGE, and the use of
96	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
97	 * might be reconsidered if it ever diverges from PAGE_SIZE.
98	 *
99	 * __GFP_MOVABLE is masked out as swap vectors cannot move
100	 */
101	return alloc_pages((gfp_mask & ~__GFP_MOVABLE) | __GFP_ZERO,
102				PAGE_CACHE_SHIFT-PAGE_SHIFT);
103}
104
105static inline void shmem_dir_free(struct page *page)
106{
107	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
108}
109
110static struct page **shmem_dir_map(struct page *page)
111{
112	return (struct page **)kmap_atomic(page, KM_USER0);
113}
114
115static inline void shmem_dir_unmap(struct page **dir)
116{
117	kunmap_atomic(dir, KM_USER0);
118}
119
120static swp_entry_t *shmem_swp_map(struct page *page)
121{
122	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
123}
124
125static inline void shmem_swp_balance_unmap(void)
126{
127	/*
128	 * When passing a pointer to an i_direct entry, to code which
129	 * also handles indirect entries and so will shmem_swp_unmap,
130	 * we must arrange for the preempt count to remain in balance.
131	 * What kmap_atomic of a lowmem page does depends on config
132	 * and architecture, so pretend to kmap_atomic some lowmem page.
133	 */
134	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
135}
136
137static inline void shmem_swp_unmap(swp_entry_t *entry)
138{
139	kunmap_atomic(entry, KM_USER1);
140}
141
142static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
143{
144	return sb->s_fs_info;
145}
146
147/*
148 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
149 * for shared memory and for shared anonymous (/dev/zero) mappings
150 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
151 * consistent with the pre-accounting of private mappings ...
152 */
153static inline int shmem_acct_size(unsigned long flags, loff_t size)
154{
155	return (flags & VM_ACCOUNT)?
156		security_vm_enough_memory(VM_ACCT(size)): 0;
157}
158
159static inline void shmem_unacct_size(unsigned long flags, loff_t size)
160{
161	if (flags & VM_ACCOUNT)
162		vm_unacct_memory(VM_ACCT(size));
163}
164
165/*
166 * ... whereas tmpfs objects are accounted incrementally as
167 * pages are allocated, in order to allow huge sparse files.
168 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170 */
171static inline int shmem_acct_block(unsigned long flags)
172{
173	return (flags & VM_ACCOUNT)?
174		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
175}
176
177static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178{
179	if (!(flags & VM_ACCOUNT))
180		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181}
182
183static const struct super_operations shmem_ops;
184static const struct address_space_operations shmem_aops;
185static const struct file_operations shmem_file_operations;
186static const struct inode_operations shmem_inode_operations;
187static const struct inode_operations shmem_dir_inode_operations;
188static const struct inode_operations shmem_special_inode_operations;
189static struct vm_operations_struct shmem_vm_ops;
190
191static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
192	.ra_pages	= 0,	/* No readahead */
193	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
194	.unplug_io_fn	= default_unplug_io_fn,
195};
196
197static LIST_HEAD(shmem_swaplist);
198static DEFINE_SPINLOCK(shmem_swaplist_lock);
199
200static void shmem_free_blocks(struct inode *inode, long pages)
201{
202	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
203	if (sbinfo->max_blocks) {
204		spin_lock(&sbinfo->stat_lock);
205		sbinfo->free_blocks += pages;
206		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
207		spin_unlock(&sbinfo->stat_lock);
208	}
209}
210
211/*
212 * shmem_recalc_inode - recalculate the size of an inode
213 *
214 * @inode: inode to recalc
215 *
216 * We have to calculate the free blocks since the mm can drop
217 * undirtied hole pages behind our back.
218 *
219 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
220 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
221 *
222 * It has to be called with the spinlock held.
223 */
224static void shmem_recalc_inode(struct inode *inode)
225{
226	struct shmem_inode_info *info = SHMEM_I(inode);
227	long freed;
228
229	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
230	if (freed > 0) {
231		info->alloced -= freed;
232		shmem_unacct_blocks(info->flags, freed);
233		shmem_free_blocks(inode, freed);
234	}
235}
236
237/*
238 * shmem_swp_entry - find the swap vector position in the info structure
239 *
240 * @info:  info structure for the inode
241 * @index: index of the page to find
242 * @page:  optional page to add to the structure. Has to be preset to
243 *         all zeros
244 *
245 * If there is no space allocated yet it will return NULL when
246 * page is NULL, else it will use the page for the needed block,
247 * setting it to NULL on return to indicate that it has been used.
248 *
249 * The swap vector is organized the following way:
250 *
251 * There are SHMEM_NR_DIRECT entries directly stored in the
252 * shmem_inode_info structure. So small files do not need an addional
253 * allocation.
254 *
255 * For pages with index > SHMEM_NR_DIRECT there is the pointer
256 * i_indirect which points to a page which holds in the first half
257 * doubly indirect blocks, in the second half triple indirect blocks:
258 *
259 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
260 * following layout (for SHMEM_NR_DIRECT == 16):
261 *
262 * i_indirect -> dir --> 16-19
263 * 	      |	     +-> 20-23
264 * 	      |
265 * 	      +-->dir2 --> 24-27
266 * 	      |	       +-> 28-31
267 * 	      |	       +-> 32-35
268 * 	      |	       +-> 36-39
269 * 	      |
270 * 	      +-->dir3 --> 40-43
271 * 	       	       +-> 44-47
272 * 	      	       +-> 48-51
273 * 	      	       +-> 52-55
274 */
275static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
276{
277	unsigned long offset;
278	struct page **dir;
279	struct page *subdir;
280
281	if (index < SHMEM_NR_DIRECT) {
282		shmem_swp_balance_unmap();
283		return info->i_direct+index;
284	}
285	if (!info->i_indirect) {
286		if (page) {
287			info->i_indirect = *page;
288			*page = NULL;
289		}
290		return NULL;			/* need another page */
291	}
292
293	index -= SHMEM_NR_DIRECT;
294	offset = index % ENTRIES_PER_PAGE;
295	index /= ENTRIES_PER_PAGE;
296	dir = shmem_dir_map(info->i_indirect);
297
298	if (index >= ENTRIES_PER_PAGE/2) {
299		index -= ENTRIES_PER_PAGE/2;
300		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
301		index %= ENTRIES_PER_PAGE;
302		subdir = *dir;
303		if (!subdir) {
304			if (page) {
305				*dir = *page;
306				*page = NULL;
307			}
308			shmem_dir_unmap(dir);
309			return NULL;		/* need another page */
310		}
311		shmem_dir_unmap(dir);
312		dir = shmem_dir_map(subdir);
313	}
314
315	dir += index;
316	subdir = *dir;
317	if (!subdir) {
318		if (!page || !(subdir = *page)) {
319			shmem_dir_unmap(dir);
320			return NULL;		/* need a page */
321		}
322		*dir = subdir;
323		*page = NULL;
324	}
325	shmem_dir_unmap(dir);
326	return shmem_swp_map(subdir) + offset;
327}
328
329static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
330{
331	long incdec = value? 1: -1;
332
333	entry->val = value;
334	info->swapped += incdec;
335	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
336		struct page *page = kmap_atomic_to_page(entry);
337		set_page_private(page, page_private(page) + incdec);
338	}
339}
340
341/*
342 * shmem_swp_alloc - get the position of the swap entry for the page.
343 *                   If it does not exist allocate the entry.
344 *
345 * @info:	info structure for the inode
346 * @index:	index of the page to find
347 * @sgp:	check and recheck i_size? skip allocation?
348 */
349static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
350{
351	struct inode *inode = &info->vfs_inode;
352	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
353	struct page *page = NULL;
354	swp_entry_t *entry;
355
356	if (sgp != SGP_WRITE &&
357	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
358		return ERR_PTR(-EINVAL);
359
360	while (!(entry = shmem_swp_entry(info, index, &page))) {
361		if (sgp == SGP_READ)
362			return shmem_swp_map(ZERO_PAGE(0));
363		/*
364		 * Test free_blocks against 1 not 0, since we have 1 data
365		 * page (and perhaps indirect index pages) yet to allocate:
366		 * a waste to allocate index if we cannot allocate data.
367		 */
368		if (sbinfo->max_blocks) {
369			spin_lock(&sbinfo->stat_lock);
370			if (sbinfo->free_blocks <= 1) {
371				spin_unlock(&sbinfo->stat_lock);
372				return ERR_PTR(-ENOSPC);
373			}
374			sbinfo->free_blocks--;
375			inode->i_blocks += BLOCKS_PER_PAGE;
376			spin_unlock(&sbinfo->stat_lock);
377		}
378
379		spin_unlock(&info->lock);
380		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
381		if (page)
382			set_page_private(page, 0);
383		spin_lock(&info->lock);
384
385		if (!page) {
386			shmem_free_blocks(inode, 1);
387			return ERR_PTR(-ENOMEM);
388		}
389		if (sgp != SGP_WRITE &&
390		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
391			entry = ERR_PTR(-EINVAL);
392			break;
393		}
394		if (info->next_index <= index)
395			info->next_index = index + 1;
396	}
397	if (page) {
398		/* another task gave its page, or truncated the file */
399		shmem_free_blocks(inode, 1);
400		shmem_dir_free(page);
401	}
402	if (info->next_index <= index && !IS_ERR(entry))
403		info->next_index = index + 1;
404	return entry;
405}
406
407/*
408 * shmem_free_swp - free some swap entries in a directory
409 *
410 * @dir:        pointer to the directory
411 * @edir:       pointer after last entry of the directory
412 * @punch_lock: pointer to spinlock when needed for the holepunch case
413 */
414static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
415						spinlock_t *punch_lock)
416{
417	spinlock_t *punch_unlock = NULL;
418	swp_entry_t *ptr;
419	int freed = 0;
420
421	for (ptr = dir; ptr < edir; ptr++) {
422		if (ptr->val) {
423			if (unlikely(punch_lock)) {
424				punch_unlock = punch_lock;
425				punch_lock = NULL;
426				spin_lock(punch_unlock);
427				if (!ptr->val)
428					continue;
429			}
430			free_swap_and_cache(*ptr);
431			*ptr = (swp_entry_t){0};
432			freed++;
433		}
434	}
435	if (punch_unlock)
436		spin_unlock(punch_unlock);
437	return freed;
438}
439
440static int shmem_map_and_free_swp(struct page *subdir, int offset,
441		int limit, struct page ***dir, spinlock_t *punch_lock)
442{
443	swp_entry_t *ptr;
444	int freed = 0;
445
446	ptr = shmem_swp_map(subdir);
447	for (; offset < limit; offset += LATENCY_LIMIT) {
448		int size = limit - offset;
449		if (size > LATENCY_LIMIT)
450			size = LATENCY_LIMIT;
451		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
452							punch_lock);
453		if (need_resched()) {
454			shmem_swp_unmap(ptr);
455			if (*dir) {
456				shmem_dir_unmap(*dir);
457				*dir = NULL;
458			}
459			cond_resched();
460			ptr = shmem_swp_map(subdir);
461		}
462	}
463	shmem_swp_unmap(ptr);
464	return freed;
465}
466
467static void shmem_free_pages(struct list_head *next)
468{
469	struct page *page;
470	int freed = 0;
471
472	do {
473		page = container_of(next, struct page, lru);
474		next = next->next;
475		shmem_dir_free(page);
476		freed++;
477		if (freed >= LATENCY_LIMIT) {
478			cond_resched();
479			freed = 0;
480		}
481	} while (next);
482}
483
484static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
485{
486	struct shmem_inode_info *info = SHMEM_I(inode);
487	unsigned long idx;
488	unsigned long size;
489	unsigned long limit;
490	unsigned long stage;
491	unsigned long diroff;
492	struct page **dir;
493	struct page *topdir;
494	struct page *middir;
495	struct page *subdir;
496	swp_entry_t *ptr;
497	LIST_HEAD(pages_to_free);
498	long nr_pages_to_free = 0;
499	long nr_swaps_freed = 0;
500	int offset;
501	int freed;
502	int punch_hole;
503	spinlock_t *needs_lock;
504	spinlock_t *punch_lock;
505	unsigned long upper_limit;
506
507	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
508	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
509	if (idx >= info->next_index)
510		return;
511
512	spin_lock(&info->lock);
513	info->flags |= SHMEM_TRUNCATE;
514	if (likely(end == (loff_t) -1)) {
515		limit = info->next_index;
516		upper_limit = SHMEM_MAX_INDEX;
517		info->next_index = idx;
518		needs_lock = NULL;
519		punch_hole = 0;
520	} else {
521		if (end + 1 >= inode->i_size) {	/* we may free a little more */
522			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
523							PAGE_CACHE_SHIFT;
524			upper_limit = SHMEM_MAX_INDEX;
525		} else {
526			limit = (end + 1) >> PAGE_CACHE_SHIFT;
527			upper_limit = limit;
528		}
529		needs_lock = &info->lock;
530		punch_hole = 1;
531	}
532
533	topdir = info->i_indirect;
534	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
535		info->i_indirect = NULL;
536		nr_pages_to_free++;
537		list_add(&topdir->lru, &pages_to_free);
538	}
539	spin_unlock(&info->lock);
540
541	if (info->swapped && idx < SHMEM_NR_DIRECT) {
542		ptr = info->i_direct;
543		size = limit;
544		if (size > SHMEM_NR_DIRECT)
545			size = SHMEM_NR_DIRECT;
546		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
547	}
548
549	/*
550	 * If there are no indirect blocks or we are punching a hole
551	 * below indirect blocks, nothing to be done.
552	 */
553	if (!topdir || limit <= SHMEM_NR_DIRECT)
554		goto done2;
555
556	/*
557	 * The truncation case has already dropped info->lock, and we're safe
558	 * because i_size and next_index have already been lowered, preventing
559	 * access beyond.  But in the punch_hole case, we still need to take
560	 * the lock when updating the swap directory, because there might be
561	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
562	 * shmem_writepage.  However, whenever we find we can remove a whole
563	 * directory page (not at the misaligned start or end of the range),
564	 * we first NULLify its pointer in the level above, and then have no
565	 * need to take the lock when updating its contents: needs_lock and
566	 * punch_lock (either pointing to info->lock or NULL) manage this.
567	 */
568
569	upper_limit -= SHMEM_NR_DIRECT;
570	limit -= SHMEM_NR_DIRECT;
571	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
572	offset = idx % ENTRIES_PER_PAGE;
573	idx -= offset;
574
575	dir = shmem_dir_map(topdir);
576	stage = ENTRIES_PER_PAGEPAGE/2;
577	if (idx < ENTRIES_PER_PAGEPAGE/2) {
578		middir = topdir;
579		diroff = idx/ENTRIES_PER_PAGE;
580	} else {
581		dir += ENTRIES_PER_PAGE/2;
582		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
583		while (stage <= idx)
584			stage += ENTRIES_PER_PAGEPAGE;
585		middir = *dir;
586		if (*dir) {
587			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
588				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
589			if (!diroff && !offset && upper_limit >= stage) {
590				if (needs_lock) {
591					spin_lock(needs_lock);
592					*dir = NULL;
593					spin_unlock(needs_lock);
594					needs_lock = NULL;
595				} else
596					*dir = NULL;
597				nr_pages_to_free++;
598				list_add(&middir->lru, &pages_to_free);
599			}
600			shmem_dir_unmap(dir);
601			dir = shmem_dir_map(middir);
602		} else {
603			diroff = 0;
604			offset = 0;
605			idx = stage;
606		}
607	}
608
609	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
610		if (unlikely(idx == stage)) {
611			shmem_dir_unmap(dir);
612			dir = shmem_dir_map(topdir) +
613			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
614			while (!*dir) {
615				dir++;
616				idx += ENTRIES_PER_PAGEPAGE;
617				if (idx >= limit)
618					goto done1;
619			}
620			stage = idx + ENTRIES_PER_PAGEPAGE;
621			middir = *dir;
622			if (punch_hole)
623				needs_lock = &info->lock;
624			if (upper_limit >= stage) {
625				if (needs_lock) {
626					spin_lock(needs_lock);
627					*dir = NULL;
628					spin_unlock(needs_lock);
629					needs_lock = NULL;
630				} else
631					*dir = NULL;
632				nr_pages_to_free++;
633				list_add(&middir->lru, &pages_to_free);
634			}
635			shmem_dir_unmap(dir);
636			cond_resched();
637			dir = shmem_dir_map(middir);
638			diroff = 0;
639		}
640		punch_lock = needs_lock;
641		subdir = dir[diroff];
642		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
643			if (needs_lock) {
644				spin_lock(needs_lock);
645				dir[diroff] = NULL;
646				spin_unlock(needs_lock);
647				punch_lock = NULL;
648			} else
649				dir[diroff] = NULL;
650			nr_pages_to_free++;
651			list_add(&subdir->lru, &pages_to_free);
652		}
653		if (subdir && page_private(subdir) /* has swap entries */) {
654			size = limit - idx;
655			if (size > ENTRIES_PER_PAGE)
656				size = ENTRIES_PER_PAGE;
657			freed = shmem_map_and_free_swp(subdir,
658					offset, size, &dir, punch_lock);
659			if (!dir)
660				dir = shmem_dir_map(middir);
661			nr_swaps_freed += freed;
662			if (offset || punch_lock) {
663				spin_lock(&info->lock);
664				set_page_private(subdir,
665					page_private(subdir) - freed);
666				spin_unlock(&info->lock);
667			} else
668				BUG_ON(page_private(subdir) != freed);
669		}
670		offset = 0;
671	}
672done1:
673	shmem_dir_unmap(dir);
674done2:
675	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
676		/*
677		 * Call truncate_inode_pages again: racing shmem_unuse_inode
678		 * may have swizzled a page in from swap since vmtruncate or
679		 * generic_delete_inode did it, before we lowered next_index.
680		 * Also, though shmem_getpage checks i_size before adding to
681		 * cache, no recheck after: so fix the narrow window there too.
682		 *
683		 * Recalling truncate_inode_pages_range and unmap_mapping_range
684		 * every time for punch_hole (which never got a chance to clear
685		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
686		 * yet hardly ever necessary: try to optimize them out later.
687		 */
688		truncate_inode_pages_range(inode->i_mapping, start, end);
689		if (punch_hole)
690			unmap_mapping_range(inode->i_mapping, start,
691							end - start, 1);
692	}
693
694	spin_lock(&info->lock);
695	info->flags &= ~SHMEM_TRUNCATE;
696	info->swapped -= nr_swaps_freed;
697	if (nr_pages_to_free)
698		shmem_free_blocks(inode, nr_pages_to_free);
699	shmem_recalc_inode(inode);
700	spin_unlock(&info->lock);
701
702	/*
703	 * Empty swap vector directory pages to be freed?
704	 */
705	if (!list_empty(&pages_to_free)) {
706		pages_to_free.prev->next = NULL;
707		shmem_free_pages(pages_to_free.next);
708	}
709}
710
711static void shmem_truncate(struct inode *inode)
712{
713	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
714}
715
716static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
717{
718	struct inode *inode = dentry->d_inode;
719	struct page *page = NULL;
720	int error;
721
722	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
723		if (attr->ia_size < inode->i_size) {
724			/*
725			 * If truncating down to a partial page, then
726			 * if that page is already allocated, hold it
727			 * in memory until the truncation is over, so
728			 * truncate_partial_page cannnot miss it were
729			 * it assigned to swap.
730			 */
731			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
732				(void) shmem_getpage(inode,
733					attr->ia_size>>PAGE_CACHE_SHIFT,
734						&page, SGP_READ, NULL);
735			}
736			/*
737			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
738			 * detect if any pages might have been added to cache
739			 * after truncate_inode_pages.  But we needn't bother
740			 * if it's being fully truncated to zero-length: the
741			 * nrpages check is efficient enough in that case.
742			 */
743			if (attr->ia_size) {
744				struct shmem_inode_info *info = SHMEM_I(inode);
745				spin_lock(&info->lock);
746				info->flags &= ~SHMEM_PAGEIN;
747				spin_unlock(&info->lock);
748			}
749		}
750	}
751
752	error = inode_change_ok(inode, attr);
753	if (!error)
754		error = inode_setattr(inode, attr);
755#ifdef CONFIG_TMPFS_POSIX_ACL
756	if (!error && (attr->ia_valid & ATTR_MODE))
757		error = generic_acl_chmod(inode, &shmem_acl_ops);
758#endif
759	if (page)
760		page_cache_release(page);
761	return error;
762}
763
764static void shmem_delete_inode(struct inode *inode)
765{
766	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
767	struct shmem_inode_info *info = SHMEM_I(inode);
768
769	if (inode->i_op->truncate == shmem_truncate) {
770		truncate_inode_pages(inode->i_mapping, 0);
771		shmem_unacct_size(info->flags, inode->i_size);
772		inode->i_size = 0;
773		shmem_truncate(inode);
774		if (!list_empty(&info->swaplist)) {
775			spin_lock(&shmem_swaplist_lock);
776			list_del_init(&info->swaplist);
777			spin_unlock(&shmem_swaplist_lock);
778		}
779	}
780	BUG_ON(inode->i_blocks);
781	if (sbinfo->max_inodes) {
782		spin_lock(&sbinfo->stat_lock);
783		sbinfo->free_inodes++;
784		spin_unlock(&sbinfo->stat_lock);
785	}
786	clear_inode(inode);
787}
788
789static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
790{
791	swp_entry_t *ptr;
792
793	for (ptr = dir; ptr < edir; ptr++) {
794		if (ptr->val == entry.val)
795			return ptr - dir;
796	}
797	return -1;
798}
799
800static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
801{
802	struct inode *inode;
803	unsigned long idx;
804	unsigned long size;
805	unsigned long limit;
806	unsigned long stage;
807	struct page **dir;
808	struct page *subdir;
809	swp_entry_t *ptr;
810	int offset;
811
812	idx = 0;
813	ptr = info->i_direct;
814	spin_lock(&info->lock);
815	limit = info->next_index;
816	size = limit;
817	if (size > SHMEM_NR_DIRECT)
818		size = SHMEM_NR_DIRECT;
819	offset = shmem_find_swp(entry, ptr, ptr+size);
820	if (offset >= 0) {
821		shmem_swp_balance_unmap();
822		goto found;
823	}
824	if (!info->i_indirect)
825		goto lost2;
826
827	dir = shmem_dir_map(info->i_indirect);
828	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
829
830	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
831		if (unlikely(idx == stage)) {
832			shmem_dir_unmap(dir-1);
833			dir = shmem_dir_map(info->i_indirect) +
834			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
835			while (!*dir) {
836				dir++;
837				idx += ENTRIES_PER_PAGEPAGE;
838				if (idx >= limit)
839					goto lost1;
840			}
841			stage = idx + ENTRIES_PER_PAGEPAGE;
842			subdir = *dir;
843			shmem_dir_unmap(dir);
844			dir = shmem_dir_map(subdir);
845		}
846		subdir = *dir;
847		if (subdir && page_private(subdir)) {
848			ptr = shmem_swp_map(subdir);
849			size = limit - idx;
850			if (size > ENTRIES_PER_PAGE)
851				size = ENTRIES_PER_PAGE;
852			offset = shmem_find_swp(entry, ptr, ptr+size);
853			if (offset >= 0) {
854				shmem_dir_unmap(dir);
855				goto found;
856			}
857			shmem_swp_unmap(ptr);
858		}
859	}
860lost1:
861	shmem_dir_unmap(dir-1);
862lost2:
863	spin_unlock(&info->lock);
864	return 0;
865found:
866	idx += offset;
867	inode = &info->vfs_inode;
868	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
869		info->flags |= SHMEM_PAGEIN;
870		shmem_swp_set(info, ptr + offset, 0);
871	}
872	shmem_swp_unmap(ptr);
873	spin_unlock(&info->lock);
874	/*
875	 * Decrement swap count even when the entry is left behind:
876	 * try_to_unuse will skip over mms, then reincrement count.
877	 */
878	swap_free(entry);
879	return 1;
880}
881
882/*
883 * shmem_unuse() search for an eventually swapped out shmem page.
884 */
885int shmem_unuse(swp_entry_t entry, struct page *page)
886{
887	struct list_head *p, *next;
888	struct shmem_inode_info *info;
889	int found = 0;
890
891	spin_lock(&shmem_swaplist_lock);
892	list_for_each_safe(p, next, &shmem_swaplist) {
893		info = list_entry(p, struct shmem_inode_info, swaplist);
894		if (!info->swapped)
895			list_del_init(&info->swaplist);
896		else if (shmem_unuse_inode(info, entry, page)) {
897			/* move head to start search for next from here */
898			list_move_tail(&shmem_swaplist, &info->swaplist);
899			found = 1;
900			break;
901		}
902	}
903	spin_unlock(&shmem_swaplist_lock);
904	return found;
905}
906
907/*
908 * Move the page from the page cache to the swap cache.
909 */
910static int shmem_writepage(struct page *page, struct writeback_control *wbc)
911{
912	struct shmem_inode_info *info;
913	swp_entry_t *entry, swap;
914	struct address_space *mapping;
915	unsigned long index;
916	struct inode *inode;
917
918	BUG_ON(!PageLocked(page));
919	BUG_ON(page_mapped(page));
920
921	mapping = page->mapping;
922	index = page->index;
923	inode = mapping->host;
924	info = SHMEM_I(inode);
925	if (info->flags & VM_LOCKED)
926		goto redirty;
927	swap = get_swap_page();
928	if (!swap.val)
929		goto redirty;
930
931	spin_lock(&info->lock);
932	shmem_recalc_inode(inode);
933	if (index >= info->next_index) {
934		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
935		goto unlock;
936	}
937	entry = shmem_swp_entry(info, index, NULL);
938	BUG_ON(!entry);
939	BUG_ON(entry->val);
940
941	if (move_to_swap_cache(page, swap) == 0) {
942		shmem_swp_set(info, entry, swap.val);
943		shmem_swp_unmap(entry);
944		spin_unlock(&info->lock);
945		if (list_empty(&info->swaplist)) {
946			spin_lock(&shmem_swaplist_lock);
947			/* move instead of add in case we're racing */
948			list_move_tail(&info->swaplist, &shmem_swaplist);
949			spin_unlock(&shmem_swaplist_lock);
950		}
951		unlock_page(page);
952		return 0;
953	}
954
955	shmem_swp_unmap(entry);
956unlock:
957	spin_unlock(&info->lock);
958	swap_free(swap);
959redirty:
960	set_page_dirty(page);
961	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
962}
963
964#ifdef CONFIG_NUMA
965static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
966{
967	char *nodelist = strchr(value, ':');
968	int err = 1;
969
970	if (nodelist) {
971		/* NUL-terminate policy string */
972		*nodelist++ = '\0';
973		if (nodelist_parse(nodelist, *policy_nodes))
974			goto out;
975		if (!nodes_subset(*policy_nodes, node_online_map))
976			goto out;
977	}
978	if (!strcmp(value, "default")) {
979		*policy = MPOL_DEFAULT;
980		/* Don't allow a nodelist */
981		if (!nodelist)
982			err = 0;
983	} else if (!strcmp(value, "prefer")) {
984		*policy = MPOL_PREFERRED;
985		/* Insist on a nodelist of one node only */
986		if (nodelist) {
987			char *rest = nodelist;
988			while (isdigit(*rest))
989				rest++;
990			if (!*rest)
991				err = 0;
992		}
993	} else if (!strcmp(value, "bind")) {
994		*policy = MPOL_BIND;
995		/* Insist on a nodelist */
996		if (nodelist)
997			err = 0;
998	} else if (!strcmp(value, "interleave")) {
999		*policy = MPOL_INTERLEAVE;
1000		/* Default to nodes online if no nodelist */
1001		if (!nodelist)
1002			*policy_nodes = node_online_map;
1003		err = 0;
1004	}
1005out:
1006	/* Restore string for error message */
1007	if (nodelist)
1008		*--nodelist = ':';
1009	return err;
1010}
1011
1012static struct page *shmem_swapin_async(struct shared_policy *p,
1013				       swp_entry_t entry, unsigned long idx)
1014{
1015	struct page *page;
1016	struct vm_area_struct pvma;
1017
1018	/* Create a pseudo vma that just contains the policy */
1019	memset(&pvma, 0, sizeof(struct vm_area_struct));
1020	pvma.vm_end = PAGE_SIZE;
1021	pvma.vm_pgoff = idx;
1022	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1023	page = read_swap_cache_async(entry, &pvma, 0);
1024	mpol_free(pvma.vm_policy);
1025	return page;
1026}
1027
1028struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
1029			  unsigned long idx)
1030{
1031	struct shared_policy *p = &info->policy;
1032	int i, num;
1033	struct page *page;
1034	unsigned long offset;
1035
1036	num = valid_swaphandles(entry, &offset);
1037	for (i = 0; i < num; offset++, i++) {
1038		page = shmem_swapin_async(p,
1039				swp_entry(swp_type(entry), offset), idx);
1040		if (!page)
1041			break;
1042		page_cache_release(page);
1043	}
1044	lru_add_drain();	/* Push any new pages onto the LRU now */
1045	return shmem_swapin_async(p, entry, idx);
1046}
1047
1048static struct page *
1049shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1050		 unsigned long idx)
1051{
1052	struct vm_area_struct pvma;
1053	struct page *page;
1054
1055	memset(&pvma, 0, sizeof(struct vm_area_struct));
1056	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1057	pvma.vm_pgoff = idx;
1058	pvma.vm_end = PAGE_SIZE;
1059	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1060	mpol_free(pvma.vm_policy);
1061	return page;
1062}
1063#else
1064static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1065{
1066	return 1;
1067}
1068
1069static inline struct page *
1070shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1071{
1072	swapin_readahead(entry, 0, NULL);
1073	return read_swap_cache_async(entry, NULL, 0);
1074}
1075
1076static inline struct page *
1077shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1078{
1079	return alloc_page(gfp | __GFP_ZERO);
1080}
1081#endif
1082
1083/*
1084 * shmem_getpage - either get the page from swap or allocate a new one
1085 *
1086 * If we allocate a new one we do not mark it dirty. That's up to the
1087 * vm. If we swap it in we mark it dirty since we also free the swap
1088 * entry since a page cannot live in both the swap and page cache
1089 */
1090static int shmem_getpage(struct inode *inode, unsigned long idx,
1091			struct page **pagep, enum sgp_type sgp, int *type)
1092{
1093	struct address_space *mapping = inode->i_mapping;
1094	struct shmem_inode_info *info = SHMEM_I(inode);
1095	struct shmem_sb_info *sbinfo;
1096	struct page *filepage = *pagep;
1097	struct page *swappage;
1098	swp_entry_t *entry;
1099	swp_entry_t swap;
1100	int error;
1101
1102	if (idx >= SHMEM_MAX_INDEX)
1103		return -EFBIG;
1104
1105	if (type)
1106		*type = 0;
1107
1108	/*
1109	 * Normally, filepage is NULL on entry, and either found
1110	 * uptodate immediately, or allocated and zeroed, or read
1111	 * in under swappage, which is then assigned to filepage.
1112	 * But shmem_readpage and shmem_prepare_write pass in a locked
1113	 * filepage, which may be found not uptodate by other callers
1114	 * too, and may need to be copied from the swappage read in.
1115	 */
1116repeat:
1117	if (!filepage)
1118		filepage = find_lock_page(mapping, idx);
1119	if (filepage && PageUptodate(filepage))
1120		goto done;
1121	error = 0;
1122	if (sgp == SGP_QUICK)
1123		goto failed;
1124
1125	spin_lock(&info->lock);
1126	shmem_recalc_inode(inode);
1127	entry = shmem_swp_alloc(info, idx, sgp);
1128	if (IS_ERR(entry)) {
1129		spin_unlock(&info->lock);
1130		error = PTR_ERR(entry);
1131		goto failed;
1132	}
1133	swap = *entry;
1134
1135	if (swap.val) {
1136		/* Look it up and read it in.. */
1137		swappage = lookup_swap_cache(swap);
1138		if (!swappage) {
1139			shmem_swp_unmap(entry);
1140			/* here we actually do the io */
1141			if (type && !(*type & VM_FAULT_MAJOR)) {
1142				__count_vm_event(PGMAJFAULT);
1143				*type |= VM_FAULT_MAJOR;
1144			}
1145			spin_unlock(&info->lock);
1146			swappage = shmem_swapin(info, swap, idx);
1147			if (!swappage) {
1148				spin_lock(&info->lock);
1149				entry = shmem_swp_alloc(info, idx, sgp);
1150				if (IS_ERR(entry))
1151					error = PTR_ERR(entry);
1152				else {
1153					if (entry->val == swap.val)
1154						error = -ENOMEM;
1155					shmem_swp_unmap(entry);
1156				}
1157				spin_unlock(&info->lock);
1158				if (error)
1159					goto failed;
1160				goto repeat;
1161			}
1162			wait_on_page_locked(swappage);
1163			page_cache_release(swappage);
1164			goto repeat;
1165		}
1166
1167		/* We have to do this with page locked to prevent races */
1168		if (TestSetPageLocked(swappage)) {
1169			shmem_swp_unmap(entry);
1170			spin_unlock(&info->lock);
1171			wait_on_page_locked(swappage);
1172			page_cache_release(swappage);
1173			goto repeat;
1174		}
1175		if (PageWriteback(swappage)) {
1176			shmem_swp_unmap(entry);
1177			spin_unlock(&info->lock);
1178			wait_on_page_writeback(swappage);
1179			unlock_page(swappage);
1180			page_cache_release(swappage);
1181			goto repeat;
1182		}
1183		if (!PageUptodate(swappage)) {
1184			shmem_swp_unmap(entry);
1185			spin_unlock(&info->lock);
1186			unlock_page(swappage);
1187			page_cache_release(swappage);
1188			error = -EIO;
1189			goto failed;
1190		}
1191
1192		if (filepage) {
1193			shmem_swp_set(info, entry, 0);
1194			shmem_swp_unmap(entry);
1195			delete_from_swap_cache(swappage);
1196			spin_unlock(&info->lock);
1197			copy_highpage(filepage, swappage);
1198			unlock_page(swappage);
1199			page_cache_release(swappage);
1200			flush_dcache_page(filepage);
1201			SetPageUptodate(filepage);
1202			set_page_dirty(filepage);
1203			swap_free(swap);
1204		} else if (!(error = move_from_swap_cache(
1205				swappage, idx, mapping))) {
1206			info->flags |= SHMEM_PAGEIN;
1207			shmem_swp_set(info, entry, 0);
1208			shmem_swp_unmap(entry);
1209			spin_unlock(&info->lock);
1210			filepage = swappage;
1211			swap_free(swap);
1212		} else {
1213			shmem_swp_unmap(entry);
1214			spin_unlock(&info->lock);
1215			unlock_page(swappage);
1216			page_cache_release(swappage);
1217			if (error == -ENOMEM) {
1218				/* let kswapd refresh zone for GFP_ATOMICs */
1219				congestion_wait(WRITE, HZ/50);
1220			}
1221			goto repeat;
1222		}
1223	} else if (sgp == SGP_READ && !filepage) {
1224		shmem_swp_unmap(entry);
1225		filepage = find_get_page(mapping, idx);
1226		if (filepage &&
1227		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1228			spin_unlock(&info->lock);
1229			wait_on_page_locked(filepage);
1230			page_cache_release(filepage);
1231			filepage = NULL;
1232			goto repeat;
1233		}
1234		spin_unlock(&info->lock);
1235	} else {
1236		shmem_swp_unmap(entry);
1237		sbinfo = SHMEM_SB(inode->i_sb);
1238		if (sbinfo->max_blocks) {
1239			spin_lock(&sbinfo->stat_lock);
1240			if (sbinfo->free_blocks == 0 ||
1241			    shmem_acct_block(info->flags)) {
1242				spin_unlock(&sbinfo->stat_lock);
1243				spin_unlock(&info->lock);
1244				error = -ENOSPC;
1245				goto failed;
1246			}
1247			sbinfo->free_blocks--;
1248			inode->i_blocks += BLOCKS_PER_PAGE;
1249			spin_unlock(&sbinfo->stat_lock);
1250		} else if (shmem_acct_block(info->flags)) {
1251			spin_unlock(&info->lock);
1252			error = -ENOSPC;
1253			goto failed;
1254		}
1255
1256		if (!filepage) {
1257			spin_unlock(&info->lock);
1258			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1259						    info,
1260						    idx);
1261			if (!filepage) {
1262				shmem_unacct_blocks(info->flags, 1);
1263				shmem_free_blocks(inode, 1);
1264				error = -ENOMEM;
1265				goto failed;
1266			}
1267
1268			spin_lock(&info->lock);
1269			entry = shmem_swp_alloc(info, idx, sgp);
1270			if (IS_ERR(entry))
1271				error = PTR_ERR(entry);
1272			else {
1273				swap = *entry;
1274				shmem_swp_unmap(entry);
1275			}
1276			if (error || swap.val || 0 != add_to_page_cache_lru(
1277					filepage, mapping, idx, GFP_ATOMIC)) {
1278				spin_unlock(&info->lock);
1279				page_cache_release(filepage);
1280				shmem_unacct_blocks(info->flags, 1);
1281				shmem_free_blocks(inode, 1);
1282				filepage = NULL;
1283				if (error)
1284					goto failed;
1285				goto repeat;
1286			}
1287			info->flags |= SHMEM_PAGEIN;
1288		}
1289
1290		info->alloced++;
1291		spin_unlock(&info->lock);
1292		flush_dcache_page(filepage);
1293		SetPageUptodate(filepage);
1294	}
1295done:
1296	if (*pagep != filepage) {
1297		*pagep = filepage;
1298		if (sgp != SGP_FAULT)
1299			unlock_page(filepage);
1300
1301	}
1302	return 0;
1303
1304failed:
1305	if (*pagep != filepage) {
1306		unlock_page(filepage);
1307		page_cache_release(filepage);
1308	}
1309	return error;
1310}
1311
1312static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1313{
1314	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1315	int error;
1316	int ret;
1317
1318	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1319		return VM_FAULT_SIGBUS;
1320
1321	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret);
1322	if (error)
1323		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1324
1325	mark_page_accessed(vmf->page);
1326	return ret | VM_FAULT_LOCKED;
1327}
1328
1329#ifdef CONFIG_NUMA
1330int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1331{
1332	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1333	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1334}
1335
1336struct mempolicy *
1337shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1338{
1339	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1340	unsigned long idx;
1341
1342	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1343	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1344}
1345#endif
1346
1347int shmem_lock(struct file *file, int lock, struct user_struct *user)
1348{
1349	struct inode *inode = file->f_path.dentry->d_inode;
1350	struct shmem_inode_info *info = SHMEM_I(inode);
1351	int retval = -ENOMEM;
1352
1353	spin_lock(&info->lock);
1354	if (lock && !(info->flags & VM_LOCKED)) {
1355		if (!user_shm_lock(inode->i_size, user))
1356			goto out_nomem;
1357		info->flags |= VM_LOCKED;
1358	}
1359	if (!lock && (info->flags & VM_LOCKED) && user) {
1360		user_shm_unlock(inode->i_size, user);
1361		info->flags &= ~VM_LOCKED;
1362	}
1363	retval = 0;
1364out_nomem:
1365	spin_unlock(&info->lock);
1366	return retval;
1367}
1368
1369static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1370{
1371	file_accessed(file);
1372	vma->vm_ops = &shmem_vm_ops;
1373	vma->vm_flags |= VM_CAN_NONLINEAR;
1374	return 0;
1375}
1376
1377static struct inode *
1378shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1379{
1380	struct inode *inode;
1381	struct shmem_inode_info *info;
1382	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1383
1384	if (sbinfo->max_inodes) {
1385		spin_lock(&sbinfo->stat_lock);
1386		if (!sbinfo->free_inodes) {
1387			spin_unlock(&sbinfo->stat_lock);
1388			return NULL;
1389		}
1390		sbinfo->free_inodes--;
1391		spin_unlock(&sbinfo->stat_lock);
1392	}
1393
1394	inode = new_inode(sb);
1395	if (inode) {
1396		inode->i_mode = mode;
1397		inode->i_uid = current->fsuid;
1398		inode->i_gid = current->fsgid;
1399		inode->i_blocks = 0;
1400		inode->i_mapping->a_ops = &shmem_aops;
1401		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1402		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1403		inode->i_generation = get_seconds();
1404		info = SHMEM_I(inode);
1405		memset(info, 0, (char *)inode - (char *)info);
1406		spin_lock_init(&info->lock);
1407		INIT_LIST_HEAD(&info->swaplist);
1408
1409		switch (mode & S_IFMT) {
1410		default:
1411			inode->i_op = &shmem_special_inode_operations;
1412			init_special_inode(inode, mode, dev);
1413			break;
1414		case S_IFREG:
1415			inode->i_op = &shmem_inode_operations;
1416			inode->i_fop = &shmem_file_operations;
1417			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1418							&sbinfo->policy_nodes);
1419			break;
1420		case S_IFDIR:
1421			inc_nlink(inode);
1422			/* Some things misbehave if size == 0 on a directory */
1423			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1424			inode->i_op = &shmem_dir_inode_operations;
1425			inode->i_fop = &simple_dir_operations;
1426			break;
1427		case S_IFLNK:
1428			/*
1429			 * Must not load anything in the rbtree,
1430			 * mpol_free_shared_policy will not be called.
1431			 */
1432			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1433						NULL);
1434			break;
1435		}
1436	} else if (sbinfo->max_inodes) {
1437		spin_lock(&sbinfo->stat_lock);
1438		sbinfo->free_inodes++;
1439		spin_unlock(&sbinfo->stat_lock);
1440	}
1441	return inode;
1442}
1443
1444#ifdef CONFIG_TMPFS
1445static const struct inode_operations shmem_symlink_inode_operations;
1446static const struct inode_operations shmem_symlink_inline_operations;
1447
1448/*
1449 * Normally tmpfs avoids the use of shmem_readpage and shmem_prepare_write;
1450 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1451 * below the loop driver, in the generic fashion that many filesystems support.
1452 */
1453static int shmem_readpage(struct file *file, struct page *page)
1454{
1455	struct inode *inode = page->mapping->host;
1456	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1457	unlock_page(page);
1458	return error;
1459}
1460
1461static int
1462shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1463{
1464	struct inode *inode = page->mapping->host;
1465	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1466}
1467
1468static ssize_t
1469shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1470{
1471	struct inode	*inode = file->f_path.dentry->d_inode;
1472	loff_t		pos;
1473	unsigned long	written;
1474	ssize_t		err;
1475
1476	if ((ssize_t) count < 0)
1477		return -EINVAL;
1478
1479	if (!access_ok(VERIFY_READ, buf, count))
1480		return -EFAULT;
1481
1482	mutex_lock(&inode->i_mutex);
1483
1484	pos = *ppos;
1485	written = 0;
1486
1487	err = generic_write_checks(file, &pos, &count, 0);
1488	if (err || !count)
1489		goto out;
1490
1491	err = remove_suid(file->f_path.dentry);
1492	if (err)
1493		goto out;
1494
1495	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1496
1497	do {
1498		struct page *page = NULL;
1499		unsigned long bytes, index, offset;
1500		char *kaddr;
1501		int left;
1502
1503		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1504		index = pos >> PAGE_CACHE_SHIFT;
1505		bytes = PAGE_CACHE_SIZE - offset;
1506		if (bytes > count)
1507			bytes = count;
1508
1509		/*
1510		 * We don't hold page lock across copy from user -
1511		 * what would it guard against? - so no deadlock here.
1512		 * But it still may be a good idea to prefault below.
1513		 */
1514
1515		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1516		if (err)
1517			break;
1518
1519		left = bytes;
1520		if (PageHighMem(page)) {
1521			volatile unsigned char dummy;
1522			__get_user(dummy, buf);
1523			__get_user(dummy, buf + bytes - 1);
1524
1525			kaddr = kmap_atomic(page, KM_USER0);
1526			left = __copy_from_user_inatomic(kaddr + offset,
1527							buf, bytes);
1528			kunmap_atomic(kaddr, KM_USER0);
1529		}
1530		if (left) {
1531			kaddr = kmap(page);
1532			left = __copy_from_user(kaddr + offset, buf, bytes);
1533			kunmap(page);
1534		}
1535
1536		written += bytes;
1537		count -= bytes;
1538		pos += bytes;
1539		buf += bytes;
1540		if (pos > inode->i_size)
1541			i_size_write(inode, pos);
1542
1543		flush_dcache_page(page);
1544		set_page_dirty(page);
1545		mark_page_accessed(page);
1546		page_cache_release(page);
1547
1548		if (left) {
1549			pos -= left;
1550			written -= left;
1551			err = -EFAULT;
1552			break;
1553		}
1554
1555		/*
1556		 * Our dirty pages are not counted in nr_dirty,
1557		 * and we do not attempt to balance dirty pages.
1558		 */
1559
1560		cond_resched();
1561	} while (count);
1562
1563	*ppos = pos;
1564	if (written)
1565		err = written;
1566out:
1567	mutex_unlock(&inode->i_mutex);
1568	return err;
1569}
1570
1571static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1572{
1573	struct inode *inode = filp->f_path.dentry->d_inode;
1574	struct address_space *mapping = inode->i_mapping;
1575	unsigned long index, offset;
1576
1577	index = *ppos >> PAGE_CACHE_SHIFT;
1578	offset = *ppos & ~PAGE_CACHE_MASK;
1579
1580	for (;;) {
1581		struct page *page = NULL;
1582		unsigned long end_index, nr, ret;
1583		loff_t i_size = i_size_read(inode);
1584
1585		end_index = i_size >> PAGE_CACHE_SHIFT;
1586		if (index > end_index)
1587			break;
1588		if (index == end_index) {
1589			nr = i_size & ~PAGE_CACHE_MASK;
1590			if (nr <= offset)
1591				break;
1592		}
1593
1594		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1595		if (desc->error) {
1596			if (desc->error == -EINVAL)
1597				desc->error = 0;
1598			break;
1599		}
1600
1601		/*
1602		 * We must evaluate after, since reads (unlike writes)
1603		 * are called without i_mutex protection against truncate
1604		 */
1605		nr = PAGE_CACHE_SIZE;
1606		i_size = i_size_read(inode);
1607		end_index = i_size >> PAGE_CACHE_SHIFT;
1608		if (index == end_index) {
1609			nr = i_size & ~PAGE_CACHE_MASK;
1610			if (nr <= offset) {
1611				if (page)
1612					page_cache_release(page);
1613				break;
1614			}
1615		}
1616		nr -= offset;
1617
1618		if (page) {
1619			/*
1620			 * If users can be writing to this page using arbitrary
1621			 * virtual addresses, take care about potential aliasing
1622			 * before reading the page on the kernel side.
1623			 */
1624			if (mapping_writably_mapped(mapping))
1625				flush_dcache_page(page);
1626			/*
1627			 * Mark the page accessed if we read the beginning.
1628			 */
1629			if (!offset)
1630				mark_page_accessed(page);
1631		} else {
1632			page = ZERO_PAGE(0);
1633			page_cache_get(page);
1634		}
1635
1636		/*
1637		 * Ok, we have the page, and it's up-to-date, so
1638		 * now we can copy it to user space...
1639		 *
1640		 * The actor routine returns how many bytes were actually used..
1641		 * NOTE! This may not be the same as how much of a user buffer
1642		 * we filled up (we may be padding etc), so we can only update
1643		 * "pos" here (the actor routine has to update the user buffer
1644		 * pointers and the remaining count).
1645		 */
1646		ret = actor(desc, page, offset, nr);
1647		offset += ret;
1648		index += offset >> PAGE_CACHE_SHIFT;
1649		offset &= ~PAGE_CACHE_MASK;
1650
1651		page_cache_release(page);
1652		if (ret != nr || !desc->count)
1653			break;
1654
1655		cond_resched();
1656	}
1657
1658	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1659	file_accessed(filp);
1660}
1661
1662static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1663{
1664	read_descriptor_t desc;
1665
1666	if ((ssize_t) count < 0)
1667		return -EINVAL;
1668	if (!access_ok(VERIFY_WRITE, buf, count))
1669		return -EFAULT;
1670	if (!count)
1671		return 0;
1672
1673	desc.written = 0;
1674	desc.count = count;
1675	desc.arg.buf = buf;
1676	desc.error = 0;
1677
1678	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1679	if (desc.written)
1680		return desc.written;
1681	return desc.error;
1682}
1683
1684static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1685{
1686	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1687
1688	buf->f_type = TMPFS_MAGIC;
1689	buf->f_bsize = PAGE_CACHE_SIZE;
1690	buf->f_namelen = NAME_MAX;
1691	spin_lock(&sbinfo->stat_lock);
1692	if (sbinfo->max_blocks) {
1693		buf->f_blocks = sbinfo->max_blocks;
1694		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1695	}
1696	if (sbinfo->max_inodes) {
1697		buf->f_files = sbinfo->max_inodes;
1698		buf->f_ffree = sbinfo->free_inodes;
1699	}
1700	/* else leave those fields 0 like simple_statfs */
1701	spin_unlock(&sbinfo->stat_lock);
1702	return 0;
1703}
1704
1705/*
1706 * File creation. Allocate an inode, and we're done..
1707 */
1708static int
1709shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1710{
1711	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1712	int error = -ENOSPC;
1713
1714	if (inode) {
1715		error = security_inode_init_security(inode, dir, NULL, NULL,
1716						     NULL);
1717		if (error) {
1718			if (error != -EOPNOTSUPP) {
1719				iput(inode);
1720				return error;
1721			}
1722		}
1723		error = shmem_acl_init(inode, dir);
1724		if (error) {
1725			iput(inode);
1726			return error;
1727		}
1728		if (dir->i_mode & S_ISGID) {
1729			inode->i_gid = dir->i_gid;
1730			if (S_ISDIR(mode))
1731				inode->i_mode |= S_ISGID;
1732		}
1733		dir->i_size += BOGO_DIRENT_SIZE;
1734		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1735		d_instantiate(dentry, inode);
1736		dget(dentry); /* Extra count - pin the dentry in core */
1737	}
1738	return error;
1739}
1740
1741static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1742{
1743	int error;
1744
1745	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1746		return error;
1747	inc_nlink(dir);
1748	return 0;
1749}
1750
1751static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1752		struct nameidata *nd)
1753{
1754	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1755}
1756
1757/*
1758 * Link a file..
1759 */
1760static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1761{
1762	struct inode *inode = old_dentry->d_inode;
1763	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1764
1765	/*
1766	 * No ordinary (disk based) filesystem counts links as inodes;
1767	 * but each new link needs a new dentry, pinning lowmem, and
1768	 * tmpfs dentries cannot be pruned until they are unlinked.
1769	 */
1770	if (sbinfo->max_inodes) {
1771		spin_lock(&sbinfo->stat_lock);
1772		if (!sbinfo->free_inodes) {
1773			spin_unlock(&sbinfo->stat_lock);
1774			return -ENOSPC;
1775		}
1776		sbinfo->free_inodes--;
1777		spin_unlock(&sbinfo->stat_lock);
1778	}
1779
1780	dir->i_size += BOGO_DIRENT_SIZE;
1781	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1782	inc_nlink(inode);
1783	atomic_inc(&inode->i_count);	/* New dentry reference */
1784	dget(dentry);		/* Extra pinning count for the created dentry */
1785	d_instantiate(dentry, inode);
1786	return 0;
1787}
1788
1789static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1790{
1791	struct inode *inode = dentry->d_inode;
1792
1793	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1794		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1795		if (sbinfo->max_inodes) {
1796			spin_lock(&sbinfo->stat_lock);
1797			sbinfo->free_inodes++;
1798			spin_unlock(&sbinfo->stat_lock);
1799		}
1800	}
1801
1802	dir->i_size -= BOGO_DIRENT_SIZE;
1803	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1804	drop_nlink(inode);
1805	dput(dentry);	/* Undo the count from "create" - this does all the work */
1806	return 0;
1807}
1808
1809static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1810{
1811	if (!simple_empty(dentry))
1812		return -ENOTEMPTY;
1813
1814	drop_nlink(dentry->d_inode);
1815	drop_nlink(dir);
1816	return shmem_unlink(dir, dentry);
1817}
1818
1819/*
1820 * The VFS layer already does all the dentry stuff for rename,
1821 * we just have to decrement the usage count for the target if
1822 * it exists so that the VFS layer correctly free's it when it
1823 * gets overwritten.
1824 */
1825static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1826{
1827	struct inode *inode = old_dentry->d_inode;
1828	int they_are_dirs = S_ISDIR(inode->i_mode);
1829
1830	if (!simple_empty(new_dentry))
1831		return -ENOTEMPTY;
1832
1833	if (new_dentry->d_inode) {
1834		(void) shmem_unlink(new_dir, new_dentry);
1835		if (they_are_dirs)
1836			drop_nlink(old_dir);
1837	} else if (they_are_dirs) {
1838		drop_nlink(old_dir);
1839		inc_nlink(new_dir);
1840	}
1841
1842	old_dir->i_size -= BOGO_DIRENT_SIZE;
1843	new_dir->i_size += BOGO_DIRENT_SIZE;
1844	old_dir->i_ctime = old_dir->i_mtime =
1845	new_dir->i_ctime = new_dir->i_mtime =
1846	inode->i_ctime = CURRENT_TIME;
1847	return 0;
1848}
1849
1850static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1851{
1852	int error;
1853	int len;
1854	struct inode *inode;
1855	struct page *page = NULL;
1856	char *kaddr;
1857	struct shmem_inode_info *info;
1858
1859	len = strlen(symname) + 1;
1860	if (len > PAGE_CACHE_SIZE)
1861		return -ENAMETOOLONG;
1862
1863	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1864	if (!inode)
1865		return -ENOSPC;
1866
1867	error = security_inode_init_security(inode, dir, NULL, NULL,
1868					     NULL);
1869	if (error) {
1870		if (error != -EOPNOTSUPP) {
1871			iput(inode);
1872			return error;
1873		}
1874		error = 0;
1875	}
1876
1877	info = SHMEM_I(inode);
1878	inode->i_size = len-1;
1879	if (len <= (char *)inode - (char *)info) {
1880		/* do it inline */
1881		memcpy(info, symname, len);
1882		inode->i_op = &shmem_symlink_inline_operations;
1883	} else {
1884		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1885		if (error) {
1886			iput(inode);
1887			return error;
1888		}
1889		inode->i_op = &shmem_symlink_inode_operations;
1890		kaddr = kmap_atomic(page, KM_USER0);
1891		memcpy(kaddr, symname, len);
1892		kunmap_atomic(kaddr, KM_USER0);
1893		set_page_dirty(page);
1894		page_cache_release(page);
1895	}
1896	if (dir->i_mode & S_ISGID)
1897		inode->i_gid = dir->i_gid;
1898	dir->i_size += BOGO_DIRENT_SIZE;
1899	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1900	d_instantiate(dentry, inode);
1901	dget(dentry);
1902	return 0;
1903}
1904
1905static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1906{
1907	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1908	return NULL;
1909}
1910
1911static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1912{
1913	struct page *page = NULL;
1914	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1915	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1916	return page;
1917}
1918
1919static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1920{
1921	if (!IS_ERR(nd_get_link(nd))) {
1922		struct page *page = cookie;
1923		kunmap(page);
1924		mark_page_accessed(page);
1925		page_cache_release(page);
1926	}
1927}
1928
1929static const struct inode_operations shmem_symlink_inline_operations = {
1930	.readlink	= generic_readlink,
1931	.follow_link	= shmem_follow_link_inline,
1932};
1933
1934static const struct inode_operations shmem_symlink_inode_operations = {
1935	.truncate	= shmem_truncate,
1936	.readlink	= generic_readlink,
1937	.follow_link	= shmem_follow_link,
1938	.put_link	= shmem_put_link,
1939};
1940
1941#ifdef CONFIG_TMPFS_POSIX_ACL
1942/**
1943 * Superblocks without xattr inode operations will get security.* xattr
1944 * support from the VFS "for free". As soon as we have any other xattrs
1945 * like ACLs, we also need to implement the security.* handlers at
1946 * filesystem level, though.
1947 */
1948
1949static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1950					size_t list_len, const char *name,
1951					size_t name_len)
1952{
1953	return security_inode_listsecurity(inode, list, list_len);
1954}
1955
1956static int shmem_xattr_security_get(struct inode *inode, const char *name,
1957				    void *buffer, size_t size)
1958{
1959	if (strcmp(name, "") == 0)
1960		return -EINVAL;
1961	return security_inode_getsecurity(inode, name, buffer, size,
1962					  -EOPNOTSUPP);
1963}
1964
1965static int shmem_xattr_security_set(struct inode *inode, const char *name,
1966				    const void *value, size_t size, int flags)
1967{
1968	if (strcmp(name, "") == 0)
1969		return -EINVAL;
1970	return security_inode_setsecurity(inode, name, value, size, flags);
1971}
1972
1973static struct xattr_handler shmem_xattr_security_handler = {
1974	.prefix = XATTR_SECURITY_PREFIX,
1975	.list   = shmem_xattr_security_list,
1976	.get    = shmem_xattr_security_get,
1977	.set    = shmem_xattr_security_set,
1978};
1979
1980static struct xattr_handler *shmem_xattr_handlers[] = {
1981	&shmem_xattr_acl_access_handler,
1982	&shmem_xattr_acl_default_handler,
1983	&shmem_xattr_security_handler,
1984	NULL
1985};
1986#endif
1987
1988static struct dentry *shmem_get_parent(struct dentry *child)
1989{
1990	return ERR_PTR(-ESTALE);
1991}
1992
1993static int shmem_match(struct inode *ino, void *vfh)
1994{
1995	__u32 *fh = vfh;
1996	__u64 inum = fh[2];
1997	inum = (inum << 32) | fh[1];
1998	return ino->i_ino == inum && fh[0] == ino->i_generation;
1999}
2000
2001static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2002{
2003	struct dentry *de = NULL;
2004	struct inode *inode;
2005	__u32 *fh = vfh;
2006	__u64 inum = fh[2];
2007	inum = (inum << 32) | fh[1];
2008
2009	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2010	if (inode) {
2011		de = d_find_alias(inode);
2012		iput(inode);
2013	}
2014
2015	return de? de: ERR_PTR(-ESTALE);
2016}
2017
2018static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2019		int len, int type,
2020		int (*acceptable)(void *context, struct dentry *de),
2021		void *context)
2022{
2023	if (len < 3)
2024		return ERR_PTR(-ESTALE);
2025
2026	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2027							context);
2028}
2029
2030static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2031				int connectable)
2032{
2033	struct inode *inode = dentry->d_inode;
2034
2035	if (*len < 3)
2036		return 255;
2037
2038	if (hlist_unhashed(&inode->i_hash)) {
2039		/* Unfortunately insert_inode_hash is not idempotent,
2040		 * so as we hash inodes here rather than at creation
2041		 * time, we need a lock to ensure we only try
2042		 * to do it once
2043		 */
2044		static DEFINE_SPINLOCK(lock);
2045		spin_lock(&lock);
2046		if (hlist_unhashed(&inode->i_hash))
2047			__insert_inode_hash(inode,
2048					    inode->i_ino + inode->i_generation);
2049		spin_unlock(&lock);
2050	}
2051
2052	fh[0] = inode->i_generation;
2053	fh[1] = inode->i_ino;
2054	fh[2] = ((__u64)inode->i_ino) >> 32;
2055
2056	*len = 3;
2057	return 1;
2058}
2059
2060static struct export_operations shmem_export_ops = {
2061	.get_parent     = shmem_get_parent,
2062	.get_dentry     = shmem_get_dentry,
2063	.encode_fh      = shmem_encode_fh,
2064	.decode_fh      = shmem_decode_fh,
2065};
2066
2067static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2068	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2069	int *policy, nodemask_t *policy_nodes)
2070{
2071	char *this_char, *value, *rest;
2072
2073	while (options != NULL) {
2074		this_char = options;
2075		for (;;) {
2076			/*
2077			 * NUL-terminate this option: unfortunately,
2078			 * mount options form a comma-separated list,
2079			 * but mpol's nodelist may also contain commas.
2080			 */
2081			options = strchr(options, ',');
2082			if (options == NULL)
2083				break;
2084			options++;
2085			if (!isdigit(*options)) {
2086				options[-1] = '\0';
2087				break;
2088			}
2089		}
2090		if (!*this_char)
2091			continue;
2092		if ((value = strchr(this_char,'=')) != NULL) {
2093			*value++ = 0;
2094		} else {
2095			printk(KERN_ERR
2096			    "tmpfs: No value for mount option '%s'\n",
2097			    this_char);
2098			return 1;
2099		}
2100
2101		if (!strcmp(this_char,"size")) {
2102			unsigned long long size;
2103			size = memparse(value,&rest);
2104			if (*rest == '%') {
2105				size <<= PAGE_SHIFT;
2106				size *= totalram_pages;
2107				do_div(size, 100);
2108				rest++;
2109			}
2110			if (*rest)
2111				goto bad_val;
2112			*blocks = size >> PAGE_CACHE_SHIFT;
2113		} else if (!strcmp(this_char,"nr_blocks")) {
2114			*blocks = memparse(value,&rest);
2115			if (*rest)
2116				goto bad_val;
2117		} else if (!strcmp(this_char,"nr_inodes")) {
2118			*inodes = memparse(value,&rest);
2119			if (*rest)
2120				goto bad_val;
2121		} else if (!strcmp(this_char,"mode")) {
2122			if (!mode)
2123				continue;
2124			*mode = simple_strtoul(value,&rest,8);
2125			if (*rest)
2126				goto bad_val;
2127		} else if (!strcmp(this_char,"uid")) {
2128			if (!uid)
2129				continue;
2130			*uid = simple_strtoul(value,&rest,0);
2131			if (*rest)
2132				goto bad_val;
2133		} else if (!strcmp(this_char,"gid")) {
2134			if (!gid)
2135				continue;
2136			*gid = simple_strtoul(value,&rest,0);
2137			if (*rest)
2138				goto bad_val;
2139		} else if (!strcmp(this_char,"mpol")) {
2140			if (shmem_parse_mpol(value,policy,policy_nodes))
2141				goto bad_val;
2142		} else {
2143			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2144			       this_char);
2145			return 1;
2146		}
2147	}
2148	return 0;
2149
2150bad_val:
2151	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2152	       value, this_char);
2153	return 1;
2154
2155}
2156
2157static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2158{
2159	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2160	unsigned long max_blocks = sbinfo->max_blocks;
2161	unsigned long max_inodes = sbinfo->max_inodes;
2162	int policy = sbinfo->policy;
2163	nodemask_t policy_nodes = sbinfo->policy_nodes;
2164	unsigned long blocks;
2165	unsigned long inodes;
2166	int error = -EINVAL;
2167
2168	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2169				&max_inodes, &policy, &policy_nodes))
2170		return error;
2171
2172	spin_lock(&sbinfo->stat_lock);
2173	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2174	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2175	if (max_blocks < blocks)
2176		goto out;
2177	if (max_inodes < inodes)
2178		goto out;
2179	/*
2180	 * Those tests also disallow limited->unlimited while any are in
2181	 * use, so i_blocks will always be zero when max_blocks is zero;
2182	 * but we must separately disallow unlimited->limited, because
2183	 * in that case we have no record of how much is already in use.
2184	 */
2185	if (max_blocks && !sbinfo->max_blocks)
2186		goto out;
2187	if (max_inodes && !sbinfo->max_inodes)
2188		goto out;
2189
2190	error = 0;
2191	sbinfo->max_blocks  = max_blocks;
2192	sbinfo->free_blocks = max_blocks - blocks;
2193	sbinfo->max_inodes  = max_inodes;
2194	sbinfo->free_inodes = max_inodes - inodes;
2195	sbinfo->policy = policy;
2196	sbinfo->policy_nodes = policy_nodes;
2197out:
2198	spin_unlock(&sbinfo->stat_lock);
2199	return error;
2200}
2201#endif
2202
2203static void shmem_put_super(struct super_block *sb)
2204{
2205	kfree(sb->s_fs_info);
2206	sb->s_fs_info = NULL;
2207}
2208
2209static int shmem_fill_super(struct super_block *sb,
2210			    void *data, int silent)
2211{
2212	struct inode *inode;
2213	struct dentry *root;
2214	int mode   = S_IRWXUGO | S_ISVTX;
2215	uid_t uid = current->fsuid;
2216	gid_t gid = current->fsgid;
2217	int err = -ENOMEM;
2218	struct shmem_sb_info *sbinfo;
2219	unsigned long blocks = 0;
2220	unsigned long inodes = 0;
2221	int policy = MPOL_DEFAULT;
2222	nodemask_t policy_nodes = node_online_map;
2223
2224#ifdef CONFIG_TMPFS
2225	/*
2226	 * Per default we only allow half of the physical ram per
2227	 * tmpfs instance, limiting inodes to one per page of lowmem;
2228	 * but the internal instance is left unlimited.
2229	 */
2230	if (!(sb->s_flags & MS_NOUSER)) {
2231		blocks = totalram_pages / 2;
2232		inodes = totalram_pages - totalhigh_pages;
2233		if (inodes > blocks)
2234			inodes = blocks;
2235		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2236					&inodes, &policy, &policy_nodes))
2237			return -EINVAL;
2238	}
2239	sb->s_export_op = &shmem_export_ops;
2240#else
2241	sb->s_flags |= MS_NOUSER;
2242#endif
2243
2244	/* Round up to L1_CACHE_BYTES to resist false sharing */
2245	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2246				L1_CACHE_BYTES), GFP_KERNEL);
2247	if (!sbinfo)
2248		return -ENOMEM;
2249
2250	spin_lock_init(&sbinfo->stat_lock);
2251	sbinfo->max_blocks = blocks;
2252	sbinfo->free_blocks = blocks;
2253	sbinfo->max_inodes = inodes;
2254	sbinfo->free_inodes = inodes;
2255	sbinfo->policy = policy;
2256	sbinfo->policy_nodes = policy_nodes;
2257
2258	sb->s_fs_info = sbinfo;
2259	sb->s_maxbytes = SHMEM_MAX_BYTES;
2260	sb->s_blocksize = PAGE_CACHE_SIZE;
2261	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2262	sb->s_magic = TMPFS_MAGIC;
2263	sb->s_op = &shmem_ops;
2264	sb->s_time_gran = 1;
2265#ifdef CONFIG_TMPFS_POSIX_ACL
2266	sb->s_xattr = shmem_xattr_handlers;
2267	sb->s_flags |= MS_POSIXACL;
2268#endif
2269
2270	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2271	if (!inode)
2272		goto failed;
2273	inode->i_uid = uid;
2274	inode->i_gid = gid;
2275	root = d_alloc_root(inode);
2276	if (!root)
2277		goto failed_iput;
2278	sb->s_root = root;
2279	return 0;
2280
2281failed_iput:
2282	iput(inode);
2283failed:
2284	shmem_put_super(sb);
2285	return err;
2286}
2287
2288static struct kmem_cache *shmem_inode_cachep;
2289
2290static struct inode *shmem_alloc_inode(struct super_block *sb)
2291{
2292	struct shmem_inode_info *p;
2293	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2294	if (!p)
2295		return NULL;
2296	return &p->vfs_inode;
2297}
2298
2299static void shmem_destroy_inode(struct inode *inode)
2300{
2301	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2302		/* only struct inode is valid if it's an inline symlink */
2303		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2304	}
2305	shmem_acl_destroy_inode(inode);
2306	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2307}
2308
2309static void init_once(void *foo, struct kmem_cache *cachep,
2310		      unsigned long flags)
2311{
2312	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2313
2314	inode_init_once(&p->vfs_inode);
2315#ifdef CONFIG_TMPFS_POSIX_ACL
2316	p->i_acl = NULL;
2317	p->i_default_acl = NULL;
2318#endif
2319}
2320
2321static int init_inodecache(void)
2322{
2323	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2324				sizeof(struct shmem_inode_info),
2325				0, 0, init_once);
2326	if (shmem_inode_cachep == NULL)
2327		return -ENOMEM;
2328	return 0;
2329}
2330
2331static void destroy_inodecache(void)
2332{
2333	kmem_cache_destroy(shmem_inode_cachep);
2334}
2335
2336static const struct address_space_operations shmem_aops = {
2337	.writepage	= shmem_writepage,
2338	.set_page_dirty	= __set_page_dirty_no_writeback,
2339#ifdef CONFIG_TMPFS
2340	.readpage	= shmem_readpage,
2341	.prepare_write	= shmem_prepare_write,
2342	.commit_write	= simple_commit_write,
2343#endif
2344	.migratepage	= migrate_page,
2345};
2346
2347static const struct file_operations shmem_file_operations = {
2348	.mmap		= shmem_mmap,
2349#ifdef CONFIG_TMPFS
2350	.llseek		= generic_file_llseek,
2351	.read		= shmem_file_read,
2352	.write		= shmem_file_write,
2353	.fsync		= simple_sync_file,
2354	.splice_read	= generic_file_splice_read,
2355	.splice_write	= generic_file_splice_write,
2356#endif
2357};
2358
2359static const struct inode_operations shmem_inode_operations = {
2360	.truncate	= shmem_truncate,
2361	.setattr	= shmem_notify_change,
2362	.truncate_range	= shmem_truncate_range,
2363#ifdef CONFIG_TMPFS_POSIX_ACL
2364	.setxattr	= generic_setxattr,
2365	.getxattr	= generic_getxattr,
2366	.listxattr	= generic_listxattr,
2367	.removexattr	= generic_removexattr,
2368	.permission	= shmem_permission,
2369#endif
2370
2371};
2372
2373static const struct inode_operations shmem_dir_inode_operations = {
2374#ifdef CONFIG_TMPFS
2375	.create		= shmem_create,
2376	.lookup		= simple_lookup,
2377	.link		= shmem_link,
2378	.unlink		= shmem_unlink,
2379	.symlink	= shmem_symlink,
2380	.mkdir		= shmem_mkdir,
2381	.rmdir		= shmem_rmdir,
2382	.mknod		= shmem_mknod,
2383	.rename		= shmem_rename,
2384#endif
2385#ifdef CONFIG_TMPFS_POSIX_ACL
2386	.setattr	= shmem_notify_change,
2387	.setxattr	= generic_setxattr,
2388	.getxattr	= generic_getxattr,
2389	.listxattr	= generic_listxattr,
2390	.removexattr	= generic_removexattr,
2391	.permission	= shmem_permission,
2392#endif
2393};
2394
2395static const struct inode_operations shmem_special_inode_operations = {
2396#ifdef CONFIG_TMPFS_POSIX_ACL
2397	.setattr	= shmem_notify_change,
2398	.setxattr	= generic_setxattr,
2399	.getxattr	= generic_getxattr,
2400	.listxattr	= generic_listxattr,
2401	.removexattr	= generic_removexattr,
2402	.permission	= shmem_permission,
2403#endif
2404};
2405
2406static const struct super_operations shmem_ops = {
2407	.alloc_inode	= shmem_alloc_inode,
2408	.destroy_inode	= shmem_destroy_inode,
2409#ifdef CONFIG_TMPFS
2410	.statfs		= shmem_statfs,
2411	.remount_fs	= shmem_remount_fs,
2412#endif
2413	.delete_inode	= shmem_delete_inode,
2414	.drop_inode	= generic_delete_inode,
2415	.put_super	= shmem_put_super,
2416};
2417
2418static struct vm_operations_struct shmem_vm_ops = {
2419	.fault		= shmem_fault,
2420#ifdef CONFIG_NUMA
2421	.set_policy     = shmem_set_policy,
2422	.get_policy     = shmem_get_policy,
2423#endif
2424};
2425
2426
2427static int shmem_get_sb(struct file_system_type *fs_type,
2428	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2429{
2430	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2431}
2432
2433static struct file_system_type tmpfs_fs_type = {
2434	.owner		= THIS_MODULE,
2435	.name		= "tmpfs",
2436	.get_sb		= shmem_get_sb,
2437	.kill_sb	= kill_litter_super,
2438};
2439static struct vfsmount *shm_mnt;
2440
2441static int __init init_tmpfs(void)
2442{
2443	int error;
2444
2445	error = init_inodecache();
2446	if (error)
2447		goto out3;
2448
2449	error = register_filesystem(&tmpfs_fs_type);
2450	if (error) {
2451		printk(KERN_ERR "Could not register tmpfs\n");
2452		goto out2;
2453	}
2454
2455	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2456				tmpfs_fs_type.name, NULL);
2457	if (IS_ERR(shm_mnt)) {
2458		error = PTR_ERR(shm_mnt);
2459		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2460		goto out1;
2461	}
2462	return 0;
2463
2464out1:
2465	unregister_filesystem(&tmpfs_fs_type);
2466out2:
2467	destroy_inodecache();
2468out3:
2469	shm_mnt = ERR_PTR(error);
2470	return error;
2471}
2472module_init(init_tmpfs)
2473
2474/*
2475 * shmem_file_setup - get an unlinked file living in tmpfs
2476 *
2477 * @name: name for dentry (to be seen in /proc/<pid>/maps
2478 * @size: size to be set for the file
2479 *
2480 */
2481struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2482{
2483	int error;
2484	struct file *file;
2485	struct inode *inode;
2486	struct dentry *dentry, *root;
2487	struct qstr this;
2488
2489	if (IS_ERR(shm_mnt))
2490		return (void *)shm_mnt;
2491
2492	if (size < 0 || size > SHMEM_MAX_BYTES)
2493		return ERR_PTR(-EINVAL);
2494
2495	if (shmem_acct_size(flags, size))
2496		return ERR_PTR(-ENOMEM);
2497
2498	error = -ENOMEM;
2499	this.name = name;
2500	this.len = strlen(name);
2501	this.hash = 0; /* will go */
2502	root = shm_mnt->mnt_root;
2503	dentry = d_alloc(root, &this);
2504	if (!dentry)
2505		goto put_memory;
2506
2507	error = -ENFILE;
2508	file = get_empty_filp();
2509	if (!file)
2510		goto put_dentry;
2511
2512	error = -ENOSPC;
2513	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2514	if (!inode)
2515		goto close_file;
2516
2517	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2518	d_instantiate(dentry, inode);
2519	inode->i_size = size;
2520	inode->i_nlink = 0;	/* It is unlinked */
2521	file->f_path.mnt = mntget(shm_mnt);
2522	file->f_path.dentry = dentry;
2523	file->f_mapping = inode->i_mapping;
2524	file->f_op = &shmem_file_operations;
2525	file->f_mode = FMODE_WRITE | FMODE_READ;
2526	return file;
2527
2528close_file:
2529	put_filp(file);
2530put_dentry:
2531	dput(dentry);
2532put_memory:
2533	shmem_unacct_size(flags, size);
2534	return ERR_PTR(error);
2535}
2536
2537/*
2538 * shmem_zero_setup - setup a shared anonymous mapping
2539 *
2540 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2541 */
2542int shmem_zero_setup(struct vm_area_struct *vma)
2543{
2544	struct file *file;
2545	loff_t size = vma->vm_end - vma->vm_start;
2546
2547	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2548	if (IS_ERR(file))
2549		return PTR_ERR(file);
2550
2551	if (vma->vm_file)
2552		fput(vma->vm_file);
2553	vma->vm_file = file;
2554	vma->vm_ops = &shmem_vm_ops;
2555	return 0;
2556}
2557