shmem.c revision 2457aec63745e235bcafb7ef312b182d8682f0fc
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/aio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69
70#include <asm/uaccess.h>
71#include <asm/pgtable.h>
72
73#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
82/*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87struct shmem_falloc {
88	pgoff_t start;		/* start of range currently being fallocated */
89	pgoff_t next;		/* the next page offset to be fallocated */
90	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
91	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
92};
93
94/* Flag allocation requirements to shmem_getpage */
95enum sgp_type {
96	SGP_READ,	/* don't exceed i_size, don't allocate page */
97	SGP_CACHE,	/* don't exceed i_size, may allocate page */
98	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
99	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
100	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
101};
102
103#ifdef CONFIG_TMPFS
104static unsigned long shmem_default_max_blocks(void)
105{
106	return totalram_pages / 2;
107}
108
109static unsigned long shmem_default_max_inodes(void)
110{
111	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112}
113#endif
114
115static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117				struct shmem_inode_info *info, pgoff_t index);
118static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122	struct page **pagep, enum sgp_type sgp, int *fault_type)
123{
124	return shmem_getpage_gfp(inode, index, pagep, sgp,
125			mapping_gfp_mask(inode->i_mapping), fault_type);
126}
127
128static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129{
130	return sb->s_fs_info;
131}
132
133/*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139static inline int shmem_acct_size(unsigned long flags, loff_t size)
140{
141	return (flags & VM_NORESERVE) ?
142		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143}
144
145static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146{
147	if (!(flags & VM_NORESERVE))
148		vm_unacct_memory(VM_ACCT(size));
149}
150
151/*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157static inline int shmem_acct_block(unsigned long flags)
158{
159	return (flags & VM_NORESERVE) ?
160		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161}
162
163static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164{
165	if (flags & VM_NORESERVE)
166		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167}
168
169static const struct super_operations shmem_ops;
170static const struct address_space_operations shmem_aops;
171static const struct file_operations shmem_file_operations;
172static const struct inode_operations shmem_inode_operations;
173static const struct inode_operations shmem_dir_inode_operations;
174static const struct inode_operations shmem_special_inode_operations;
175static const struct vm_operations_struct shmem_vm_ops;
176
177static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
178	.ra_pages	= 0,	/* No readahead */
179	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180};
181
182static LIST_HEAD(shmem_swaplist);
183static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185static int shmem_reserve_inode(struct super_block *sb)
186{
187	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188	if (sbinfo->max_inodes) {
189		spin_lock(&sbinfo->stat_lock);
190		if (!sbinfo->free_inodes) {
191			spin_unlock(&sbinfo->stat_lock);
192			return -ENOSPC;
193		}
194		sbinfo->free_inodes--;
195		spin_unlock(&sbinfo->stat_lock);
196	}
197	return 0;
198}
199
200static void shmem_free_inode(struct super_block *sb)
201{
202	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203	if (sbinfo->max_inodes) {
204		spin_lock(&sbinfo->stat_lock);
205		sbinfo->free_inodes++;
206		spin_unlock(&sbinfo->stat_lock);
207	}
208}
209
210/**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222static void shmem_recalc_inode(struct inode *inode)
223{
224	struct shmem_inode_info *info = SHMEM_I(inode);
225	long freed;
226
227	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228	if (freed > 0) {
229		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230		if (sbinfo->max_blocks)
231			percpu_counter_add(&sbinfo->used_blocks, -freed);
232		info->alloced -= freed;
233		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234		shmem_unacct_blocks(info->flags, freed);
235	}
236}
237
238/*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241static int shmem_radix_tree_replace(struct address_space *mapping,
242			pgoff_t index, void *expected, void *replacement)
243{
244	void **pslot;
245	void *item;
246
247	VM_BUG_ON(!expected);
248	VM_BUG_ON(!replacement);
249	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250	if (!pslot)
251		return -ENOENT;
252	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
253	if (item != expected)
254		return -ENOENT;
255	radix_tree_replace_slot(pslot, replacement);
256	return 0;
257}
258
259/*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266static bool shmem_confirm_swap(struct address_space *mapping,
267			       pgoff_t index, swp_entry_t swap)
268{
269	void *item;
270
271	rcu_read_lock();
272	item = radix_tree_lookup(&mapping->page_tree, index);
273	rcu_read_unlock();
274	return item == swp_to_radix_entry(swap);
275}
276
277/*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280static int shmem_add_to_page_cache(struct page *page,
281				   struct address_space *mapping,
282				   pgoff_t index, gfp_t gfp, void *expected)
283{
284	int error;
285
286	VM_BUG_ON_PAGE(!PageLocked(page), page);
287	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
288
289	page_cache_get(page);
290	page->mapping = mapping;
291	page->index = index;
292
293	spin_lock_irq(&mapping->tree_lock);
294	if (!expected)
295		error = radix_tree_insert(&mapping->page_tree, index, page);
296	else
297		error = shmem_radix_tree_replace(mapping, index, expected,
298								 page);
299	if (!error) {
300		mapping->nrpages++;
301		__inc_zone_page_state(page, NR_FILE_PAGES);
302		__inc_zone_page_state(page, NR_SHMEM);
303		spin_unlock_irq(&mapping->tree_lock);
304	} else {
305		page->mapping = NULL;
306		spin_unlock_irq(&mapping->tree_lock);
307		page_cache_release(page);
308	}
309	return error;
310}
311
312/*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316{
317	struct address_space *mapping = page->mapping;
318	int error;
319
320	spin_lock_irq(&mapping->tree_lock);
321	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322	page->mapping = NULL;
323	mapping->nrpages--;
324	__dec_zone_page_state(page, NR_FILE_PAGES);
325	__dec_zone_page_state(page, NR_SHMEM);
326	spin_unlock_irq(&mapping->tree_lock);
327	page_cache_release(page);
328	BUG_ON(error);
329}
330
331/*
332 * Remove swap entry from radix tree, free the swap and its page cache.
333 */
334static int shmem_free_swap(struct address_space *mapping,
335			   pgoff_t index, void *radswap)
336{
337	void *old;
338
339	spin_lock_irq(&mapping->tree_lock);
340	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
341	spin_unlock_irq(&mapping->tree_lock);
342	if (old != radswap)
343		return -ENOENT;
344	free_swap_and_cache(radix_to_swp_entry(radswap));
345	return 0;
346}
347
348/*
349 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
350 */
351void shmem_unlock_mapping(struct address_space *mapping)
352{
353	struct pagevec pvec;
354	pgoff_t indices[PAGEVEC_SIZE];
355	pgoff_t index = 0;
356
357	pagevec_init(&pvec, 0);
358	/*
359	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
360	 */
361	while (!mapping_unevictable(mapping)) {
362		/*
363		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
364		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
365		 */
366		pvec.nr = find_get_entries(mapping, index,
367					   PAGEVEC_SIZE, pvec.pages, indices);
368		if (!pvec.nr)
369			break;
370		index = indices[pvec.nr - 1] + 1;
371		pagevec_remove_exceptionals(&pvec);
372		check_move_unevictable_pages(pvec.pages, pvec.nr);
373		pagevec_release(&pvec);
374		cond_resched();
375	}
376}
377
378/*
379 * Remove range of pages and swap entries from radix tree, and free them.
380 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
381 */
382static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
383								 bool unfalloc)
384{
385	struct address_space *mapping = inode->i_mapping;
386	struct shmem_inode_info *info = SHMEM_I(inode);
387	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
388	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
389	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
390	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
391	struct pagevec pvec;
392	pgoff_t indices[PAGEVEC_SIZE];
393	long nr_swaps_freed = 0;
394	pgoff_t index;
395	int i;
396
397	if (lend == -1)
398		end = -1;	/* unsigned, so actually very big */
399
400	pagevec_init(&pvec, 0);
401	index = start;
402	while (index < end) {
403		pvec.nr = find_get_entries(mapping, index,
404			min(end - index, (pgoff_t)PAGEVEC_SIZE),
405			pvec.pages, indices);
406		if (!pvec.nr)
407			break;
408		mem_cgroup_uncharge_start();
409		for (i = 0; i < pagevec_count(&pvec); i++) {
410			struct page *page = pvec.pages[i];
411
412			index = indices[i];
413			if (index >= end)
414				break;
415
416			if (radix_tree_exceptional_entry(page)) {
417				if (unfalloc)
418					continue;
419				nr_swaps_freed += !shmem_free_swap(mapping,
420								index, page);
421				continue;
422			}
423
424			if (!trylock_page(page))
425				continue;
426			if (!unfalloc || !PageUptodate(page)) {
427				if (page->mapping == mapping) {
428					VM_BUG_ON_PAGE(PageWriteback(page), page);
429					truncate_inode_page(mapping, page);
430				}
431			}
432			unlock_page(page);
433		}
434		pagevec_remove_exceptionals(&pvec);
435		pagevec_release(&pvec);
436		mem_cgroup_uncharge_end();
437		cond_resched();
438		index++;
439	}
440
441	if (partial_start) {
442		struct page *page = NULL;
443		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
444		if (page) {
445			unsigned int top = PAGE_CACHE_SIZE;
446			if (start > end) {
447				top = partial_end;
448				partial_end = 0;
449			}
450			zero_user_segment(page, partial_start, top);
451			set_page_dirty(page);
452			unlock_page(page);
453			page_cache_release(page);
454		}
455	}
456	if (partial_end) {
457		struct page *page = NULL;
458		shmem_getpage(inode, end, &page, SGP_READ, NULL);
459		if (page) {
460			zero_user_segment(page, 0, partial_end);
461			set_page_dirty(page);
462			unlock_page(page);
463			page_cache_release(page);
464		}
465	}
466	if (start >= end)
467		return;
468
469	index = start;
470	for ( ; ; ) {
471		cond_resched();
472
473		pvec.nr = find_get_entries(mapping, index,
474				min(end - index, (pgoff_t)PAGEVEC_SIZE),
475				pvec.pages, indices);
476		if (!pvec.nr) {
477			if (index == start || unfalloc)
478				break;
479			index = start;
480			continue;
481		}
482		if ((index == start || unfalloc) && indices[0] >= end) {
483			pagevec_remove_exceptionals(&pvec);
484			pagevec_release(&pvec);
485			break;
486		}
487		mem_cgroup_uncharge_start();
488		for (i = 0; i < pagevec_count(&pvec); i++) {
489			struct page *page = pvec.pages[i];
490
491			index = indices[i];
492			if (index >= end)
493				break;
494
495			if (radix_tree_exceptional_entry(page)) {
496				if (unfalloc)
497					continue;
498				nr_swaps_freed += !shmem_free_swap(mapping,
499								index, page);
500				continue;
501			}
502
503			lock_page(page);
504			if (!unfalloc || !PageUptodate(page)) {
505				if (page->mapping == mapping) {
506					VM_BUG_ON_PAGE(PageWriteback(page), page);
507					truncate_inode_page(mapping, page);
508				}
509			}
510			unlock_page(page);
511		}
512		pagevec_remove_exceptionals(&pvec);
513		pagevec_release(&pvec);
514		mem_cgroup_uncharge_end();
515		index++;
516	}
517
518	spin_lock(&info->lock);
519	info->swapped -= nr_swaps_freed;
520	shmem_recalc_inode(inode);
521	spin_unlock(&info->lock);
522}
523
524void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
525{
526	shmem_undo_range(inode, lstart, lend, false);
527	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
528}
529EXPORT_SYMBOL_GPL(shmem_truncate_range);
530
531static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
532{
533	struct inode *inode = dentry->d_inode;
534	int error;
535
536	error = inode_change_ok(inode, attr);
537	if (error)
538		return error;
539
540	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
541		loff_t oldsize = inode->i_size;
542		loff_t newsize = attr->ia_size;
543
544		if (newsize != oldsize) {
545			i_size_write(inode, newsize);
546			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547		}
548		if (newsize < oldsize) {
549			loff_t holebegin = round_up(newsize, PAGE_SIZE);
550			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
551			shmem_truncate_range(inode, newsize, (loff_t)-1);
552			/* unmap again to remove racily COWed private pages */
553			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
554		}
555	}
556
557	setattr_copy(inode, attr);
558	if (attr->ia_valid & ATTR_MODE)
559		error = posix_acl_chmod(inode, inode->i_mode);
560	return error;
561}
562
563static void shmem_evict_inode(struct inode *inode)
564{
565	struct shmem_inode_info *info = SHMEM_I(inode);
566
567	if (inode->i_mapping->a_ops == &shmem_aops) {
568		shmem_unacct_size(info->flags, inode->i_size);
569		inode->i_size = 0;
570		shmem_truncate_range(inode, 0, (loff_t)-1);
571		if (!list_empty(&info->swaplist)) {
572			mutex_lock(&shmem_swaplist_mutex);
573			list_del_init(&info->swaplist);
574			mutex_unlock(&shmem_swaplist_mutex);
575		}
576	} else
577		kfree(info->symlink);
578
579	simple_xattrs_free(&info->xattrs);
580	WARN_ON(inode->i_blocks);
581	shmem_free_inode(inode->i_sb);
582	clear_inode(inode);
583}
584
585/*
586 * If swap found in inode, free it and move page from swapcache to filecache.
587 */
588static int shmem_unuse_inode(struct shmem_inode_info *info,
589			     swp_entry_t swap, struct page **pagep)
590{
591	struct address_space *mapping = info->vfs_inode.i_mapping;
592	void *radswap;
593	pgoff_t index;
594	gfp_t gfp;
595	int error = 0;
596
597	radswap = swp_to_radix_entry(swap);
598	index = radix_tree_locate_item(&mapping->page_tree, radswap);
599	if (index == -1)
600		return 0;
601
602	/*
603	 * Move _head_ to start search for next from here.
604	 * But be careful: shmem_evict_inode checks list_empty without taking
605	 * mutex, and there's an instant in list_move_tail when info->swaplist
606	 * would appear empty, if it were the only one on shmem_swaplist.
607	 */
608	if (shmem_swaplist.next != &info->swaplist)
609		list_move_tail(&shmem_swaplist, &info->swaplist);
610
611	gfp = mapping_gfp_mask(mapping);
612	if (shmem_should_replace_page(*pagep, gfp)) {
613		mutex_unlock(&shmem_swaplist_mutex);
614		error = shmem_replace_page(pagep, gfp, info, index);
615		mutex_lock(&shmem_swaplist_mutex);
616		/*
617		 * We needed to drop mutex to make that restrictive page
618		 * allocation, but the inode might have been freed while we
619		 * dropped it: although a racing shmem_evict_inode() cannot
620		 * complete without emptying the radix_tree, our page lock
621		 * on this swapcache page is not enough to prevent that -
622		 * free_swap_and_cache() of our swap entry will only
623		 * trylock_page(), removing swap from radix_tree whatever.
624		 *
625		 * We must not proceed to shmem_add_to_page_cache() if the
626		 * inode has been freed, but of course we cannot rely on
627		 * inode or mapping or info to check that.  However, we can
628		 * safely check if our swap entry is still in use (and here
629		 * it can't have got reused for another page): if it's still
630		 * in use, then the inode cannot have been freed yet, and we
631		 * can safely proceed (if it's no longer in use, that tells
632		 * nothing about the inode, but we don't need to unuse swap).
633		 */
634		if (!page_swapcount(*pagep))
635			error = -ENOENT;
636	}
637
638	/*
639	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
640	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
641	 * beneath us (pagelock doesn't help until the page is in pagecache).
642	 */
643	if (!error)
644		error = shmem_add_to_page_cache(*pagep, mapping, index,
645						GFP_NOWAIT, radswap);
646	if (error != -ENOMEM) {
647		/*
648		 * Truncation and eviction use free_swap_and_cache(), which
649		 * only does trylock page: if we raced, best clean up here.
650		 */
651		delete_from_swap_cache(*pagep);
652		set_page_dirty(*pagep);
653		if (!error) {
654			spin_lock(&info->lock);
655			info->swapped--;
656			spin_unlock(&info->lock);
657			swap_free(swap);
658		}
659		error = 1;	/* not an error, but entry was found */
660	}
661	return error;
662}
663
664/*
665 * Search through swapped inodes to find and replace swap by page.
666 */
667int shmem_unuse(swp_entry_t swap, struct page *page)
668{
669	struct list_head *this, *next;
670	struct shmem_inode_info *info;
671	int found = 0;
672	int error = 0;
673
674	/*
675	 * There's a faint possibility that swap page was replaced before
676	 * caller locked it: caller will come back later with the right page.
677	 */
678	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
679		goto out;
680
681	/*
682	 * Charge page using GFP_KERNEL while we can wait, before taking
683	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
684	 * Charged back to the user (not to caller) when swap account is used.
685	 */
686	error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
687	if (error)
688		goto out;
689	/* No radix_tree_preload: swap entry keeps a place for page in tree */
690
691	mutex_lock(&shmem_swaplist_mutex);
692	list_for_each_safe(this, next, &shmem_swaplist) {
693		info = list_entry(this, struct shmem_inode_info, swaplist);
694		if (info->swapped)
695			found = shmem_unuse_inode(info, swap, &page);
696		else
697			list_del_init(&info->swaplist);
698		cond_resched();
699		if (found)
700			break;
701	}
702	mutex_unlock(&shmem_swaplist_mutex);
703
704	if (found < 0)
705		error = found;
706out:
707	unlock_page(page);
708	page_cache_release(page);
709	return error;
710}
711
712/*
713 * Move the page from the page cache to the swap cache.
714 */
715static int shmem_writepage(struct page *page, struct writeback_control *wbc)
716{
717	struct shmem_inode_info *info;
718	struct address_space *mapping;
719	struct inode *inode;
720	swp_entry_t swap;
721	pgoff_t index;
722
723	BUG_ON(!PageLocked(page));
724	mapping = page->mapping;
725	index = page->index;
726	inode = mapping->host;
727	info = SHMEM_I(inode);
728	if (info->flags & VM_LOCKED)
729		goto redirty;
730	if (!total_swap_pages)
731		goto redirty;
732
733	/*
734	 * shmem_backing_dev_info's capabilities prevent regular writeback or
735	 * sync from ever calling shmem_writepage; but a stacking filesystem
736	 * might use ->writepage of its underlying filesystem, in which case
737	 * tmpfs should write out to swap only in response to memory pressure,
738	 * and not for the writeback threads or sync.
739	 */
740	if (!wbc->for_reclaim) {
741		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
742		goto redirty;
743	}
744
745	/*
746	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
747	 * value into swapfile.c, the only way we can correctly account for a
748	 * fallocated page arriving here is now to initialize it and write it.
749	 *
750	 * That's okay for a page already fallocated earlier, but if we have
751	 * not yet completed the fallocation, then (a) we want to keep track
752	 * of this page in case we have to undo it, and (b) it may not be a
753	 * good idea to continue anyway, once we're pushing into swap.  So
754	 * reactivate the page, and let shmem_fallocate() quit when too many.
755	 */
756	if (!PageUptodate(page)) {
757		if (inode->i_private) {
758			struct shmem_falloc *shmem_falloc;
759			spin_lock(&inode->i_lock);
760			shmem_falloc = inode->i_private;
761			if (shmem_falloc &&
762			    index >= shmem_falloc->start &&
763			    index < shmem_falloc->next)
764				shmem_falloc->nr_unswapped++;
765			else
766				shmem_falloc = NULL;
767			spin_unlock(&inode->i_lock);
768			if (shmem_falloc)
769				goto redirty;
770		}
771		clear_highpage(page);
772		flush_dcache_page(page);
773		SetPageUptodate(page);
774	}
775
776	swap = get_swap_page();
777	if (!swap.val)
778		goto redirty;
779
780	/*
781	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
782	 * if it's not already there.  Do it now before the page is
783	 * moved to swap cache, when its pagelock no longer protects
784	 * the inode from eviction.  But don't unlock the mutex until
785	 * we've incremented swapped, because shmem_unuse_inode() will
786	 * prune a !swapped inode from the swaplist under this mutex.
787	 */
788	mutex_lock(&shmem_swaplist_mutex);
789	if (list_empty(&info->swaplist))
790		list_add_tail(&info->swaplist, &shmem_swaplist);
791
792	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
793		swap_shmem_alloc(swap);
794		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
795
796		spin_lock(&info->lock);
797		info->swapped++;
798		shmem_recalc_inode(inode);
799		spin_unlock(&info->lock);
800
801		mutex_unlock(&shmem_swaplist_mutex);
802		BUG_ON(page_mapped(page));
803		swap_writepage(page, wbc);
804		return 0;
805	}
806
807	mutex_unlock(&shmem_swaplist_mutex);
808	swapcache_free(swap, NULL);
809redirty:
810	set_page_dirty(page);
811	if (wbc->for_reclaim)
812		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
813	unlock_page(page);
814	return 0;
815}
816
817#ifdef CONFIG_NUMA
818#ifdef CONFIG_TMPFS
819static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
820{
821	char buffer[64];
822
823	if (!mpol || mpol->mode == MPOL_DEFAULT)
824		return;		/* show nothing */
825
826	mpol_to_str(buffer, sizeof(buffer), mpol);
827
828	seq_printf(seq, ",mpol=%s", buffer);
829}
830
831static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
832{
833	struct mempolicy *mpol = NULL;
834	if (sbinfo->mpol) {
835		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
836		mpol = sbinfo->mpol;
837		mpol_get(mpol);
838		spin_unlock(&sbinfo->stat_lock);
839	}
840	return mpol;
841}
842#endif /* CONFIG_TMPFS */
843
844static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
845			struct shmem_inode_info *info, pgoff_t index)
846{
847	struct vm_area_struct pvma;
848	struct page *page;
849
850	/* Create a pseudo vma that just contains the policy */
851	pvma.vm_start = 0;
852	/* Bias interleave by inode number to distribute better across nodes */
853	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
854	pvma.vm_ops = NULL;
855	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
856
857	page = swapin_readahead(swap, gfp, &pvma, 0);
858
859	/* Drop reference taken by mpol_shared_policy_lookup() */
860	mpol_cond_put(pvma.vm_policy);
861
862	return page;
863}
864
865static struct page *shmem_alloc_page(gfp_t gfp,
866			struct shmem_inode_info *info, pgoff_t index)
867{
868	struct vm_area_struct pvma;
869	struct page *page;
870
871	/* Create a pseudo vma that just contains the policy */
872	pvma.vm_start = 0;
873	/* Bias interleave by inode number to distribute better across nodes */
874	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
875	pvma.vm_ops = NULL;
876	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
877
878	page = alloc_page_vma(gfp, &pvma, 0);
879
880	/* Drop reference taken by mpol_shared_policy_lookup() */
881	mpol_cond_put(pvma.vm_policy);
882
883	return page;
884}
885#else /* !CONFIG_NUMA */
886#ifdef CONFIG_TMPFS
887static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888{
889}
890#endif /* CONFIG_TMPFS */
891
892static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
893			struct shmem_inode_info *info, pgoff_t index)
894{
895	return swapin_readahead(swap, gfp, NULL, 0);
896}
897
898static inline struct page *shmem_alloc_page(gfp_t gfp,
899			struct shmem_inode_info *info, pgoff_t index)
900{
901	return alloc_page(gfp);
902}
903#endif /* CONFIG_NUMA */
904
905#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
906static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907{
908	return NULL;
909}
910#endif
911
912/*
913 * When a page is moved from swapcache to shmem filecache (either by the
914 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
915 * shmem_unuse_inode()), it may have been read in earlier from swap, in
916 * ignorance of the mapping it belongs to.  If that mapping has special
917 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
918 * we may need to copy to a suitable page before moving to filecache.
919 *
920 * In a future release, this may well be extended to respect cpuset and
921 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
922 * but for now it is a simple matter of zone.
923 */
924static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
925{
926	return page_zonenum(page) > gfp_zone(gfp);
927}
928
929static int shmem_replace_page(struct page **pagep, gfp_t gfp,
930				struct shmem_inode_info *info, pgoff_t index)
931{
932	struct page *oldpage, *newpage;
933	struct address_space *swap_mapping;
934	pgoff_t swap_index;
935	int error;
936
937	oldpage = *pagep;
938	swap_index = page_private(oldpage);
939	swap_mapping = page_mapping(oldpage);
940
941	/*
942	 * We have arrived here because our zones are constrained, so don't
943	 * limit chance of success by further cpuset and node constraints.
944	 */
945	gfp &= ~GFP_CONSTRAINT_MASK;
946	newpage = shmem_alloc_page(gfp, info, index);
947	if (!newpage)
948		return -ENOMEM;
949
950	page_cache_get(newpage);
951	copy_highpage(newpage, oldpage);
952	flush_dcache_page(newpage);
953
954	__set_page_locked(newpage);
955	SetPageUptodate(newpage);
956	SetPageSwapBacked(newpage);
957	set_page_private(newpage, swap_index);
958	SetPageSwapCache(newpage);
959
960	/*
961	 * Our caller will very soon move newpage out of swapcache, but it's
962	 * a nice clean interface for us to replace oldpage by newpage there.
963	 */
964	spin_lock_irq(&swap_mapping->tree_lock);
965	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
966								   newpage);
967	if (!error) {
968		__inc_zone_page_state(newpage, NR_FILE_PAGES);
969		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
970	}
971	spin_unlock_irq(&swap_mapping->tree_lock);
972
973	if (unlikely(error)) {
974		/*
975		 * Is this possible?  I think not, now that our callers check
976		 * both PageSwapCache and page_private after getting page lock;
977		 * but be defensive.  Reverse old to newpage for clear and free.
978		 */
979		oldpage = newpage;
980	} else {
981		mem_cgroup_replace_page_cache(oldpage, newpage);
982		lru_cache_add_anon(newpage);
983		*pagep = newpage;
984	}
985
986	ClearPageSwapCache(oldpage);
987	set_page_private(oldpage, 0);
988
989	unlock_page(oldpage);
990	page_cache_release(oldpage);
991	page_cache_release(oldpage);
992	return error;
993}
994
995/*
996 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
997 *
998 * If we allocate a new one we do not mark it dirty. That's up to the
999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1001 */
1002static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1003	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1004{
1005	struct address_space *mapping = inode->i_mapping;
1006	struct shmem_inode_info *info;
1007	struct shmem_sb_info *sbinfo;
1008	struct page *page;
1009	swp_entry_t swap;
1010	int error;
1011	int once = 0;
1012	int alloced = 0;
1013
1014	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1015		return -EFBIG;
1016repeat:
1017	swap.val = 0;
1018	page = find_lock_entry(mapping, index);
1019	if (radix_tree_exceptional_entry(page)) {
1020		swap = radix_to_swp_entry(page);
1021		page = NULL;
1022	}
1023
1024	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1025	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026		error = -EINVAL;
1027		goto failed;
1028	}
1029
1030	/* fallocated page? */
1031	if (page && !PageUptodate(page)) {
1032		if (sgp != SGP_READ)
1033			goto clear;
1034		unlock_page(page);
1035		page_cache_release(page);
1036		page = NULL;
1037	}
1038	if (page || (sgp == SGP_READ && !swap.val)) {
1039		*pagep = page;
1040		return 0;
1041	}
1042
1043	/*
1044	 * Fast cache lookup did not find it:
1045	 * bring it back from swap or allocate.
1046	 */
1047	info = SHMEM_I(inode);
1048	sbinfo = SHMEM_SB(inode->i_sb);
1049
1050	if (swap.val) {
1051		/* Look it up and read it in.. */
1052		page = lookup_swap_cache(swap);
1053		if (!page) {
1054			/* here we actually do the io */
1055			if (fault_type)
1056				*fault_type |= VM_FAULT_MAJOR;
1057			page = shmem_swapin(swap, gfp, info, index);
1058			if (!page) {
1059				error = -ENOMEM;
1060				goto failed;
1061			}
1062		}
1063
1064		/* We have to do this with page locked to prevent races */
1065		lock_page(page);
1066		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1067		    !shmem_confirm_swap(mapping, index, swap)) {
1068			error = -EEXIST;	/* try again */
1069			goto unlock;
1070		}
1071		if (!PageUptodate(page)) {
1072			error = -EIO;
1073			goto failed;
1074		}
1075		wait_on_page_writeback(page);
1076
1077		if (shmem_should_replace_page(page, gfp)) {
1078			error = shmem_replace_page(&page, gfp, info, index);
1079			if (error)
1080				goto failed;
1081		}
1082
1083		error = mem_cgroup_charge_file(page, current->mm,
1084						gfp & GFP_RECLAIM_MASK);
1085		if (!error) {
1086			error = shmem_add_to_page_cache(page, mapping, index,
1087						gfp, swp_to_radix_entry(swap));
1088			/*
1089			 * We already confirmed swap under page lock, and make
1090			 * no memory allocation here, so usually no possibility
1091			 * of error; but free_swap_and_cache() only trylocks a
1092			 * page, so it is just possible that the entry has been
1093			 * truncated or holepunched since swap was confirmed.
1094			 * shmem_undo_range() will have done some of the
1095			 * unaccounting, now delete_from_swap_cache() will do
1096			 * the rest (including mem_cgroup_uncharge_swapcache).
1097			 * Reset swap.val? No, leave it so "failed" goes back to
1098			 * "repeat": reading a hole and writing should succeed.
1099			 */
1100			if (error)
1101				delete_from_swap_cache(page);
1102		}
1103		if (error)
1104			goto failed;
1105
1106		spin_lock(&info->lock);
1107		info->swapped--;
1108		shmem_recalc_inode(inode);
1109		spin_unlock(&info->lock);
1110
1111		delete_from_swap_cache(page);
1112		set_page_dirty(page);
1113		swap_free(swap);
1114
1115	} else {
1116		if (shmem_acct_block(info->flags)) {
1117			error = -ENOSPC;
1118			goto failed;
1119		}
1120		if (sbinfo->max_blocks) {
1121			if (percpu_counter_compare(&sbinfo->used_blocks,
1122						sbinfo->max_blocks) >= 0) {
1123				error = -ENOSPC;
1124				goto unacct;
1125			}
1126			percpu_counter_inc(&sbinfo->used_blocks);
1127		}
1128
1129		page = shmem_alloc_page(gfp, info, index);
1130		if (!page) {
1131			error = -ENOMEM;
1132			goto decused;
1133		}
1134
1135		__SetPageSwapBacked(page);
1136		__set_page_locked(page);
1137		error = mem_cgroup_charge_file(page, current->mm,
1138						gfp & GFP_RECLAIM_MASK);
1139		if (error)
1140			goto decused;
1141		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1142		if (!error) {
1143			error = shmem_add_to_page_cache(page, mapping, index,
1144							gfp, NULL);
1145			radix_tree_preload_end();
1146		}
1147		if (error) {
1148			mem_cgroup_uncharge_cache_page(page);
1149			goto decused;
1150		}
1151		lru_cache_add_anon(page);
1152
1153		spin_lock(&info->lock);
1154		info->alloced++;
1155		inode->i_blocks += BLOCKS_PER_PAGE;
1156		shmem_recalc_inode(inode);
1157		spin_unlock(&info->lock);
1158		alloced = true;
1159
1160		/*
1161		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1162		 */
1163		if (sgp == SGP_FALLOC)
1164			sgp = SGP_WRITE;
1165clear:
1166		/*
1167		 * Let SGP_WRITE caller clear ends if write does not fill page;
1168		 * but SGP_FALLOC on a page fallocated earlier must initialize
1169		 * it now, lest undo on failure cancel our earlier guarantee.
1170		 */
1171		if (sgp != SGP_WRITE) {
1172			clear_highpage(page);
1173			flush_dcache_page(page);
1174			SetPageUptodate(page);
1175		}
1176		if (sgp == SGP_DIRTY)
1177			set_page_dirty(page);
1178	}
1179
1180	/* Perhaps the file has been truncated since we checked */
1181	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1182	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183		error = -EINVAL;
1184		if (alloced)
1185			goto trunc;
1186		else
1187			goto failed;
1188	}
1189	*pagep = page;
1190	return 0;
1191
1192	/*
1193	 * Error recovery.
1194	 */
1195trunc:
1196	info = SHMEM_I(inode);
1197	ClearPageDirty(page);
1198	delete_from_page_cache(page);
1199	spin_lock(&info->lock);
1200	info->alloced--;
1201	inode->i_blocks -= BLOCKS_PER_PAGE;
1202	spin_unlock(&info->lock);
1203decused:
1204	sbinfo = SHMEM_SB(inode->i_sb);
1205	if (sbinfo->max_blocks)
1206		percpu_counter_add(&sbinfo->used_blocks, -1);
1207unacct:
1208	shmem_unacct_blocks(info->flags, 1);
1209failed:
1210	if (swap.val && error != -EINVAL &&
1211	    !shmem_confirm_swap(mapping, index, swap))
1212		error = -EEXIST;
1213unlock:
1214	if (page) {
1215		unlock_page(page);
1216		page_cache_release(page);
1217	}
1218	if (error == -ENOSPC && !once++) {
1219		info = SHMEM_I(inode);
1220		spin_lock(&info->lock);
1221		shmem_recalc_inode(inode);
1222		spin_unlock(&info->lock);
1223		goto repeat;
1224	}
1225	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1226		goto repeat;
1227	return error;
1228}
1229
1230static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231{
1232	struct inode *inode = file_inode(vma->vm_file);
1233	int error;
1234	int ret = VM_FAULT_LOCKED;
1235
1236	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1237	if (error)
1238		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1239
1240	if (ret & VM_FAULT_MAJOR) {
1241		count_vm_event(PGMAJFAULT);
1242		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1243	}
1244	return ret;
1245}
1246
1247#ifdef CONFIG_NUMA
1248static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1249{
1250	struct inode *inode = file_inode(vma->vm_file);
1251	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1252}
1253
1254static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255					  unsigned long addr)
1256{
1257	struct inode *inode = file_inode(vma->vm_file);
1258	pgoff_t index;
1259
1260	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1262}
1263#endif
1264
1265int shmem_lock(struct file *file, int lock, struct user_struct *user)
1266{
1267	struct inode *inode = file_inode(file);
1268	struct shmem_inode_info *info = SHMEM_I(inode);
1269	int retval = -ENOMEM;
1270
1271	spin_lock(&info->lock);
1272	if (lock && !(info->flags & VM_LOCKED)) {
1273		if (!user_shm_lock(inode->i_size, user))
1274			goto out_nomem;
1275		info->flags |= VM_LOCKED;
1276		mapping_set_unevictable(file->f_mapping);
1277	}
1278	if (!lock && (info->flags & VM_LOCKED) && user) {
1279		user_shm_unlock(inode->i_size, user);
1280		info->flags &= ~VM_LOCKED;
1281		mapping_clear_unevictable(file->f_mapping);
1282	}
1283	retval = 0;
1284
1285out_nomem:
1286	spin_unlock(&info->lock);
1287	return retval;
1288}
1289
1290static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1291{
1292	file_accessed(file);
1293	vma->vm_ops = &shmem_vm_ops;
1294	return 0;
1295}
1296
1297static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1298				     umode_t mode, dev_t dev, unsigned long flags)
1299{
1300	struct inode *inode;
1301	struct shmem_inode_info *info;
1302	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1303
1304	if (shmem_reserve_inode(sb))
1305		return NULL;
1306
1307	inode = new_inode(sb);
1308	if (inode) {
1309		inode->i_ino = get_next_ino();
1310		inode_init_owner(inode, dir, mode);
1311		inode->i_blocks = 0;
1312		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1314		inode->i_generation = get_seconds();
1315		info = SHMEM_I(inode);
1316		memset(info, 0, (char *)inode - (char *)info);
1317		spin_lock_init(&info->lock);
1318		info->flags = flags & VM_NORESERVE;
1319		INIT_LIST_HEAD(&info->swaplist);
1320		simple_xattrs_init(&info->xattrs);
1321		cache_no_acl(inode);
1322
1323		switch (mode & S_IFMT) {
1324		default:
1325			inode->i_op = &shmem_special_inode_operations;
1326			init_special_inode(inode, mode, dev);
1327			break;
1328		case S_IFREG:
1329			inode->i_mapping->a_ops = &shmem_aops;
1330			inode->i_op = &shmem_inode_operations;
1331			inode->i_fop = &shmem_file_operations;
1332			mpol_shared_policy_init(&info->policy,
1333						 shmem_get_sbmpol(sbinfo));
1334			break;
1335		case S_IFDIR:
1336			inc_nlink(inode);
1337			/* Some things misbehave if size == 0 on a directory */
1338			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339			inode->i_op = &shmem_dir_inode_operations;
1340			inode->i_fop = &simple_dir_operations;
1341			break;
1342		case S_IFLNK:
1343			/*
1344			 * Must not load anything in the rbtree,
1345			 * mpol_free_shared_policy will not be called.
1346			 */
1347			mpol_shared_policy_init(&info->policy, NULL);
1348			break;
1349		}
1350	} else
1351		shmem_free_inode(sb);
1352	return inode;
1353}
1354
1355bool shmem_mapping(struct address_space *mapping)
1356{
1357	return mapping->backing_dev_info == &shmem_backing_dev_info;
1358}
1359
1360#ifdef CONFIG_TMPFS
1361static const struct inode_operations shmem_symlink_inode_operations;
1362static const struct inode_operations shmem_short_symlink_operations;
1363
1364#ifdef CONFIG_TMPFS_XATTR
1365static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366#else
1367#define shmem_initxattrs NULL
1368#endif
1369
1370static int
1371shmem_write_begin(struct file *file, struct address_space *mapping,
1372			loff_t pos, unsigned len, unsigned flags,
1373			struct page **pagep, void **fsdata)
1374{
1375	int ret;
1376	struct inode *inode = mapping->host;
1377	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1378	ret = shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1379	if (ret == 0 && *pagep)
1380		init_page_accessed(*pagep);
1381	return ret;
1382}
1383
1384static int
1385shmem_write_end(struct file *file, struct address_space *mapping,
1386			loff_t pos, unsigned len, unsigned copied,
1387			struct page *page, void *fsdata)
1388{
1389	struct inode *inode = mapping->host;
1390
1391	if (pos + copied > inode->i_size)
1392		i_size_write(inode, pos + copied);
1393
1394	if (!PageUptodate(page)) {
1395		if (copied < PAGE_CACHE_SIZE) {
1396			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1397			zero_user_segments(page, 0, from,
1398					from + copied, PAGE_CACHE_SIZE);
1399		}
1400		SetPageUptodate(page);
1401	}
1402	set_page_dirty(page);
1403	unlock_page(page);
1404	page_cache_release(page);
1405
1406	return copied;
1407}
1408
1409static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1410		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1411{
1412	struct file *file = iocb->ki_filp;
1413	struct inode *inode = file_inode(file);
1414	struct address_space *mapping = inode->i_mapping;
1415	pgoff_t index;
1416	unsigned long offset;
1417	enum sgp_type sgp = SGP_READ;
1418	int error = 0;
1419	ssize_t retval;
1420	size_t count;
1421	loff_t *ppos = &iocb->ki_pos;
1422	struct iov_iter iter;
1423
1424	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1425	if (retval)
1426		return retval;
1427	iov_iter_init(&iter, iov, nr_segs, count, 0);
1428
1429	/*
1430	 * Might this read be for a stacking filesystem?  Then when reading
1431	 * holes of a sparse file, we actually need to allocate those pages,
1432	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1433	 */
1434	if (segment_eq(get_fs(), KERNEL_DS))
1435		sgp = SGP_DIRTY;
1436
1437	index = *ppos >> PAGE_CACHE_SHIFT;
1438	offset = *ppos & ~PAGE_CACHE_MASK;
1439
1440	for (;;) {
1441		struct page *page = NULL;
1442		pgoff_t end_index;
1443		unsigned long nr, ret;
1444		loff_t i_size = i_size_read(inode);
1445
1446		end_index = i_size >> PAGE_CACHE_SHIFT;
1447		if (index > end_index)
1448			break;
1449		if (index == end_index) {
1450			nr = i_size & ~PAGE_CACHE_MASK;
1451			if (nr <= offset)
1452				break;
1453		}
1454
1455		error = shmem_getpage(inode, index, &page, sgp, NULL);
1456		if (error) {
1457			if (error == -EINVAL)
1458				error = 0;
1459			break;
1460		}
1461		if (page)
1462			unlock_page(page);
1463
1464		/*
1465		 * We must evaluate after, since reads (unlike writes)
1466		 * are called without i_mutex protection against truncate
1467		 */
1468		nr = PAGE_CACHE_SIZE;
1469		i_size = i_size_read(inode);
1470		end_index = i_size >> PAGE_CACHE_SHIFT;
1471		if (index == end_index) {
1472			nr = i_size & ~PAGE_CACHE_MASK;
1473			if (nr <= offset) {
1474				if (page)
1475					page_cache_release(page);
1476				break;
1477			}
1478		}
1479		nr -= offset;
1480
1481		if (page) {
1482			/*
1483			 * If users can be writing to this page using arbitrary
1484			 * virtual addresses, take care about potential aliasing
1485			 * before reading the page on the kernel side.
1486			 */
1487			if (mapping_writably_mapped(mapping))
1488				flush_dcache_page(page);
1489			/*
1490			 * Mark the page accessed if we read the beginning.
1491			 */
1492			if (!offset)
1493				mark_page_accessed(page);
1494		} else {
1495			page = ZERO_PAGE(0);
1496			page_cache_get(page);
1497		}
1498
1499		/*
1500		 * Ok, we have the page, and it's up-to-date, so
1501		 * now we can copy it to user space...
1502		 */
1503		ret = copy_page_to_iter(page, offset, nr, &iter);
1504		retval += ret;
1505		offset += ret;
1506		index += offset >> PAGE_CACHE_SHIFT;
1507		offset &= ~PAGE_CACHE_MASK;
1508
1509		page_cache_release(page);
1510		if (!iov_iter_count(&iter))
1511			break;
1512		if (ret < nr) {
1513			error = -EFAULT;
1514			break;
1515		}
1516		cond_resched();
1517	}
1518
1519	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1520	file_accessed(file);
1521	return retval ? retval : error;
1522}
1523
1524static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1525				struct pipe_inode_info *pipe, size_t len,
1526				unsigned int flags)
1527{
1528	struct address_space *mapping = in->f_mapping;
1529	struct inode *inode = mapping->host;
1530	unsigned int loff, nr_pages, req_pages;
1531	struct page *pages[PIPE_DEF_BUFFERS];
1532	struct partial_page partial[PIPE_DEF_BUFFERS];
1533	struct page *page;
1534	pgoff_t index, end_index;
1535	loff_t isize, left;
1536	int error, page_nr;
1537	struct splice_pipe_desc spd = {
1538		.pages = pages,
1539		.partial = partial,
1540		.nr_pages_max = PIPE_DEF_BUFFERS,
1541		.flags = flags,
1542		.ops = &page_cache_pipe_buf_ops,
1543		.spd_release = spd_release_page,
1544	};
1545
1546	isize = i_size_read(inode);
1547	if (unlikely(*ppos >= isize))
1548		return 0;
1549
1550	left = isize - *ppos;
1551	if (unlikely(left < len))
1552		len = left;
1553
1554	if (splice_grow_spd(pipe, &spd))
1555		return -ENOMEM;
1556
1557	index = *ppos >> PAGE_CACHE_SHIFT;
1558	loff = *ppos & ~PAGE_CACHE_MASK;
1559	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1560	nr_pages = min(req_pages, spd.nr_pages_max);
1561
1562	spd.nr_pages = find_get_pages_contig(mapping, index,
1563						nr_pages, spd.pages);
1564	index += spd.nr_pages;
1565	error = 0;
1566
1567	while (spd.nr_pages < nr_pages) {
1568		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1569		if (error)
1570			break;
1571		unlock_page(page);
1572		spd.pages[spd.nr_pages++] = page;
1573		index++;
1574	}
1575
1576	index = *ppos >> PAGE_CACHE_SHIFT;
1577	nr_pages = spd.nr_pages;
1578	spd.nr_pages = 0;
1579
1580	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1581		unsigned int this_len;
1582
1583		if (!len)
1584			break;
1585
1586		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1587		page = spd.pages[page_nr];
1588
1589		if (!PageUptodate(page) || page->mapping != mapping) {
1590			error = shmem_getpage(inode, index, &page,
1591							SGP_CACHE, NULL);
1592			if (error)
1593				break;
1594			unlock_page(page);
1595			page_cache_release(spd.pages[page_nr]);
1596			spd.pages[page_nr] = page;
1597		}
1598
1599		isize = i_size_read(inode);
1600		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1601		if (unlikely(!isize || index > end_index))
1602			break;
1603
1604		if (end_index == index) {
1605			unsigned int plen;
1606
1607			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1608			if (plen <= loff)
1609				break;
1610
1611			this_len = min(this_len, plen - loff);
1612			len = this_len;
1613		}
1614
1615		spd.partial[page_nr].offset = loff;
1616		spd.partial[page_nr].len = this_len;
1617		len -= this_len;
1618		loff = 0;
1619		spd.nr_pages++;
1620		index++;
1621	}
1622
1623	while (page_nr < nr_pages)
1624		page_cache_release(spd.pages[page_nr++]);
1625
1626	if (spd.nr_pages)
1627		error = splice_to_pipe(pipe, &spd);
1628
1629	splice_shrink_spd(&spd);
1630
1631	if (error > 0) {
1632		*ppos += error;
1633		file_accessed(in);
1634	}
1635	return error;
1636}
1637
1638/*
1639 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1640 */
1641static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1642				    pgoff_t index, pgoff_t end, int whence)
1643{
1644	struct page *page;
1645	struct pagevec pvec;
1646	pgoff_t indices[PAGEVEC_SIZE];
1647	bool done = false;
1648	int i;
1649
1650	pagevec_init(&pvec, 0);
1651	pvec.nr = 1;		/* start small: we may be there already */
1652	while (!done) {
1653		pvec.nr = find_get_entries(mapping, index,
1654					pvec.nr, pvec.pages, indices);
1655		if (!pvec.nr) {
1656			if (whence == SEEK_DATA)
1657				index = end;
1658			break;
1659		}
1660		for (i = 0; i < pvec.nr; i++, index++) {
1661			if (index < indices[i]) {
1662				if (whence == SEEK_HOLE) {
1663					done = true;
1664					break;
1665				}
1666				index = indices[i];
1667			}
1668			page = pvec.pages[i];
1669			if (page && !radix_tree_exceptional_entry(page)) {
1670				if (!PageUptodate(page))
1671					page = NULL;
1672			}
1673			if (index >= end ||
1674			    (page && whence == SEEK_DATA) ||
1675			    (!page && whence == SEEK_HOLE)) {
1676				done = true;
1677				break;
1678			}
1679		}
1680		pagevec_remove_exceptionals(&pvec);
1681		pagevec_release(&pvec);
1682		pvec.nr = PAGEVEC_SIZE;
1683		cond_resched();
1684	}
1685	return index;
1686}
1687
1688static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1689{
1690	struct address_space *mapping = file->f_mapping;
1691	struct inode *inode = mapping->host;
1692	pgoff_t start, end;
1693	loff_t new_offset;
1694
1695	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1696		return generic_file_llseek_size(file, offset, whence,
1697					MAX_LFS_FILESIZE, i_size_read(inode));
1698	mutex_lock(&inode->i_mutex);
1699	/* We're holding i_mutex so we can access i_size directly */
1700
1701	if (offset < 0)
1702		offset = -EINVAL;
1703	else if (offset >= inode->i_size)
1704		offset = -ENXIO;
1705	else {
1706		start = offset >> PAGE_CACHE_SHIFT;
1707		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1708		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1709		new_offset <<= PAGE_CACHE_SHIFT;
1710		if (new_offset > offset) {
1711			if (new_offset < inode->i_size)
1712				offset = new_offset;
1713			else if (whence == SEEK_DATA)
1714				offset = -ENXIO;
1715			else
1716				offset = inode->i_size;
1717		}
1718	}
1719
1720	if (offset >= 0)
1721		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1722	mutex_unlock(&inode->i_mutex);
1723	return offset;
1724}
1725
1726static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1727							 loff_t len)
1728{
1729	struct inode *inode = file_inode(file);
1730	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1731	struct shmem_falloc shmem_falloc;
1732	pgoff_t start, index, end;
1733	int error;
1734
1735	mutex_lock(&inode->i_mutex);
1736
1737	if (mode & FALLOC_FL_PUNCH_HOLE) {
1738		struct address_space *mapping = file->f_mapping;
1739		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1740		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1741
1742		if ((u64)unmap_end > (u64)unmap_start)
1743			unmap_mapping_range(mapping, unmap_start,
1744					    1 + unmap_end - unmap_start, 0);
1745		shmem_truncate_range(inode, offset, offset + len - 1);
1746		/* No need to unmap again: hole-punching leaves COWed pages */
1747		error = 0;
1748		goto out;
1749	}
1750
1751	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1752	error = inode_newsize_ok(inode, offset + len);
1753	if (error)
1754		goto out;
1755
1756	start = offset >> PAGE_CACHE_SHIFT;
1757	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1758	/* Try to avoid a swapstorm if len is impossible to satisfy */
1759	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1760		error = -ENOSPC;
1761		goto out;
1762	}
1763
1764	shmem_falloc.start = start;
1765	shmem_falloc.next  = start;
1766	shmem_falloc.nr_falloced = 0;
1767	shmem_falloc.nr_unswapped = 0;
1768	spin_lock(&inode->i_lock);
1769	inode->i_private = &shmem_falloc;
1770	spin_unlock(&inode->i_lock);
1771
1772	for (index = start; index < end; index++) {
1773		struct page *page;
1774
1775		/*
1776		 * Good, the fallocate(2) manpage permits EINTR: we may have
1777		 * been interrupted because we are using up too much memory.
1778		 */
1779		if (signal_pending(current))
1780			error = -EINTR;
1781		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1782			error = -ENOMEM;
1783		else
1784			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1785									NULL);
1786		if (error) {
1787			/* Remove the !PageUptodate pages we added */
1788			shmem_undo_range(inode,
1789				(loff_t)start << PAGE_CACHE_SHIFT,
1790				(loff_t)index << PAGE_CACHE_SHIFT, true);
1791			goto undone;
1792		}
1793
1794		/*
1795		 * Inform shmem_writepage() how far we have reached.
1796		 * No need for lock or barrier: we have the page lock.
1797		 */
1798		shmem_falloc.next++;
1799		if (!PageUptodate(page))
1800			shmem_falloc.nr_falloced++;
1801
1802		/*
1803		 * If !PageUptodate, leave it that way so that freeable pages
1804		 * can be recognized if we need to rollback on error later.
1805		 * But set_page_dirty so that memory pressure will swap rather
1806		 * than free the pages we are allocating (and SGP_CACHE pages
1807		 * might still be clean: we now need to mark those dirty too).
1808		 */
1809		set_page_dirty(page);
1810		unlock_page(page);
1811		page_cache_release(page);
1812		cond_resched();
1813	}
1814
1815	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1816		i_size_write(inode, offset + len);
1817	inode->i_ctime = CURRENT_TIME;
1818undone:
1819	spin_lock(&inode->i_lock);
1820	inode->i_private = NULL;
1821	spin_unlock(&inode->i_lock);
1822out:
1823	mutex_unlock(&inode->i_mutex);
1824	return error;
1825}
1826
1827static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1828{
1829	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1830
1831	buf->f_type = TMPFS_MAGIC;
1832	buf->f_bsize = PAGE_CACHE_SIZE;
1833	buf->f_namelen = NAME_MAX;
1834	if (sbinfo->max_blocks) {
1835		buf->f_blocks = sbinfo->max_blocks;
1836		buf->f_bavail =
1837		buf->f_bfree  = sbinfo->max_blocks -
1838				percpu_counter_sum(&sbinfo->used_blocks);
1839	}
1840	if (sbinfo->max_inodes) {
1841		buf->f_files = sbinfo->max_inodes;
1842		buf->f_ffree = sbinfo->free_inodes;
1843	}
1844	/* else leave those fields 0 like simple_statfs */
1845	return 0;
1846}
1847
1848/*
1849 * File creation. Allocate an inode, and we're done..
1850 */
1851static int
1852shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1853{
1854	struct inode *inode;
1855	int error = -ENOSPC;
1856
1857	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1858	if (inode) {
1859		error = simple_acl_create(dir, inode);
1860		if (error)
1861			goto out_iput;
1862		error = security_inode_init_security(inode, dir,
1863						     &dentry->d_name,
1864						     shmem_initxattrs, NULL);
1865		if (error && error != -EOPNOTSUPP)
1866			goto out_iput;
1867
1868		error = 0;
1869		dir->i_size += BOGO_DIRENT_SIZE;
1870		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1871		d_instantiate(dentry, inode);
1872		dget(dentry); /* Extra count - pin the dentry in core */
1873	}
1874	return error;
1875out_iput:
1876	iput(inode);
1877	return error;
1878}
1879
1880static int
1881shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1882{
1883	struct inode *inode;
1884	int error = -ENOSPC;
1885
1886	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1887	if (inode) {
1888		error = security_inode_init_security(inode, dir,
1889						     NULL,
1890						     shmem_initxattrs, NULL);
1891		if (error && error != -EOPNOTSUPP)
1892			goto out_iput;
1893		error = simple_acl_create(dir, inode);
1894		if (error)
1895			goto out_iput;
1896		d_tmpfile(dentry, inode);
1897	}
1898	return error;
1899out_iput:
1900	iput(inode);
1901	return error;
1902}
1903
1904static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1905{
1906	int error;
1907
1908	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1909		return error;
1910	inc_nlink(dir);
1911	return 0;
1912}
1913
1914static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1915		bool excl)
1916{
1917	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1918}
1919
1920/*
1921 * Link a file..
1922 */
1923static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1924{
1925	struct inode *inode = old_dentry->d_inode;
1926	int ret;
1927
1928	/*
1929	 * No ordinary (disk based) filesystem counts links as inodes;
1930	 * but each new link needs a new dentry, pinning lowmem, and
1931	 * tmpfs dentries cannot be pruned until they are unlinked.
1932	 */
1933	ret = shmem_reserve_inode(inode->i_sb);
1934	if (ret)
1935		goto out;
1936
1937	dir->i_size += BOGO_DIRENT_SIZE;
1938	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1939	inc_nlink(inode);
1940	ihold(inode);	/* New dentry reference */
1941	dget(dentry);		/* Extra pinning count for the created dentry */
1942	d_instantiate(dentry, inode);
1943out:
1944	return ret;
1945}
1946
1947static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1948{
1949	struct inode *inode = dentry->d_inode;
1950
1951	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1952		shmem_free_inode(inode->i_sb);
1953
1954	dir->i_size -= BOGO_DIRENT_SIZE;
1955	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1956	drop_nlink(inode);
1957	dput(dentry);	/* Undo the count from "create" - this does all the work */
1958	return 0;
1959}
1960
1961static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1962{
1963	if (!simple_empty(dentry))
1964		return -ENOTEMPTY;
1965
1966	drop_nlink(dentry->d_inode);
1967	drop_nlink(dir);
1968	return shmem_unlink(dir, dentry);
1969}
1970
1971/*
1972 * The VFS layer already does all the dentry stuff for rename,
1973 * we just have to decrement the usage count for the target if
1974 * it exists so that the VFS layer correctly free's it when it
1975 * gets overwritten.
1976 */
1977static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1978{
1979	struct inode *inode = old_dentry->d_inode;
1980	int they_are_dirs = S_ISDIR(inode->i_mode);
1981
1982	if (!simple_empty(new_dentry))
1983		return -ENOTEMPTY;
1984
1985	if (new_dentry->d_inode) {
1986		(void) shmem_unlink(new_dir, new_dentry);
1987		if (they_are_dirs)
1988			drop_nlink(old_dir);
1989	} else if (they_are_dirs) {
1990		drop_nlink(old_dir);
1991		inc_nlink(new_dir);
1992	}
1993
1994	old_dir->i_size -= BOGO_DIRENT_SIZE;
1995	new_dir->i_size += BOGO_DIRENT_SIZE;
1996	old_dir->i_ctime = old_dir->i_mtime =
1997	new_dir->i_ctime = new_dir->i_mtime =
1998	inode->i_ctime = CURRENT_TIME;
1999	return 0;
2000}
2001
2002static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2003{
2004	int error;
2005	int len;
2006	struct inode *inode;
2007	struct page *page;
2008	char *kaddr;
2009	struct shmem_inode_info *info;
2010
2011	len = strlen(symname) + 1;
2012	if (len > PAGE_CACHE_SIZE)
2013		return -ENAMETOOLONG;
2014
2015	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2016	if (!inode)
2017		return -ENOSPC;
2018
2019	error = security_inode_init_security(inode, dir, &dentry->d_name,
2020					     shmem_initxattrs, NULL);
2021	if (error) {
2022		if (error != -EOPNOTSUPP) {
2023			iput(inode);
2024			return error;
2025		}
2026		error = 0;
2027	}
2028
2029	info = SHMEM_I(inode);
2030	inode->i_size = len-1;
2031	if (len <= SHORT_SYMLINK_LEN) {
2032		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2033		if (!info->symlink) {
2034			iput(inode);
2035			return -ENOMEM;
2036		}
2037		inode->i_op = &shmem_short_symlink_operations;
2038	} else {
2039		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2040		if (error) {
2041			iput(inode);
2042			return error;
2043		}
2044		inode->i_mapping->a_ops = &shmem_aops;
2045		inode->i_op = &shmem_symlink_inode_operations;
2046		kaddr = kmap_atomic(page);
2047		memcpy(kaddr, symname, len);
2048		kunmap_atomic(kaddr);
2049		SetPageUptodate(page);
2050		set_page_dirty(page);
2051		unlock_page(page);
2052		page_cache_release(page);
2053	}
2054	dir->i_size += BOGO_DIRENT_SIZE;
2055	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2056	d_instantiate(dentry, inode);
2057	dget(dentry);
2058	return 0;
2059}
2060
2061static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2062{
2063	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2064	return NULL;
2065}
2066
2067static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2068{
2069	struct page *page = NULL;
2070	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2071	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2072	if (page)
2073		unlock_page(page);
2074	return page;
2075}
2076
2077static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2078{
2079	if (!IS_ERR(nd_get_link(nd))) {
2080		struct page *page = cookie;
2081		kunmap(page);
2082		mark_page_accessed(page);
2083		page_cache_release(page);
2084	}
2085}
2086
2087#ifdef CONFIG_TMPFS_XATTR
2088/*
2089 * Superblocks without xattr inode operations may get some security.* xattr
2090 * support from the LSM "for free". As soon as we have any other xattrs
2091 * like ACLs, we also need to implement the security.* handlers at
2092 * filesystem level, though.
2093 */
2094
2095/*
2096 * Callback for security_inode_init_security() for acquiring xattrs.
2097 */
2098static int shmem_initxattrs(struct inode *inode,
2099			    const struct xattr *xattr_array,
2100			    void *fs_info)
2101{
2102	struct shmem_inode_info *info = SHMEM_I(inode);
2103	const struct xattr *xattr;
2104	struct simple_xattr *new_xattr;
2105	size_t len;
2106
2107	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2108		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2109		if (!new_xattr)
2110			return -ENOMEM;
2111
2112		len = strlen(xattr->name) + 1;
2113		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2114					  GFP_KERNEL);
2115		if (!new_xattr->name) {
2116			kfree(new_xattr);
2117			return -ENOMEM;
2118		}
2119
2120		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2121		       XATTR_SECURITY_PREFIX_LEN);
2122		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2123		       xattr->name, len);
2124
2125		simple_xattr_list_add(&info->xattrs, new_xattr);
2126	}
2127
2128	return 0;
2129}
2130
2131static const struct xattr_handler *shmem_xattr_handlers[] = {
2132#ifdef CONFIG_TMPFS_POSIX_ACL
2133	&posix_acl_access_xattr_handler,
2134	&posix_acl_default_xattr_handler,
2135#endif
2136	NULL
2137};
2138
2139static int shmem_xattr_validate(const char *name)
2140{
2141	struct { const char *prefix; size_t len; } arr[] = {
2142		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2143		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2144	};
2145	int i;
2146
2147	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2148		size_t preflen = arr[i].len;
2149		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2150			if (!name[preflen])
2151				return -EINVAL;
2152			return 0;
2153		}
2154	}
2155	return -EOPNOTSUPP;
2156}
2157
2158static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2159			      void *buffer, size_t size)
2160{
2161	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2162	int err;
2163
2164	/*
2165	 * If this is a request for a synthetic attribute in the system.*
2166	 * namespace use the generic infrastructure to resolve a handler
2167	 * for it via sb->s_xattr.
2168	 */
2169	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2170		return generic_getxattr(dentry, name, buffer, size);
2171
2172	err = shmem_xattr_validate(name);
2173	if (err)
2174		return err;
2175
2176	return simple_xattr_get(&info->xattrs, name, buffer, size);
2177}
2178
2179static int shmem_setxattr(struct dentry *dentry, const char *name,
2180			  const void *value, size_t size, int flags)
2181{
2182	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2183	int err;
2184
2185	/*
2186	 * If this is a request for a synthetic attribute in the system.*
2187	 * namespace use the generic infrastructure to resolve a handler
2188	 * for it via sb->s_xattr.
2189	 */
2190	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2191		return generic_setxattr(dentry, name, value, size, flags);
2192
2193	err = shmem_xattr_validate(name);
2194	if (err)
2195		return err;
2196
2197	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2198}
2199
2200static int shmem_removexattr(struct dentry *dentry, const char *name)
2201{
2202	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2203	int err;
2204
2205	/*
2206	 * If this is a request for a synthetic attribute in the system.*
2207	 * namespace use the generic infrastructure to resolve a handler
2208	 * for it via sb->s_xattr.
2209	 */
2210	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2211		return generic_removexattr(dentry, name);
2212
2213	err = shmem_xattr_validate(name);
2214	if (err)
2215		return err;
2216
2217	return simple_xattr_remove(&info->xattrs, name);
2218}
2219
2220static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2221{
2222	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2223	return simple_xattr_list(&info->xattrs, buffer, size);
2224}
2225#endif /* CONFIG_TMPFS_XATTR */
2226
2227static const struct inode_operations shmem_short_symlink_operations = {
2228	.readlink	= generic_readlink,
2229	.follow_link	= shmem_follow_short_symlink,
2230#ifdef CONFIG_TMPFS_XATTR
2231	.setxattr	= shmem_setxattr,
2232	.getxattr	= shmem_getxattr,
2233	.listxattr	= shmem_listxattr,
2234	.removexattr	= shmem_removexattr,
2235#endif
2236};
2237
2238static const struct inode_operations shmem_symlink_inode_operations = {
2239	.readlink	= generic_readlink,
2240	.follow_link	= shmem_follow_link,
2241	.put_link	= shmem_put_link,
2242#ifdef CONFIG_TMPFS_XATTR
2243	.setxattr	= shmem_setxattr,
2244	.getxattr	= shmem_getxattr,
2245	.listxattr	= shmem_listxattr,
2246	.removexattr	= shmem_removexattr,
2247#endif
2248};
2249
2250static struct dentry *shmem_get_parent(struct dentry *child)
2251{
2252	return ERR_PTR(-ESTALE);
2253}
2254
2255static int shmem_match(struct inode *ino, void *vfh)
2256{
2257	__u32 *fh = vfh;
2258	__u64 inum = fh[2];
2259	inum = (inum << 32) | fh[1];
2260	return ino->i_ino == inum && fh[0] == ino->i_generation;
2261}
2262
2263static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2264		struct fid *fid, int fh_len, int fh_type)
2265{
2266	struct inode *inode;
2267	struct dentry *dentry = NULL;
2268	u64 inum;
2269
2270	if (fh_len < 3)
2271		return NULL;
2272
2273	inum = fid->raw[2];
2274	inum = (inum << 32) | fid->raw[1];
2275
2276	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2277			shmem_match, fid->raw);
2278	if (inode) {
2279		dentry = d_find_alias(inode);
2280		iput(inode);
2281	}
2282
2283	return dentry;
2284}
2285
2286static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2287				struct inode *parent)
2288{
2289	if (*len < 3) {
2290		*len = 3;
2291		return FILEID_INVALID;
2292	}
2293
2294	if (inode_unhashed(inode)) {
2295		/* Unfortunately insert_inode_hash is not idempotent,
2296		 * so as we hash inodes here rather than at creation
2297		 * time, we need a lock to ensure we only try
2298		 * to do it once
2299		 */
2300		static DEFINE_SPINLOCK(lock);
2301		spin_lock(&lock);
2302		if (inode_unhashed(inode))
2303			__insert_inode_hash(inode,
2304					    inode->i_ino + inode->i_generation);
2305		spin_unlock(&lock);
2306	}
2307
2308	fh[0] = inode->i_generation;
2309	fh[1] = inode->i_ino;
2310	fh[2] = ((__u64)inode->i_ino) >> 32;
2311
2312	*len = 3;
2313	return 1;
2314}
2315
2316static const struct export_operations shmem_export_ops = {
2317	.get_parent     = shmem_get_parent,
2318	.encode_fh      = shmem_encode_fh,
2319	.fh_to_dentry	= shmem_fh_to_dentry,
2320};
2321
2322static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2323			       bool remount)
2324{
2325	char *this_char, *value, *rest;
2326	struct mempolicy *mpol = NULL;
2327	uid_t uid;
2328	gid_t gid;
2329
2330	while (options != NULL) {
2331		this_char = options;
2332		for (;;) {
2333			/*
2334			 * NUL-terminate this option: unfortunately,
2335			 * mount options form a comma-separated list,
2336			 * but mpol's nodelist may also contain commas.
2337			 */
2338			options = strchr(options, ',');
2339			if (options == NULL)
2340				break;
2341			options++;
2342			if (!isdigit(*options)) {
2343				options[-1] = '\0';
2344				break;
2345			}
2346		}
2347		if (!*this_char)
2348			continue;
2349		if ((value = strchr(this_char,'=')) != NULL) {
2350			*value++ = 0;
2351		} else {
2352			printk(KERN_ERR
2353			    "tmpfs: No value for mount option '%s'\n",
2354			    this_char);
2355			goto error;
2356		}
2357
2358		if (!strcmp(this_char,"size")) {
2359			unsigned long long size;
2360			size = memparse(value,&rest);
2361			if (*rest == '%') {
2362				size <<= PAGE_SHIFT;
2363				size *= totalram_pages;
2364				do_div(size, 100);
2365				rest++;
2366			}
2367			if (*rest)
2368				goto bad_val;
2369			sbinfo->max_blocks =
2370				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2371		} else if (!strcmp(this_char,"nr_blocks")) {
2372			sbinfo->max_blocks = memparse(value, &rest);
2373			if (*rest)
2374				goto bad_val;
2375		} else if (!strcmp(this_char,"nr_inodes")) {
2376			sbinfo->max_inodes = memparse(value, &rest);
2377			if (*rest)
2378				goto bad_val;
2379		} else if (!strcmp(this_char,"mode")) {
2380			if (remount)
2381				continue;
2382			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2383			if (*rest)
2384				goto bad_val;
2385		} else if (!strcmp(this_char,"uid")) {
2386			if (remount)
2387				continue;
2388			uid = simple_strtoul(value, &rest, 0);
2389			if (*rest)
2390				goto bad_val;
2391			sbinfo->uid = make_kuid(current_user_ns(), uid);
2392			if (!uid_valid(sbinfo->uid))
2393				goto bad_val;
2394		} else if (!strcmp(this_char,"gid")) {
2395			if (remount)
2396				continue;
2397			gid = simple_strtoul(value, &rest, 0);
2398			if (*rest)
2399				goto bad_val;
2400			sbinfo->gid = make_kgid(current_user_ns(), gid);
2401			if (!gid_valid(sbinfo->gid))
2402				goto bad_val;
2403		} else if (!strcmp(this_char,"mpol")) {
2404			mpol_put(mpol);
2405			mpol = NULL;
2406			if (mpol_parse_str(value, &mpol))
2407				goto bad_val;
2408		} else {
2409			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2410			       this_char);
2411			goto error;
2412		}
2413	}
2414	sbinfo->mpol = mpol;
2415	return 0;
2416
2417bad_val:
2418	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2419	       value, this_char);
2420error:
2421	mpol_put(mpol);
2422	return 1;
2423
2424}
2425
2426static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2427{
2428	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2429	struct shmem_sb_info config = *sbinfo;
2430	unsigned long inodes;
2431	int error = -EINVAL;
2432
2433	config.mpol = NULL;
2434	if (shmem_parse_options(data, &config, true))
2435		return error;
2436
2437	spin_lock(&sbinfo->stat_lock);
2438	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2439	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2440		goto out;
2441	if (config.max_inodes < inodes)
2442		goto out;
2443	/*
2444	 * Those tests disallow limited->unlimited while any are in use;
2445	 * but we must separately disallow unlimited->limited, because
2446	 * in that case we have no record of how much is already in use.
2447	 */
2448	if (config.max_blocks && !sbinfo->max_blocks)
2449		goto out;
2450	if (config.max_inodes && !sbinfo->max_inodes)
2451		goto out;
2452
2453	error = 0;
2454	sbinfo->max_blocks  = config.max_blocks;
2455	sbinfo->max_inodes  = config.max_inodes;
2456	sbinfo->free_inodes = config.max_inodes - inodes;
2457
2458	/*
2459	 * Preserve previous mempolicy unless mpol remount option was specified.
2460	 */
2461	if (config.mpol) {
2462		mpol_put(sbinfo->mpol);
2463		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2464	}
2465out:
2466	spin_unlock(&sbinfo->stat_lock);
2467	return error;
2468}
2469
2470static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2471{
2472	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2473
2474	if (sbinfo->max_blocks != shmem_default_max_blocks())
2475		seq_printf(seq, ",size=%luk",
2476			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2477	if (sbinfo->max_inodes != shmem_default_max_inodes())
2478		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2479	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2480		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2481	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2482		seq_printf(seq, ",uid=%u",
2483				from_kuid_munged(&init_user_ns, sbinfo->uid));
2484	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2485		seq_printf(seq, ",gid=%u",
2486				from_kgid_munged(&init_user_ns, sbinfo->gid));
2487	shmem_show_mpol(seq, sbinfo->mpol);
2488	return 0;
2489}
2490#endif /* CONFIG_TMPFS */
2491
2492static void shmem_put_super(struct super_block *sb)
2493{
2494	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2495
2496	percpu_counter_destroy(&sbinfo->used_blocks);
2497	mpol_put(sbinfo->mpol);
2498	kfree(sbinfo);
2499	sb->s_fs_info = NULL;
2500}
2501
2502int shmem_fill_super(struct super_block *sb, void *data, int silent)
2503{
2504	struct inode *inode;
2505	struct shmem_sb_info *sbinfo;
2506	int err = -ENOMEM;
2507
2508	/* Round up to L1_CACHE_BYTES to resist false sharing */
2509	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2510				L1_CACHE_BYTES), GFP_KERNEL);
2511	if (!sbinfo)
2512		return -ENOMEM;
2513
2514	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2515	sbinfo->uid = current_fsuid();
2516	sbinfo->gid = current_fsgid();
2517	sb->s_fs_info = sbinfo;
2518
2519#ifdef CONFIG_TMPFS
2520	/*
2521	 * Per default we only allow half of the physical ram per
2522	 * tmpfs instance, limiting inodes to one per page of lowmem;
2523	 * but the internal instance is left unlimited.
2524	 */
2525	if (!(sb->s_flags & MS_KERNMOUNT)) {
2526		sbinfo->max_blocks = shmem_default_max_blocks();
2527		sbinfo->max_inodes = shmem_default_max_inodes();
2528		if (shmem_parse_options(data, sbinfo, false)) {
2529			err = -EINVAL;
2530			goto failed;
2531		}
2532	} else {
2533		sb->s_flags |= MS_NOUSER;
2534	}
2535	sb->s_export_op = &shmem_export_ops;
2536	sb->s_flags |= MS_NOSEC;
2537#else
2538	sb->s_flags |= MS_NOUSER;
2539#endif
2540
2541	spin_lock_init(&sbinfo->stat_lock);
2542	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2543		goto failed;
2544	sbinfo->free_inodes = sbinfo->max_inodes;
2545
2546	sb->s_maxbytes = MAX_LFS_FILESIZE;
2547	sb->s_blocksize = PAGE_CACHE_SIZE;
2548	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2549	sb->s_magic = TMPFS_MAGIC;
2550	sb->s_op = &shmem_ops;
2551	sb->s_time_gran = 1;
2552#ifdef CONFIG_TMPFS_XATTR
2553	sb->s_xattr = shmem_xattr_handlers;
2554#endif
2555#ifdef CONFIG_TMPFS_POSIX_ACL
2556	sb->s_flags |= MS_POSIXACL;
2557#endif
2558
2559	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2560	if (!inode)
2561		goto failed;
2562	inode->i_uid = sbinfo->uid;
2563	inode->i_gid = sbinfo->gid;
2564	sb->s_root = d_make_root(inode);
2565	if (!sb->s_root)
2566		goto failed;
2567	return 0;
2568
2569failed:
2570	shmem_put_super(sb);
2571	return err;
2572}
2573
2574static struct kmem_cache *shmem_inode_cachep;
2575
2576static struct inode *shmem_alloc_inode(struct super_block *sb)
2577{
2578	struct shmem_inode_info *info;
2579	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2580	if (!info)
2581		return NULL;
2582	return &info->vfs_inode;
2583}
2584
2585static void shmem_destroy_callback(struct rcu_head *head)
2586{
2587	struct inode *inode = container_of(head, struct inode, i_rcu);
2588	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2589}
2590
2591static void shmem_destroy_inode(struct inode *inode)
2592{
2593	if (S_ISREG(inode->i_mode))
2594		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2595	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2596}
2597
2598static void shmem_init_inode(void *foo)
2599{
2600	struct shmem_inode_info *info = foo;
2601	inode_init_once(&info->vfs_inode);
2602}
2603
2604static int shmem_init_inodecache(void)
2605{
2606	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2607				sizeof(struct shmem_inode_info),
2608				0, SLAB_PANIC, shmem_init_inode);
2609	return 0;
2610}
2611
2612static void shmem_destroy_inodecache(void)
2613{
2614	kmem_cache_destroy(shmem_inode_cachep);
2615}
2616
2617static const struct address_space_operations shmem_aops = {
2618	.writepage	= shmem_writepage,
2619	.set_page_dirty	= __set_page_dirty_no_writeback,
2620#ifdef CONFIG_TMPFS
2621	.write_begin	= shmem_write_begin,
2622	.write_end	= shmem_write_end,
2623#endif
2624	.migratepage	= migrate_page,
2625	.error_remove_page = generic_error_remove_page,
2626};
2627
2628static const struct file_operations shmem_file_operations = {
2629	.mmap		= shmem_mmap,
2630#ifdef CONFIG_TMPFS
2631	.llseek		= shmem_file_llseek,
2632	.read		= do_sync_read,
2633	.write		= do_sync_write,
2634	.aio_read	= shmem_file_aio_read,
2635	.aio_write	= generic_file_aio_write,
2636	.fsync		= noop_fsync,
2637	.splice_read	= shmem_file_splice_read,
2638	.splice_write	= generic_file_splice_write,
2639	.fallocate	= shmem_fallocate,
2640#endif
2641};
2642
2643static const struct inode_operations shmem_inode_operations = {
2644	.setattr	= shmem_setattr,
2645#ifdef CONFIG_TMPFS_XATTR
2646	.setxattr	= shmem_setxattr,
2647	.getxattr	= shmem_getxattr,
2648	.listxattr	= shmem_listxattr,
2649	.removexattr	= shmem_removexattr,
2650	.set_acl	= simple_set_acl,
2651#endif
2652};
2653
2654static const struct inode_operations shmem_dir_inode_operations = {
2655#ifdef CONFIG_TMPFS
2656	.create		= shmem_create,
2657	.lookup		= simple_lookup,
2658	.link		= shmem_link,
2659	.unlink		= shmem_unlink,
2660	.symlink	= shmem_symlink,
2661	.mkdir		= shmem_mkdir,
2662	.rmdir		= shmem_rmdir,
2663	.mknod		= shmem_mknod,
2664	.rename		= shmem_rename,
2665	.tmpfile	= shmem_tmpfile,
2666#endif
2667#ifdef CONFIG_TMPFS_XATTR
2668	.setxattr	= shmem_setxattr,
2669	.getxattr	= shmem_getxattr,
2670	.listxattr	= shmem_listxattr,
2671	.removexattr	= shmem_removexattr,
2672#endif
2673#ifdef CONFIG_TMPFS_POSIX_ACL
2674	.setattr	= shmem_setattr,
2675	.set_acl	= simple_set_acl,
2676#endif
2677};
2678
2679static const struct inode_operations shmem_special_inode_operations = {
2680#ifdef CONFIG_TMPFS_XATTR
2681	.setxattr	= shmem_setxattr,
2682	.getxattr	= shmem_getxattr,
2683	.listxattr	= shmem_listxattr,
2684	.removexattr	= shmem_removexattr,
2685#endif
2686#ifdef CONFIG_TMPFS_POSIX_ACL
2687	.setattr	= shmem_setattr,
2688	.set_acl	= simple_set_acl,
2689#endif
2690};
2691
2692static const struct super_operations shmem_ops = {
2693	.alloc_inode	= shmem_alloc_inode,
2694	.destroy_inode	= shmem_destroy_inode,
2695#ifdef CONFIG_TMPFS
2696	.statfs		= shmem_statfs,
2697	.remount_fs	= shmem_remount_fs,
2698	.show_options	= shmem_show_options,
2699#endif
2700	.evict_inode	= shmem_evict_inode,
2701	.drop_inode	= generic_delete_inode,
2702	.put_super	= shmem_put_super,
2703};
2704
2705static const struct vm_operations_struct shmem_vm_ops = {
2706	.fault		= shmem_fault,
2707	.map_pages	= filemap_map_pages,
2708#ifdef CONFIG_NUMA
2709	.set_policy     = shmem_set_policy,
2710	.get_policy     = shmem_get_policy,
2711#endif
2712	.remap_pages	= generic_file_remap_pages,
2713};
2714
2715static struct dentry *shmem_mount(struct file_system_type *fs_type,
2716	int flags, const char *dev_name, void *data)
2717{
2718	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2719}
2720
2721static struct file_system_type shmem_fs_type = {
2722	.owner		= THIS_MODULE,
2723	.name		= "tmpfs",
2724	.mount		= shmem_mount,
2725	.kill_sb	= kill_litter_super,
2726	.fs_flags	= FS_USERNS_MOUNT,
2727};
2728
2729int __init shmem_init(void)
2730{
2731	int error;
2732
2733	/* If rootfs called this, don't re-init */
2734	if (shmem_inode_cachep)
2735		return 0;
2736
2737	error = bdi_init(&shmem_backing_dev_info);
2738	if (error)
2739		goto out4;
2740
2741	error = shmem_init_inodecache();
2742	if (error)
2743		goto out3;
2744
2745	error = register_filesystem(&shmem_fs_type);
2746	if (error) {
2747		printk(KERN_ERR "Could not register tmpfs\n");
2748		goto out2;
2749	}
2750
2751	shm_mnt = kern_mount(&shmem_fs_type);
2752	if (IS_ERR(shm_mnt)) {
2753		error = PTR_ERR(shm_mnt);
2754		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2755		goto out1;
2756	}
2757	return 0;
2758
2759out1:
2760	unregister_filesystem(&shmem_fs_type);
2761out2:
2762	shmem_destroy_inodecache();
2763out3:
2764	bdi_destroy(&shmem_backing_dev_info);
2765out4:
2766	shm_mnt = ERR_PTR(error);
2767	return error;
2768}
2769
2770#else /* !CONFIG_SHMEM */
2771
2772/*
2773 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2774 *
2775 * This is intended for small system where the benefits of the full
2776 * shmem code (swap-backed and resource-limited) are outweighed by
2777 * their complexity. On systems without swap this code should be
2778 * effectively equivalent, but much lighter weight.
2779 */
2780
2781static struct file_system_type shmem_fs_type = {
2782	.name		= "tmpfs",
2783	.mount		= ramfs_mount,
2784	.kill_sb	= kill_litter_super,
2785	.fs_flags	= FS_USERNS_MOUNT,
2786};
2787
2788int __init shmem_init(void)
2789{
2790	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2791
2792	shm_mnt = kern_mount(&shmem_fs_type);
2793	BUG_ON(IS_ERR(shm_mnt));
2794
2795	return 0;
2796}
2797
2798int shmem_unuse(swp_entry_t swap, struct page *page)
2799{
2800	return 0;
2801}
2802
2803int shmem_lock(struct file *file, int lock, struct user_struct *user)
2804{
2805	return 0;
2806}
2807
2808void shmem_unlock_mapping(struct address_space *mapping)
2809{
2810}
2811
2812void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2813{
2814	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2815}
2816EXPORT_SYMBOL_GPL(shmem_truncate_range);
2817
2818#define shmem_vm_ops				generic_file_vm_ops
2819#define shmem_file_operations			ramfs_file_operations
2820#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2821#define shmem_acct_size(flags, size)		0
2822#define shmem_unacct_size(flags, size)		do {} while (0)
2823
2824#endif /* CONFIG_SHMEM */
2825
2826/* common code */
2827
2828static struct dentry_operations anon_ops = {
2829	.d_dname = simple_dname
2830};
2831
2832static struct file *__shmem_file_setup(const char *name, loff_t size,
2833				       unsigned long flags, unsigned int i_flags)
2834{
2835	struct file *res;
2836	struct inode *inode;
2837	struct path path;
2838	struct super_block *sb;
2839	struct qstr this;
2840
2841	if (IS_ERR(shm_mnt))
2842		return ERR_CAST(shm_mnt);
2843
2844	if (size < 0 || size > MAX_LFS_FILESIZE)
2845		return ERR_PTR(-EINVAL);
2846
2847	if (shmem_acct_size(flags, size))
2848		return ERR_PTR(-ENOMEM);
2849
2850	res = ERR_PTR(-ENOMEM);
2851	this.name = name;
2852	this.len = strlen(name);
2853	this.hash = 0; /* will go */
2854	sb = shm_mnt->mnt_sb;
2855	path.dentry = d_alloc_pseudo(sb, &this);
2856	if (!path.dentry)
2857		goto put_memory;
2858	d_set_d_op(path.dentry, &anon_ops);
2859	path.mnt = mntget(shm_mnt);
2860
2861	res = ERR_PTR(-ENOSPC);
2862	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2863	if (!inode)
2864		goto put_dentry;
2865
2866	inode->i_flags |= i_flags;
2867	d_instantiate(path.dentry, inode);
2868	inode->i_size = size;
2869	clear_nlink(inode);	/* It is unlinked */
2870	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2871	if (IS_ERR(res))
2872		goto put_dentry;
2873
2874	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2875		  &shmem_file_operations);
2876	if (IS_ERR(res))
2877		goto put_dentry;
2878
2879	return res;
2880
2881put_dentry:
2882	path_put(&path);
2883put_memory:
2884	shmem_unacct_size(flags, size);
2885	return res;
2886}
2887
2888/**
2889 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2890 * 	kernel internal.  There will be NO LSM permission checks against the
2891 * 	underlying inode.  So users of this interface must do LSM checks at a
2892 * 	higher layer.  The one user is the big_key implementation.  LSM checks
2893 * 	are provided at the key level rather than the inode level.
2894 * @name: name for dentry (to be seen in /proc/<pid>/maps
2895 * @size: size to be set for the file
2896 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2897 */
2898struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2899{
2900	return __shmem_file_setup(name, size, flags, S_PRIVATE);
2901}
2902
2903/**
2904 * shmem_file_setup - get an unlinked file living in tmpfs
2905 * @name: name for dentry (to be seen in /proc/<pid>/maps
2906 * @size: size to be set for the file
2907 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2908 */
2909struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2910{
2911	return __shmem_file_setup(name, size, flags, 0);
2912}
2913EXPORT_SYMBOL_GPL(shmem_file_setup);
2914
2915/**
2916 * shmem_zero_setup - setup a shared anonymous mapping
2917 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2918 */
2919int shmem_zero_setup(struct vm_area_struct *vma)
2920{
2921	struct file *file;
2922	loff_t size = vma->vm_end - vma->vm_start;
2923
2924	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2925	if (IS_ERR(file))
2926		return PTR_ERR(file);
2927
2928	if (vma->vm_file)
2929		fput(vma->vm_file);
2930	vma->vm_file = file;
2931	vma->vm_ops = &shmem_vm_ops;
2932	return 0;
2933}
2934
2935/**
2936 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2937 * @mapping:	the page's address_space
2938 * @index:	the page index
2939 * @gfp:	the page allocator flags to use if allocating
2940 *
2941 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2942 * with any new page allocations done using the specified allocation flags.
2943 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2944 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2945 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2946 *
2947 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2948 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2949 */
2950struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2951					 pgoff_t index, gfp_t gfp)
2952{
2953#ifdef CONFIG_SHMEM
2954	struct inode *inode = mapping->host;
2955	struct page *page;
2956	int error;
2957
2958	BUG_ON(mapping->a_ops != &shmem_aops);
2959	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2960	if (error)
2961		page = ERR_PTR(error);
2962	else
2963		unlock_page(page);
2964	return page;
2965#else
2966	/*
2967	 * The tiny !SHMEM case uses ramfs without swap
2968	 */
2969	return read_cache_page_gfp(mapping, index, gfp);
2970#endif
2971}
2972EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2973