shmem.c revision 2c26fdd70c3094fa3e84caf9ef434911933d5477
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/module.h>
30#include <linux/swap.h>
31
32static struct vfsmount *shm_mnt;
33
34#ifdef CONFIG_SHMEM
35/*
36 * This virtual memory filesystem is heavily based on the ramfs. It
37 * extends ramfs by the ability to use swap and honor resource limits
38 * which makes it a completely usable filesystem.
39 */
40
41#include <linux/xattr.h>
42#include <linux/exportfs.h>
43#include <linux/generic_acl.h>
44#include <linux/mman.h>
45#include <linux/pagemap.h>
46#include <linux/string.h>
47#include <linux/slab.h>
48#include <linux/backing-dev.h>
49#include <linux/shmem_fs.h>
50#include <linux/writeback.h>
51#include <linux/vfs.h>
52#include <linux/blkdev.h>
53#include <linux/security.h>
54#include <linux/swapops.h>
55#include <linux/mempolicy.h>
56#include <linux/namei.h>
57#include <linux/ctype.h>
58#include <linux/migrate.h>
59#include <linux/highmem.h>
60#include <linux/seq_file.h>
61#include <linux/magic.h>
62
63#include <asm/uaccess.h>
64#include <asm/div64.h>
65#include <asm/pgtable.h>
66
67#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
68#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
69#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
70
71#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
72#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
73
74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
77#define SHMEM_PAGEIN	 VM_READ
78#define SHMEM_TRUNCATE	 VM_WRITE
79
80/* Definition to limit shmem_truncate's steps between cond_rescheds */
81#define LATENCY_LIMIT	 64
82
83/* Pretend that each entry is of this size in directory's i_size */
84#define BOGO_DIRENT_SIZE 20
85
86/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
87enum sgp_type {
88	SGP_READ,	/* don't exceed i_size, don't allocate page */
89	SGP_CACHE,	/* don't exceed i_size, may allocate page */
90	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
91	SGP_WRITE,	/* may exceed i_size, may allocate page */
92};
93
94#ifdef CONFIG_TMPFS
95static unsigned long shmem_default_max_blocks(void)
96{
97	return totalram_pages / 2;
98}
99
100static unsigned long shmem_default_max_inodes(void)
101{
102	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103}
104#endif
105
106static int shmem_getpage(struct inode *inode, unsigned long idx,
107			 struct page **pagep, enum sgp_type sgp, int *type);
108
109static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
110{
111	/*
112	 * The above definition of ENTRIES_PER_PAGE, and the use of
113	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
114	 * might be reconsidered if it ever diverges from PAGE_SIZE.
115	 *
116	 * Mobility flags are masked out as swap vectors cannot move
117	 */
118	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
119				PAGE_CACHE_SHIFT-PAGE_SHIFT);
120}
121
122static inline void shmem_dir_free(struct page *page)
123{
124	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
125}
126
127static struct page **shmem_dir_map(struct page *page)
128{
129	return (struct page **)kmap_atomic(page, KM_USER0);
130}
131
132static inline void shmem_dir_unmap(struct page **dir)
133{
134	kunmap_atomic(dir, KM_USER0);
135}
136
137static swp_entry_t *shmem_swp_map(struct page *page)
138{
139	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
140}
141
142static inline void shmem_swp_balance_unmap(void)
143{
144	/*
145	 * When passing a pointer to an i_direct entry, to code which
146	 * also handles indirect entries and so will shmem_swp_unmap,
147	 * we must arrange for the preempt count to remain in balance.
148	 * What kmap_atomic of a lowmem page does depends on config
149	 * and architecture, so pretend to kmap_atomic some lowmem page.
150	 */
151	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
152}
153
154static inline void shmem_swp_unmap(swp_entry_t *entry)
155{
156	kunmap_atomic(entry, KM_USER1);
157}
158
159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160{
161	return sb->s_fs_info;
162}
163
164/*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170static inline int shmem_acct_size(unsigned long flags, loff_t size)
171{
172	return (flags & VM_ACCOUNT) ?
173		security_vm_enough_memory_kern(VM_ACCT(size)) : 0;
174}
175
176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177{
178	if (flags & VM_ACCOUNT)
179		vm_unacct_memory(VM_ACCT(size));
180}
181
182/*
183 * ... whereas tmpfs objects are accounted incrementally as
184 * pages are allocated, in order to allow huge sparse files.
185 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
186 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
187 */
188static inline int shmem_acct_block(unsigned long flags)
189{
190	return (flags & VM_ACCOUNT) ?
191		0 : security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE));
192}
193
194static inline void shmem_unacct_blocks(unsigned long flags, long pages)
195{
196	if (!(flags & VM_ACCOUNT))
197		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
198}
199
200static const struct super_operations shmem_ops;
201static const struct address_space_operations shmem_aops;
202static const struct file_operations shmem_file_operations;
203static const struct inode_operations shmem_inode_operations;
204static const struct inode_operations shmem_dir_inode_operations;
205static const struct inode_operations shmem_special_inode_operations;
206static struct vm_operations_struct shmem_vm_ops;
207
208static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
209	.ra_pages	= 0,	/* No readahead */
210	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
211	.unplug_io_fn	= default_unplug_io_fn,
212};
213
214static LIST_HEAD(shmem_swaplist);
215static DEFINE_MUTEX(shmem_swaplist_mutex);
216
217static void shmem_free_blocks(struct inode *inode, long pages)
218{
219	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220	if (sbinfo->max_blocks) {
221		spin_lock(&sbinfo->stat_lock);
222		sbinfo->free_blocks += pages;
223		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
224		spin_unlock(&sbinfo->stat_lock);
225	}
226}
227
228static int shmem_reserve_inode(struct super_block *sb)
229{
230	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
231	if (sbinfo->max_inodes) {
232		spin_lock(&sbinfo->stat_lock);
233		if (!sbinfo->free_inodes) {
234			spin_unlock(&sbinfo->stat_lock);
235			return -ENOSPC;
236		}
237		sbinfo->free_inodes--;
238		spin_unlock(&sbinfo->stat_lock);
239	}
240	return 0;
241}
242
243static void shmem_free_inode(struct super_block *sb)
244{
245	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246	if (sbinfo->max_inodes) {
247		spin_lock(&sbinfo->stat_lock);
248		sbinfo->free_inodes++;
249		spin_unlock(&sbinfo->stat_lock);
250	}
251}
252
253/**
254 * shmem_recalc_inode - recalculate the size of an inode
255 * @inode: inode to recalc
256 *
257 * We have to calculate the free blocks since the mm can drop
258 * undirtied hole pages behind our back.
259 *
260 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
261 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
262 *
263 * It has to be called with the spinlock held.
264 */
265static void shmem_recalc_inode(struct inode *inode)
266{
267	struct shmem_inode_info *info = SHMEM_I(inode);
268	long freed;
269
270	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
271	if (freed > 0) {
272		info->alloced -= freed;
273		shmem_unacct_blocks(info->flags, freed);
274		shmem_free_blocks(inode, freed);
275	}
276}
277
278/**
279 * shmem_swp_entry - find the swap vector position in the info structure
280 * @info:  info structure for the inode
281 * @index: index of the page to find
282 * @page:  optional page to add to the structure. Has to be preset to
283 *         all zeros
284 *
285 * If there is no space allocated yet it will return NULL when
286 * page is NULL, else it will use the page for the needed block,
287 * setting it to NULL on return to indicate that it has been used.
288 *
289 * The swap vector is organized the following way:
290 *
291 * There are SHMEM_NR_DIRECT entries directly stored in the
292 * shmem_inode_info structure. So small files do not need an addional
293 * allocation.
294 *
295 * For pages with index > SHMEM_NR_DIRECT there is the pointer
296 * i_indirect which points to a page which holds in the first half
297 * doubly indirect blocks, in the second half triple indirect blocks:
298 *
299 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
300 * following layout (for SHMEM_NR_DIRECT == 16):
301 *
302 * i_indirect -> dir --> 16-19
303 * 	      |	     +-> 20-23
304 * 	      |
305 * 	      +-->dir2 --> 24-27
306 * 	      |	       +-> 28-31
307 * 	      |	       +-> 32-35
308 * 	      |	       +-> 36-39
309 * 	      |
310 * 	      +-->dir3 --> 40-43
311 * 	       	       +-> 44-47
312 * 	      	       +-> 48-51
313 * 	      	       +-> 52-55
314 */
315static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
316{
317	unsigned long offset;
318	struct page **dir;
319	struct page *subdir;
320
321	if (index < SHMEM_NR_DIRECT) {
322		shmem_swp_balance_unmap();
323		return info->i_direct+index;
324	}
325	if (!info->i_indirect) {
326		if (page) {
327			info->i_indirect = *page;
328			*page = NULL;
329		}
330		return NULL;			/* need another page */
331	}
332
333	index -= SHMEM_NR_DIRECT;
334	offset = index % ENTRIES_PER_PAGE;
335	index /= ENTRIES_PER_PAGE;
336	dir = shmem_dir_map(info->i_indirect);
337
338	if (index >= ENTRIES_PER_PAGE/2) {
339		index -= ENTRIES_PER_PAGE/2;
340		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
341		index %= ENTRIES_PER_PAGE;
342		subdir = *dir;
343		if (!subdir) {
344			if (page) {
345				*dir = *page;
346				*page = NULL;
347			}
348			shmem_dir_unmap(dir);
349			return NULL;		/* need another page */
350		}
351		shmem_dir_unmap(dir);
352		dir = shmem_dir_map(subdir);
353	}
354
355	dir += index;
356	subdir = *dir;
357	if (!subdir) {
358		if (!page || !(subdir = *page)) {
359			shmem_dir_unmap(dir);
360			return NULL;		/* need a page */
361		}
362		*dir = subdir;
363		*page = NULL;
364	}
365	shmem_dir_unmap(dir);
366	return shmem_swp_map(subdir) + offset;
367}
368
369static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
370{
371	long incdec = value? 1: -1;
372
373	entry->val = value;
374	info->swapped += incdec;
375	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
376		struct page *page = kmap_atomic_to_page(entry);
377		set_page_private(page, page_private(page) + incdec);
378	}
379}
380
381/**
382 * shmem_swp_alloc - get the position of the swap entry for the page.
383 * @info:	info structure for the inode
384 * @index:	index of the page to find
385 * @sgp:	check and recheck i_size? skip allocation?
386 *
387 * If the entry does not exist, allocate it.
388 */
389static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
390{
391	struct inode *inode = &info->vfs_inode;
392	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
393	struct page *page = NULL;
394	swp_entry_t *entry;
395
396	if (sgp != SGP_WRITE &&
397	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
398		return ERR_PTR(-EINVAL);
399
400	while (!(entry = shmem_swp_entry(info, index, &page))) {
401		if (sgp == SGP_READ)
402			return shmem_swp_map(ZERO_PAGE(0));
403		/*
404		 * Test free_blocks against 1 not 0, since we have 1 data
405		 * page (and perhaps indirect index pages) yet to allocate:
406		 * a waste to allocate index if we cannot allocate data.
407		 */
408		if (sbinfo->max_blocks) {
409			spin_lock(&sbinfo->stat_lock);
410			if (sbinfo->free_blocks <= 1) {
411				spin_unlock(&sbinfo->stat_lock);
412				return ERR_PTR(-ENOSPC);
413			}
414			sbinfo->free_blocks--;
415			inode->i_blocks += BLOCKS_PER_PAGE;
416			spin_unlock(&sbinfo->stat_lock);
417		}
418
419		spin_unlock(&info->lock);
420		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
421		if (page)
422			set_page_private(page, 0);
423		spin_lock(&info->lock);
424
425		if (!page) {
426			shmem_free_blocks(inode, 1);
427			return ERR_PTR(-ENOMEM);
428		}
429		if (sgp != SGP_WRITE &&
430		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
431			entry = ERR_PTR(-EINVAL);
432			break;
433		}
434		if (info->next_index <= index)
435			info->next_index = index + 1;
436	}
437	if (page) {
438		/* another task gave its page, or truncated the file */
439		shmem_free_blocks(inode, 1);
440		shmem_dir_free(page);
441	}
442	if (info->next_index <= index && !IS_ERR(entry))
443		info->next_index = index + 1;
444	return entry;
445}
446
447/**
448 * shmem_free_swp - free some swap entries in a directory
449 * @dir:        pointer to the directory
450 * @edir:       pointer after last entry of the directory
451 * @punch_lock: pointer to spinlock when needed for the holepunch case
452 */
453static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
454						spinlock_t *punch_lock)
455{
456	spinlock_t *punch_unlock = NULL;
457	swp_entry_t *ptr;
458	int freed = 0;
459
460	for (ptr = dir; ptr < edir; ptr++) {
461		if (ptr->val) {
462			if (unlikely(punch_lock)) {
463				punch_unlock = punch_lock;
464				punch_lock = NULL;
465				spin_lock(punch_unlock);
466				if (!ptr->val)
467					continue;
468			}
469			free_swap_and_cache(*ptr);
470			*ptr = (swp_entry_t){0};
471			freed++;
472		}
473	}
474	if (punch_unlock)
475		spin_unlock(punch_unlock);
476	return freed;
477}
478
479static int shmem_map_and_free_swp(struct page *subdir, int offset,
480		int limit, struct page ***dir, spinlock_t *punch_lock)
481{
482	swp_entry_t *ptr;
483	int freed = 0;
484
485	ptr = shmem_swp_map(subdir);
486	for (; offset < limit; offset += LATENCY_LIMIT) {
487		int size = limit - offset;
488		if (size > LATENCY_LIMIT)
489			size = LATENCY_LIMIT;
490		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
491							punch_lock);
492		if (need_resched()) {
493			shmem_swp_unmap(ptr);
494			if (*dir) {
495				shmem_dir_unmap(*dir);
496				*dir = NULL;
497			}
498			cond_resched();
499			ptr = shmem_swp_map(subdir);
500		}
501	}
502	shmem_swp_unmap(ptr);
503	return freed;
504}
505
506static void shmem_free_pages(struct list_head *next)
507{
508	struct page *page;
509	int freed = 0;
510
511	do {
512		page = container_of(next, struct page, lru);
513		next = next->next;
514		shmem_dir_free(page);
515		freed++;
516		if (freed >= LATENCY_LIMIT) {
517			cond_resched();
518			freed = 0;
519		}
520	} while (next);
521}
522
523static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
524{
525	struct shmem_inode_info *info = SHMEM_I(inode);
526	unsigned long idx;
527	unsigned long size;
528	unsigned long limit;
529	unsigned long stage;
530	unsigned long diroff;
531	struct page **dir;
532	struct page *topdir;
533	struct page *middir;
534	struct page *subdir;
535	swp_entry_t *ptr;
536	LIST_HEAD(pages_to_free);
537	long nr_pages_to_free = 0;
538	long nr_swaps_freed = 0;
539	int offset;
540	int freed;
541	int punch_hole;
542	spinlock_t *needs_lock;
543	spinlock_t *punch_lock;
544	unsigned long upper_limit;
545
546	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
548	if (idx >= info->next_index)
549		return;
550
551	spin_lock(&info->lock);
552	info->flags |= SHMEM_TRUNCATE;
553	if (likely(end == (loff_t) -1)) {
554		limit = info->next_index;
555		upper_limit = SHMEM_MAX_INDEX;
556		info->next_index = idx;
557		needs_lock = NULL;
558		punch_hole = 0;
559	} else {
560		if (end + 1 >= inode->i_size) {	/* we may free a little more */
561			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
562							PAGE_CACHE_SHIFT;
563			upper_limit = SHMEM_MAX_INDEX;
564		} else {
565			limit = (end + 1) >> PAGE_CACHE_SHIFT;
566			upper_limit = limit;
567		}
568		needs_lock = &info->lock;
569		punch_hole = 1;
570	}
571
572	topdir = info->i_indirect;
573	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
574		info->i_indirect = NULL;
575		nr_pages_to_free++;
576		list_add(&topdir->lru, &pages_to_free);
577	}
578	spin_unlock(&info->lock);
579
580	if (info->swapped && idx < SHMEM_NR_DIRECT) {
581		ptr = info->i_direct;
582		size = limit;
583		if (size > SHMEM_NR_DIRECT)
584			size = SHMEM_NR_DIRECT;
585		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
586	}
587
588	/*
589	 * If there are no indirect blocks or we are punching a hole
590	 * below indirect blocks, nothing to be done.
591	 */
592	if (!topdir || limit <= SHMEM_NR_DIRECT)
593		goto done2;
594
595	/*
596	 * The truncation case has already dropped info->lock, and we're safe
597	 * because i_size and next_index have already been lowered, preventing
598	 * access beyond.  But in the punch_hole case, we still need to take
599	 * the lock when updating the swap directory, because there might be
600	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
601	 * shmem_writepage.  However, whenever we find we can remove a whole
602	 * directory page (not at the misaligned start or end of the range),
603	 * we first NULLify its pointer in the level above, and then have no
604	 * need to take the lock when updating its contents: needs_lock and
605	 * punch_lock (either pointing to info->lock or NULL) manage this.
606	 */
607
608	upper_limit -= SHMEM_NR_DIRECT;
609	limit -= SHMEM_NR_DIRECT;
610	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
611	offset = idx % ENTRIES_PER_PAGE;
612	idx -= offset;
613
614	dir = shmem_dir_map(topdir);
615	stage = ENTRIES_PER_PAGEPAGE/2;
616	if (idx < ENTRIES_PER_PAGEPAGE/2) {
617		middir = topdir;
618		diroff = idx/ENTRIES_PER_PAGE;
619	} else {
620		dir += ENTRIES_PER_PAGE/2;
621		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
622		while (stage <= idx)
623			stage += ENTRIES_PER_PAGEPAGE;
624		middir = *dir;
625		if (*dir) {
626			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
627				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
628			if (!diroff && !offset && upper_limit >= stage) {
629				if (needs_lock) {
630					spin_lock(needs_lock);
631					*dir = NULL;
632					spin_unlock(needs_lock);
633					needs_lock = NULL;
634				} else
635					*dir = NULL;
636				nr_pages_to_free++;
637				list_add(&middir->lru, &pages_to_free);
638			}
639			shmem_dir_unmap(dir);
640			dir = shmem_dir_map(middir);
641		} else {
642			diroff = 0;
643			offset = 0;
644			idx = stage;
645		}
646	}
647
648	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
649		if (unlikely(idx == stage)) {
650			shmem_dir_unmap(dir);
651			dir = shmem_dir_map(topdir) +
652			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
653			while (!*dir) {
654				dir++;
655				idx += ENTRIES_PER_PAGEPAGE;
656				if (idx >= limit)
657					goto done1;
658			}
659			stage = idx + ENTRIES_PER_PAGEPAGE;
660			middir = *dir;
661			if (punch_hole)
662				needs_lock = &info->lock;
663			if (upper_limit >= stage) {
664				if (needs_lock) {
665					spin_lock(needs_lock);
666					*dir = NULL;
667					spin_unlock(needs_lock);
668					needs_lock = NULL;
669				} else
670					*dir = NULL;
671				nr_pages_to_free++;
672				list_add(&middir->lru, &pages_to_free);
673			}
674			shmem_dir_unmap(dir);
675			cond_resched();
676			dir = shmem_dir_map(middir);
677			diroff = 0;
678		}
679		punch_lock = needs_lock;
680		subdir = dir[diroff];
681		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
682			if (needs_lock) {
683				spin_lock(needs_lock);
684				dir[diroff] = NULL;
685				spin_unlock(needs_lock);
686				punch_lock = NULL;
687			} else
688				dir[diroff] = NULL;
689			nr_pages_to_free++;
690			list_add(&subdir->lru, &pages_to_free);
691		}
692		if (subdir && page_private(subdir) /* has swap entries */) {
693			size = limit - idx;
694			if (size > ENTRIES_PER_PAGE)
695				size = ENTRIES_PER_PAGE;
696			freed = shmem_map_and_free_swp(subdir,
697					offset, size, &dir, punch_lock);
698			if (!dir)
699				dir = shmem_dir_map(middir);
700			nr_swaps_freed += freed;
701			if (offset || punch_lock) {
702				spin_lock(&info->lock);
703				set_page_private(subdir,
704					page_private(subdir) - freed);
705				spin_unlock(&info->lock);
706			} else
707				BUG_ON(page_private(subdir) != freed);
708		}
709		offset = 0;
710	}
711done1:
712	shmem_dir_unmap(dir);
713done2:
714	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
715		/*
716		 * Call truncate_inode_pages again: racing shmem_unuse_inode
717		 * may have swizzled a page in from swap since vmtruncate or
718		 * generic_delete_inode did it, before we lowered next_index.
719		 * Also, though shmem_getpage checks i_size before adding to
720		 * cache, no recheck after: so fix the narrow window there too.
721		 *
722		 * Recalling truncate_inode_pages_range and unmap_mapping_range
723		 * every time for punch_hole (which never got a chance to clear
724		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
725		 * yet hardly ever necessary: try to optimize them out later.
726		 */
727		truncate_inode_pages_range(inode->i_mapping, start, end);
728		if (punch_hole)
729			unmap_mapping_range(inode->i_mapping, start,
730							end - start, 1);
731	}
732
733	spin_lock(&info->lock);
734	info->flags &= ~SHMEM_TRUNCATE;
735	info->swapped -= nr_swaps_freed;
736	if (nr_pages_to_free)
737		shmem_free_blocks(inode, nr_pages_to_free);
738	shmem_recalc_inode(inode);
739	spin_unlock(&info->lock);
740
741	/*
742	 * Empty swap vector directory pages to be freed?
743	 */
744	if (!list_empty(&pages_to_free)) {
745		pages_to_free.prev->next = NULL;
746		shmem_free_pages(pages_to_free.next);
747	}
748}
749
750static void shmem_truncate(struct inode *inode)
751{
752	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
753}
754
755static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
756{
757	struct inode *inode = dentry->d_inode;
758	struct page *page = NULL;
759	int error;
760
761	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
762		if (attr->ia_size < inode->i_size) {
763			/*
764			 * If truncating down to a partial page, then
765			 * if that page is already allocated, hold it
766			 * in memory until the truncation is over, so
767			 * truncate_partial_page cannnot miss it were
768			 * it assigned to swap.
769			 */
770			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
771				(void) shmem_getpage(inode,
772					attr->ia_size>>PAGE_CACHE_SHIFT,
773						&page, SGP_READ, NULL);
774				if (page)
775					unlock_page(page);
776			}
777			/*
778			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
779			 * detect if any pages might have been added to cache
780			 * after truncate_inode_pages.  But we needn't bother
781			 * if it's being fully truncated to zero-length: the
782			 * nrpages check is efficient enough in that case.
783			 */
784			if (attr->ia_size) {
785				struct shmem_inode_info *info = SHMEM_I(inode);
786				spin_lock(&info->lock);
787				info->flags &= ~SHMEM_PAGEIN;
788				spin_unlock(&info->lock);
789			}
790		}
791	}
792
793	error = inode_change_ok(inode, attr);
794	if (!error)
795		error = inode_setattr(inode, attr);
796#ifdef CONFIG_TMPFS_POSIX_ACL
797	if (!error && (attr->ia_valid & ATTR_MODE))
798		error = generic_acl_chmod(inode, &shmem_acl_ops);
799#endif
800	if (page)
801		page_cache_release(page);
802	return error;
803}
804
805static void shmem_delete_inode(struct inode *inode)
806{
807	struct shmem_inode_info *info = SHMEM_I(inode);
808
809	if (inode->i_op->truncate == shmem_truncate) {
810		truncate_inode_pages(inode->i_mapping, 0);
811		shmem_unacct_size(info->flags, inode->i_size);
812		inode->i_size = 0;
813		shmem_truncate(inode);
814		if (!list_empty(&info->swaplist)) {
815			mutex_lock(&shmem_swaplist_mutex);
816			list_del_init(&info->swaplist);
817			mutex_unlock(&shmem_swaplist_mutex);
818		}
819	}
820	BUG_ON(inode->i_blocks);
821	shmem_free_inode(inode->i_sb);
822	clear_inode(inode);
823}
824
825static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
826{
827	swp_entry_t *ptr;
828
829	for (ptr = dir; ptr < edir; ptr++) {
830		if (ptr->val == entry.val)
831			return ptr - dir;
832	}
833	return -1;
834}
835
836static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
837{
838	struct inode *inode;
839	unsigned long idx;
840	unsigned long size;
841	unsigned long limit;
842	unsigned long stage;
843	struct page **dir;
844	struct page *subdir;
845	swp_entry_t *ptr;
846	int offset;
847	int error;
848
849	idx = 0;
850	ptr = info->i_direct;
851	spin_lock(&info->lock);
852	if (!info->swapped) {
853		list_del_init(&info->swaplist);
854		goto lost2;
855	}
856	limit = info->next_index;
857	size = limit;
858	if (size > SHMEM_NR_DIRECT)
859		size = SHMEM_NR_DIRECT;
860	offset = shmem_find_swp(entry, ptr, ptr+size);
861	if (offset >= 0)
862		goto found;
863	if (!info->i_indirect)
864		goto lost2;
865
866	dir = shmem_dir_map(info->i_indirect);
867	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
868
869	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
870		if (unlikely(idx == stage)) {
871			shmem_dir_unmap(dir-1);
872			if (cond_resched_lock(&info->lock)) {
873				/* check it has not been truncated */
874				if (limit > info->next_index) {
875					limit = info->next_index;
876					if (idx >= limit)
877						goto lost2;
878				}
879			}
880			dir = shmem_dir_map(info->i_indirect) +
881			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
882			while (!*dir) {
883				dir++;
884				idx += ENTRIES_PER_PAGEPAGE;
885				if (idx >= limit)
886					goto lost1;
887			}
888			stage = idx + ENTRIES_PER_PAGEPAGE;
889			subdir = *dir;
890			shmem_dir_unmap(dir);
891			dir = shmem_dir_map(subdir);
892		}
893		subdir = *dir;
894		if (subdir && page_private(subdir)) {
895			ptr = shmem_swp_map(subdir);
896			size = limit - idx;
897			if (size > ENTRIES_PER_PAGE)
898				size = ENTRIES_PER_PAGE;
899			offset = shmem_find_swp(entry, ptr, ptr+size);
900			shmem_swp_unmap(ptr);
901			if (offset >= 0) {
902				shmem_dir_unmap(dir);
903				goto found;
904			}
905		}
906	}
907lost1:
908	shmem_dir_unmap(dir-1);
909lost2:
910	spin_unlock(&info->lock);
911	return 0;
912found:
913	idx += offset;
914	inode = igrab(&info->vfs_inode);
915	spin_unlock(&info->lock);
916
917	/*
918	 * Move _head_ to start search for next from here.
919	 * But be careful: shmem_delete_inode checks list_empty without taking
920	 * mutex, and there's an instant in list_move_tail when info->swaplist
921	 * would appear empty, if it were the only one on shmem_swaplist.  We
922	 * could avoid doing it if inode NULL; or use this minor optimization.
923	 */
924	if (shmem_swaplist.next != &info->swaplist)
925		list_move_tail(&shmem_swaplist, &info->swaplist);
926	mutex_unlock(&shmem_swaplist_mutex);
927
928	error = 1;
929	if (!inode)
930		goto out;
931	/*
932	 * Charge page using GFP_HIGHUSER_MOVABLE while we can wait.
933	 * charged back to the user(not to caller) when swap account is used.
934	 */
935	error = mem_cgroup_cache_charge_swapin(page, current->mm, GFP_KERNEL,
936					true);
937	if (error)
938		goto out;
939	error = radix_tree_preload(GFP_KERNEL);
940	if (error) {
941		mem_cgroup_uncharge_cache_page(page);
942		goto out;
943	}
944	error = 1;
945
946	spin_lock(&info->lock);
947	ptr = shmem_swp_entry(info, idx, NULL);
948	if (ptr && ptr->val == entry.val) {
949		error = add_to_page_cache_locked(page, inode->i_mapping,
950						idx, GFP_NOWAIT);
951		/* does mem_cgroup_uncharge_cache_page on error */
952	} else	/* we must compensate for our precharge above */
953		mem_cgroup_uncharge_cache_page(page);
954
955	if (error == -EEXIST) {
956		struct page *filepage = find_get_page(inode->i_mapping, idx);
957		error = 1;
958		if (filepage) {
959			/*
960			 * There might be a more uptodate page coming down
961			 * from a stacked writepage: forget our swappage if so.
962			 */
963			if (PageUptodate(filepage))
964				error = 0;
965			page_cache_release(filepage);
966		}
967	}
968	if (!error) {
969		delete_from_swap_cache(page);
970		set_page_dirty(page);
971		info->flags |= SHMEM_PAGEIN;
972		shmem_swp_set(info, ptr, 0);
973		swap_free(entry);
974		error = 1;	/* not an error, but entry was found */
975	}
976	if (ptr)
977		shmem_swp_unmap(ptr);
978	spin_unlock(&info->lock);
979	radix_tree_preload_end();
980out:
981	unlock_page(page);
982	page_cache_release(page);
983	iput(inode);		/* allows for NULL */
984	return error;
985}
986
987/*
988 * shmem_unuse() search for an eventually swapped out shmem page.
989 */
990int shmem_unuse(swp_entry_t entry, struct page *page)
991{
992	struct list_head *p, *next;
993	struct shmem_inode_info *info;
994	int found = 0;
995
996	mutex_lock(&shmem_swaplist_mutex);
997	list_for_each_safe(p, next, &shmem_swaplist) {
998		info = list_entry(p, struct shmem_inode_info, swaplist);
999		found = shmem_unuse_inode(info, entry, page);
1000		cond_resched();
1001		if (found)
1002			goto out;
1003	}
1004	mutex_unlock(&shmem_swaplist_mutex);
1005out:	return found;	/* 0 or 1 or -ENOMEM */
1006}
1007
1008/*
1009 * Move the page from the page cache to the swap cache.
1010 */
1011static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1012{
1013	struct shmem_inode_info *info;
1014	swp_entry_t *entry, swap;
1015	struct address_space *mapping;
1016	unsigned long index;
1017	struct inode *inode;
1018
1019	BUG_ON(!PageLocked(page));
1020	mapping = page->mapping;
1021	index = page->index;
1022	inode = mapping->host;
1023	info = SHMEM_I(inode);
1024	if (info->flags & VM_LOCKED)
1025		goto redirty;
1026	if (!total_swap_pages)
1027		goto redirty;
1028
1029	/*
1030	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1031	 * sync from ever calling shmem_writepage; but a stacking filesystem
1032	 * may use the ->writepage of its underlying filesystem, in which case
1033	 * tmpfs should write out to swap only in response to memory pressure,
1034	 * and not for pdflush or sync.  However, in those cases, we do still
1035	 * want to check if there's a redundant swappage to be discarded.
1036	 */
1037	if (wbc->for_reclaim)
1038		swap = get_swap_page();
1039	else
1040		swap.val = 0;
1041
1042	spin_lock(&info->lock);
1043	if (index >= info->next_index) {
1044		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1045		goto unlock;
1046	}
1047	entry = shmem_swp_entry(info, index, NULL);
1048	if (entry->val) {
1049		/*
1050		 * The more uptodate page coming down from a stacked
1051		 * writepage should replace our old swappage.
1052		 */
1053		free_swap_and_cache(*entry);
1054		shmem_swp_set(info, entry, 0);
1055	}
1056	shmem_recalc_inode(inode);
1057
1058	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1059		remove_from_page_cache(page);
1060		shmem_swp_set(info, entry, swap.val);
1061		shmem_swp_unmap(entry);
1062		if (list_empty(&info->swaplist))
1063			inode = igrab(inode);
1064		else
1065			inode = NULL;
1066		spin_unlock(&info->lock);
1067		swap_duplicate(swap);
1068		BUG_ON(page_mapped(page));
1069		page_cache_release(page);	/* pagecache ref */
1070		set_page_dirty(page);
1071		unlock_page(page);
1072		if (inode) {
1073			mutex_lock(&shmem_swaplist_mutex);
1074			/* move instead of add in case we're racing */
1075			list_move_tail(&info->swaplist, &shmem_swaplist);
1076			mutex_unlock(&shmem_swaplist_mutex);
1077			iput(inode);
1078		}
1079		return 0;
1080	}
1081
1082	shmem_swp_unmap(entry);
1083unlock:
1084	spin_unlock(&info->lock);
1085	swap_free(swap);
1086redirty:
1087	set_page_dirty(page);
1088	if (wbc->for_reclaim)
1089		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1090	unlock_page(page);
1091	return 0;
1092}
1093
1094#ifdef CONFIG_NUMA
1095#ifdef CONFIG_TMPFS
1096static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1097{
1098	char buffer[64];
1099
1100	if (!mpol || mpol->mode == MPOL_DEFAULT)
1101		return;		/* show nothing */
1102
1103	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1104
1105	seq_printf(seq, ",mpol=%s", buffer);
1106}
1107
1108static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1109{
1110	struct mempolicy *mpol = NULL;
1111	if (sbinfo->mpol) {
1112		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1113		mpol = sbinfo->mpol;
1114		mpol_get(mpol);
1115		spin_unlock(&sbinfo->stat_lock);
1116	}
1117	return mpol;
1118}
1119#endif /* CONFIG_TMPFS */
1120
1121static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1122			struct shmem_inode_info *info, unsigned long idx)
1123{
1124	struct mempolicy mpol, *spol;
1125	struct vm_area_struct pvma;
1126	struct page *page;
1127
1128	spol = mpol_cond_copy(&mpol,
1129				mpol_shared_policy_lookup(&info->policy, idx));
1130
1131	/* Create a pseudo vma that just contains the policy */
1132	pvma.vm_start = 0;
1133	pvma.vm_pgoff = idx;
1134	pvma.vm_ops = NULL;
1135	pvma.vm_policy = spol;
1136	page = swapin_readahead(entry, gfp, &pvma, 0);
1137	return page;
1138}
1139
1140static struct page *shmem_alloc_page(gfp_t gfp,
1141			struct shmem_inode_info *info, unsigned long idx)
1142{
1143	struct vm_area_struct pvma;
1144
1145	/* Create a pseudo vma that just contains the policy */
1146	pvma.vm_start = 0;
1147	pvma.vm_pgoff = idx;
1148	pvma.vm_ops = NULL;
1149	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1150
1151	/*
1152	 * alloc_page_vma() will drop the shared policy reference
1153	 */
1154	return alloc_page_vma(gfp, &pvma, 0);
1155}
1156#else /* !CONFIG_NUMA */
1157#ifdef CONFIG_TMPFS
1158static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1159{
1160}
1161#endif /* CONFIG_TMPFS */
1162
1163static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1164			struct shmem_inode_info *info, unsigned long idx)
1165{
1166	return swapin_readahead(entry, gfp, NULL, 0);
1167}
1168
1169static inline struct page *shmem_alloc_page(gfp_t gfp,
1170			struct shmem_inode_info *info, unsigned long idx)
1171{
1172	return alloc_page(gfp);
1173}
1174#endif /* CONFIG_NUMA */
1175
1176#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1177static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1178{
1179	return NULL;
1180}
1181#endif
1182
1183/*
1184 * shmem_getpage - either get the page from swap or allocate a new one
1185 *
1186 * If we allocate a new one we do not mark it dirty. That's up to the
1187 * vm. If we swap it in we mark it dirty since we also free the swap
1188 * entry since a page cannot live in both the swap and page cache
1189 */
1190static int shmem_getpage(struct inode *inode, unsigned long idx,
1191			struct page **pagep, enum sgp_type sgp, int *type)
1192{
1193	struct address_space *mapping = inode->i_mapping;
1194	struct shmem_inode_info *info = SHMEM_I(inode);
1195	struct shmem_sb_info *sbinfo;
1196	struct page *filepage = *pagep;
1197	struct page *swappage;
1198	swp_entry_t *entry;
1199	swp_entry_t swap;
1200	gfp_t gfp;
1201	int error;
1202
1203	if (idx >= SHMEM_MAX_INDEX)
1204		return -EFBIG;
1205
1206	if (type)
1207		*type = 0;
1208
1209	/*
1210	 * Normally, filepage is NULL on entry, and either found
1211	 * uptodate immediately, or allocated and zeroed, or read
1212	 * in under swappage, which is then assigned to filepage.
1213	 * But shmem_readpage (required for splice) passes in a locked
1214	 * filepage, which may be found not uptodate by other callers
1215	 * too, and may need to be copied from the swappage read in.
1216	 */
1217repeat:
1218	if (!filepage)
1219		filepage = find_lock_page(mapping, idx);
1220	if (filepage && PageUptodate(filepage))
1221		goto done;
1222	error = 0;
1223	gfp = mapping_gfp_mask(mapping);
1224	if (!filepage) {
1225		/*
1226		 * Try to preload while we can wait, to not make a habit of
1227		 * draining atomic reserves; but don't latch on to this cpu.
1228		 */
1229		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1230		if (error)
1231			goto failed;
1232		radix_tree_preload_end();
1233	}
1234
1235	spin_lock(&info->lock);
1236	shmem_recalc_inode(inode);
1237	entry = shmem_swp_alloc(info, idx, sgp);
1238	if (IS_ERR(entry)) {
1239		spin_unlock(&info->lock);
1240		error = PTR_ERR(entry);
1241		goto failed;
1242	}
1243	swap = *entry;
1244
1245	if (swap.val) {
1246		/* Look it up and read it in.. */
1247		swappage = lookup_swap_cache(swap);
1248		if (!swappage) {
1249			shmem_swp_unmap(entry);
1250			/* here we actually do the io */
1251			if (type && !(*type & VM_FAULT_MAJOR)) {
1252				__count_vm_event(PGMAJFAULT);
1253				*type |= VM_FAULT_MAJOR;
1254			}
1255			spin_unlock(&info->lock);
1256			swappage = shmem_swapin(swap, gfp, info, idx);
1257			if (!swappage) {
1258				spin_lock(&info->lock);
1259				entry = shmem_swp_alloc(info, idx, sgp);
1260				if (IS_ERR(entry))
1261					error = PTR_ERR(entry);
1262				else {
1263					if (entry->val == swap.val)
1264						error = -ENOMEM;
1265					shmem_swp_unmap(entry);
1266				}
1267				spin_unlock(&info->lock);
1268				if (error)
1269					goto failed;
1270				goto repeat;
1271			}
1272			wait_on_page_locked(swappage);
1273			/*
1274			 * We want to avoid charge at add_to_page_cache().
1275			 * charge against this swap cache here.
1276			 */
1277			if (mem_cgroup_cache_charge_swapin(swappage,
1278				current->mm, gfp & GFP_RECLAIM_MASK, false)) {
1279				page_cache_release(swappage);
1280				error = -ENOMEM;
1281				goto failed;
1282			}
1283			page_cache_release(swappage);
1284			goto repeat;
1285		}
1286
1287		/* We have to do this with page locked to prevent races */
1288		if (!trylock_page(swappage)) {
1289			shmem_swp_unmap(entry);
1290			spin_unlock(&info->lock);
1291			wait_on_page_locked(swappage);
1292			page_cache_release(swappage);
1293			goto repeat;
1294		}
1295		if (PageWriteback(swappage)) {
1296			shmem_swp_unmap(entry);
1297			spin_unlock(&info->lock);
1298			wait_on_page_writeback(swappage);
1299			unlock_page(swappage);
1300			page_cache_release(swappage);
1301			goto repeat;
1302		}
1303		if (!PageUptodate(swappage)) {
1304			shmem_swp_unmap(entry);
1305			spin_unlock(&info->lock);
1306			unlock_page(swappage);
1307			page_cache_release(swappage);
1308			error = -EIO;
1309			goto failed;
1310		}
1311
1312		if (filepage) {
1313			shmem_swp_set(info, entry, 0);
1314			shmem_swp_unmap(entry);
1315			delete_from_swap_cache(swappage);
1316			spin_unlock(&info->lock);
1317			copy_highpage(filepage, swappage);
1318			unlock_page(swappage);
1319			page_cache_release(swappage);
1320			flush_dcache_page(filepage);
1321			SetPageUptodate(filepage);
1322			set_page_dirty(filepage);
1323			swap_free(swap);
1324		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1325					idx, GFP_NOWAIT))) {
1326			info->flags |= SHMEM_PAGEIN;
1327			shmem_swp_set(info, entry, 0);
1328			shmem_swp_unmap(entry);
1329			delete_from_swap_cache(swappage);
1330			spin_unlock(&info->lock);
1331			filepage = swappage;
1332			set_page_dirty(filepage);
1333			swap_free(swap);
1334		} else {
1335			shmem_swp_unmap(entry);
1336			spin_unlock(&info->lock);
1337			unlock_page(swappage);
1338			page_cache_release(swappage);
1339			if (error == -ENOMEM) {
1340				/* allow reclaim from this memory cgroup */
1341				error = mem_cgroup_shrink_usage(current->mm,
1342								gfp);
1343				if (error)
1344					goto failed;
1345			}
1346			goto repeat;
1347		}
1348	} else if (sgp == SGP_READ && !filepage) {
1349		shmem_swp_unmap(entry);
1350		filepage = find_get_page(mapping, idx);
1351		if (filepage &&
1352		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1353			spin_unlock(&info->lock);
1354			wait_on_page_locked(filepage);
1355			page_cache_release(filepage);
1356			filepage = NULL;
1357			goto repeat;
1358		}
1359		spin_unlock(&info->lock);
1360	} else {
1361		shmem_swp_unmap(entry);
1362		sbinfo = SHMEM_SB(inode->i_sb);
1363		if (sbinfo->max_blocks) {
1364			spin_lock(&sbinfo->stat_lock);
1365			if (sbinfo->free_blocks == 0 ||
1366			    shmem_acct_block(info->flags)) {
1367				spin_unlock(&sbinfo->stat_lock);
1368				spin_unlock(&info->lock);
1369				error = -ENOSPC;
1370				goto failed;
1371			}
1372			sbinfo->free_blocks--;
1373			inode->i_blocks += BLOCKS_PER_PAGE;
1374			spin_unlock(&sbinfo->stat_lock);
1375		} else if (shmem_acct_block(info->flags)) {
1376			spin_unlock(&info->lock);
1377			error = -ENOSPC;
1378			goto failed;
1379		}
1380
1381		if (!filepage) {
1382			int ret;
1383
1384			spin_unlock(&info->lock);
1385			filepage = shmem_alloc_page(gfp, info, idx);
1386			if (!filepage) {
1387				shmem_unacct_blocks(info->flags, 1);
1388				shmem_free_blocks(inode, 1);
1389				error = -ENOMEM;
1390				goto failed;
1391			}
1392			SetPageSwapBacked(filepage);
1393
1394			/* Precharge page while we can wait, compensate after */
1395			error = mem_cgroup_cache_charge(filepage, current->mm,
1396					GFP_KERNEL);
1397			if (error) {
1398				page_cache_release(filepage);
1399				shmem_unacct_blocks(info->flags, 1);
1400				shmem_free_blocks(inode, 1);
1401				filepage = NULL;
1402				goto failed;
1403			}
1404
1405			spin_lock(&info->lock);
1406			entry = shmem_swp_alloc(info, idx, sgp);
1407			if (IS_ERR(entry))
1408				error = PTR_ERR(entry);
1409			else {
1410				swap = *entry;
1411				shmem_swp_unmap(entry);
1412			}
1413			ret = error || swap.val;
1414			if (ret)
1415				mem_cgroup_uncharge_cache_page(filepage);
1416			else
1417				ret = add_to_page_cache_lru(filepage, mapping,
1418						idx, GFP_NOWAIT);
1419			/*
1420			 * At add_to_page_cache_lru() failure, uncharge will
1421			 * be done automatically.
1422			 */
1423			if (ret) {
1424				spin_unlock(&info->lock);
1425				page_cache_release(filepage);
1426				shmem_unacct_blocks(info->flags, 1);
1427				shmem_free_blocks(inode, 1);
1428				filepage = NULL;
1429				if (error)
1430					goto failed;
1431				goto repeat;
1432			}
1433			info->flags |= SHMEM_PAGEIN;
1434		}
1435
1436		info->alloced++;
1437		spin_unlock(&info->lock);
1438		clear_highpage(filepage);
1439		flush_dcache_page(filepage);
1440		SetPageUptodate(filepage);
1441		if (sgp == SGP_DIRTY)
1442			set_page_dirty(filepage);
1443	}
1444done:
1445	*pagep = filepage;
1446	return 0;
1447
1448failed:
1449	if (*pagep != filepage) {
1450		unlock_page(filepage);
1451		page_cache_release(filepage);
1452	}
1453	return error;
1454}
1455
1456static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1457{
1458	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1459	int error;
1460	int ret;
1461
1462	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1463		return VM_FAULT_SIGBUS;
1464
1465	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1466	if (error)
1467		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1468
1469	return ret | VM_FAULT_LOCKED;
1470}
1471
1472#ifdef CONFIG_NUMA
1473static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1474{
1475	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1476	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1477}
1478
1479static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1480					  unsigned long addr)
1481{
1482	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1483	unsigned long idx;
1484
1485	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1486	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1487}
1488#endif
1489
1490int shmem_lock(struct file *file, int lock, struct user_struct *user)
1491{
1492	struct inode *inode = file->f_path.dentry->d_inode;
1493	struct shmem_inode_info *info = SHMEM_I(inode);
1494	int retval = -ENOMEM;
1495
1496	spin_lock(&info->lock);
1497	if (lock && !(info->flags & VM_LOCKED)) {
1498		if (!user_shm_lock(inode->i_size, user))
1499			goto out_nomem;
1500		info->flags |= VM_LOCKED;
1501		mapping_set_unevictable(file->f_mapping);
1502	}
1503	if (!lock && (info->flags & VM_LOCKED) && user) {
1504		user_shm_unlock(inode->i_size, user);
1505		info->flags &= ~VM_LOCKED;
1506		mapping_clear_unevictable(file->f_mapping);
1507		scan_mapping_unevictable_pages(file->f_mapping);
1508	}
1509	retval = 0;
1510
1511out_nomem:
1512	spin_unlock(&info->lock);
1513	return retval;
1514}
1515
1516static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1517{
1518	file_accessed(file);
1519	vma->vm_ops = &shmem_vm_ops;
1520	vma->vm_flags |= VM_CAN_NONLINEAR;
1521	return 0;
1522}
1523
1524static struct inode *
1525shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1526{
1527	struct inode *inode;
1528	struct shmem_inode_info *info;
1529	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1530
1531	if (shmem_reserve_inode(sb))
1532		return NULL;
1533
1534	inode = new_inode(sb);
1535	if (inode) {
1536		inode->i_mode = mode;
1537		inode->i_uid = current_fsuid();
1538		inode->i_gid = current_fsgid();
1539		inode->i_blocks = 0;
1540		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1541		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1542		inode->i_generation = get_seconds();
1543		info = SHMEM_I(inode);
1544		memset(info, 0, (char *)inode - (char *)info);
1545		spin_lock_init(&info->lock);
1546		INIT_LIST_HEAD(&info->swaplist);
1547
1548		switch (mode & S_IFMT) {
1549		default:
1550			inode->i_op = &shmem_special_inode_operations;
1551			init_special_inode(inode, mode, dev);
1552			break;
1553		case S_IFREG:
1554			inode->i_mapping->a_ops = &shmem_aops;
1555			inode->i_op = &shmem_inode_operations;
1556			inode->i_fop = &shmem_file_operations;
1557			mpol_shared_policy_init(&info->policy,
1558						 shmem_get_sbmpol(sbinfo));
1559			break;
1560		case S_IFDIR:
1561			inc_nlink(inode);
1562			/* Some things misbehave if size == 0 on a directory */
1563			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1564			inode->i_op = &shmem_dir_inode_operations;
1565			inode->i_fop = &simple_dir_operations;
1566			break;
1567		case S_IFLNK:
1568			/*
1569			 * Must not load anything in the rbtree,
1570			 * mpol_free_shared_policy will not be called.
1571			 */
1572			mpol_shared_policy_init(&info->policy, NULL);
1573			break;
1574		}
1575	} else
1576		shmem_free_inode(sb);
1577	return inode;
1578}
1579
1580#ifdef CONFIG_TMPFS
1581static const struct inode_operations shmem_symlink_inode_operations;
1582static const struct inode_operations shmem_symlink_inline_operations;
1583
1584/*
1585 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1586 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1587 * below the loop driver, in the generic fashion that many filesystems support.
1588 */
1589static int shmem_readpage(struct file *file, struct page *page)
1590{
1591	struct inode *inode = page->mapping->host;
1592	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1593	unlock_page(page);
1594	return error;
1595}
1596
1597static int
1598shmem_write_begin(struct file *file, struct address_space *mapping,
1599			loff_t pos, unsigned len, unsigned flags,
1600			struct page **pagep, void **fsdata)
1601{
1602	struct inode *inode = mapping->host;
1603	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1604	*pagep = NULL;
1605	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1606}
1607
1608static int
1609shmem_write_end(struct file *file, struct address_space *mapping,
1610			loff_t pos, unsigned len, unsigned copied,
1611			struct page *page, void *fsdata)
1612{
1613	struct inode *inode = mapping->host;
1614
1615	if (pos + copied > inode->i_size)
1616		i_size_write(inode, pos + copied);
1617
1618	unlock_page(page);
1619	set_page_dirty(page);
1620	page_cache_release(page);
1621
1622	return copied;
1623}
1624
1625static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1626{
1627	struct inode *inode = filp->f_path.dentry->d_inode;
1628	struct address_space *mapping = inode->i_mapping;
1629	unsigned long index, offset;
1630	enum sgp_type sgp = SGP_READ;
1631
1632	/*
1633	 * Might this read be for a stacking filesystem?  Then when reading
1634	 * holes of a sparse file, we actually need to allocate those pages,
1635	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1636	 */
1637	if (segment_eq(get_fs(), KERNEL_DS))
1638		sgp = SGP_DIRTY;
1639
1640	index = *ppos >> PAGE_CACHE_SHIFT;
1641	offset = *ppos & ~PAGE_CACHE_MASK;
1642
1643	for (;;) {
1644		struct page *page = NULL;
1645		unsigned long end_index, nr, ret;
1646		loff_t i_size = i_size_read(inode);
1647
1648		end_index = i_size >> PAGE_CACHE_SHIFT;
1649		if (index > end_index)
1650			break;
1651		if (index == end_index) {
1652			nr = i_size & ~PAGE_CACHE_MASK;
1653			if (nr <= offset)
1654				break;
1655		}
1656
1657		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1658		if (desc->error) {
1659			if (desc->error == -EINVAL)
1660				desc->error = 0;
1661			break;
1662		}
1663		if (page)
1664			unlock_page(page);
1665
1666		/*
1667		 * We must evaluate after, since reads (unlike writes)
1668		 * are called without i_mutex protection against truncate
1669		 */
1670		nr = PAGE_CACHE_SIZE;
1671		i_size = i_size_read(inode);
1672		end_index = i_size >> PAGE_CACHE_SHIFT;
1673		if (index == end_index) {
1674			nr = i_size & ~PAGE_CACHE_MASK;
1675			if (nr <= offset) {
1676				if (page)
1677					page_cache_release(page);
1678				break;
1679			}
1680		}
1681		nr -= offset;
1682
1683		if (page) {
1684			/*
1685			 * If users can be writing to this page using arbitrary
1686			 * virtual addresses, take care about potential aliasing
1687			 * before reading the page on the kernel side.
1688			 */
1689			if (mapping_writably_mapped(mapping))
1690				flush_dcache_page(page);
1691			/*
1692			 * Mark the page accessed if we read the beginning.
1693			 */
1694			if (!offset)
1695				mark_page_accessed(page);
1696		} else {
1697			page = ZERO_PAGE(0);
1698			page_cache_get(page);
1699		}
1700
1701		/*
1702		 * Ok, we have the page, and it's up-to-date, so
1703		 * now we can copy it to user space...
1704		 *
1705		 * The actor routine returns how many bytes were actually used..
1706		 * NOTE! This may not be the same as how much of a user buffer
1707		 * we filled up (we may be padding etc), so we can only update
1708		 * "pos" here (the actor routine has to update the user buffer
1709		 * pointers and the remaining count).
1710		 */
1711		ret = actor(desc, page, offset, nr);
1712		offset += ret;
1713		index += offset >> PAGE_CACHE_SHIFT;
1714		offset &= ~PAGE_CACHE_MASK;
1715
1716		page_cache_release(page);
1717		if (ret != nr || !desc->count)
1718			break;
1719
1720		cond_resched();
1721	}
1722
1723	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1724	file_accessed(filp);
1725}
1726
1727static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1728		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1729{
1730	struct file *filp = iocb->ki_filp;
1731	ssize_t retval;
1732	unsigned long seg;
1733	size_t count;
1734	loff_t *ppos = &iocb->ki_pos;
1735
1736	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1737	if (retval)
1738		return retval;
1739
1740	for (seg = 0; seg < nr_segs; seg++) {
1741		read_descriptor_t desc;
1742
1743		desc.written = 0;
1744		desc.arg.buf = iov[seg].iov_base;
1745		desc.count = iov[seg].iov_len;
1746		if (desc.count == 0)
1747			continue;
1748		desc.error = 0;
1749		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1750		retval += desc.written;
1751		if (desc.error) {
1752			retval = retval ?: desc.error;
1753			break;
1754		}
1755		if (desc.count > 0)
1756			break;
1757	}
1758	return retval;
1759}
1760
1761static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1762{
1763	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1764
1765	buf->f_type = TMPFS_MAGIC;
1766	buf->f_bsize = PAGE_CACHE_SIZE;
1767	buf->f_namelen = NAME_MAX;
1768	spin_lock(&sbinfo->stat_lock);
1769	if (sbinfo->max_blocks) {
1770		buf->f_blocks = sbinfo->max_blocks;
1771		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1772	}
1773	if (sbinfo->max_inodes) {
1774		buf->f_files = sbinfo->max_inodes;
1775		buf->f_ffree = sbinfo->free_inodes;
1776	}
1777	/* else leave those fields 0 like simple_statfs */
1778	spin_unlock(&sbinfo->stat_lock);
1779	return 0;
1780}
1781
1782/*
1783 * File creation. Allocate an inode, and we're done..
1784 */
1785static int
1786shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1787{
1788	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1789	int error = -ENOSPC;
1790
1791	if (inode) {
1792		error = security_inode_init_security(inode, dir, NULL, NULL,
1793						     NULL);
1794		if (error) {
1795			if (error != -EOPNOTSUPP) {
1796				iput(inode);
1797				return error;
1798			}
1799		}
1800		error = shmem_acl_init(inode, dir);
1801		if (error) {
1802			iput(inode);
1803			return error;
1804		}
1805		if (dir->i_mode & S_ISGID) {
1806			inode->i_gid = dir->i_gid;
1807			if (S_ISDIR(mode))
1808				inode->i_mode |= S_ISGID;
1809		}
1810		dir->i_size += BOGO_DIRENT_SIZE;
1811		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1812		d_instantiate(dentry, inode);
1813		dget(dentry); /* Extra count - pin the dentry in core */
1814	}
1815	return error;
1816}
1817
1818static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1819{
1820	int error;
1821
1822	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1823		return error;
1824	inc_nlink(dir);
1825	return 0;
1826}
1827
1828static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1829		struct nameidata *nd)
1830{
1831	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1832}
1833
1834/*
1835 * Link a file..
1836 */
1837static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1838{
1839	struct inode *inode = old_dentry->d_inode;
1840	int ret;
1841
1842	/*
1843	 * No ordinary (disk based) filesystem counts links as inodes;
1844	 * but each new link needs a new dentry, pinning lowmem, and
1845	 * tmpfs dentries cannot be pruned until they are unlinked.
1846	 */
1847	ret = shmem_reserve_inode(inode->i_sb);
1848	if (ret)
1849		goto out;
1850
1851	dir->i_size += BOGO_DIRENT_SIZE;
1852	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1853	inc_nlink(inode);
1854	atomic_inc(&inode->i_count);	/* New dentry reference */
1855	dget(dentry);		/* Extra pinning count for the created dentry */
1856	d_instantiate(dentry, inode);
1857out:
1858	return ret;
1859}
1860
1861static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1862{
1863	struct inode *inode = dentry->d_inode;
1864
1865	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1866		shmem_free_inode(inode->i_sb);
1867
1868	dir->i_size -= BOGO_DIRENT_SIZE;
1869	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1870	drop_nlink(inode);
1871	dput(dentry);	/* Undo the count from "create" - this does all the work */
1872	return 0;
1873}
1874
1875static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1876{
1877	if (!simple_empty(dentry))
1878		return -ENOTEMPTY;
1879
1880	drop_nlink(dentry->d_inode);
1881	drop_nlink(dir);
1882	return shmem_unlink(dir, dentry);
1883}
1884
1885/*
1886 * The VFS layer already does all the dentry stuff for rename,
1887 * we just have to decrement the usage count for the target if
1888 * it exists so that the VFS layer correctly free's it when it
1889 * gets overwritten.
1890 */
1891static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1892{
1893	struct inode *inode = old_dentry->d_inode;
1894	int they_are_dirs = S_ISDIR(inode->i_mode);
1895
1896	if (!simple_empty(new_dentry))
1897		return -ENOTEMPTY;
1898
1899	if (new_dentry->d_inode) {
1900		(void) shmem_unlink(new_dir, new_dentry);
1901		if (they_are_dirs)
1902			drop_nlink(old_dir);
1903	} else if (they_are_dirs) {
1904		drop_nlink(old_dir);
1905		inc_nlink(new_dir);
1906	}
1907
1908	old_dir->i_size -= BOGO_DIRENT_SIZE;
1909	new_dir->i_size += BOGO_DIRENT_SIZE;
1910	old_dir->i_ctime = old_dir->i_mtime =
1911	new_dir->i_ctime = new_dir->i_mtime =
1912	inode->i_ctime = CURRENT_TIME;
1913	return 0;
1914}
1915
1916static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1917{
1918	int error;
1919	int len;
1920	struct inode *inode;
1921	struct page *page = NULL;
1922	char *kaddr;
1923	struct shmem_inode_info *info;
1924
1925	len = strlen(symname) + 1;
1926	if (len > PAGE_CACHE_SIZE)
1927		return -ENAMETOOLONG;
1928
1929	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1930	if (!inode)
1931		return -ENOSPC;
1932
1933	error = security_inode_init_security(inode, dir, NULL, NULL,
1934					     NULL);
1935	if (error) {
1936		if (error != -EOPNOTSUPP) {
1937			iput(inode);
1938			return error;
1939		}
1940		error = 0;
1941	}
1942
1943	info = SHMEM_I(inode);
1944	inode->i_size = len-1;
1945	if (len <= (char *)inode - (char *)info) {
1946		/* do it inline */
1947		memcpy(info, symname, len);
1948		inode->i_op = &shmem_symlink_inline_operations;
1949	} else {
1950		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1951		if (error) {
1952			iput(inode);
1953			return error;
1954		}
1955		unlock_page(page);
1956		inode->i_mapping->a_ops = &shmem_aops;
1957		inode->i_op = &shmem_symlink_inode_operations;
1958		kaddr = kmap_atomic(page, KM_USER0);
1959		memcpy(kaddr, symname, len);
1960		kunmap_atomic(kaddr, KM_USER0);
1961		set_page_dirty(page);
1962		page_cache_release(page);
1963	}
1964	if (dir->i_mode & S_ISGID)
1965		inode->i_gid = dir->i_gid;
1966	dir->i_size += BOGO_DIRENT_SIZE;
1967	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1968	d_instantiate(dentry, inode);
1969	dget(dentry);
1970	return 0;
1971}
1972
1973static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1974{
1975	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1976	return NULL;
1977}
1978
1979static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1980{
1981	struct page *page = NULL;
1982	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1983	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1984	if (page)
1985		unlock_page(page);
1986	return page;
1987}
1988
1989static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1990{
1991	if (!IS_ERR(nd_get_link(nd))) {
1992		struct page *page = cookie;
1993		kunmap(page);
1994		mark_page_accessed(page);
1995		page_cache_release(page);
1996	}
1997}
1998
1999static const struct inode_operations shmem_symlink_inline_operations = {
2000	.readlink	= generic_readlink,
2001	.follow_link	= shmem_follow_link_inline,
2002};
2003
2004static const struct inode_operations shmem_symlink_inode_operations = {
2005	.truncate	= shmem_truncate,
2006	.readlink	= generic_readlink,
2007	.follow_link	= shmem_follow_link,
2008	.put_link	= shmem_put_link,
2009};
2010
2011#ifdef CONFIG_TMPFS_POSIX_ACL
2012/*
2013 * Superblocks without xattr inode operations will get security.* xattr
2014 * support from the VFS "for free". As soon as we have any other xattrs
2015 * like ACLs, we also need to implement the security.* handlers at
2016 * filesystem level, though.
2017 */
2018
2019static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2020					size_t list_len, const char *name,
2021					size_t name_len)
2022{
2023	return security_inode_listsecurity(inode, list, list_len);
2024}
2025
2026static int shmem_xattr_security_get(struct inode *inode, const char *name,
2027				    void *buffer, size_t size)
2028{
2029	if (strcmp(name, "") == 0)
2030		return -EINVAL;
2031	return xattr_getsecurity(inode, name, buffer, size);
2032}
2033
2034static int shmem_xattr_security_set(struct inode *inode, const char *name,
2035				    const void *value, size_t size, int flags)
2036{
2037	if (strcmp(name, "") == 0)
2038		return -EINVAL;
2039	return security_inode_setsecurity(inode, name, value, size, flags);
2040}
2041
2042static struct xattr_handler shmem_xattr_security_handler = {
2043	.prefix = XATTR_SECURITY_PREFIX,
2044	.list   = shmem_xattr_security_list,
2045	.get    = shmem_xattr_security_get,
2046	.set    = shmem_xattr_security_set,
2047};
2048
2049static struct xattr_handler *shmem_xattr_handlers[] = {
2050	&shmem_xattr_acl_access_handler,
2051	&shmem_xattr_acl_default_handler,
2052	&shmem_xattr_security_handler,
2053	NULL
2054};
2055#endif
2056
2057static struct dentry *shmem_get_parent(struct dentry *child)
2058{
2059	return ERR_PTR(-ESTALE);
2060}
2061
2062static int shmem_match(struct inode *ino, void *vfh)
2063{
2064	__u32 *fh = vfh;
2065	__u64 inum = fh[2];
2066	inum = (inum << 32) | fh[1];
2067	return ino->i_ino == inum && fh[0] == ino->i_generation;
2068}
2069
2070static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2071		struct fid *fid, int fh_len, int fh_type)
2072{
2073	struct inode *inode;
2074	struct dentry *dentry = NULL;
2075	u64 inum = fid->raw[2];
2076	inum = (inum << 32) | fid->raw[1];
2077
2078	if (fh_len < 3)
2079		return NULL;
2080
2081	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2082			shmem_match, fid->raw);
2083	if (inode) {
2084		dentry = d_find_alias(inode);
2085		iput(inode);
2086	}
2087
2088	return dentry;
2089}
2090
2091static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2092				int connectable)
2093{
2094	struct inode *inode = dentry->d_inode;
2095
2096	if (*len < 3)
2097		return 255;
2098
2099	if (hlist_unhashed(&inode->i_hash)) {
2100		/* Unfortunately insert_inode_hash is not idempotent,
2101		 * so as we hash inodes here rather than at creation
2102		 * time, we need a lock to ensure we only try
2103		 * to do it once
2104		 */
2105		static DEFINE_SPINLOCK(lock);
2106		spin_lock(&lock);
2107		if (hlist_unhashed(&inode->i_hash))
2108			__insert_inode_hash(inode,
2109					    inode->i_ino + inode->i_generation);
2110		spin_unlock(&lock);
2111	}
2112
2113	fh[0] = inode->i_generation;
2114	fh[1] = inode->i_ino;
2115	fh[2] = ((__u64)inode->i_ino) >> 32;
2116
2117	*len = 3;
2118	return 1;
2119}
2120
2121static const struct export_operations shmem_export_ops = {
2122	.get_parent     = shmem_get_parent,
2123	.encode_fh      = shmem_encode_fh,
2124	.fh_to_dentry	= shmem_fh_to_dentry,
2125};
2126
2127static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2128			       bool remount)
2129{
2130	char *this_char, *value, *rest;
2131
2132	while (options != NULL) {
2133		this_char = options;
2134		for (;;) {
2135			/*
2136			 * NUL-terminate this option: unfortunately,
2137			 * mount options form a comma-separated list,
2138			 * but mpol's nodelist may also contain commas.
2139			 */
2140			options = strchr(options, ',');
2141			if (options == NULL)
2142				break;
2143			options++;
2144			if (!isdigit(*options)) {
2145				options[-1] = '\0';
2146				break;
2147			}
2148		}
2149		if (!*this_char)
2150			continue;
2151		if ((value = strchr(this_char,'=')) != NULL) {
2152			*value++ = 0;
2153		} else {
2154			printk(KERN_ERR
2155			    "tmpfs: No value for mount option '%s'\n",
2156			    this_char);
2157			return 1;
2158		}
2159
2160		if (!strcmp(this_char,"size")) {
2161			unsigned long long size;
2162			size = memparse(value,&rest);
2163			if (*rest == '%') {
2164				size <<= PAGE_SHIFT;
2165				size *= totalram_pages;
2166				do_div(size, 100);
2167				rest++;
2168			}
2169			if (*rest)
2170				goto bad_val;
2171			sbinfo->max_blocks =
2172				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2173		} else if (!strcmp(this_char,"nr_blocks")) {
2174			sbinfo->max_blocks = memparse(value, &rest);
2175			if (*rest)
2176				goto bad_val;
2177		} else if (!strcmp(this_char,"nr_inodes")) {
2178			sbinfo->max_inodes = memparse(value, &rest);
2179			if (*rest)
2180				goto bad_val;
2181		} else if (!strcmp(this_char,"mode")) {
2182			if (remount)
2183				continue;
2184			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2185			if (*rest)
2186				goto bad_val;
2187		} else if (!strcmp(this_char,"uid")) {
2188			if (remount)
2189				continue;
2190			sbinfo->uid = simple_strtoul(value, &rest, 0);
2191			if (*rest)
2192				goto bad_val;
2193		} else if (!strcmp(this_char,"gid")) {
2194			if (remount)
2195				continue;
2196			sbinfo->gid = simple_strtoul(value, &rest, 0);
2197			if (*rest)
2198				goto bad_val;
2199		} else if (!strcmp(this_char,"mpol")) {
2200			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2201				goto bad_val;
2202		} else {
2203			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2204			       this_char);
2205			return 1;
2206		}
2207	}
2208	return 0;
2209
2210bad_val:
2211	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2212	       value, this_char);
2213	return 1;
2214
2215}
2216
2217static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2218{
2219	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2220	struct shmem_sb_info config = *sbinfo;
2221	unsigned long blocks;
2222	unsigned long inodes;
2223	int error = -EINVAL;
2224
2225	if (shmem_parse_options(data, &config, true))
2226		return error;
2227
2228	spin_lock(&sbinfo->stat_lock);
2229	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2230	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2231	if (config.max_blocks < blocks)
2232		goto out;
2233	if (config.max_inodes < inodes)
2234		goto out;
2235	/*
2236	 * Those tests also disallow limited->unlimited while any are in
2237	 * use, so i_blocks will always be zero when max_blocks is zero;
2238	 * but we must separately disallow unlimited->limited, because
2239	 * in that case we have no record of how much is already in use.
2240	 */
2241	if (config.max_blocks && !sbinfo->max_blocks)
2242		goto out;
2243	if (config.max_inodes && !sbinfo->max_inodes)
2244		goto out;
2245
2246	error = 0;
2247	sbinfo->max_blocks  = config.max_blocks;
2248	sbinfo->free_blocks = config.max_blocks - blocks;
2249	sbinfo->max_inodes  = config.max_inodes;
2250	sbinfo->free_inodes = config.max_inodes - inodes;
2251
2252	mpol_put(sbinfo->mpol);
2253	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2254out:
2255	spin_unlock(&sbinfo->stat_lock);
2256	return error;
2257}
2258
2259static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2260{
2261	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2262
2263	if (sbinfo->max_blocks != shmem_default_max_blocks())
2264		seq_printf(seq, ",size=%luk",
2265			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2266	if (sbinfo->max_inodes != shmem_default_max_inodes())
2267		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2268	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2269		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2270	if (sbinfo->uid != 0)
2271		seq_printf(seq, ",uid=%u", sbinfo->uid);
2272	if (sbinfo->gid != 0)
2273		seq_printf(seq, ",gid=%u", sbinfo->gid);
2274	shmem_show_mpol(seq, sbinfo->mpol);
2275	return 0;
2276}
2277#endif /* CONFIG_TMPFS */
2278
2279static void shmem_put_super(struct super_block *sb)
2280{
2281	kfree(sb->s_fs_info);
2282	sb->s_fs_info = NULL;
2283}
2284
2285static int shmem_fill_super(struct super_block *sb,
2286			    void *data, int silent)
2287{
2288	struct inode *inode;
2289	struct dentry *root;
2290	struct shmem_sb_info *sbinfo;
2291	int err = -ENOMEM;
2292
2293	/* Round up to L1_CACHE_BYTES to resist false sharing */
2294	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2295				L1_CACHE_BYTES), GFP_KERNEL);
2296	if (!sbinfo)
2297		return -ENOMEM;
2298
2299	sbinfo->max_blocks = 0;
2300	sbinfo->max_inodes = 0;
2301	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2302	sbinfo->uid = current_fsuid();
2303	sbinfo->gid = current_fsgid();
2304	sbinfo->mpol = NULL;
2305	sb->s_fs_info = sbinfo;
2306
2307#ifdef CONFIG_TMPFS
2308	/*
2309	 * Per default we only allow half of the physical ram per
2310	 * tmpfs instance, limiting inodes to one per page of lowmem;
2311	 * but the internal instance is left unlimited.
2312	 */
2313	if (!(sb->s_flags & MS_NOUSER)) {
2314		sbinfo->max_blocks = shmem_default_max_blocks();
2315		sbinfo->max_inodes = shmem_default_max_inodes();
2316		if (shmem_parse_options(data, sbinfo, false)) {
2317			err = -EINVAL;
2318			goto failed;
2319		}
2320	}
2321	sb->s_export_op = &shmem_export_ops;
2322#else
2323	sb->s_flags |= MS_NOUSER;
2324#endif
2325
2326	spin_lock_init(&sbinfo->stat_lock);
2327	sbinfo->free_blocks = sbinfo->max_blocks;
2328	sbinfo->free_inodes = sbinfo->max_inodes;
2329
2330	sb->s_maxbytes = SHMEM_MAX_BYTES;
2331	sb->s_blocksize = PAGE_CACHE_SIZE;
2332	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2333	sb->s_magic = TMPFS_MAGIC;
2334	sb->s_op = &shmem_ops;
2335	sb->s_time_gran = 1;
2336#ifdef CONFIG_TMPFS_POSIX_ACL
2337	sb->s_xattr = shmem_xattr_handlers;
2338	sb->s_flags |= MS_POSIXACL;
2339#endif
2340
2341	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2342	if (!inode)
2343		goto failed;
2344	inode->i_uid = sbinfo->uid;
2345	inode->i_gid = sbinfo->gid;
2346	root = d_alloc_root(inode);
2347	if (!root)
2348		goto failed_iput;
2349	sb->s_root = root;
2350	return 0;
2351
2352failed_iput:
2353	iput(inode);
2354failed:
2355	shmem_put_super(sb);
2356	return err;
2357}
2358
2359static struct kmem_cache *shmem_inode_cachep;
2360
2361static struct inode *shmem_alloc_inode(struct super_block *sb)
2362{
2363	struct shmem_inode_info *p;
2364	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2365	if (!p)
2366		return NULL;
2367	return &p->vfs_inode;
2368}
2369
2370static void shmem_destroy_inode(struct inode *inode)
2371{
2372	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2373		/* only struct inode is valid if it's an inline symlink */
2374		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2375	}
2376	shmem_acl_destroy_inode(inode);
2377	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2378}
2379
2380static void init_once(void *foo)
2381{
2382	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2383
2384	inode_init_once(&p->vfs_inode);
2385#ifdef CONFIG_TMPFS_POSIX_ACL
2386	p->i_acl = NULL;
2387	p->i_default_acl = NULL;
2388#endif
2389}
2390
2391static int init_inodecache(void)
2392{
2393	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2394				sizeof(struct shmem_inode_info),
2395				0, SLAB_PANIC, init_once);
2396	return 0;
2397}
2398
2399static void destroy_inodecache(void)
2400{
2401	kmem_cache_destroy(shmem_inode_cachep);
2402}
2403
2404static const struct address_space_operations shmem_aops = {
2405	.writepage	= shmem_writepage,
2406	.set_page_dirty	= __set_page_dirty_no_writeback,
2407#ifdef CONFIG_TMPFS
2408	.readpage	= shmem_readpage,
2409	.write_begin	= shmem_write_begin,
2410	.write_end	= shmem_write_end,
2411#endif
2412	.migratepage	= migrate_page,
2413};
2414
2415static const struct file_operations shmem_file_operations = {
2416	.mmap		= shmem_mmap,
2417#ifdef CONFIG_TMPFS
2418	.llseek		= generic_file_llseek,
2419	.read		= do_sync_read,
2420	.write		= do_sync_write,
2421	.aio_read	= shmem_file_aio_read,
2422	.aio_write	= generic_file_aio_write,
2423	.fsync		= simple_sync_file,
2424	.splice_read	= generic_file_splice_read,
2425	.splice_write	= generic_file_splice_write,
2426#endif
2427};
2428
2429static const struct inode_operations shmem_inode_operations = {
2430	.truncate	= shmem_truncate,
2431	.setattr	= shmem_notify_change,
2432	.truncate_range	= shmem_truncate_range,
2433#ifdef CONFIG_TMPFS_POSIX_ACL
2434	.setxattr	= generic_setxattr,
2435	.getxattr	= generic_getxattr,
2436	.listxattr	= generic_listxattr,
2437	.removexattr	= generic_removexattr,
2438	.permission	= shmem_permission,
2439#endif
2440
2441};
2442
2443static const struct inode_operations shmem_dir_inode_operations = {
2444#ifdef CONFIG_TMPFS
2445	.create		= shmem_create,
2446	.lookup		= simple_lookup,
2447	.link		= shmem_link,
2448	.unlink		= shmem_unlink,
2449	.symlink	= shmem_symlink,
2450	.mkdir		= shmem_mkdir,
2451	.rmdir		= shmem_rmdir,
2452	.mknod		= shmem_mknod,
2453	.rename		= shmem_rename,
2454#endif
2455#ifdef CONFIG_TMPFS_POSIX_ACL
2456	.setattr	= shmem_notify_change,
2457	.setxattr	= generic_setxattr,
2458	.getxattr	= generic_getxattr,
2459	.listxattr	= generic_listxattr,
2460	.removexattr	= generic_removexattr,
2461	.permission	= shmem_permission,
2462#endif
2463};
2464
2465static const struct inode_operations shmem_special_inode_operations = {
2466#ifdef CONFIG_TMPFS_POSIX_ACL
2467	.setattr	= shmem_notify_change,
2468	.setxattr	= generic_setxattr,
2469	.getxattr	= generic_getxattr,
2470	.listxattr	= generic_listxattr,
2471	.removexattr	= generic_removexattr,
2472	.permission	= shmem_permission,
2473#endif
2474};
2475
2476static const struct super_operations shmem_ops = {
2477	.alloc_inode	= shmem_alloc_inode,
2478	.destroy_inode	= shmem_destroy_inode,
2479#ifdef CONFIG_TMPFS
2480	.statfs		= shmem_statfs,
2481	.remount_fs	= shmem_remount_fs,
2482	.show_options	= shmem_show_options,
2483#endif
2484	.delete_inode	= shmem_delete_inode,
2485	.drop_inode	= generic_delete_inode,
2486	.put_super	= shmem_put_super,
2487};
2488
2489static struct vm_operations_struct shmem_vm_ops = {
2490	.fault		= shmem_fault,
2491#ifdef CONFIG_NUMA
2492	.set_policy     = shmem_set_policy,
2493	.get_policy     = shmem_get_policy,
2494#endif
2495};
2496
2497
2498static int shmem_get_sb(struct file_system_type *fs_type,
2499	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2500{
2501	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2502}
2503
2504static struct file_system_type tmpfs_fs_type = {
2505	.owner		= THIS_MODULE,
2506	.name		= "tmpfs",
2507	.get_sb		= shmem_get_sb,
2508	.kill_sb	= kill_litter_super,
2509};
2510
2511static int __init init_tmpfs(void)
2512{
2513	int error;
2514
2515	error = bdi_init(&shmem_backing_dev_info);
2516	if (error)
2517		goto out4;
2518
2519	error = init_inodecache();
2520	if (error)
2521		goto out3;
2522
2523	error = register_filesystem(&tmpfs_fs_type);
2524	if (error) {
2525		printk(KERN_ERR "Could not register tmpfs\n");
2526		goto out2;
2527	}
2528
2529	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2530				tmpfs_fs_type.name, NULL);
2531	if (IS_ERR(shm_mnt)) {
2532		error = PTR_ERR(shm_mnt);
2533		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2534		goto out1;
2535	}
2536	return 0;
2537
2538out1:
2539	unregister_filesystem(&tmpfs_fs_type);
2540out2:
2541	destroy_inodecache();
2542out3:
2543	bdi_destroy(&shmem_backing_dev_info);
2544out4:
2545	shm_mnt = ERR_PTR(error);
2546	return error;
2547}
2548
2549#else /* !CONFIG_SHMEM */
2550
2551/*
2552 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2553 *
2554 * This is intended for small system where the benefits of the full
2555 * shmem code (swap-backed and resource-limited) are outweighed by
2556 * their complexity. On systems without swap this code should be
2557 * effectively equivalent, but much lighter weight.
2558 */
2559
2560#include <linux/ramfs.h>
2561
2562static struct file_system_type tmpfs_fs_type = {
2563	.name		= "tmpfs",
2564	.get_sb		= ramfs_get_sb,
2565	.kill_sb	= kill_litter_super,
2566};
2567
2568static int __init init_tmpfs(void)
2569{
2570	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2571
2572	shm_mnt = kern_mount(&tmpfs_fs_type);
2573	BUG_ON(IS_ERR(shm_mnt));
2574
2575	return 0;
2576}
2577
2578int shmem_unuse(swp_entry_t entry, struct page *page)
2579{
2580	return 0;
2581}
2582
2583#define shmem_file_operations ramfs_file_operations
2584#define shmem_vm_ops generic_file_vm_ops
2585#define shmem_get_inode ramfs_get_inode
2586#define shmem_acct_size(a, b) 0
2587#define shmem_unacct_size(a, b) do {} while (0)
2588#define SHMEM_MAX_BYTES LLONG_MAX
2589
2590#endif /* CONFIG_SHMEM */
2591
2592/* common code */
2593
2594/**
2595 * shmem_file_setup - get an unlinked file living in tmpfs
2596 * @name: name for dentry (to be seen in /proc/<pid>/maps
2597 * @size: size to be set for the file
2598 * @flags: vm_flags
2599 */
2600struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2601{
2602	int error;
2603	struct file *file;
2604	struct inode *inode;
2605	struct dentry *dentry, *root;
2606	struct qstr this;
2607
2608	if (IS_ERR(shm_mnt))
2609		return (void *)shm_mnt;
2610
2611	if (size < 0 || size > SHMEM_MAX_BYTES)
2612		return ERR_PTR(-EINVAL);
2613
2614	if (shmem_acct_size(flags, size))
2615		return ERR_PTR(-ENOMEM);
2616
2617	error = -ENOMEM;
2618	this.name = name;
2619	this.len = strlen(name);
2620	this.hash = 0; /* will go */
2621	root = shm_mnt->mnt_root;
2622	dentry = d_alloc(root, &this);
2623	if (!dentry)
2624		goto put_memory;
2625
2626	error = -ENFILE;
2627	file = get_empty_filp();
2628	if (!file)
2629		goto put_dentry;
2630
2631	error = -ENOSPC;
2632	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2633	if (!inode)
2634		goto close_file;
2635
2636#ifdef CONFIG_SHMEM
2637	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2638#endif
2639	d_instantiate(dentry, inode);
2640	inode->i_size = size;
2641	inode->i_nlink = 0;	/* It is unlinked */
2642	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2643		  &shmem_file_operations);
2644
2645#ifndef CONFIG_MMU
2646	error = ramfs_nommu_expand_for_mapping(inode, size);
2647	if (error)
2648		goto close_file;
2649#endif
2650	return file;
2651
2652close_file:
2653	put_filp(file);
2654put_dentry:
2655	dput(dentry);
2656put_memory:
2657	shmem_unacct_size(flags, size);
2658	return ERR_PTR(error);
2659}
2660EXPORT_SYMBOL_GPL(shmem_file_setup);
2661
2662/**
2663 * shmem_zero_setup - setup a shared anonymous mapping
2664 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2665 */
2666int shmem_zero_setup(struct vm_area_struct *vma)
2667{
2668	struct file *file;
2669	loff_t size = vma->vm_end - vma->vm_start;
2670
2671	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2672	if (IS_ERR(file))
2673		return PTR_ERR(file);
2674
2675	if (vma->vm_file)
2676		fput(vma->vm_file);
2677	vma->vm_file = file;
2678	vma->vm_ops = &shmem_vm_ops;
2679	return 0;
2680}
2681
2682module_init(init_tmpfs)
2683