shmem.c revision 37456771c58be10dd813fb4510035d0d67a969aa
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/aio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69
70#include <asm/uaccess.h>
71#include <asm/pgtable.h>
72
73#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
82/*
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
86 */
87struct shmem_falloc {
88	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89	pgoff_t start;		/* start of range currently being fallocated */
90	pgoff_t next;		/* the next page offset to be fallocated */
91	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
92	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
93};
94
95/* Flag allocation requirements to shmem_getpage */
96enum sgp_type {
97	SGP_READ,	/* don't exceed i_size, don't allocate page */
98	SGP_CACHE,	/* don't exceed i_size, may allocate page */
99	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
100	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
101	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
102};
103
104#ifdef CONFIG_TMPFS
105static unsigned long shmem_default_max_blocks(void)
106{
107	return totalram_pages / 2;
108}
109
110static unsigned long shmem_default_max_inodes(void)
111{
112	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113}
114#endif
115
116static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118				struct shmem_inode_info *info, pgoff_t index);
119static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123	struct page **pagep, enum sgp_type sgp, int *fault_type)
124{
125	return shmem_getpage_gfp(inode, index, pagep, sgp,
126			mapping_gfp_mask(inode->i_mapping), fault_type);
127}
128
129static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130{
131	return sb->s_fs_info;
132}
133
134/*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140static inline int shmem_acct_size(unsigned long flags, loff_t size)
141{
142	return (flags & VM_NORESERVE) ?
143		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144}
145
146static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147{
148	if (!(flags & VM_NORESERVE))
149		vm_unacct_memory(VM_ACCT(size));
150}
151
152/*
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 */
158static inline int shmem_acct_block(unsigned long flags)
159{
160	return (flags & VM_NORESERVE) ?
161		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162}
163
164static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165{
166	if (flags & VM_NORESERVE)
167		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168}
169
170static const struct super_operations shmem_ops;
171static const struct address_space_operations shmem_aops;
172static const struct file_operations shmem_file_operations;
173static const struct inode_operations shmem_inode_operations;
174static const struct inode_operations shmem_dir_inode_operations;
175static const struct inode_operations shmem_special_inode_operations;
176static const struct vm_operations_struct shmem_vm_ops;
177
178static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179	.ra_pages	= 0,	/* No readahead */
180	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181};
182
183static LIST_HEAD(shmem_swaplist);
184static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186static int shmem_reserve_inode(struct super_block *sb)
187{
188	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189	if (sbinfo->max_inodes) {
190		spin_lock(&sbinfo->stat_lock);
191		if (!sbinfo->free_inodes) {
192			spin_unlock(&sbinfo->stat_lock);
193			return -ENOSPC;
194		}
195		sbinfo->free_inodes--;
196		spin_unlock(&sbinfo->stat_lock);
197	}
198	return 0;
199}
200
201static void shmem_free_inode(struct super_block *sb)
202{
203	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204	if (sbinfo->max_inodes) {
205		spin_lock(&sbinfo->stat_lock);
206		sbinfo->free_inodes++;
207		spin_unlock(&sbinfo->stat_lock);
208	}
209}
210
211/**
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223static void shmem_recalc_inode(struct inode *inode)
224{
225	struct shmem_inode_info *info = SHMEM_I(inode);
226	long freed;
227
228	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229	if (freed > 0) {
230		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231		if (sbinfo->max_blocks)
232			percpu_counter_add(&sbinfo->used_blocks, -freed);
233		info->alloced -= freed;
234		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235		shmem_unacct_blocks(info->flags, freed);
236	}
237}
238
239/*
240 * Replace item expected in radix tree by a new item, while holding tree lock.
241 */
242static int shmem_radix_tree_replace(struct address_space *mapping,
243			pgoff_t index, void *expected, void *replacement)
244{
245	void **pslot;
246	void *item;
247
248	VM_BUG_ON(!expected);
249	VM_BUG_ON(!replacement);
250	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251	if (!pslot)
252		return -ENOENT;
253	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254	if (item != expected)
255		return -ENOENT;
256	radix_tree_replace_slot(pslot, replacement);
257	return 0;
258}
259
260/*
261 * Sometimes, before we decide whether to proceed or to fail, we must check
262 * that an entry was not already brought back from swap by a racing thread.
263 *
264 * Checking page is not enough: by the time a SwapCache page is locked, it
265 * might be reused, and again be SwapCache, using the same swap as before.
266 */
267static bool shmem_confirm_swap(struct address_space *mapping,
268			       pgoff_t index, swp_entry_t swap)
269{
270	void *item;
271
272	rcu_read_lock();
273	item = radix_tree_lookup(&mapping->page_tree, index);
274	rcu_read_unlock();
275	return item == swp_to_radix_entry(swap);
276}
277
278/*
279 * Like add_to_page_cache_locked, but error if expected item has gone.
280 */
281static int shmem_add_to_page_cache(struct page *page,
282				   struct address_space *mapping,
283				   pgoff_t index, gfp_t gfp, void *expected)
284{
285	int error;
286
287	VM_BUG_ON_PAGE(!PageLocked(page), page);
288	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289
290	page_cache_get(page);
291	page->mapping = mapping;
292	page->index = index;
293
294	spin_lock_irq(&mapping->tree_lock);
295	if (!expected)
296		error = radix_tree_insert(&mapping->page_tree, index, page);
297	else
298		error = shmem_radix_tree_replace(mapping, index, expected,
299								 page);
300	if (!error) {
301		mapping->nrpages++;
302		__inc_zone_page_state(page, NR_FILE_PAGES);
303		__inc_zone_page_state(page, NR_SHMEM);
304		spin_unlock_irq(&mapping->tree_lock);
305	} else {
306		page->mapping = NULL;
307		spin_unlock_irq(&mapping->tree_lock);
308		page_cache_release(page);
309	}
310	return error;
311}
312
313/*
314 * Like delete_from_page_cache, but substitutes swap for page.
315 */
316static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317{
318	struct address_space *mapping = page->mapping;
319	int error;
320
321	spin_lock_irq(&mapping->tree_lock);
322	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323	page->mapping = NULL;
324	mapping->nrpages--;
325	__dec_zone_page_state(page, NR_FILE_PAGES);
326	__dec_zone_page_state(page, NR_SHMEM);
327	spin_unlock_irq(&mapping->tree_lock);
328	page_cache_release(page);
329	BUG_ON(error);
330}
331
332/*
333 * Remove swap entry from radix tree, free the swap and its page cache.
334 */
335static int shmem_free_swap(struct address_space *mapping,
336			   pgoff_t index, void *radswap)
337{
338	void *old;
339
340	spin_lock_irq(&mapping->tree_lock);
341	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342	spin_unlock_irq(&mapping->tree_lock);
343	if (old != radswap)
344		return -ENOENT;
345	free_swap_and_cache(radix_to_swp_entry(radswap));
346	return 0;
347}
348
349/*
350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351 */
352void shmem_unlock_mapping(struct address_space *mapping)
353{
354	struct pagevec pvec;
355	pgoff_t indices[PAGEVEC_SIZE];
356	pgoff_t index = 0;
357
358	pagevec_init(&pvec, 0);
359	/*
360	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361	 */
362	while (!mapping_unevictable(mapping)) {
363		/*
364		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366		 */
367		pvec.nr = find_get_entries(mapping, index,
368					   PAGEVEC_SIZE, pvec.pages, indices);
369		if (!pvec.nr)
370			break;
371		index = indices[pvec.nr - 1] + 1;
372		pagevec_remove_exceptionals(&pvec);
373		check_move_unevictable_pages(pvec.pages, pvec.nr);
374		pagevec_release(&pvec);
375		cond_resched();
376	}
377}
378
379/*
380 * Remove range of pages and swap entries from radix tree, and free them.
381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382 */
383static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384								 bool unfalloc)
385{
386	struct address_space *mapping = inode->i_mapping;
387	struct shmem_inode_info *info = SHMEM_I(inode);
388	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392	struct pagevec pvec;
393	pgoff_t indices[PAGEVEC_SIZE];
394	long nr_swaps_freed = 0;
395	pgoff_t index;
396	int i;
397
398	if (lend == -1)
399		end = -1;	/* unsigned, so actually very big */
400
401	pagevec_init(&pvec, 0);
402	index = start;
403	while (index < end) {
404		pvec.nr = find_get_entries(mapping, index,
405			min(end - index, (pgoff_t)PAGEVEC_SIZE),
406			pvec.pages, indices);
407		if (!pvec.nr)
408			break;
409		mem_cgroup_uncharge_start();
410		for (i = 0; i < pagevec_count(&pvec); i++) {
411			struct page *page = pvec.pages[i];
412
413			index = indices[i];
414			if (index >= end)
415				break;
416
417			if (radix_tree_exceptional_entry(page)) {
418				if (unfalloc)
419					continue;
420				nr_swaps_freed += !shmem_free_swap(mapping,
421								index, page);
422				continue;
423			}
424
425			if (!trylock_page(page))
426				continue;
427			if (!unfalloc || !PageUptodate(page)) {
428				if (page->mapping == mapping) {
429					VM_BUG_ON_PAGE(PageWriteback(page), page);
430					truncate_inode_page(mapping, page);
431				}
432			}
433			unlock_page(page);
434		}
435		pagevec_remove_exceptionals(&pvec);
436		pagevec_release(&pvec);
437		mem_cgroup_uncharge_end();
438		cond_resched();
439		index++;
440	}
441
442	if (partial_start) {
443		struct page *page = NULL;
444		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445		if (page) {
446			unsigned int top = PAGE_CACHE_SIZE;
447			if (start > end) {
448				top = partial_end;
449				partial_end = 0;
450			}
451			zero_user_segment(page, partial_start, top);
452			set_page_dirty(page);
453			unlock_page(page);
454			page_cache_release(page);
455		}
456	}
457	if (partial_end) {
458		struct page *page = NULL;
459		shmem_getpage(inode, end, &page, SGP_READ, NULL);
460		if (page) {
461			zero_user_segment(page, 0, partial_end);
462			set_page_dirty(page);
463			unlock_page(page);
464			page_cache_release(page);
465		}
466	}
467	if (start >= end)
468		return;
469
470	index = start;
471	while (index < end) {
472		cond_resched();
473
474		pvec.nr = find_get_entries(mapping, index,
475				min(end - index, (pgoff_t)PAGEVEC_SIZE),
476				pvec.pages, indices);
477		if (!pvec.nr) {
478			/* If all gone or hole-punch or unfalloc, we're done */
479			if (index == start || end != -1)
480				break;
481			/* But if truncating, restart to make sure all gone */
482			index = start;
483			continue;
484		}
485		mem_cgroup_uncharge_start();
486		for (i = 0; i < pagevec_count(&pvec); i++) {
487			struct page *page = pvec.pages[i];
488
489			index = indices[i];
490			if (index >= end)
491				break;
492
493			if (radix_tree_exceptional_entry(page)) {
494				if (unfalloc)
495					continue;
496				if (shmem_free_swap(mapping, index, page)) {
497					/* Swap was replaced by page: retry */
498					index--;
499					break;
500				}
501				nr_swaps_freed++;
502				continue;
503			}
504
505			lock_page(page);
506			if (!unfalloc || !PageUptodate(page)) {
507				if (page->mapping == mapping) {
508					VM_BUG_ON_PAGE(PageWriteback(page), page);
509					truncate_inode_page(mapping, page);
510				} else {
511					/* Page was replaced by swap: retry */
512					unlock_page(page);
513					index--;
514					break;
515				}
516			}
517			unlock_page(page);
518		}
519		pagevec_remove_exceptionals(&pvec);
520		pagevec_release(&pvec);
521		mem_cgroup_uncharge_end();
522		index++;
523	}
524
525	spin_lock(&info->lock);
526	info->swapped -= nr_swaps_freed;
527	shmem_recalc_inode(inode);
528	spin_unlock(&info->lock);
529}
530
531void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
532{
533	shmem_undo_range(inode, lstart, lend, false);
534	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
535}
536EXPORT_SYMBOL_GPL(shmem_truncate_range);
537
538static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
539{
540	struct inode *inode = dentry->d_inode;
541	int error;
542
543	error = inode_change_ok(inode, attr);
544	if (error)
545		return error;
546
547	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
548		loff_t oldsize = inode->i_size;
549		loff_t newsize = attr->ia_size;
550
551		if (newsize != oldsize) {
552			i_size_write(inode, newsize);
553			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
554		}
555		if (newsize < oldsize) {
556			loff_t holebegin = round_up(newsize, PAGE_SIZE);
557			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
558			shmem_truncate_range(inode, newsize, (loff_t)-1);
559			/* unmap again to remove racily COWed private pages */
560			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
561		}
562	}
563
564	setattr_copy(inode, attr);
565	if (attr->ia_valid & ATTR_MODE)
566		error = posix_acl_chmod(inode, inode->i_mode);
567	return error;
568}
569
570static void shmem_evict_inode(struct inode *inode)
571{
572	struct shmem_inode_info *info = SHMEM_I(inode);
573
574	if (inode->i_mapping->a_ops == &shmem_aops) {
575		shmem_unacct_size(info->flags, inode->i_size);
576		inode->i_size = 0;
577		shmem_truncate_range(inode, 0, (loff_t)-1);
578		if (!list_empty(&info->swaplist)) {
579			mutex_lock(&shmem_swaplist_mutex);
580			list_del_init(&info->swaplist);
581			mutex_unlock(&shmem_swaplist_mutex);
582		}
583	} else
584		kfree(info->symlink);
585
586	simple_xattrs_free(&info->xattrs);
587	WARN_ON(inode->i_blocks);
588	shmem_free_inode(inode->i_sb);
589	clear_inode(inode);
590}
591
592/*
593 * If swap found in inode, free it and move page from swapcache to filecache.
594 */
595static int shmem_unuse_inode(struct shmem_inode_info *info,
596			     swp_entry_t swap, struct page **pagep)
597{
598	struct address_space *mapping = info->vfs_inode.i_mapping;
599	void *radswap;
600	pgoff_t index;
601	gfp_t gfp;
602	int error = 0;
603
604	radswap = swp_to_radix_entry(swap);
605	index = radix_tree_locate_item(&mapping->page_tree, radswap);
606	if (index == -1)
607		return 0;
608
609	/*
610	 * Move _head_ to start search for next from here.
611	 * But be careful: shmem_evict_inode checks list_empty without taking
612	 * mutex, and there's an instant in list_move_tail when info->swaplist
613	 * would appear empty, if it were the only one on shmem_swaplist.
614	 */
615	if (shmem_swaplist.next != &info->swaplist)
616		list_move_tail(&shmem_swaplist, &info->swaplist);
617
618	gfp = mapping_gfp_mask(mapping);
619	if (shmem_should_replace_page(*pagep, gfp)) {
620		mutex_unlock(&shmem_swaplist_mutex);
621		error = shmem_replace_page(pagep, gfp, info, index);
622		mutex_lock(&shmem_swaplist_mutex);
623		/*
624		 * We needed to drop mutex to make that restrictive page
625		 * allocation, but the inode might have been freed while we
626		 * dropped it: although a racing shmem_evict_inode() cannot
627		 * complete without emptying the radix_tree, our page lock
628		 * on this swapcache page is not enough to prevent that -
629		 * free_swap_and_cache() of our swap entry will only
630		 * trylock_page(), removing swap from radix_tree whatever.
631		 *
632		 * We must not proceed to shmem_add_to_page_cache() if the
633		 * inode has been freed, but of course we cannot rely on
634		 * inode or mapping or info to check that.  However, we can
635		 * safely check if our swap entry is still in use (and here
636		 * it can't have got reused for another page): if it's still
637		 * in use, then the inode cannot have been freed yet, and we
638		 * can safely proceed (if it's no longer in use, that tells
639		 * nothing about the inode, but we don't need to unuse swap).
640		 */
641		if (!page_swapcount(*pagep))
642			error = -ENOENT;
643	}
644
645	/*
646	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
647	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
648	 * beneath us (pagelock doesn't help until the page is in pagecache).
649	 */
650	if (!error)
651		error = shmem_add_to_page_cache(*pagep, mapping, index,
652						GFP_NOWAIT, radswap);
653	if (error != -ENOMEM) {
654		/*
655		 * Truncation and eviction use free_swap_and_cache(), which
656		 * only does trylock page: if we raced, best clean up here.
657		 */
658		delete_from_swap_cache(*pagep);
659		set_page_dirty(*pagep);
660		if (!error) {
661			spin_lock(&info->lock);
662			info->swapped--;
663			spin_unlock(&info->lock);
664			swap_free(swap);
665		}
666		error = 1;	/* not an error, but entry was found */
667	}
668	return error;
669}
670
671/*
672 * Search through swapped inodes to find and replace swap by page.
673 */
674int shmem_unuse(swp_entry_t swap, struct page *page)
675{
676	struct list_head *this, *next;
677	struct shmem_inode_info *info;
678	int found = 0;
679	int error = 0;
680
681	/*
682	 * There's a faint possibility that swap page was replaced before
683	 * caller locked it: caller will come back later with the right page.
684	 */
685	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
686		goto out;
687
688	/*
689	 * Charge page using GFP_KERNEL while we can wait, before taking
690	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
691	 * Charged back to the user (not to caller) when swap account is used.
692	 */
693	error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
694	if (error)
695		goto out;
696	/* No radix_tree_preload: swap entry keeps a place for page in tree */
697
698	mutex_lock(&shmem_swaplist_mutex);
699	list_for_each_safe(this, next, &shmem_swaplist) {
700		info = list_entry(this, struct shmem_inode_info, swaplist);
701		if (info->swapped)
702			found = shmem_unuse_inode(info, swap, &page);
703		else
704			list_del_init(&info->swaplist);
705		cond_resched();
706		if (found)
707			break;
708	}
709	mutex_unlock(&shmem_swaplist_mutex);
710
711	if (found < 0)
712		error = found;
713out:
714	unlock_page(page);
715	page_cache_release(page);
716	return error;
717}
718
719/*
720 * Move the page from the page cache to the swap cache.
721 */
722static int shmem_writepage(struct page *page, struct writeback_control *wbc)
723{
724	struct shmem_inode_info *info;
725	struct address_space *mapping;
726	struct inode *inode;
727	swp_entry_t swap;
728	pgoff_t index;
729
730	BUG_ON(!PageLocked(page));
731	mapping = page->mapping;
732	index = page->index;
733	inode = mapping->host;
734	info = SHMEM_I(inode);
735	if (info->flags & VM_LOCKED)
736		goto redirty;
737	if (!total_swap_pages)
738		goto redirty;
739
740	/*
741	 * shmem_backing_dev_info's capabilities prevent regular writeback or
742	 * sync from ever calling shmem_writepage; but a stacking filesystem
743	 * might use ->writepage of its underlying filesystem, in which case
744	 * tmpfs should write out to swap only in response to memory pressure,
745	 * and not for the writeback threads or sync.
746	 */
747	if (!wbc->for_reclaim) {
748		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
749		goto redirty;
750	}
751
752	/*
753	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
754	 * value into swapfile.c, the only way we can correctly account for a
755	 * fallocated page arriving here is now to initialize it and write it.
756	 *
757	 * That's okay for a page already fallocated earlier, but if we have
758	 * not yet completed the fallocation, then (a) we want to keep track
759	 * of this page in case we have to undo it, and (b) it may not be a
760	 * good idea to continue anyway, once we're pushing into swap.  So
761	 * reactivate the page, and let shmem_fallocate() quit when too many.
762	 */
763	if (!PageUptodate(page)) {
764		if (inode->i_private) {
765			struct shmem_falloc *shmem_falloc;
766			spin_lock(&inode->i_lock);
767			shmem_falloc = inode->i_private;
768			if (shmem_falloc &&
769			    !shmem_falloc->waitq &&
770			    index >= shmem_falloc->start &&
771			    index < shmem_falloc->next)
772				shmem_falloc->nr_unswapped++;
773			else
774				shmem_falloc = NULL;
775			spin_unlock(&inode->i_lock);
776			if (shmem_falloc)
777				goto redirty;
778		}
779		clear_highpage(page);
780		flush_dcache_page(page);
781		SetPageUptodate(page);
782	}
783
784	swap = get_swap_page();
785	if (!swap.val)
786		goto redirty;
787
788	/*
789	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
790	 * if it's not already there.  Do it now before the page is
791	 * moved to swap cache, when its pagelock no longer protects
792	 * the inode from eviction.  But don't unlock the mutex until
793	 * we've incremented swapped, because shmem_unuse_inode() will
794	 * prune a !swapped inode from the swaplist under this mutex.
795	 */
796	mutex_lock(&shmem_swaplist_mutex);
797	if (list_empty(&info->swaplist))
798		list_add_tail(&info->swaplist, &shmem_swaplist);
799
800	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
801		swap_shmem_alloc(swap);
802		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
803
804		spin_lock(&info->lock);
805		info->swapped++;
806		shmem_recalc_inode(inode);
807		spin_unlock(&info->lock);
808
809		mutex_unlock(&shmem_swaplist_mutex);
810		BUG_ON(page_mapped(page));
811		swap_writepage(page, wbc);
812		return 0;
813	}
814
815	mutex_unlock(&shmem_swaplist_mutex);
816	swapcache_free(swap, NULL);
817redirty:
818	set_page_dirty(page);
819	if (wbc->for_reclaim)
820		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
821	unlock_page(page);
822	return 0;
823}
824
825#ifdef CONFIG_NUMA
826#ifdef CONFIG_TMPFS
827static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
828{
829	char buffer[64];
830
831	if (!mpol || mpol->mode == MPOL_DEFAULT)
832		return;		/* show nothing */
833
834	mpol_to_str(buffer, sizeof(buffer), mpol);
835
836	seq_printf(seq, ",mpol=%s", buffer);
837}
838
839static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
840{
841	struct mempolicy *mpol = NULL;
842	if (sbinfo->mpol) {
843		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
844		mpol = sbinfo->mpol;
845		mpol_get(mpol);
846		spin_unlock(&sbinfo->stat_lock);
847	}
848	return mpol;
849}
850#endif /* CONFIG_TMPFS */
851
852static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
853			struct shmem_inode_info *info, pgoff_t index)
854{
855	struct vm_area_struct pvma;
856	struct page *page;
857
858	/* Create a pseudo vma that just contains the policy */
859	pvma.vm_start = 0;
860	/* Bias interleave by inode number to distribute better across nodes */
861	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
862	pvma.vm_ops = NULL;
863	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
864
865	page = swapin_readahead(swap, gfp, &pvma, 0);
866
867	/* Drop reference taken by mpol_shared_policy_lookup() */
868	mpol_cond_put(pvma.vm_policy);
869
870	return page;
871}
872
873static struct page *shmem_alloc_page(gfp_t gfp,
874			struct shmem_inode_info *info, pgoff_t index)
875{
876	struct vm_area_struct pvma;
877	struct page *page;
878
879	/* Create a pseudo vma that just contains the policy */
880	pvma.vm_start = 0;
881	/* Bias interleave by inode number to distribute better across nodes */
882	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
883	pvma.vm_ops = NULL;
884	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
885
886	page = alloc_page_vma(gfp, &pvma, 0);
887
888	/* Drop reference taken by mpol_shared_policy_lookup() */
889	mpol_cond_put(pvma.vm_policy);
890
891	return page;
892}
893#else /* !CONFIG_NUMA */
894#ifdef CONFIG_TMPFS
895static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
896{
897}
898#endif /* CONFIG_TMPFS */
899
900static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
901			struct shmem_inode_info *info, pgoff_t index)
902{
903	return swapin_readahead(swap, gfp, NULL, 0);
904}
905
906static inline struct page *shmem_alloc_page(gfp_t gfp,
907			struct shmem_inode_info *info, pgoff_t index)
908{
909	return alloc_page(gfp);
910}
911#endif /* CONFIG_NUMA */
912
913#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
914static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
915{
916	return NULL;
917}
918#endif
919
920/*
921 * When a page is moved from swapcache to shmem filecache (either by the
922 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
923 * shmem_unuse_inode()), it may have been read in earlier from swap, in
924 * ignorance of the mapping it belongs to.  If that mapping has special
925 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
926 * we may need to copy to a suitable page before moving to filecache.
927 *
928 * In a future release, this may well be extended to respect cpuset and
929 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
930 * but for now it is a simple matter of zone.
931 */
932static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
933{
934	return page_zonenum(page) > gfp_zone(gfp);
935}
936
937static int shmem_replace_page(struct page **pagep, gfp_t gfp,
938				struct shmem_inode_info *info, pgoff_t index)
939{
940	struct page *oldpage, *newpage;
941	struct address_space *swap_mapping;
942	pgoff_t swap_index;
943	int error;
944
945	oldpage = *pagep;
946	swap_index = page_private(oldpage);
947	swap_mapping = page_mapping(oldpage);
948
949	/*
950	 * We have arrived here because our zones are constrained, so don't
951	 * limit chance of success by further cpuset and node constraints.
952	 */
953	gfp &= ~GFP_CONSTRAINT_MASK;
954	newpage = shmem_alloc_page(gfp, info, index);
955	if (!newpage)
956		return -ENOMEM;
957
958	page_cache_get(newpage);
959	copy_highpage(newpage, oldpage);
960	flush_dcache_page(newpage);
961
962	__set_page_locked(newpage);
963	SetPageUptodate(newpage);
964	SetPageSwapBacked(newpage);
965	set_page_private(newpage, swap_index);
966	SetPageSwapCache(newpage);
967
968	/*
969	 * Our caller will very soon move newpage out of swapcache, but it's
970	 * a nice clean interface for us to replace oldpage by newpage there.
971	 */
972	spin_lock_irq(&swap_mapping->tree_lock);
973	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
974								   newpage);
975	if (!error) {
976		__inc_zone_page_state(newpage, NR_FILE_PAGES);
977		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
978	}
979	spin_unlock_irq(&swap_mapping->tree_lock);
980
981	if (unlikely(error)) {
982		/*
983		 * Is this possible?  I think not, now that our callers check
984		 * both PageSwapCache and page_private after getting page lock;
985		 * but be defensive.  Reverse old to newpage for clear and free.
986		 */
987		oldpage = newpage;
988	} else {
989		mem_cgroup_replace_page_cache(oldpage, newpage);
990		lru_cache_add_anon(newpage);
991		*pagep = newpage;
992	}
993
994	ClearPageSwapCache(oldpage);
995	set_page_private(oldpage, 0);
996
997	unlock_page(oldpage);
998	page_cache_release(oldpage);
999	page_cache_release(oldpage);
1000	return error;
1001}
1002
1003/*
1004 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1005 *
1006 * If we allocate a new one we do not mark it dirty. That's up to the
1007 * vm. If we swap it in we mark it dirty since we also free the swap
1008 * entry since a page cannot live in both the swap and page cache
1009 */
1010static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1011	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1012{
1013	struct address_space *mapping = inode->i_mapping;
1014	struct shmem_inode_info *info;
1015	struct shmem_sb_info *sbinfo;
1016	struct page *page;
1017	swp_entry_t swap;
1018	int error;
1019	int once = 0;
1020	int alloced = 0;
1021
1022	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1023		return -EFBIG;
1024repeat:
1025	swap.val = 0;
1026	page = find_lock_entry(mapping, index);
1027	if (radix_tree_exceptional_entry(page)) {
1028		swap = radix_to_swp_entry(page);
1029		page = NULL;
1030	}
1031
1032	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1033	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1034		error = -EINVAL;
1035		goto failed;
1036	}
1037
1038	if (page && sgp == SGP_WRITE)
1039		mark_page_accessed(page);
1040
1041	/* fallocated page? */
1042	if (page && !PageUptodate(page)) {
1043		if (sgp != SGP_READ)
1044			goto clear;
1045		unlock_page(page);
1046		page_cache_release(page);
1047		page = NULL;
1048	}
1049	if (page || (sgp == SGP_READ && !swap.val)) {
1050		*pagep = page;
1051		return 0;
1052	}
1053
1054	/*
1055	 * Fast cache lookup did not find it:
1056	 * bring it back from swap or allocate.
1057	 */
1058	info = SHMEM_I(inode);
1059	sbinfo = SHMEM_SB(inode->i_sb);
1060
1061	if (swap.val) {
1062		/* Look it up and read it in.. */
1063		page = lookup_swap_cache(swap);
1064		if (!page) {
1065			/* here we actually do the io */
1066			if (fault_type)
1067				*fault_type |= VM_FAULT_MAJOR;
1068			page = shmem_swapin(swap, gfp, info, index);
1069			if (!page) {
1070				error = -ENOMEM;
1071				goto failed;
1072			}
1073		}
1074
1075		/* We have to do this with page locked to prevent races */
1076		lock_page(page);
1077		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1078		    !shmem_confirm_swap(mapping, index, swap)) {
1079			error = -EEXIST;	/* try again */
1080			goto unlock;
1081		}
1082		if (!PageUptodate(page)) {
1083			error = -EIO;
1084			goto failed;
1085		}
1086		wait_on_page_writeback(page);
1087
1088		if (shmem_should_replace_page(page, gfp)) {
1089			error = shmem_replace_page(&page, gfp, info, index);
1090			if (error)
1091				goto failed;
1092		}
1093
1094		error = mem_cgroup_charge_file(page, current->mm,
1095						gfp & GFP_RECLAIM_MASK);
1096		if (!error) {
1097			error = shmem_add_to_page_cache(page, mapping, index,
1098						gfp, swp_to_radix_entry(swap));
1099			/*
1100			 * We already confirmed swap under page lock, and make
1101			 * no memory allocation here, so usually no possibility
1102			 * of error; but free_swap_and_cache() only trylocks a
1103			 * page, so it is just possible that the entry has been
1104			 * truncated or holepunched since swap was confirmed.
1105			 * shmem_undo_range() will have done some of the
1106			 * unaccounting, now delete_from_swap_cache() will do
1107			 * the rest (including mem_cgroup_uncharge_swapcache).
1108			 * Reset swap.val? No, leave it so "failed" goes back to
1109			 * "repeat": reading a hole and writing should succeed.
1110			 */
1111			if (error)
1112				delete_from_swap_cache(page);
1113		}
1114		if (error)
1115			goto failed;
1116
1117		spin_lock(&info->lock);
1118		info->swapped--;
1119		shmem_recalc_inode(inode);
1120		spin_unlock(&info->lock);
1121
1122		if (sgp == SGP_WRITE)
1123			mark_page_accessed(page);
1124
1125		delete_from_swap_cache(page);
1126		set_page_dirty(page);
1127		swap_free(swap);
1128
1129	} else {
1130		if (shmem_acct_block(info->flags)) {
1131			error = -ENOSPC;
1132			goto failed;
1133		}
1134		if (sbinfo->max_blocks) {
1135			if (percpu_counter_compare(&sbinfo->used_blocks,
1136						sbinfo->max_blocks) >= 0) {
1137				error = -ENOSPC;
1138				goto unacct;
1139			}
1140			percpu_counter_inc(&sbinfo->used_blocks);
1141		}
1142
1143		page = shmem_alloc_page(gfp, info, index);
1144		if (!page) {
1145			error = -ENOMEM;
1146			goto decused;
1147		}
1148
1149		__SetPageSwapBacked(page);
1150		__set_page_locked(page);
1151		if (sgp == SGP_WRITE)
1152			init_page_accessed(page);
1153
1154		error = mem_cgroup_charge_file(page, current->mm,
1155						gfp & GFP_RECLAIM_MASK);
1156		if (error)
1157			goto decused;
1158		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1159		if (!error) {
1160			error = shmem_add_to_page_cache(page, mapping, index,
1161							gfp, NULL);
1162			radix_tree_preload_end();
1163		}
1164		if (error) {
1165			mem_cgroup_uncharge_cache_page(page);
1166			goto decused;
1167		}
1168		lru_cache_add_anon(page);
1169
1170		spin_lock(&info->lock);
1171		info->alloced++;
1172		inode->i_blocks += BLOCKS_PER_PAGE;
1173		shmem_recalc_inode(inode);
1174		spin_unlock(&info->lock);
1175		alloced = true;
1176
1177		/*
1178		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1179		 */
1180		if (sgp == SGP_FALLOC)
1181			sgp = SGP_WRITE;
1182clear:
1183		/*
1184		 * Let SGP_WRITE caller clear ends if write does not fill page;
1185		 * but SGP_FALLOC on a page fallocated earlier must initialize
1186		 * it now, lest undo on failure cancel our earlier guarantee.
1187		 */
1188		if (sgp != SGP_WRITE) {
1189			clear_highpage(page);
1190			flush_dcache_page(page);
1191			SetPageUptodate(page);
1192		}
1193		if (sgp == SGP_DIRTY)
1194			set_page_dirty(page);
1195	}
1196
1197	/* Perhaps the file has been truncated since we checked */
1198	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1199	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1200		error = -EINVAL;
1201		if (alloced)
1202			goto trunc;
1203		else
1204			goto failed;
1205	}
1206	*pagep = page;
1207	return 0;
1208
1209	/*
1210	 * Error recovery.
1211	 */
1212trunc:
1213	info = SHMEM_I(inode);
1214	ClearPageDirty(page);
1215	delete_from_page_cache(page);
1216	spin_lock(&info->lock);
1217	info->alloced--;
1218	inode->i_blocks -= BLOCKS_PER_PAGE;
1219	spin_unlock(&info->lock);
1220decused:
1221	sbinfo = SHMEM_SB(inode->i_sb);
1222	if (sbinfo->max_blocks)
1223		percpu_counter_add(&sbinfo->used_blocks, -1);
1224unacct:
1225	shmem_unacct_blocks(info->flags, 1);
1226failed:
1227	if (swap.val && error != -EINVAL &&
1228	    !shmem_confirm_swap(mapping, index, swap))
1229		error = -EEXIST;
1230unlock:
1231	if (page) {
1232		unlock_page(page);
1233		page_cache_release(page);
1234	}
1235	if (error == -ENOSPC && !once++) {
1236		info = SHMEM_I(inode);
1237		spin_lock(&info->lock);
1238		shmem_recalc_inode(inode);
1239		spin_unlock(&info->lock);
1240		goto repeat;
1241	}
1242	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1243		goto repeat;
1244	return error;
1245}
1246
1247static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1248{
1249	struct inode *inode = file_inode(vma->vm_file);
1250	int error;
1251	int ret = VM_FAULT_LOCKED;
1252
1253	/*
1254	 * Trinity finds that probing a hole which tmpfs is punching can
1255	 * prevent the hole-punch from ever completing: which in turn
1256	 * locks writers out with its hold on i_mutex.  So refrain from
1257	 * faulting pages into the hole while it's being punched.  Although
1258	 * shmem_undo_range() does remove the additions, it may be unable to
1259	 * keep up, as each new page needs its own unmap_mapping_range() call,
1260	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1261	 *
1262	 * It does not matter if we sometimes reach this check just before the
1263	 * hole-punch begins, so that one fault then races with the punch:
1264	 * we just need to make racing faults a rare case.
1265	 *
1266	 * The implementation below would be much simpler if we just used a
1267	 * standard mutex or completion: but we cannot take i_mutex in fault,
1268	 * and bloating every shmem inode for this unlikely case would be sad.
1269	 */
1270	if (unlikely(inode->i_private)) {
1271		struct shmem_falloc *shmem_falloc;
1272
1273		spin_lock(&inode->i_lock);
1274		shmem_falloc = inode->i_private;
1275		if (shmem_falloc &&
1276		    shmem_falloc->waitq &&
1277		    vmf->pgoff >= shmem_falloc->start &&
1278		    vmf->pgoff < shmem_falloc->next) {
1279			wait_queue_head_t *shmem_falloc_waitq;
1280			DEFINE_WAIT(shmem_fault_wait);
1281
1282			ret = VM_FAULT_NOPAGE;
1283			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1284			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1285				/* It's polite to up mmap_sem if we can */
1286				up_read(&vma->vm_mm->mmap_sem);
1287				ret = VM_FAULT_RETRY;
1288			}
1289
1290			shmem_falloc_waitq = shmem_falloc->waitq;
1291			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1292					TASK_UNINTERRUPTIBLE);
1293			spin_unlock(&inode->i_lock);
1294			schedule();
1295
1296			/*
1297			 * shmem_falloc_waitq points into the shmem_fallocate()
1298			 * stack of the hole-punching task: shmem_falloc_waitq
1299			 * is usually invalid by the time we reach here, but
1300			 * finish_wait() does not dereference it in that case;
1301			 * though i_lock needed lest racing with wake_up_all().
1302			 */
1303			spin_lock(&inode->i_lock);
1304			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1305			spin_unlock(&inode->i_lock);
1306			return ret;
1307		}
1308		spin_unlock(&inode->i_lock);
1309	}
1310
1311	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1312	if (error)
1313		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1314
1315	if (ret & VM_FAULT_MAJOR) {
1316		count_vm_event(PGMAJFAULT);
1317		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1318	}
1319	return ret;
1320}
1321
1322#ifdef CONFIG_NUMA
1323static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1324{
1325	struct inode *inode = file_inode(vma->vm_file);
1326	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1327}
1328
1329static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1330					  unsigned long addr)
1331{
1332	struct inode *inode = file_inode(vma->vm_file);
1333	pgoff_t index;
1334
1335	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1336	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1337}
1338#endif
1339
1340int shmem_lock(struct file *file, int lock, struct user_struct *user)
1341{
1342	struct inode *inode = file_inode(file);
1343	struct shmem_inode_info *info = SHMEM_I(inode);
1344	int retval = -ENOMEM;
1345
1346	spin_lock(&info->lock);
1347	if (lock && !(info->flags & VM_LOCKED)) {
1348		if (!user_shm_lock(inode->i_size, user))
1349			goto out_nomem;
1350		info->flags |= VM_LOCKED;
1351		mapping_set_unevictable(file->f_mapping);
1352	}
1353	if (!lock && (info->flags & VM_LOCKED) && user) {
1354		user_shm_unlock(inode->i_size, user);
1355		info->flags &= ~VM_LOCKED;
1356		mapping_clear_unevictable(file->f_mapping);
1357	}
1358	retval = 0;
1359
1360out_nomem:
1361	spin_unlock(&info->lock);
1362	return retval;
1363}
1364
1365static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1366{
1367	file_accessed(file);
1368	vma->vm_ops = &shmem_vm_ops;
1369	return 0;
1370}
1371
1372static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1373				     umode_t mode, dev_t dev, unsigned long flags)
1374{
1375	struct inode *inode;
1376	struct shmem_inode_info *info;
1377	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1378
1379	if (shmem_reserve_inode(sb))
1380		return NULL;
1381
1382	inode = new_inode(sb);
1383	if (inode) {
1384		inode->i_ino = get_next_ino();
1385		inode_init_owner(inode, dir, mode);
1386		inode->i_blocks = 0;
1387		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1388		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1389		inode->i_generation = get_seconds();
1390		info = SHMEM_I(inode);
1391		memset(info, 0, (char *)inode - (char *)info);
1392		spin_lock_init(&info->lock);
1393		info->flags = flags & VM_NORESERVE;
1394		INIT_LIST_HEAD(&info->swaplist);
1395		simple_xattrs_init(&info->xattrs);
1396		cache_no_acl(inode);
1397
1398		switch (mode & S_IFMT) {
1399		default:
1400			inode->i_op = &shmem_special_inode_operations;
1401			init_special_inode(inode, mode, dev);
1402			break;
1403		case S_IFREG:
1404			inode->i_mapping->a_ops = &shmem_aops;
1405			inode->i_op = &shmem_inode_operations;
1406			inode->i_fop = &shmem_file_operations;
1407			mpol_shared_policy_init(&info->policy,
1408						 shmem_get_sbmpol(sbinfo));
1409			break;
1410		case S_IFDIR:
1411			inc_nlink(inode);
1412			/* Some things misbehave if size == 0 on a directory */
1413			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1414			inode->i_op = &shmem_dir_inode_operations;
1415			inode->i_fop = &simple_dir_operations;
1416			break;
1417		case S_IFLNK:
1418			/*
1419			 * Must not load anything in the rbtree,
1420			 * mpol_free_shared_policy will not be called.
1421			 */
1422			mpol_shared_policy_init(&info->policy, NULL);
1423			break;
1424		}
1425	} else
1426		shmem_free_inode(sb);
1427	return inode;
1428}
1429
1430bool shmem_mapping(struct address_space *mapping)
1431{
1432	return mapping->backing_dev_info == &shmem_backing_dev_info;
1433}
1434
1435#ifdef CONFIG_TMPFS
1436static const struct inode_operations shmem_symlink_inode_operations;
1437static const struct inode_operations shmem_short_symlink_operations;
1438
1439#ifdef CONFIG_TMPFS_XATTR
1440static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1441#else
1442#define shmem_initxattrs NULL
1443#endif
1444
1445static int
1446shmem_write_begin(struct file *file, struct address_space *mapping,
1447			loff_t pos, unsigned len, unsigned flags,
1448			struct page **pagep, void **fsdata)
1449{
1450	struct inode *inode = mapping->host;
1451	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1452	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1453}
1454
1455static int
1456shmem_write_end(struct file *file, struct address_space *mapping,
1457			loff_t pos, unsigned len, unsigned copied,
1458			struct page *page, void *fsdata)
1459{
1460	struct inode *inode = mapping->host;
1461
1462	if (pos + copied > inode->i_size)
1463		i_size_write(inode, pos + copied);
1464
1465	if (!PageUptodate(page)) {
1466		if (copied < PAGE_CACHE_SIZE) {
1467			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1468			zero_user_segments(page, 0, from,
1469					from + copied, PAGE_CACHE_SIZE);
1470		}
1471		SetPageUptodate(page);
1472	}
1473	set_page_dirty(page);
1474	unlock_page(page);
1475	page_cache_release(page);
1476
1477	return copied;
1478}
1479
1480static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1481{
1482	struct file *file = iocb->ki_filp;
1483	struct inode *inode = file_inode(file);
1484	struct address_space *mapping = inode->i_mapping;
1485	pgoff_t index;
1486	unsigned long offset;
1487	enum sgp_type sgp = SGP_READ;
1488	int error = 0;
1489	ssize_t retval = 0;
1490	loff_t *ppos = &iocb->ki_pos;
1491
1492	/*
1493	 * Might this read be for a stacking filesystem?  Then when reading
1494	 * holes of a sparse file, we actually need to allocate those pages,
1495	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1496	 */
1497	if (segment_eq(get_fs(), KERNEL_DS))
1498		sgp = SGP_DIRTY;
1499
1500	index = *ppos >> PAGE_CACHE_SHIFT;
1501	offset = *ppos & ~PAGE_CACHE_MASK;
1502
1503	for (;;) {
1504		struct page *page = NULL;
1505		pgoff_t end_index;
1506		unsigned long nr, ret;
1507		loff_t i_size = i_size_read(inode);
1508
1509		end_index = i_size >> PAGE_CACHE_SHIFT;
1510		if (index > end_index)
1511			break;
1512		if (index == end_index) {
1513			nr = i_size & ~PAGE_CACHE_MASK;
1514			if (nr <= offset)
1515				break;
1516		}
1517
1518		error = shmem_getpage(inode, index, &page, sgp, NULL);
1519		if (error) {
1520			if (error == -EINVAL)
1521				error = 0;
1522			break;
1523		}
1524		if (page)
1525			unlock_page(page);
1526
1527		/*
1528		 * We must evaluate after, since reads (unlike writes)
1529		 * are called without i_mutex protection against truncate
1530		 */
1531		nr = PAGE_CACHE_SIZE;
1532		i_size = i_size_read(inode);
1533		end_index = i_size >> PAGE_CACHE_SHIFT;
1534		if (index == end_index) {
1535			nr = i_size & ~PAGE_CACHE_MASK;
1536			if (nr <= offset) {
1537				if (page)
1538					page_cache_release(page);
1539				break;
1540			}
1541		}
1542		nr -= offset;
1543
1544		if (page) {
1545			/*
1546			 * If users can be writing to this page using arbitrary
1547			 * virtual addresses, take care about potential aliasing
1548			 * before reading the page on the kernel side.
1549			 */
1550			if (mapping_writably_mapped(mapping))
1551				flush_dcache_page(page);
1552			/*
1553			 * Mark the page accessed if we read the beginning.
1554			 */
1555			if (!offset)
1556				mark_page_accessed(page);
1557		} else {
1558			page = ZERO_PAGE(0);
1559			page_cache_get(page);
1560		}
1561
1562		/*
1563		 * Ok, we have the page, and it's up-to-date, so
1564		 * now we can copy it to user space...
1565		 */
1566		ret = copy_page_to_iter(page, offset, nr, to);
1567		retval += ret;
1568		offset += ret;
1569		index += offset >> PAGE_CACHE_SHIFT;
1570		offset &= ~PAGE_CACHE_MASK;
1571
1572		page_cache_release(page);
1573		if (!iov_iter_count(to))
1574			break;
1575		if (ret < nr) {
1576			error = -EFAULT;
1577			break;
1578		}
1579		cond_resched();
1580	}
1581
1582	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1583	file_accessed(file);
1584	return retval ? retval : error;
1585}
1586
1587static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1588				struct pipe_inode_info *pipe, size_t len,
1589				unsigned int flags)
1590{
1591	struct address_space *mapping = in->f_mapping;
1592	struct inode *inode = mapping->host;
1593	unsigned int loff, nr_pages, req_pages;
1594	struct page *pages[PIPE_DEF_BUFFERS];
1595	struct partial_page partial[PIPE_DEF_BUFFERS];
1596	struct page *page;
1597	pgoff_t index, end_index;
1598	loff_t isize, left;
1599	int error, page_nr;
1600	struct splice_pipe_desc spd = {
1601		.pages = pages,
1602		.partial = partial,
1603		.nr_pages_max = PIPE_DEF_BUFFERS,
1604		.flags = flags,
1605		.ops = &page_cache_pipe_buf_ops,
1606		.spd_release = spd_release_page,
1607	};
1608
1609	isize = i_size_read(inode);
1610	if (unlikely(*ppos >= isize))
1611		return 0;
1612
1613	left = isize - *ppos;
1614	if (unlikely(left < len))
1615		len = left;
1616
1617	if (splice_grow_spd(pipe, &spd))
1618		return -ENOMEM;
1619
1620	index = *ppos >> PAGE_CACHE_SHIFT;
1621	loff = *ppos & ~PAGE_CACHE_MASK;
1622	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1623	nr_pages = min(req_pages, spd.nr_pages_max);
1624
1625	spd.nr_pages = find_get_pages_contig(mapping, index,
1626						nr_pages, spd.pages);
1627	index += spd.nr_pages;
1628	error = 0;
1629
1630	while (spd.nr_pages < nr_pages) {
1631		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1632		if (error)
1633			break;
1634		unlock_page(page);
1635		spd.pages[spd.nr_pages++] = page;
1636		index++;
1637	}
1638
1639	index = *ppos >> PAGE_CACHE_SHIFT;
1640	nr_pages = spd.nr_pages;
1641	spd.nr_pages = 0;
1642
1643	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1644		unsigned int this_len;
1645
1646		if (!len)
1647			break;
1648
1649		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1650		page = spd.pages[page_nr];
1651
1652		if (!PageUptodate(page) || page->mapping != mapping) {
1653			error = shmem_getpage(inode, index, &page,
1654							SGP_CACHE, NULL);
1655			if (error)
1656				break;
1657			unlock_page(page);
1658			page_cache_release(spd.pages[page_nr]);
1659			spd.pages[page_nr] = page;
1660		}
1661
1662		isize = i_size_read(inode);
1663		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1664		if (unlikely(!isize || index > end_index))
1665			break;
1666
1667		if (end_index == index) {
1668			unsigned int plen;
1669
1670			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1671			if (plen <= loff)
1672				break;
1673
1674			this_len = min(this_len, plen - loff);
1675			len = this_len;
1676		}
1677
1678		spd.partial[page_nr].offset = loff;
1679		spd.partial[page_nr].len = this_len;
1680		len -= this_len;
1681		loff = 0;
1682		spd.nr_pages++;
1683		index++;
1684	}
1685
1686	while (page_nr < nr_pages)
1687		page_cache_release(spd.pages[page_nr++]);
1688
1689	if (spd.nr_pages)
1690		error = splice_to_pipe(pipe, &spd);
1691
1692	splice_shrink_spd(&spd);
1693
1694	if (error > 0) {
1695		*ppos += error;
1696		file_accessed(in);
1697	}
1698	return error;
1699}
1700
1701/*
1702 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1703 */
1704static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1705				    pgoff_t index, pgoff_t end, int whence)
1706{
1707	struct page *page;
1708	struct pagevec pvec;
1709	pgoff_t indices[PAGEVEC_SIZE];
1710	bool done = false;
1711	int i;
1712
1713	pagevec_init(&pvec, 0);
1714	pvec.nr = 1;		/* start small: we may be there already */
1715	while (!done) {
1716		pvec.nr = find_get_entries(mapping, index,
1717					pvec.nr, pvec.pages, indices);
1718		if (!pvec.nr) {
1719			if (whence == SEEK_DATA)
1720				index = end;
1721			break;
1722		}
1723		for (i = 0; i < pvec.nr; i++, index++) {
1724			if (index < indices[i]) {
1725				if (whence == SEEK_HOLE) {
1726					done = true;
1727					break;
1728				}
1729				index = indices[i];
1730			}
1731			page = pvec.pages[i];
1732			if (page && !radix_tree_exceptional_entry(page)) {
1733				if (!PageUptodate(page))
1734					page = NULL;
1735			}
1736			if (index >= end ||
1737			    (page && whence == SEEK_DATA) ||
1738			    (!page && whence == SEEK_HOLE)) {
1739				done = true;
1740				break;
1741			}
1742		}
1743		pagevec_remove_exceptionals(&pvec);
1744		pagevec_release(&pvec);
1745		pvec.nr = PAGEVEC_SIZE;
1746		cond_resched();
1747	}
1748	return index;
1749}
1750
1751static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1752{
1753	struct address_space *mapping = file->f_mapping;
1754	struct inode *inode = mapping->host;
1755	pgoff_t start, end;
1756	loff_t new_offset;
1757
1758	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1759		return generic_file_llseek_size(file, offset, whence,
1760					MAX_LFS_FILESIZE, i_size_read(inode));
1761	mutex_lock(&inode->i_mutex);
1762	/* We're holding i_mutex so we can access i_size directly */
1763
1764	if (offset < 0)
1765		offset = -EINVAL;
1766	else if (offset >= inode->i_size)
1767		offset = -ENXIO;
1768	else {
1769		start = offset >> PAGE_CACHE_SHIFT;
1770		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1771		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1772		new_offset <<= PAGE_CACHE_SHIFT;
1773		if (new_offset > offset) {
1774			if (new_offset < inode->i_size)
1775				offset = new_offset;
1776			else if (whence == SEEK_DATA)
1777				offset = -ENXIO;
1778			else
1779				offset = inode->i_size;
1780		}
1781	}
1782
1783	if (offset >= 0)
1784		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1785	mutex_unlock(&inode->i_mutex);
1786	return offset;
1787}
1788
1789static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1790							 loff_t len)
1791{
1792	struct inode *inode = file_inode(file);
1793	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1794	struct shmem_falloc shmem_falloc;
1795	pgoff_t start, index, end;
1796	int error;
1797
1798	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1799		return -EOPNOTSUPP;
1800
1801	mutex_lock(&inode->i_mutex);
1802
1803	if (mode & FALLOC_FL_PUNCH_HOLE) {
1804		struct address_space *mapping = file->f_mapping;
1805		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1806		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1807		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1808
1809		shmem_falloc.waitq = &shmem_falloc_waitq;
1810		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1811		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1812		spin_lock(&inode->i_lock);
1813		inode->i_private = &shmem_falloc;
1814		spin_unlock(&inode->i_lock);
1815
1816		if ((u64)unmap_end > (u64)unmap_start)
1817			unmap_mapping_range(mapping, unmap_start,
1818					    1 + unmap_end - unmap_start, 0);
1819		shmem_truncate_range(inode, offset, offset + len - 1);
1820		/* No need to unmap again: hole-punching leaves COWed pages */
1821
1822		spin_lock(&inode->i_lock);
1823		inode->i_private = NULL;
1824		wake_up_all(&shmem_falloc_waitq);
1825		spin_unlock(&inode->i_lock);
1826		error = 0;
1827		goto out;
1828	}
1829
1830	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1831	error = inode_newsize_ok(inode, offset + len);
1832	if (error)
1833		goto out;
1834
1835	start = offset >> PAGE_CACHE_SHIFT;
1836	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1837	/* Try to avoid a swapstorm if len is impossible to satisfy */
1838	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1839		error = -ENOSPC;
1840		goto out;
1841	}
1842
1843	shmem_falloc.waitq = NULL;
1844	shmem_falloc.start = start;
1845	shmem_falloc.next  = start;
1846	shmem_falloc.nr_falloced = 0;
1847	shmem_falloc.nr_unswapped = 0;
1848	spin_lock(&inode->i_lock);
1849	inode->i_private = &shmem_falloc;
1850	spin_unlock(&inode->i_lock);
1851
1852	for (index = start; index < end; index++) {
1853		struct page *page;
1854
1855		/*
1856		 * Good, the fallocate(2) manpage permits EINTR: we may have
1857		 * been interrupted because we are using up too much memory.
1858		 */
1859		if (signal_pending(current))
1860			error = -EINTR;
1861		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1862			error = -ENOMEM;
1863		else
1864			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1865									NULL);
1866		if (error) {
1867			/* Remove the !PageUptodate pages we added */
1868			shmem_undo_range(inode,
1869				(loff_t)start << PAGE_CACHE_SHIFT,
1870				(loff_t)index << PAGE_CACHE_SHIFT, true);
1871			goto undone;
1872		}
1873
1874		/*
1875		 * Inform shmem_writepage() how far we have reached.
1876		 * No need for lock or barrier: we have the page lock.
1877		 */
1878		shmem_falloc.next++;
1879		if (!PageUptodate(page))
1880			shmem_falloc.nr_falloced++;
1881
1882		/*
1883		 * If !PageUptodate, leave it that way so that freeable pages
1884		 * can be recognized if we need to rollback on error later.
1885		 * But set_page_dirty so that memory pressure will swap rather
1886		 * than free the pages we are allocating (and SGP_CACHE pages
1887		 * might still be clean: we now need to mark those dirty too).
1888		 */
1889		set_page_dirty(page);
1890		unlock_page(page);
1891		page_cache_release(page);
1892		cond_resched();
1893	}
1894
1895	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1896		i_size_write(inode, offset + len);
1897	inode->i_ctime = CURRENT_TIME;
1898undone:
1899	spin_lock(&inode->i_lock);
1900	inode->i_private = NULL;
1901	spin_unlock(&inode->i_lock);
1902out:
1903	mutex_unlock(&inode->i_mutex);
1904	return error;
1905}
1906
1907static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1908{
1909	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1910
1911	buf->f_type = TMPFS_MAGIC;
1912	buf->f_bsize = PAGE_CACHE_SIZE;
1913	buf->f_namelen = NAME_MAX;
1914	if (sbinfo->max_blocks) {
1915		buf->f_blocks = sbinfo->max_blocks;
1916		buf->f_bavail =
1917		buf->f_bfree  = sbinfo->max_blocks -
1918				percpu_counter_sum(&sbinfo->used_blocks);
1919	}
1920	if (sbinfo->max_inodes) {
1921		buf->f_files = sbinfo->max_inodes;
1922		buf->f_ffree = sbinfo->free_inodes;
1923	}
1924	/* else leave those fields 0 like simple_statfs */
1925	return 0;
1926}
1927
1928/*
1929 * File creation. Allocate an inode, and we're done..
1930 */
1931static int
1932shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1933{
1934	struct inode *inode;
1935	int error = -ENOSPC;
1936
1937	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1938	if (inode) {
1939		error = simple_acl_create(dir, inode);
1940		if (error)
1941			goto out_iput;
1942		error = security_inode_init_security(inode, dir,
1943						     &dentry->d_name,
1944						     shmem_initxattrs, NULL);
1945		if (error && error != -EOPNOTSUPP)
1946			goto out_iput;
1947
1948		error = 0;
1949		dir->i_size += BOGO_DIRENT_SIZE;
1950		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1951		d_instantiate(dentry, inode);
1952		dget(dentry); /* Extra count - pin the dentry in core */
1953	}
1954	return error;
1955out_iput:
1956	iput(inode);
1957	return error;
1958}
1959
1960static int
1961shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1962{
1963	struct inode *inode;
1964	int error = -ENOSPC;
1965
1966	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1967	if (inode) {
1968		error = security_inode_init_security(inode, dir,
1969						     NULL,
1970						     shmem_initxattrs, NULL);
1971		if (error && error != -EOPNOTSUPP)
1972			goto out_iput;
1973		error = simple_acl_create(dir, inode);
1974		if (error)
1975			goto out_iput;
1976		d_tmpfile(dentry, inode);
1977	}
1978	return error;
1979out_iput:
1980	iput(inode);
1981	return error;
1982}
1983
1984static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1985{
1986	int error;
1987
1988	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1989		return error;
1990	inc_nlink(dir);
1991	return 0;
1992}
1993
1994static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1995		bool excl)
1996{
1997	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1998}
1999
2000/*
2001 * Link a file..
2002 */
2003static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2004{
2005	struct inode *inode = old_dentry->d_inode;
2006	int ret;
2007
2008	/*
2009	 * No ordinary (disk based) filesystem counts links as inodes;
2010	 * but each new link needs a new dentry, pinning lowmem, and
2011	 * tmpfs dentries cannot be pruned until they are unlinked.
2012	 */
2013	ret = shmem_reserve_inode(inode->i_sb);
2014	if (ret)
2015		goto out;
2016
2017	dir->i_size += BOGO_DIRENT_SIZE;
2018	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2019	inc_nlink(inode);
2020	ihold(inode);	/* New dentry reference */
2021	dget(dentry);		/* Extra pinning count for the created dentry */
2022	d_instantiate(dentry, inode);
2023out:
2024	return ret;
2025}
2026
2027static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2028{
2029	struct inode *inode = dentry->d_inode;
2030
2031	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2032		shmem_free_inode(inode->i_sb);
2033
2034	dir->i_size -= BOGO_DIRENT_SIZE;
2035	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2036	drop_nlink(inode);
2037	dput(dentry);	/* Undo the count from "create" - this does all the work */
2038	return 0;
2039}
2040
2041static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2042{
2043	if (!simple_empty(dentry))
2044		return -ENOTEMPTY;
2045
2046	drop_nlink(dentry->d_inode);
2047	drop_nlink(dir);
2048	return shmem_unlink(dir, dentry);
2049}
2050
2051static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2052{
2053	bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2054	bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
2055
2056	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2057		if (old_is_dir) {
2058			drop_nlink(old_dir);
2059			inc_nlink(new_dir);
2060		} else {
2061			drop_nlink(new_dir);
2062			inc_nlink(old_dir);
2063		}
2064	}
2065	old_dir->i_ctime = old_dir->i_mtime =
2066	new_dir->i_ctime = new_dir->i_mtime =
2067	old_dentry->d_inode->i_ctime =
2068	new_dentry->d_inode->i_ctime = CURRENT_TIME;
2069
2070	return 0;
2071}
2072
2073/*
2074 * The VFS layer already does all the dentry stuff for rename,
2075 * we just have to decrement the usage count for the target if
2076 * it exists so that the VFS layer correctly free's it when it
2077 * gets overwritten.
2078 */
2079static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2080{
2081	struct inode *inode = old_dentry->d_inode;
2082	int they_are_dirs = S_ISDIR(inode->i_mode);
2083
2084	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
2085		return -EINVAL;
2086
2087	if (flags & RENAME_EXCHANGE)
2088		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2089
2090	if (!simple_empty(new_dentry))
2091		return -ENOTEMPTY;
2092
2093	if (new_dentry->d_inode) {
2094		(void) shmem_unlink(new_dir, new_dentry);
2095		if (they_are_dirs)
2096			drop_nlink(old_dir);
2097	} else if (they_are_dirs) {
2098		drop_nlink(old_dir);
2099		inc_nlink(new_dir);
2100	}
2101
2102	old_dir->i_size -= BOGO_DIRENT_SIZE;
2103	new_dir->i_size += BOGO_DIRENT_SIZE;
2104	old_dir->i_ctime = old_dir->i_mtime =
2105	new_dir->i_ctime = new_dir->i_mtime =
2106	inode->i_ctime = CURRENT_TIME;
2107	return 0;
2108}
2109
2110static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2111{
2112	int error;
2113	int len;
2114	struct inode *inode;
2115	struct page *page;
2116	char *kaddr;
2117	struct shmem_inode_info *info;
2118
2119	len = strlen(symname) + 1;
2120	if (len > PAGE_CACHE_SIZE)
2121		return -ENAMETOOLONG;
2122
2123	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2124	if (!inode)
2125		return -ENOSPC;
2126
2127	error = security_inode_init_security(inode, dir, &dentry->d_name,
2128					     shmem_initxattrs, NULL);
2129	if (error) {
2130		if (error != -EOPNOTSUPP) {
2131			iput(inode);
2132			return error;
2133		}
2134		error = 0;
2135	}
2136
2137	info = SHMEM_I(inode);
2138	inode->i_size = len-1;
2139	if (len <= SHORT_SYMLINK_LEN) {
2140		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2141		if (!info->symlink) {
2142			iput(inode);
2143			return -ENOMEM;
2144		}
2145		inode->i_op = &shmem_short_symlink_operations;
2146	} else {
2147		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2148		if (error) {
2149			iput(inode);
2150			return error;
2151		}
2152		inode->i_mapping->a_ops = &shmem_aops;
2153		inode->i_op = &shmem_symlink_inode_operations;
2154		kaddr = kmap_atomic(page);
2155		memcpy(kaddr, symname, len);
2156		kunmap_atomic(kaddr);
2157		SetPageUptodate(page);
2158		set_page_dirty(page);
2159		unlock_page(page);
2160		page_cache_release(page);
2161	}
2162	dir->i_size += BOGO_DIRENT_SIZE;
2163	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2164	d_instantiate(dentry, inode);
2165	dget(dentry);
2166	return 0;
2167}
2168
2169static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2170{
2171	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2172	return NULL;
2173}
2174
2175static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2176{
2177	struct page *page = NULL;
2178	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2179	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2180	if (page)
2181		unlock_page(page);
2182	return page;
2183}
2184
2185static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2186{
2187	if (!IS_ERR(nd_get_link(nd))) {
2188		struct page *page = cookie;
2189		kunmap(page);
2190		mark_page_accessed(page);
2191		page_cache_release(page);
2192	}
2193}
2194
2195#ifdef CONFIG_TMPFS_XATTR
2196/*
2197 * Superblocks without xattr inode operations may get some security.* xattr
2198 * support from the LSM "for free". As soon as we have any other xattrs
2199 * like ACLs, we also need to implement the security.* handlers at
2200 * filesystem level, though.
2201 */
2202
2203/*
2204 * Callback for security_inode_init_security() for acquiring xattrs.
2205 */
2206static int shmem_initxattrs(struct inode *inode,
2207			    const struct xattr *xattr_array,
2208			    void *fs_info)
2209{
2210	struct shmem_inode_info *info = SHMEM_I(inode);
2211	const struct xattr *xattr;
2212	struct simple_xattr *new_xattr;
2213	size_t len;
2214
2215	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2216		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2217		if (!new_xattr)
2218			return -ENOMEM;
2219
2220		len = strlen(xattr->name) + 1;
2221		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2222					  GFP_KERNEL);
2223		if (!new_xattr->name) {
2224			kfree(new_xattr);
2225			return -ENOMEM;
2226		}
2227
2228		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2229		       XATTR_SECURITY_PREFIX_LEN);
2230		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2231		       xattr->name, len);
2232
2233		simple_xattr_list_add(&info->xattrs, new_xattr);
2234	}
2235
2236	return 0;
2237}
2238
2239static const struct xattr_handler *shmem_xattr_handlers[] = {
2240#ifdef CONFIG_TMPFS_POSIX_ACL
2241	&posix_acl_access_xattr_handler,
2242	&posix_acl_default_xattr_handler,
2243#endif
2244	NULL
2245};
2246
2247static int shmem_xattr_validate(const char *name)
2248{
2249	struct { const char *prefix; size_t len; } arr[] = {
2250		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2251		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2252	};
2253	int i;
2254
2255	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2256		size_t preflen = arr[i].len;
2257		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2258			if (!name[preflen])
2259				return -EINVAL;
2260			return 0;
2261		}
2262	}
2263	return -EOPNOTSUPP;
2264}
2265
2266static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2267			      void *buffer, size_t size)
2268{
2269	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2270	int err;
2271
2272	/*
2273	 * If this is a request for a synthetic attribute in the system.*
2274	 * namespace use the generic infrastructure to resolve a handler
2275	 * for it via sb->s_xattr.
2276	 */
2277	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2278		return generic_getxattr(dentry, name, buffer, size);
2279
2280	err = shmem_xattr_validate(name);
2281	if (err)
2282		return err;
2283
2284	return simple_xattr_get(&info->xattrs, name, buffer, size);
2285}
2286
2287static int shmem_setxattr(struct dentry *dentry, const char *name,
2288			  const void *value, size_t size, int flags)
2289{
2290	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2291	int err;
2292
2293	/*
2294	 * If this is a request for a synthetic attribute in the system.*
2295	 * namespace use the generic infrastructure to resolve a handler
2296	 * for it via sb->s_xattr.
2297	 */
2298	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2299		return generic_setxattr(dentry, name, value, size, flags);
2300
2301	err = shmem_xattr_validate(name);
2302	if (err)
2303		return err;
2304
2305	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2306}
2307
2308static int shmem_removexattr(struct dentry *dentry, const char *name)
2309{
2310	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2311	int err;
2312
2313	/*
2314	 * If this is a request for a synthetic attribute in the system.*
2315	 * namespace use the generic infrastructure to resolve a handler
2316	 * for it via sb->s_xattr.
2317	 */
2318	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2319		return generic_removexattr(dentry, name);
2320
2321	err = shmem_xattr_validate(name);
2322	if (err)
2323		return err;
2324
2325	return simple_xattr_remove(&info->xattrs, name);
2326}
2327
2328static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2329{
2330	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2331	return simple_xattr_list(&info->xattrs, buffer, size);
2332}
2333#endif /* CONFIG_TMPFS_XATTR */
2334
2335static const struct inode_operations shmem_short_symlink_operations = {
2336	.readlink	= generic_readlink,
2337	.follow_link	= shmem_follow_short_symlink,
2338#ifdef CONFIG_TMPFS_XATTR
2339	.setxattr	= shmem_setxattr,
2340	.getxattr	= shmem_getxattr,
2341	.listxattr	= shmem_listxattr,
2342	.removexattr	= shmem_removexattr,
2343#endif
2344};
2345
2346static const struct inode_operations shmem_symlink_inode_operations = {
2347	.readlink	= generic_readlink,
2348	.follow_link	= shmem_follow_link,
2349	.put_link	= shmem_put_link,
2350#ifdef CONFIG_TMPFS_XATTR
2351	.setxattr	= shmem_setxattr,
2352	.getxattr	= shmem_getxattr,
2353	.listxattr	= shmem_listxattr,
2354	.removexattr	= shmem_removexattr,
2355#endif
2356};
2357
2358static struct dentry *shmem_get_parent(struct dentry *child)
2359{
2360	return ERR_PTR(-ESTALE);
2361}
2362
2363static int shmem_match(struct inode *ino, void *vfh)
2364{
2365	__u32 *fh = vfh;
2366	__u64 inum = fh[2];
2367	inum = (inum << 32) | fh[1];
2368	return ino->i_ino == inum && fh[0] == ino->i_generation;
2369}
2370
2371static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2372		struct fid *fid, int fh_len, int fh_type)
2373{
2374	struct inode *inode;
2375	struct dentry *dentry = NULL;
2376	u64 inum;
2377
2378	if (fh_len < 3)
2379		return NULL;
2380
2381	inum = fid->raw[2];
2382	inum = (inum << 32) | fid->raw[1];
2383
2384	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2385			shmem_match, fid->raw);
2386	if (inode) {
2387		dentry = d_find_alias(inode);
2388		iput(inode);
2389	}
2390
2391	return dentry;
2392}
2393
2394static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2395				struct inode *parent)
2396{
2397	if (*len < 3) {
2398		*len = 3;
2399		return FILEID_INVALID;
2400	}
2401
2402	if (inode_unhashed(inode)) {
2403		/* Unfortunately insert_inode_hash is not idempotent,
2404		 * so as we hash inodes here rather than at creation
2405		 * time, we need a lock to ensure we only try
2406		 * to do it once
2407		 */
2408		static DEFINE_SPINLOCK(lock);
2409		spin_lock(&lock);
2410		if (inode_unhashed(inode))
2411			__insert_inode_hash(inode,
2412					    inode->i_ino + inode->i_generation);
2413		spin_unlock(&lock);
2414	}
2415
2416	fh[0] = inode->i_generation;
2417	fh[1] = inode->i_ino;
2418	fh[2] = ((__u64)inode->i_ino) >> 32;
2419
2420	*len = 3;
2421	return 1;
2422}
2423
2424static const struct export_operations shmem_export_ops = {
2425	.get_parent     = shmem_get_parent,
2426	.encode_fh      = shmem_encode_fh,
2427	.fh_to_dentry	= shmem_fh_to_dentry,
2428};
2429
2430static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2431			       bool remount)
2432{
2433	char *this_char, *value, *rest;
2434	struct mempolicy *mpol = NULL;
2435	uid_t uid;
2436	gid_t gid;
2437
2438	while (options != NULL) {
2439		this_char = options;
2440		for (;;) {
2441			/*
2442			 * NUL-terminate this option: unfortunately,
2443			 * mount options form a comma-separated list,
2444			 * but mpol's nodelist may also contain commas.
2445			 */
2446			options = strchr(options, ',');
2447			if (options == NULL)
2448				break;
2449			options++;
2450			if (!isdigit(*options)) {
2451				options[-1] = '\0';
2452				break;
2453			}
2454		}
2455		if (!*this_char)
2456			continue;
2457		if ((value = strchr(this_char,'=')) != NULL) {
2458			*value++ = 0;
2459		} else {
2460			printk(KERN_ERR
2461			    "tmpfs: No value for mount option '%s'\n",
2462			    this_char);
2463			goto error;
2464		}
2465
2466		if (!strcmp(this_char,"size")) {
2467			unsigned long long size;
2468			size = memparse(value,&rest);
2469			if (*rest == '%') {
2470				size <<= PAGE_SHIFT;
2471				size *= totalram_pages;
2472				do_div(size, 100);
2473				rest++;
2474			}
2475			if (*rest)
2476				goto bad_val;
2477			sbinfo->max_blocks =
2478				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2479		} else if (!strcmp(this_char,"nr_blocks")) {
2480			sbinfo->max_blocks = memparse(value, &rest);
2481			if (*rest)
2482				goto bad_val;
2483		} else if (!strcmp(this_char,"nr_inodes")) {
2484			sbinfo->max_inodes = memparse(value, &rest);
2485			if (*rest)
2486				goto bad_val;
2487		} else if (!strcmp(this_char,"mode")) {
2488			if (remount)
2489				continue;
2490			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2491			if (*rest)
2492				goto bad_val;
2493		} else if (!strcmp(this_char,"uid")) {
2494			if (remount)
2495				continue;
2496			uid = simple_strtoul(value, &rest, 0);
2497			if (*rest)
2498				goto bad_val;
2499			sbinfo->uid = make_kuid(current_user_ns(), uid);
2500			if (!uid_valid(sbinfo->uid))
2501				goto bad_val;
2502		} else if (!strcmp(this_char,"gid")) {
2503			if (remount)
2504				continue;
2505			gid = simple_strtoul(value, &rest, 0);
2506			if (*rest)
2507				goto bad_val;
2508			sbinfo->gid = make_kgid(current_user_ns(), gid);
2509			if (!gid_valid(sbinfo->gid))
2510				goto bad_val;
2511		} else if (!strcmp(this_char,"mpol")) {
2512			mpol_put(mpol);
2513			mpol = NULL;
2514			if (mpol_parse_str(value, &mpol))
2515				goto bad_val;
2516		} else {
2517			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2518			       this_char);
2519			goto error;
2520		}
2521	}
2522	sbinfo->mpol = mpol;
2523	return 0;
2524
2525bad_val:
2526	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2527	       value, this_char);
2528error:
2529	mpol_put(mpol);
2530	return 1;
2531
2532}
2533
2534static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2535{
2536	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2537	struct shmem_sb_info config = *sbinfo;
2538	unsigned long inodes;
2539	int error = -EINVAL;
2540
2541	config.mpol = NULL;
2542	if (shmem_parse_options(data, &config, true))
2543		return error;
2544
2545	spin_lock(&sbinfo->stat_lock);
2546	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2547	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2548		goto out;
2549	if (config.max_inodes < inodes)
2550		goto out;
2551	/*
2552	 * Those tests disallow limited->unlimited while any are in use;
2553	 * but we must separately disallow unlimited->limited, because
2554	 * in that case we have no record of how much is already in use.
2555	 */
2556	if (config.max_blocks && !sbinfo->max_blocks)
2557		goto out;
2558	if (config.max_inodes && !sbinfo->max_inodes)
2559		goto out;
2560
2561	error = 0;
2562	sbinfo->max_blocks  = config.max_blocks;
2563	sbinfo->max_inodes  = config.max_inodes;
2564	sbinfo->free_inodes = config.max_inodes - inodes;
2565
2566	/*
2567	 * Preserve previous mempolicy unless mpol remount option was specified.
2568	 */
2569	if (config.mpol) {
2570		mpol_put(sbinfo->mpol);
2571		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2572	}
2573out:
2574	spin_unlock(&sbinfo->stat_lock);
2575	return error;
2576}
2577
2578static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2579{
2580	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2581
2582	if (sbinfo->max_blocks != shmem_default_max_blocks())
2583		seq_printf(seq, ",size=%luk",
2584			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2585	if (sbinfo->max_inodes != shmem_default_max_inodes())
2586		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2587	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2588		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2589	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2590		seq_printf(seq, ",uid=%u",
2591				from_kuid_munged(&init_user_ns, sbinfo->uid));
2592	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2593		seq_printf(seq, ",gid=%u",
2594				from_kgid_munged(&init_user_ns, sbinfo->gid));
2595	shmem_show_mpol(seq, sbinfo->mpol);
2596	return 0;
2597}
2598#endif /* CONFIG_TMPFS */
2599
2600static void shmem_put_super(struct super_block *sb)
2601{
2602	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2603
2604	percpu_counter_destroy(&sbinfo->used_blocks);
2605	mpol_put(sbinfo->mpol);
2606	kfree(sbinfo);
2607	sb->s_fs_info = NULL;
2608}
2609
2610int shmem_fill_super(struct super_block *sb, void *data, int silent)
2611{
2612	struct inode *inode;
2613	struct shmem_sb_info *sbinfo;
2614	int err = -ENOMEM;
2615
2616	/* Round up to L1_CACHE_BYTES to resist false sharing */
2617	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2618				L1_CACHE_BYTES), GFP_KERNEL);
2619	if (!sbinfo)
2620		return -ENOMEM;
2621
2622	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2623	sbinfo->uid = current_fsuid();
2624	sbinfo->gid = current_fsgid();
2625	sb->s_fs_info = sbinfo;
2626
2627#ifdef CONFIG_TMPFS
2628	/*
2629	 * Per default we only allow half of the physical ram per
2630	 * tmpfs instance, limiting inodes to one per page of lowmem;
2631	 * but the internal instance is left unlimited.
2632	 */
2633	if (!(sb->s_flags & MS_KERNMOUNT)) {
2634		sbinfo->max_blocks = shmem_default_max_blocks();
2635		sbinfo->max_inodes = shmem_default_max_inodes();
2636		if (shmem_parse_options(data, sbinfo, false)) {
2637			err = -EINVAL;
2638			goto failed;
2639		}
2640	} else {
2641		sb->s_flags |= MS_NOUSER;
2642	}
2643	sb->s_export_op = &shmem_export_ops;
2644	sb->s_flags |= MS_NOSEC;
2645#else
2646	sb->s_flags |= MS_NOUSER;
2647#endif
2648
2649	spin_lock_init(&sbinfo->stat_lock);
2650	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2651		goto failed;
2652	sbinfo->free_inodes = sbinfo->max_inodes;
2653
2654	sb->s_maxbytes = MAX_LFS_FILESIZE;
2655	sb->s_blocksize = PAGE_CACHE_SIZE;
2656	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2657	sb->s_magic = TMPFS_MAGIC;
2658	sb->s_op = &shmem_ops;
2659	sb->s_time_gran = 1;
2660#ifdef CONFIG_TMPFS_XATTR
2661	sb->s_xattr = shmem_xattr_handlers;
2662#endif
2663#ifdef CONFIG_TMPFS_POSIX_ACL
2664	sb->s_flags |= MS_POSIXACL;
2665#endif
2666
2667	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2668	if (!inode)
2669		goto failed;
2670	inode->i_uid = sbinfo->uid;
2671	inode->i_gid = sbinfo->gid;
2672	sb->s_root = d_make_root(inode);
2673	if (!sb->s_root)
2674		goto failed;
2675	return 0;
2676
2677failed:
2678	shmem_put_super(sb);
2679	return err;
2680}
2681
2682static struct kmem_cache *shmem_inode_cachep;
2683
2684static struct inode *shmem_alloc_inode(struct super_block *sb)
2685{
2686	struct shmem_inode_info *info;
2687	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2688	if (!info)
2689		return NULL;
2690	return &info->vfs_inode;
2691}
2692
2693static void shmem_destroy_callback(struct rcu_head *head)
2694{
2695	struct inode *inode = container_of(head, struct inode, i_rcu);
2696	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2697}
2698
2699static void shmem_destroy_inode(struct inode *inode)
2700{
2701	if (S_ISREG(inode->i_mode))
2702		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2703	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2704}
2705
2706static void shmem_init_inode(void *foo)
2707{
2708	struct shmem_inode_info *info = foo;
2709	inode_init_once(&info->vfs_inode);
2710}
2711
2712static int shmem_init_inodecache(void)
2713{
2714	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2715				sizeof(struct shmem_inode_info),
2716				0, SLAB_PANIC, shmem_init_inode);
2717	return 0;
2718}
2719
2720static void shmem_destroy_inodecache(void)
2721{
2722	kmem_cache_destroy(shmem_inode_cachep);
2723}
2724
2725static const struct address_space_operations shmem_aops = {
2726	.writepage	= shmem_writepage,
2727	.set_page_dirty	= __set_page_dirty_no_writeback,
2728#ifdef CONFIG_TMPFS
2729	.write_begin	= shmem_write_begin,
2730	.write_end	= shmem_write_end,
2731#endif
2732	.migratepage	= migrate_page,
2733	.error_remove_page = generic_error_remove_page,
2734};
2735
2736static const struct file_operations shmem_file_operations = {
2737	.mmap		= shmem_mmap,
2738#ifdef CONFIG_TMPFS
2739	.llseek		= shmem_file_llseek,
2740	.read		= new_sync_read,
2741	.write		= new_sync_write,
2742	.read_iter	= shmem_file_read_iter,
2743	.write_iter	= generic_file_write_iter,
2744	.fsync		= noop_fsync,
2745	.splice_read	= shmem_file_splice_read,
2746	.splice_write	= iter_file_splice_write,
2747	.fallocate	= shmem_fallocate,
2748#endif
2749};
2750
2751static const struct inode_operations shmem_inode_operations = {
2752	.setattr	= shmem_setattr,
2753#ifdef CONFIG_TMPFS_XATTR
2754	.setxattr	= shmem_setxattr,
2755	.getxattr	= shmem_getxattr,
2756	.listxattr	= shmem_listxattr,
2757	.removexattr	= shmem_removexattr,
2758	.set_acl	= simple_set_acl,
2759#endif
2760};
2761
2762static const struct inode_operations shmem_dir_inode_operations = {
2763#ifdef CONFIG_TMPFS
2764	.create		= shmem_create,
2765	.lookup		= simple_lookup,
2766	.link		= shmem_link,
2767	.unlink		= shmem_unlink,
2768	.symlink	= shmem_symlink,
2769	.mkdir		= shmem_mkdir,
2770	.rmdir		= shmem_rmdir,
2771	.mknod		= shmem_mknod,
2772	.rename2	= shmem_rename2,
2773	.tmpfile	= shmem_tmpfile,
2774#endif
2775#ifdef CONFIG_TMPFS_XATTR
2776	.setxattr	= shmem_setxattr,
2777	.getxattr	= shmem_getxattr,
2778	.listxattr	= shmem_listxattr,
2779	.removexattr	= shmem_removexattr,
2780#endif
2781#ifdef CONFIG_TMPFS_POSIX_ACL
2782	.setattr	= shmem_setattr,
2783	.set_acl	= simple_set_acl,
2784#endif
2785};
2786
2787static const struct inode_operations shmem_special_inode_operations = {
2788#ifdef CONFIG_TMPFS_XATTR
2789	.setxattr	= shmem_setxattr,
2790	.getxattr	= shmem_getxattr,
2791	.listxattr	= shmem_listxattr,
2792	.removexattr	= shmem_removexattr,
2793#endif
2794#ifdef CONFIG_TMPFS_POSIX_ACL
2795	.setattr	= shmem_setattr,
2796	.set_acl	= simple_set_acl,
2797#endif
2798};
2799
2800static const struct super_operations shmem_ops = {
2801	.alloc_inode	= shmem_alloc_inode,
2802	.destroy_inode	= shmem_destroy_inode,
2803#ifdef CONFIG_TMPFS
2804	.statfs		= shmem_statfs,
2805	.remount_fs	= shmem_remount_fs,
2806	.show_options	= shmem_show_options,
2807#endif
2808	.evict_inode	= shmem_evict_inode,
2809	.drop_inode	= generic_delete_inode,
2810	.put_super	= shmem_put_super,
2811};
2812
2813static const struct vm_operations_struct shmem_vm_ops = {
2814	.fault		= shmem_fault,
2815	.map_pages	= filemap_map_pages,
2816#ifdef CONFIG_NUMA
2817	.set_policy     = shmem_set_policy,
2818	.get_policy     = shmem_get_policy,
2819#endif
2820	.remap_pages	= generic_file_remap_pages,
2821};
2822
2823static struct dentry *shmem_mount(struct file_system_type *fs_type,
2824	int flags, const char *dev_name, void *data)
2825{
2826	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2827}
2828
2829static struct file_system_type shmem_fs_type = {
2830	.owner		= THIS_MODULE,
2831	.name		= "tmpfs",
2832	.mount		= shmem_mount,
2833	.kill_sb	= kill_litter_super,
2834	.fs_flags	= FS_USERNS_MOUNT,
2835};
2836
2837int __init shmem_init(void)
2838{
2839	int error;
2840
2841	/* If rootfs called this, don't re-init */
2842	if (shmem_inode_cachep)
2843		return 0;
2844
2845	error = bdi_init(&shmem_backing_dev_info);
2846	if (error)
2847		goto out4;
2848
2849	error = shmem_init_inodecache();
2850	if (error)
2851		goto out3;
2852
2853	error = register_filesystem(&shmem_fs_type);
2854	if (error) {
2855		printk(KERN_ERR "Could not register tmpfs\n");
2856		goto out2;
2857	}
2858
2859	shm_mnt = kern_mount(&shmem_fs_type);
2860	if (IS_ERR(shm_mnt)) {
2861		error = PTR_ERR(shm_mnt);
2862		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2863		goto out1;
2864	}
2865	return 0;
2866
2867out1:
2868	unregister_filesystem(&shmem_fs_type);
2869out2:
2870	shmem_destroy_inodecache();
2871out3:
2872	bdi_destroy(&shmem_backing_dev_info);
2873out4:
2874	shm_mnt = ERR_PTR(error);
2875	return error;
2876}
2877
2878#else /* !CONFIG_SHMEM */
2879
2880/*
2881 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2882 *
2883 * This is intended for small system where the benefits of the full
2884 * shmem code (swap-backed and resource-limited) are outweighed by
2885 * their complexity. On systems without swap this code should be
2886 * effectively equivalent, but much lighter weight.
2887 */
2888
2889static struct file_system_type shmem_fs_type = {
2890	.name		= "tmpfs",
2891	.mount		= ramfs_mount,
2892	.kill_sb	= kill_litter_super,
2893	.fs_flags	= FS_USERNS_MOUNT,
2894};
2895
2896int __init shmem_init(void)
2897{
2898	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2899
2900	shm_mnt = kern_mount(&shmem_fs_type);
2901	BUG_ON(IS_ERR(shm_mnt));
2902
2903	return 0;
2904}
2905
2906int shmem_unuse(swp_entry_t swap, struct page *page)
2907{
2908	return 0;
2909}
2910
2911int shmem_lock(struct file *file, int lock, struct user_struct *user)
2912{
2913	return 0;
2914}
2915
2916void shmem_unlock_mapping(struct address_space *mapping)
2917{
2918}
2919
2920void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2921{
2922	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2923}
2924EXPORT_SYMBOL_GPL(shmem_truncate_range);
2925
2926#define shmem_vm_ops				generic_file_vm_ops
2927#define shmem_file_operations			ramfs_file_operations
2928#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2929#define shmem_acct_size(flags, size)		0
2930#define shmem_unacct_size(flags, size)		do {} while (0)
2931
2932#endif /* CONFIG_SHMEM */
2933
2934/* common code */
2935
2936static struct dentry_operations anon_ops = {
2937	.d_dname = simple_dname
2938};
2939
2940static struct file *__shmem_file_setup(const char *name, loff_t size,
2941				       unsigned long flags, unsigned int i_flags)
2942{
2943	struct file *res;
2944	struct inode *inode;
2945	struct path path;
2946	struct super_block *sb;
2947	struct qstr this;
2948
2949	if (IS_ERR(shm_mnt))
2950		return ERR_CAST(shm_mnt);
2951
2952	if (size < 0 || size > MAX_LFS_FILESIZE)
2953		return ERR_PTR(-EINVAL);
2954
2955	if (shmem_acct_size(flags, size))
2956		return ERR_PTR(-ENOMEM);
2957
2958	res = ERR_PTR(-ENOMEM);
2959	this.name = name;
2960	this.len = strlen(name);
2961	this.hash = 0; /* will go */
2962	sb = shm_mnt->mnt_sb;
2963	path.dentry = d_alloc_pseudo(sb, &this);
2964	if (!path.dentry)
2965		goto put_memory;
2966	d_set_d_op(path.dentry, &anon_ops);
2967	path.mnt = mntget(shm_mnt);
2968
2969	res = ERR_PTR(-ENOSPC);
2970	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2971	if (!inode)
2972		goto put_dentry;
2973
2974	inode->i_flags |= i_flags;
2975	d_instantiate(path.dentry, inode);
2976	inode->i_size = size;
2977	clear_nlink(inode);	/* It is unlinked */
2978	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2979	if (IS_ERR(res))
2980		goto put_dentry;
2981
2982	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2983		  &shmem_file_operations);
2984	if (IS_ERR(res))
2985		goto put_dentry;
2986
2987	return res;
2988
2989put_dentry:
2990	path_put(&path);
2991put_memory:
2992	shmem_unacct_size(flags, size);
2993	return res;
2994}
2995
2996/**
2997 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2998 * 	kernel internal.  There will be NO LSM permission checks against the
2999 * 	underlying inode.  So users of this interface must do LSM checks at a
3000 * 	higher layer.  The one user is the big_key implementation.  LSM checks
3001 * 	are provided at the key level rather than the inode level.
3002 * @name: name for dentry (to be seen in /proc/<pid>/maps
3003 * @size: size to be set for the file
3004 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3005 */
3006struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3007{
3008	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3009}
3010
3011/**
3012 * shmem_file_setup - get an unlinked file living in tmpfs
3013 * @name: name for dentry (to be seen in /proc/<pid>/maps
3014 * @size: size to be set for the file
3015 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3016 */
3017struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3018{
3019	return __shmem_file_setup(name, size, flags, 0);
3020}
3021EXPORT_SYMBOL_GPL(shmem_file_setup);
3022
3023/**
3024 * shmem_zero_setup - setup a shared anonymous mapping
3025 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3026 */
3027int shmem_zero_setup(struct vm_area_struct *vma)
3028{
3029	struct file *file;
3030	loff_t size = vma->vm_end - vma->vm_start;
3031
3032	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3033	if (IS_ERR(file))
3034		return PTR_ERR(file);
3035
3036	if (vma->vm_file)
3037		fput(vma->vm_file);
3038	vma->vm_file = file;
3039	vma->vm_ops = &shmem_vm_ops;
3040	return 0;
3041}
3042
3043/**
3044 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3045 * @mapping:	the page's address_space
3046 * @index:	the page index
3047 * @gfp:	the page allocator flags to use if allocating
3048 *
3049 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3050 * with any new page allocations done using the specified allocation flags.
3051 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3052 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3053 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3054 *
3055 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3056 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3057 */
3058struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3059					 pgoff_t index, gfp_t gfp)
3060{
3061#ifdef CONFIG_SHMEM
3062	struct inode *inode = mapping->host;
3063	struct page *page;
3064	int error;
3065
3066	BUG_ON(mapping->a_ops != &shmem_aops);
3067	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3068	if (error)
3069		page = ERR_PTR(error);
3070	else
3071		unlock_page(page);
3072	return page;
3073#else
3074	/*
3075	 * The tiny !SHMEM case uses ramfs without swap
3076	 */
3077	return read_cache_page_gfp(mapping, index, gfp);
3078#endif
3079}
3080EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3081