shmem.c revision 38f38657444d15e1a8574eae80ed3de9f501737a
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/file.h>
30#include <linux/mm.h>
31#include <linux/export.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/pagevec.h>
55#include <linux/percpu_counter.h>
56#include <linux/falloc.h>
57#include <linux/splice.h>
58#include <linux/security.h>
59#include <linux/swapops.h>
60#include <linux/mempolicy.h>
61#include <linux/namei.h>
62#include <linux/ctype.h>
63#include <linux/migrate.h>
64#include <linux/highmem.h>
65#include <linux/seq_file.h>
66#include <linux/magic.h>
67
68#include <asm/uaccess.h>
69#include <asm/pgtable.h>
70
71#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74/* Pretend that each entry is of this size in directory's i_size */
75#define BOGO_DIRENT_SIZE 20
76
77/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78#define SHORT_SYMLINK_LEN 128
79
80/*
81 * shmem_fallocate and shmem_writepage communicate via inode->i_private
82 * (with i_mutex making sure that it has only one user at a time):
83 * we would prefer not to enlarge the shmem inode just for that.
84 */
85struct shmem_falloc {
86	pgoff_t start;		/* start of range currently being fallocated */
87	pgoff_t next;		/* the next page offset to be fallocated */
88	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
89	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
90};
91
92/* Flag allocation requirements to shmem_getpage */
93enum sgp_type {
94	SGP_READ,	/* don't exceed i_size, don't allocate page */
95	SGP_CACHE,	/* don't exceed i_size, may allocate page */
96	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
97	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
98	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
99};
100
101#ifdef CONFIG_TMPFS
102static unsigned long shmem_default_max_blocks(void)
103{
104	return totalram_pages / 2;
105}
106
107static unsigned long shmem_default_max_inodes(void)
108{
109	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110}
111#endif
112
113static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115				struct shmem_inode_info *info, pgoff_t index);
116static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
118
119static inline int shmem_getpage(struct inode *inode, pgoff_t index,
120	struct page **pagep, enum sgp_type sgp, int *fault_type)
121{
122	return shmem_getpage_gfp(inode, index, pagep, sgp,
123			mapping_gfp_mask(inode->i_mapping), fault_type);
124}
125
126static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
127{
128	return sb->s_fs_info;
129}
130
131/*
132 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133 * for shared memory and for shared anonymous (/dev/zero) mappings
134 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135 * consistent with the pre-accounting of private mappings ...
136 */
137static inline int shmem_acct_size(unsigned long flags, loff_t size)
138{
139	return (flags & VM_NORESERVE) ?
140		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
141}
142
143static inline void shmem_unacct_size(unsigned long flags, loff_t size)
144{
145	if (!(flags & VM_NORESERVE))
146		vm_unacct_memory(VM_ACCT(size));
147}
148
149/*
150 * ... whereas tmpfs objects are accounted incrementally as
151 * pages are allocated, in order to allow huge sparse files.
152 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
154 */
155static inline int shmem_acct_block(unsigned long flags)
156{
157	return (flags & VM_NORESERVE) ?
158		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
159}
160
161static inline void shmem_unacct_blocks(unsigned long flags, long pages)
162{
163	if (flags & VM_NORESERVE)
164		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
165}
166
167static const struct super_operations shmem_ops;
168static const struct address_space_operations shmem_aops;
169static const struct file_operations shmem_file_operations;
170static const struct inode_operations shmem_inode_operations;
171static const struct inode_operations shmem_dir_inode_operations;
172static const struct inode_operations shmem_special_inode_operations;
173static const struct vm_operations_struct shmem_vm_ops;
174
175static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
176	.ra_pages	= 0,	/* No readahead */
177	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
178};
179
180static LIST_HEAD(shmem_swaplist);
181static DEFINE_MUTEX(shmem_swaplist_mutex);
182
183static int shmem_reserve_inode(struct super_block *sb)
184{
185	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
186	if (sbinfo->max_inodes) {
187		spin_lock(&sbinfo->stat_lock);
188		if (!sbinfo->free_inodes) {
189			spin_unlock(&sbinfo->stat_lock);
190			return -ENOSPC;
191		}
192		sbinfo->free_inodes--;
193		spin_unlock(&sbinfo->stat_lock);
194	}
195	return 0;
196}
197
198static void shmem_free_inode(struct super_block *sb)
199{
200	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201	if (sbinfo->max_inodes) {
202		spin_lock(&sbinfo->stat_lock);
203		sbinfo->free_inodes++;
204		spin_unlock(&sbinfo->stat_lock);
205	}
206}
207
208/**
209 * shmem_recalc_inode - recalculate the block usage of an inode
210 * @inode: inode to recalc
211 *
212 * We have to calculate the free blocks since the mm can drop
213 * undirtied hole pages behind our back.
214 *
215 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
216 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
217 *
218 * It has to be called with the spinlock held.
219 */
220static void shmem_recalc_inode(struct inode *inode)
221{
222	struct shmem_inode_info *info = SHMEM_I(inode);
223	long freed;
224
225	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
226	if (freed > 0) {
227		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228		if (sbinfo->max_blocks)
229			percpu_counter_add(&sbinfo->used_blocks, -freed);
230		info->alloced -= freed;
231		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
232		shmem_unacct_blocks(info->flags, freed);
233	}
234}
235
236/*
237 * Replace item expected in radix tree by a new item, while holding tree lock.
238 */
239static int shmem_radix_tree_replace(struct address_space *mapping,
240			pgoff_t index, void *expected, void *replacement)
241{
242	void **pslot;
243	void *item = NULL;
244
245	VM_BUG_ON(!expected);
246	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
247	if (pslot)
248		item = radix_tree_deref_slot_protected(pslot,
249							&mapping->tree_lock);
250	if (item != expected)
251		return -ENOENT;
252	if (replacement)
253		radix_tree_replace_slot(pslot, replacement);
254	else
255		radix_tree_delete(&mapping->page_tree, index);
256	return 0;
257}
258
259/*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266static bool shmem_confirm_swap(struct address_space *mapping,
267			       pgoff_t index, swp_entry_t swap)
268{
269	void *item;
270
271	rcu_read_lock();
272	item = radix_tree_lookup(&mapping->page_tree, index);
273	rcu_read_unlock();
274	return item == swp_to_radix_entry(swap);
275}
276
277/*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280static int shmem_add_to_page_cache(struct page *page,
281				   struct address_space *mapping,
282				   pgoff_t index, gfp_t gfp, void *expected)
283{
284	int error;
285
286	VM_BUG_ON(!PageLocked(page));
287	VM_BUG_ON(!PageSwapBacked(page));
288
289	page_cache_get(page);
290	page->mapping = mapping;
291	page->index = index;
292
293	spin_lock_irq(&mapping->tree_lock);
294	if (!expected)
295		error = radix_tree_insert(&mapping->page_tree, index, page);
296	else
297		error = shmem_radix_tree_replace(mapping, index, expected,
298								 page);
299	if (!error) {
300		mapping->nrpages++;
301		__inc_zone_page_state(page, NR_FILE_PAGES);
302		__inc_zone_page_state(page, NR_SHMEM);
303		spin_unlock_irq(&mapping->tree_lock);
304	} else {
305		page->mapping = NULL;
306		spin_unlock_irq(&mapping->tree_lock);
307		page_cache_release(page);
308	}
309	return error;
310}
311
312/*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316{
317	struct address_space *mapping = page->mapping;
318	int error;
319
320	spin_lock_irq(&mapping->tree_lock);
321	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322	page->mapping = NULL;
323	mapping->nrpages--;
324	__dec_zone_page_state(page, NR_FILE_PAGES);
325	__dec_zone_page_state(page, NR_SHMEM);
326	spin_unlock_irq(&mapping->tree_lock);
327	page_cache_release(page);
328	BUG_ON(error);
329}
330
331/*
332 * Like find_get_pages, but collecting swap entries as well as pages.
333 */
334static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335					pgoff_t start, unsigned int nr_pages,
336					struct page **pages, pgoff_t *indices)
337{
338	unsigned int i;
339	unsigned int ret;
340	unsigned int nr_found;
341
342	rcu_read_lock();
343restart:
344	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
345				(void ***)pages, indices, start, nr_pages);
346	ret = 0;
347	for (i = 0; i < nr_found; i++) {
348		struct page *page;
349repeat:
350		page = radix_tree_deref_slot((void **)pages[i]);
351		if (unlikely(!page))
352			continue;
353		if (radix_tree_exception(page)) {
354			if (radix_tree_deref_retry(page))
355				goto restart;
356			/*
357			 * Otherwise, we must be storing a swap entry
358			 * here as an exceptional entry: so return it
359			 * without attempting to raise page count.
360			 */
361			goto export;
362		}
363		if (!page_cache_get_speculative(page))
364			goto repeat;
365
366		/* Has the page moved? */
367		if (unlikely(page != *((void **)pages[i]))) {
368			page_cache_release(page);
369			goto repeat;
370		}
371export:
372		indices[ret] = indices[i];
373		pages[ret] = page;
374		ret++;
375	}
376	if (unlikely(!ret && nr_found))
377		goto restart;
378	rcu_read_unlock();
379	return ret;
380}
381
382/*
383 * Remove swap entry from radix tree, free the swap and its page cache.
384 */
385static int shmem_free_swap(struct address_space *mapping,
386			   pgoff_t index, void *radswap)
387{
388	int error;
389
390	spin_lock_irq(&mapping->tree_lock);
391	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
392	spin_unlock_irq(&mapping->tree_lock);
393	if (!error)
394		free_swap_and_cache(radix_to_swp_entry(radswap));
395	return error;
396}
397
398/*
399 * Pagevec may contain swap entries, so shuffle up pages before releasing.
400 */
401static void shmem_deswap_pagevec(struct pagevec *pvec)
402{
403	int i, j;
404
405	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
406		struct page *page = pvec->pages[i];
407		if (!radix_tree_exceptional_entry(page))
408			pvec->pages[j++] = page;
409	}
410	pvec->nr = j;
411}
412
413/*
414 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
415 */
416void shmem_unlock_mapping(struct address_space *mapping)
417{
418	struct pagevec pvec;
419	pgoff_t indices[PAGEVEC_SIZE];
420	pgoff_t index = 0;
421
422	pagevec_init(&pvec, 0);
423	/*
424	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
425	 */
426	while (!mapping_unevictable(mapping)) {
427		/*
428		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
430		 */
431		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
432					PAGEVEC_SIZE, pvec.pages, indices);
433		if (!pvec.nr)
434			break;
435		index = indices[pvec.nr - 1] + 1;
436		shmem_deswap_pagevec(&pvec);
437		check_move_unevictable_pages(pvec.pages, pvec.nr);
438		pagevec_release(&pvec);
439		cond_resched();
440	}
441}
442
443/*
444 * Remove range of pages and swap entries from radix tree, and free them.
445 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
446 */
447static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448								 bool unfalloc)
449{
450	struct address_space *mapping = inode->i_mapping;
451	struct shmem_inode_info *info = SHMEM_I(inode);
452	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
453	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
454	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
455	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
456	struct pagevec pvec;
457	pgoff_t indices[PAGEVEC_SIZE];
458	long nr_swaps_freed = 0;
459	pgoff_t index;
460	int i;
461
462	if (lend == -1)
463		end = -1;	/* unsigned, so actually very big */
464
465	pagevec_init(&pvec, 0);
466	index = start;
467	while (index < end) {
468		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
469				min(end - index, (pgoff_t)PAGEVEC_SIZE),
470							pvec.pages, indices);
471		if (!pvec.nr)
472			break;
473		mem_cgroup_uncharge_start();
474		for (i = 0; i < pagevec_count(&pvec); i++) {
475			struct page *page = pvec.pages[i];
476
477			index = indices[i];
478			if (index >= end)
479				break;
480
481			if (radix_tree_exceptional_entry(page)) {
482				if (unfalloc)
483					continue;
484				nr_swaps_freed += !shmem_free_swap(mapping,
485								index, page);
486				continue;
487			}
488
489			if (!trylock_page(page))
490				continue;
491			if (!unfalloc || !PageUptodate(page)) {
492				if (page->mapping == mapping) {
493					VM_BUG_ON(PageWriteback(page));
494					truncate_inode_page(mapping, page);
495				}
496			}
497			unlock_page(page);
498		}
499		shmem_deswap_pagevec(&pvec);
500		pagevec_release(&pvec);
501		mem_cgroup_uncharge_end();
502		cond_resched();
503		index++;
504	}
505
506	if (partial_start) {
507		struct page *page = NULL;
508		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
509		if (page) {
510			unsigned int top = PAGE_CACHE_SIZE;
511			if (start > end) {
512				top = partial_end;
513				partial_end = 0;
514			}
515			zero_user_segment(page, partial_start, top);
516			set_page_dirty(page);
517			unlock_page(page);
518			page_cache_release(page);
519		}
520	}
521	if (partial_end) {
522		struct page *page = NULL;
523		shmem_getpage(inode, end, &page, SGP_READ, NULL);
524		if (page) {
525			zero_user_segment(page, 0, partial_end);
526			set_page_dirty(page);
527			unlock_page(page);
528			page_cache_release(page);
529		}
530	}
531	if (start >= end)
532		return;
533
534	index = start;
535	for ( ; ; ) {
536		cond_resched();
537		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
538				min(end - index, (pgoff_t)PAGEVEC_SIZE),
539							pvec.pages, indices);
540		if (!pvec.nr) {
541			if (index == start || unfalloc)
542				break;
543			index = start;
544			continue;
545		}
546		if ((index == start || unfalloc) && indices[0] >= end) {
547			shmem_deswap_pagevec(&pvec);
548			pagevec_release(&pvec);
549			break;
550		}
551		mem_cgroup_uncharge_start();
552		for (i = 0; i < pagevec_count(&pvec); i++) {
553			struct page *page = pvec.pages[i];
554
555			index = indices[i];
556			if (index >= end)
557				break;
558
559			if (radix_tree_exceptional_entry(page)) {
560				if (unfalloc)
561					continue;
562				nr_swaps_freed += !shmem_free_swap(mapping,
563								index, page);
564				continue;
565			}
566
567			lock_page(page);
568			if (!unfalloc || !PageUptodate(page)) {
569				if (page->mapping == mapping) {
570					VM_BUG_ON(PageWriteback(page));
571					truncate_inode_page(mapping, page);
572				}
573			}
574			unlock_page(page);
575		}
576		shmem_deswap_pagevec(&pvec);
577		pagevec_release(&pvec);
578		mem_cgroup_uncharge_end();
579		index++;
580	}
581
582	spin_lock(&info->lock);
583	info->swapped -= nr_swaps_freed;
584	shmem_recalc_inode(inode);
585	spin_unlock(&info->lock);
586}
587
588void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
589{
590	shmem_undo_range(inode, lstart, lend, false);
591	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
592}
593EXPORT_SYMBOL_GPL(shmem_truncate_range);
594
595static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
596{
597	struct inode *inode = dentry->d_inode;
598	int error;
599
600	error = inode_change_ok(inode, attr);
601	if (error)
602		return error;
603
604	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
605		loff_t oldsize = inode->i_size;
606		loff_t newsize = attr->ia_size;
607
608		if (newsize != oldsize) {
609			i_size_write(inode, newsize);
610			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
611		}
612		if (newsize < oldsize) {
613			loff_t holebegin = round_up(newsize, PAGE_SIZE);
614			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
615			shmem_truncate_range(inode, newsize, (loff_t)-1);
616			/* unmap again to remove racily COWed private pages */
617			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
618		}
619	}
620
621	setattr_copy(inode, attr);
622#ifdef CONFIG_TMPFS_POSIX_ACL
623	if (attr->ia_valid & ATTR_MODE)
624		error = generic_acl_chmod(inode);
625#endif
626	return error;
627}
628
629static void shmem_evict_inode(struct inode *inode)
630{
631	struct shmem_inode_info *info = SHMEM_I(inode);
632
633	if (inode->i_mapping->a_ops == &shmem_aops) {
634		shmem_unacct_size(info->flags, inode->i_size);
635		inode->i_size = 0;
636		shmem_truncate_range(inode, 0, (loff_t)-1);
637		if (!list_empty(&info->swaplist)) {
638			mutex_lock(&shmem_swaplist_mutex);
639			list_del_init(&info->swaplist);
640			mutex_unlock(&shmem_swaplist_mutex);
641		}
642	} else
643		kfree(info->symlink);
644
645	simple_xattrs_free(&info->xattrs);
646	BUG_ON(inode->i_blocks);
647	shmem_free_inode(inode->i_sb);
648	clear_inode(inode);
649}
650
651/*
652 * If swap found in inode, free it and move page from swapcache to filecache.
653 */
654static int shmem_unuse_inode(struct shmem_inode_info *info,
655			     swp_entry_t swap, struct page **pagep)
656{
657	struct address_space *mapping = info->vfs_inode.i_mapping;
658	void *radswap;
659	pgoff_t index;
660	gfp_t gfp;
661	int error = 0;
662
663	radswap = swp_to_radix_entry(swap);
664	index = radix_tree_locate_item(&mapping->page_tree, radswap);
665	if (index == -1)
666		return 0;
667
668	/*
669	 * Move _head_ to start search for next from here.
670	 * But be careful: shmem_evict_inode checks list_empty without taking
671	 * mutex, and there's an instant in list_move_tail when info->swaplist
672	 * would appear empty, if it were the only one on shmem_swaplist.
673	 */
674	if (shmem_swaplist.next != &info->swaplist)
675		list_move_tail(&shmem_swaplist, &info->swaplist);
676
677	gfp = mapping_gfp_mask(mapping);
678	if (shmem_should_replace_page(*pagep, gfp)) {
679		mutex_unlock(&shmem_swaplist_mutex);
680		error = shmem_replace_page(pagep, gfp, info, index);
681		mutex_lock(&shmem_swaplist_mutex);
682		/*
683		 * We needed to drop mutex to make that restrictive page
684		 * allocation, but the inode might have been freed while we
685		 * dropped it: although a racing shmem_evict_inode() cannot
686		 * complete without emptying the radix_tree, our page lock
687		 * on this swapcache page is not enough to prevent that -
688		 * free_swap_and_cache() of our swap entry will only
689		 * trylock_page(), removing swap from radix_tree whatever.
690		 *
691		 * We must not proceed to shmem_add_to_page_cache() if the
692		 * inode has been freed, but of course we cannot rely on
693		 * inode or mapping or info to check that.  However, we can
694		 * safely check if our swap entry is still in use (and here
695		 * it can't have got reused for another page): if it's still
696		 * in use, then the inode cannot have been freed yet, and we
697		 * can safely proceed (if it's no longer in use, that tells
698		 * nothing about the inode, but we don't need to unuse swap).
699		 */
700		if (!page_swapcount(*pagep))
701			error = -ENOENT;
702	}
703
704	/*
705	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
707	 * beneath us (pagelock doesn't help until the page is in pagecache).
708	 */
709	if (!error)
710		error = shmem_add_to_page_cache(*pagep, mapping, index,
711						GFP_NOWAIT, radswap);
712	if (error != -ENOMEM) {
713		/*
714		 * Truncation and eviction use free_swap_and_cache(), which
715		 * only does trylock page: if we raced, best clean up here.
716		 */
717		delete_from_swap_cache(*pagep);
718		set_page_dirty(*pagep);
719		if (!error) {
720			spin_lock(&info->lock);
721			info->swapped--;
722			spin_unlock(&info->lock);
723			swap_free(swap);
724		}
725		error = 1;	/* not an error, but entry was found */
726	}
727	return error;
728}
729
730/*
731 * Search through swapped inodes to find and replace swap by page.
732 */
733int shmem_unuse(swp_entry_t swap, struct page *page)
734{
735	struct list_head *this, *next;
736	struct shmem_inode_info *info;
737	int found = 0;
738	int error = 0;
739
740	/*
741	 * There's a faint possibility that swap page was replaced before
742	 * caller locked it: caller will come back later with the right page.
743	 */
744	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
745		goto out;
746
747	/*
748	 * Charge page using GFP_KERNEL while we can wait, before taking
749	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
750	 * Charged back to the user (not to caller) when swap account is used.
751	 */
752	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753	if (error)
754		goto out;
755	/* No radix_tree_preload: swap entry keeps a place for page in tree */
756
757	mutex_lock(&shmem_swaplist_mutex);
758	list_for_each_safe(this, next, &shmem_swaplist) {
759		info = list_entry(this, struct shmem_inode_info, swaplist);
760		if (info->swapped)
761			found = shmem_unuse_inode(info, swap, &page);
762		else
763			list_del_init(&info->swaplist);
764		cond_resched();
765		if (found)
766			break;
767	}
768	mutex_unlock(&shmem_swaplist_mutex);
769
770	if (found < 0)
771		error = found;
772out:
773	unlock_page(page);
774	page_cache_release(page);
775	return error;
776}
777
778/*
779 * Move the page from the page cache to the swap cache.
780 */
781static int shmem_writepage(struct page *page, struct writeback_control *wbc)
782{
783	struct shmem_inode_info *info;
784	struct address_space *mapping;
785	struct inode *inode;
786	swp_entry_t swap;
787	pgoff_t index;
788
789	BUG_ON(!PageLocked(page));
790	mapping = page->mapping;
791	index = page->index;
792	inode = mapping->host;
793	info = SHMEM_I(inode);
794	if (info->flags & VM_LOCKED)
795		goto redirty;
796	if (!total_swap_pages)
797		goto redirty;
798
799	/*
800	 * shmem_backing_dev_info's capabilities prevent regular writeback or
801	 * sync from ever calling shmem_writepage; but a stacking filesystem
802	 * might use ->writepage of its underlying filesystem, in which case
803	 * tmpfs should write out to swap only in response to memory pressure,
804	 * and not for the writeback threads or sync.
805	 */
806	if (!wbc->for_reclaim) {
807		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
808		goto redirty;
809	}
810
811	/*
812	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813	 * value into swapfile.c, the only way we can correctly account for a
814	 * fallocated page arriving here is now to initialize it and write it.
815	 *
816	 * That's okay for a page already fallocated earlier, but if we have
817	 * not yet completed the fallocation, then (a) we want to keep track
818	 * of this page in case we have to undo it, and (b) it may not be a
819	 * good idea to continue anyway, once we're pushing into swap.  So
820	 * reactivate the page, and let shmem_fallocate() quit when too many.
821	 */
822	if (!PageUptodate(page)) {
823		if (inode->i_private) {
824			struct shmem_falloc *shmem_falloc;
825			spin_lock(&inode->i_lock);
826			shmem_falloc = inode->i_private;
827			if (shmem_falloc &&
828			    index >= shmem_falloc->start &&
829			    index < shmem_falloc->next)
830				shmem_falloc->nr_unswapped++;
831			else
832				shmem_falloc = NULL;
833			spin_unlock(&inode->i_lock);
834			if (shmem_falloc)
835				goto redirty;
836		}
837		clear_highpage(page);
838		flush_dcache_page(page);
839		SetPageUptodate(page);
840	}
841
842	swap = get_swap_page();
843	if (!swap.val)
844		goto redirty;
845
846	/*
847	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
848	 * if it's not already there.  Do it now before the page is
849	 * moved to swap cache, when its pagelock no longer protects
850	 * the inode from eviction.  But don't unlock the mutex until
851	 * we've incremented swapped, because shmem_unuse_inode() will
852	 * prune a !swapped inode from the swaplist under this mutex.
853	 */
854	mutex_lock(&shmem_swaplist_mutex);
855	if (list_empty(&info->swaplist))
856		list_add_tail(&info->swaplist, &shmem_swaplist);
857
858	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
859		swap_shmem_alloc(swap);
860		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
861
862		spin_lock(&info->lock);
863		info->swapped++;
864		shmem_recalc_inode(inode);
865		spin_unlock(&info->lock);
866
867		mutex_unlock(&shmem_swaplist_mutex);
868		BUG_ON(page_mapped(page));
869		swap_writepage(page, wbc);
870		return 0;
871	}
872
873	mutex_unlock(&shmem_swaplist_mutex);
874	swapcache_free(swap, NULL);
875redirty:
876	set_page_dirty(page);
877	if (wbc->for_reclaim)
878		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
879	unlock_page(page);
880	return 0;
881}
882
883#ifdef CONFIG_NUMA
884#ifdef CONFIG_TMPFS
885static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
886{
887	char buffer[64];
888
889	if (!mpol || mpol->mode == MPOL_DEFAULT)
890		return;		/* show nothing */
891
892	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
893
894	seq_printf(seq, ",mpol=%s", buffer);
895}
896
897static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
898{
899	struct mempolicy *mpol = NULL;
900	if (sbinfo->mpol) {
901		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
902		mpol = sbinfo->mpol;
903		mpol_get(mpol);
904		spin_unlock(&sbinfo->stat_lock);
905	}
906	return mpol;
907}
908#endif /* CONFIG_TMPFS */
909
910static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
911			struct shmem_inode_info *info, pgoff_t index)
912{
913	struct mempolicy mpol, *spol;
914	struct vm_area_struct pvma;
915
916	spol = mpol_cond_copy(&mpol,
917			mpol_shared_policy_lookup(&info->policy, index));
918
919	/* Create a pseudo vma that just contains the policy */
920	pvma.vm_start = 0;
921	/* Bias interleave by inode number to distribute better across nodes */
922	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
923	pvma.vm_ops = NULL;
924	pvma.vm_policy = spol;
925	return swapin_readahead(swap, gfp, &pvma, 0);
926}
927
928static struct page *shmem_alloc_page(gfp_t gfp,
929			struct shmem_inode_info *info, pgoff_t index)
930{
931	struct vm_area_struct pvma;
932
933	/* Create a pseudo vma that just contains the policy */
934	pvma.vm_start = 0;
935	/* Bias interleave by inode number to distribute better across nodes */
936	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
937	pvma.vm_ops = NULL;
938	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
939
940	/*
941	 * alloc_page_vma() will drop the shared policy reference
942	 */
943	return alloc_page_vma(gfp, &pvma, 0);
944}
945#else /* !CONFIG_NUMA */
946#ifdef CONFIG_TMPFS
947static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
948{
949}
950#endif /* CONFIG_TMPFS */
951
952static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
953			struct shmem_inode_info *info, pgoff_t index)
954{
955	return swapin_readahead(swap, gfp, NULL, 0);
956}
957
958static inline struct page *shmem_alloc_page(gfp_t gfp,
959			struct shmem_inode_info *info, pgoff_t index)
960{
961	return alloc_page(gfp);
962}
963#endif /* CONFIG_NUMA */
964
965#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967{
968	return NULL;
969}
970#endif
971
972/*
973 * When a page is moved from swapcache to shmem filecache (either by the
974 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975 * shmem_unuse_inode()), it may have been read in earlier from swap, in
976 * ignorance of the mapping it belongs to.  If that mapping has special
977 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978 * we may need to copy to a suitable page before moving to filecache.
979 *
980 * In a future release, this may well be extended to respect cpuset and
981 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982 * but for now it is a simple matter of zone.
983 */
984static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
985{
986	return page_zonenum(page) > gfp_zone(gfp);
987}
988
989static int shmem_replace_page(struct page **pagep, gfp_t gfp,
990				struct shmem_inode_info *info, pgoff_t index)
991{
992	struct page *oldpage, *newpage;
993	struct address_space *swap_mapping;
994	pgoff_t swap_index;
995	int error;
996
997	oldpage = *pagep;
998	swap_index = page_private(oldpage);
999	swap_mapping = page_mapping(oldpage);
1000
1001	/*
1002	 * We have arrived here because our zones are constrained, so don't
1003	 * limit chance of success by further cpuset and node constraints.
1004	 */
1005	gfp &= ~GFP_CONSTRAINT_MASK;
1006	newpage = shmem_alloc_page(gfp, info, index);
1007	if (!newpage)
1008		return -ENOMEM;
1009
1010	page_cache_get(newpage);
1011	copy_highpage(newpage, oldpage);
1012	flush_dcache_page(newpage);
1013
1014	__set_page_locked(newpage);
1015	SetPageUptodate(newpage);
1016	SetPageSwapBacked(newpage);
1017	set_page_private(newpage, swap_index);
1018	SetPageSwapCache(newpage);
1019
1020	/*
1021	 * Our caller will very soon move newpage out of swapcache, but it's
1022	 * a nice clean interface for us to replace oldpage by newpage there.
1023	 */
1024	spin_lock_irq(&swap_mapping->tree_lock);
1025	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1026								   newpage);
1027	if (!error) {
1028		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1029		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1030	}
1031	spin_unlock_irq(&swap_mapping->tree_lock);
1032
1033	if (unlikely(error)) {
1034		/*
1035		 * Is this possible?  I think not, now that our callers check
1036		 * both PageSwapCache and page_private after getting page lock;
1037		 * but be defensive.  Reverse old to newpage for clear and free.
1038		 */
1039		oldpage = newpage;
1040	} else {
1041		mem_cgroup_replace_page_cache(oldpage, newpage);
1042		lru_cache_add_anon(newpage);
1043		*pagep = newpage;
1044	}
1045
1046	ClearPageSwapCache(oldpage);
1047	set_page_private(oldpage, 0);
1048
1049	unlock_page(oldpage);
1050	page_cache_release(oldpage);
1051	page_cache_release(oldpage);
1052	return error;
1053}
1054
1055/*
1056 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1057 *
1058 * If we allocate a new one we do not mark it dirty. That's up to the
1059 * vm. If we swap it in we mark it dirty since we also free the swap
1060 * entry since a page cannot live in both the swap and page cache
1061 */
1062static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1063	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1064{
1065	struct address_space *mapping = inode->i_mapping;
1066	struct shmem_inode_info *info;
1067	struct shmem_sb_info *sbinfo;
1068	struct page *page;
1069	swp_entry_t swap;
1070	int error;
1071	int once = 0;
1072	int alloced = 0;
1073
1074	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1075		return -EFBIG;
1076repeat:
1077	swap.val = 0;
1078	page = find_lock_page(mapping, index);
1079	if (radix_tree_exceptional_entry(page)) {
1080		swap = radix_to_swp_entry(page);
1081		page = NULL;
1082	}
1083
1084	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1085	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1086		error = -EINVAL;
1087		goto failed;
1088	}
1089
1090	/* fallocated page? */
1091	if (page && !PageUptodate(page)) {
1092		if (sgp != SGP_READ)
1093			goto clear;
1094		unlock_page(page);
1095		page_cache_release(page);
1096		page = NULL;
1097	}
1098	if (page || (sgp == SGP_READ && !swap.val)) {
1099		*pagep = page;
1100		return 0;
1101	}
1102
1103	/*
1104	 * Fast cache lookup did not find it:
1105	 * bring it back from swap or allocate.
1106	 */
1107	info = SHMEM_I(inode);
1108	sbinfo = SHMEM_SB(inode->i_sb);
1109
1110	if (swap.val) {
1111		/* Look it up and read it in.. */
1112		page = lookup_swap_cache(swap);
1113		if (!page) {
1114			/* here we actually do the io */
1115			if (fault_type)
1116				*fault_type |= VM_FAULT_MAJOR;
1117			page = shmem_swapin(swap, gfp, info, index);
1118			if (!page) {
1119				error = -ENOMEM;
1120				goto failed;
1121			}
1122		}
1123
1124		/* We have to do this with page locked to prevent races */
1125		lock_page(page);
1126		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1127		    !shmem_confirm_swap(mapping, index, swap)) {
1128			error = -EEXIST;	/* try again */
1129			goto unlock;
1130		}
1131		if (!PageUptodate(page)) {
1132			error = -EIO;
1133			goto failed;
1134		}
1135		wait_on_page_writeback(page);
1136
1137		if (shmem_should_replace_page(page, gfp)) {
1138			error = shmem_replace_page(&page, gfp, info, index);
1139			if (error)
1140				goto failed;
1141		}
1142
1143		error = mem_cgroup_cache_charge(page, current->mm,
1144						gfp & GFP_RECLAIM_MASK);
1145		if (!error) {
1146			error = shmem_add_to_page_cache(page, mapping, index,
1147						gfp, swp_to_radix_entry(swap));
1148			/* We already confirmed swap, and make no allocation */
1149			VM_BUG_ON(error);
1150		}
1151		if (error)
1152			goto failed;
1153
1154		spin_lock(&info->lock);
1155		info->swapped--;
1156		shmem_recalc_inode(inode);
1157		spin_unlock(&info->lock);
1158
1159		delete_from_swap_cache(page);
1160		set_page_dirty(page);
1161		swap_free(swap);
1162
1163	} else {
1164		if (shmem_acct_block(info->flags)) {
1165			error = -ENOSPC;
1166			goto failed;
1167		}
1168		if (sbinfo->max_blocks) {
1169			if (percpu_counter_compare(&sbinfo->used_blocks,
1170						sbinfo->max_blocks) >= 0) {
1171				error = -ENOSPC;
1172				goto unacct;
1173			}
1174			percpu_counter_inc(&sbinfo->used_blocks);
1175		}
1176
1177		page = shmem_alloc_page(gfp, info, index);
1178		if (!page) {
1179			error = -ENOMEM;
1180			goto decused;
1181		}
1182
1183		SetPageSwapBacked(page);
1184		__set_page_locked(page);
1185		error = mem_cgroup_cache_charge(page, current->mm,
1186						gfp & GFP_RECLAIM_MASK);
1187		if (error)
1188			goto decused;
1189		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1190		if (!error) {
1191			error = shmem_add_to_page_cache(page, mapping, index,
1192							gfp, NULL);
1193			radix_tree_preload_end();
1194		}
1195		if (error) {
1196			mem_cgroup_uncharge_cache_page(page);
1197			goto decused;
1198		}
1199		lru_cache_add_anon(page);
1200
1201		spin_lock(&info->lock);
1202		info->alloced++;
1203		inode->i_blocks += BLOCKS_PER_PAGE;
1204		shmem_recalc_inode(inode);
1205		spin_unlock(&info->lock);
1206		alloced = true;
1207
1208		/*
1209		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1210		 */
1211		if (sgp == SGP_FALLOC)
1212			sgp = SGP_WRITE;
1213clear:
1214		/*
1215		 * Let SGP_WRITE caller clear ends if write does not fill page;
1216		 * but SGP_FALLOC on a page fallocated earlier must initialize
1217		 * it now, lest undo on failure cancel our earlier guarantee.
1218		 */
1219		if (sgp != SGP_WRITE) {
1220			clear_highpage(page);
1221			flush_dcache_page(page);
1222			SetPageUptodate(page);
1223		}
1224		if (sgp == SGP_DIRTY)
1225			set_page_dirty(page);
1226	}
1227
1228	/* Perhaps the file has been truncated since we checked */
1229	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1230	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231		error = -EINVAL;
1232		if (alloced)
1233			goto trunc;
1234		else
1235			goto failed;
1236	}
1237	*pagep = page;
1238	return 0;
1239
1240	/*
1241	 * Error recovery.
1242	 */
1243trunc:
1244	info = SHMEM_I(inode);
1245	ClearPageDirty(page);
1246	delete_from_page_cache(page);
1247	spin_lock(&info->lock);
1248	info->alloced--;
1249	inode->i_blocks -= BLOCKS_PER_PAGE;
1250	spin_unlock(&info->lock);
1251decused:
1252	sbinfo = SHMEM_SB(inode->i_sb);
1253	if (sbinfo->max_blocks)
1254		percpu_counter_add(&sbinfo->used_blocks, -1);
1255unacct:
1256	shmem_unacct_blocks(info->flags, 1);
1257failed:
1258	if (swap.val && error != -EINVAL &&
1259	    !shmem_confirm_swap(mapping, index, swap))
1260		error = -EEXIST;
1261unlock:
1262	if (page) {
1263		unlock_page(page);
1264		page_cache_release(page);
1265	}
1266	if (error == -ENOSPC && !once++) {
1267		info = SHMEM_I(inode);
1268		spin_lock(&info->lock);
1269		shmem_recalc_inode(inode);
1270		spin_unlock(&info->lock);
1271		goto repeat;
1272	}
1273	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1274		goto repeat;
1275	return error;
1276}
1277
1278static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1279{
1280	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1281	int error;
1282	int ret = VM_FAULT_LOCKED;
1283
1284	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1285	if (error)
1286		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1287
1288	if (ret & VM_FAULT_MAJOR) {
1289		count_vm_event(PGMAJFAULT);
1290		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1291	}
1292	return ret;
1293}
1294
1295#ifdef CONFIG_NUMA
1296static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1297{
1298	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1299	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1300}
1301
1302static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1303					  unsigned long addr)
1304{
1305	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1306	pgoff_t index;
1307
1308	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1309	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1310}
1311#endif
1312
1313int shmem_lock(struct file *file, int lock, struct user_struct *user)
1314{
1315	struct inode *inode = file->f_path.dentry->d_inode;
1316	struct shmem_inode_info *info = SHMEM_I(inode);
1317	int retval = -ENOMEM;
1318
1319	spin_lock(&info->lock);
1320	if (lock && !(info->flags & VM_LOCKED)) {
1321		if (!user_shm_lock(inode->i_size, user))
1322			goto out_nomem;
1323		info->flags |= VM_LOCKED;
1324		mapping_set_unevictable(file->f_mapping);
1325	}
1326	if (!lock && (info->flags & VM_LOCKED) && user) {
1327		user_shm_unlock(inode->i_size, user);
1328		info->flags &= ~VM_LOCKED;
1329		mapping_clear_unevictable(file->f_mapping);
1330	}
1331	retval = 0;
1332
1333out_nomem:
1334	spin_unlock(&info->lock);
1335	return retval;
1336}
1337
1338static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1339{
1340	file_accessed(file);
1341	vma->vm_ops = &shmem_vm_ops;
1342	vma->vm_flags |= VM_CAN_NONLINEAR;
1343	return 0;
1344}
1345
1346static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1347				     umode_t mode, dev_t dev, unsigned long flags)
1348{
1349	struct inode *inode;
1350	struct shmem_inode_info *info;
1351	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1352
1353	if (shmem_reserve_inode(sb))
1354		return NULL;
1355
1356	inode = new_inode(sb);
1357	if (inode) {
1358		inode->i_ino = get_next_ino();
1359		inode_init_owner(inode, dir, mode);
1360		inode->i_blocks = 0;
1361		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1362		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1363		inode->i_generation = get_seconds();
1364		info = SHMEM_I(inode);
1365		memset(info, 0, (char *)inode - (char *)info);
1366		spin_lock_init(&info->lock);
1367		info->flags = flags & VM_NORESERVE;
1368		INIT_LIST_HEAD(&info->swaplist);
1369		simple_xattrs_init(&info->xattrs);
1370		cache_no_acl(inode);
1371
1372		switch (mode & S_IFMT) {
1373		default:
1374			inode->i_op = &shmem_special_inode_operations;
1375			init_special_inode(inode, mode, dev);
1376			break;
1377		case S_IFREG:
1378			inode->i_mapping->a_ops = &shmem_aops;
1379			inode->i_op = &shmem_inode_operations;
1380			inode->i_fop = &shmem_file_operations;
1381			mpol_shared_policy_init(&info->policy,
1382						 shmem_get_sbmpol(sbinfo));
1383			break;
1384		case S_IFDIR:
1385			inc_nlink(inode);
1386			/* Some things misbehave if size == 0 on a directory */
1387			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1388			inode->i_op = &shmem_dir_inode_operations;
1389			inode->i_fop = &simple_dir_operations;
1390			break;
1391		case S_IFLNK:
1392			/*
1393			 * Must not load anything in the rbtree,
1394			 * mpol_free_shared_policy will not be called.
1395			 */
1396			mpol_shared_policy_init(&info->policy, NULL);
1397			break;
1398		}
1399	} else
1400		shmem_free_inode(sb);
1401	return inode;
1402}
1403
1404#ifdef CONFIG_TMPFS
1405static const struct inode_operations shmem_symlink_inode_operations;
1406static const struct inode_operations shmem_short_symlink_operations;
1407
1408#ifdef CONFIG_TMPFS_XATTR
1409static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1410#else
1411#define shmem_initxattrs NULL
1412#endif
1413
1414static int
1415shmem_write_begin(struct file *file, struct address_space *mapping,
1416			loff_t pos, unsigned len, unsigned flags,
1417			struct page **pagep, void **fsdata)
1418{
1419	struct inode *inode = mapping->host;
1420	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1421	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1422}
1423
1424static int
1425shmem_write_end(struct file *file, struct address_space *mapping,
1426			loff_t pos, unsigned len, unsigned copied,
1427			struct page *page, void *fsdata)
1428{
1429	struct inode *inode = mapping->host;
1430
1431	if (pos + copied > inode->i_size)
1432		i_size_write(inode, pos + copied);
1433
1434	if (!PageUptodate(page)) {
1435		if (copied < PAGE_CACHE_SIZE) {
1436			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1437			zero_user_segments(page, 0, from,
1438					from + copied, PAGE_CACHE_SIZE);
1439		}
1440		SetPageUptodate(page);
1441	}
1442	set_page_dirty(page);
1443	unlock_page(page);
1444	page_cache_release(page);
1445
1446	return copied;
1447}
1448
1449static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1450{
1451	struct inode *inode = filp->f_path.dentry->d_inode;
1452	struct address_space *mapping = inode->i_mapping;
1453	pgoff_t index;
1454	unsigned long offset;
1455	enum sgp_type sgp = SGP_READ;
1456
1457	/*
1458	 * Might this read be for a stacking filesystem?  Then when reading
1459	 * holes of a sparse file, we actually need to allocate those pages,
1460	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1461	 */
1462	if (segment_eq(get_fs(), KERNEL_DS))
1463		sgp = SGP_DIRTY;
1464
1465	index = *ppos >> PAGE_CACHE_SHIFT;
1466	offset = *ppos & ~PAGE_CACHE_MASK;
1467
1468	for (;;) {
1469		struct page *page = NULL;
1470		pgoff_t end_index;
1471		unsigned long nr, ret;
1472		loff_t i_size = i_size_read(inode);
1473
1474		end_index = i_size >> PAGE_CACHE_SHIFT;
1475		if (index > end_index)
1476			break;
1477		if (index == end_index) {
1478			nr = i_size & ~PAGE_CACHE_MASK;
1479			if (nr <= offset)
1480				break;
1481		}
1482
1483		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1484		if (desc->error) {
1485			if (desc->error == -EINVAL)
1486				desc->error = 0;
1487			break;
1488		}
1489		if (page)
1490			unlock_page(page);
1491
1492		/*
1493		 * We must evaluate after, since reads (unlike writes)
1494		 * are called without i_mutex protection against truncate
1495		 */
1496		nr = PAGE_CACHE_SIZE;
1497		i_size = i_size_read(inode);
1498		end_index = i_size >> PAGE_CACHE_SHIFT;
1499		if (index == end_index) {
1500			nr = i_size & ~PAGE_CACHE_MASK;
1501			if (nr <= offset) {
1502				if (page)
1503					page_cache_release(page);
1504				break;
1505			}
1506		}
1507		nr -= offset;
1508
1509		if (page) {
1510			/*
1511			 * If users can be writing to this page using arbitrary
1512			 * virtual addresses, take care about potential aliasing
1513			 * before reading the page on the kernel side.
1514			 */
1515			if (mapping_writably_mapped(mapping))
1516				flush_dcache_page(page);
1517			/*
1518			 * Mark the page accessed if we read the beginning.
1519			 */
1520			if (!offset)
1521				mark_page_accessed(page);
1522		} else {
1523			page = ZERO_PAGE(0);
1524			page_cache_get(page);
1525		}
1526
1527		/*
1528		 * Ok, we have the page, and it's up-to-date, so
1529		 * now we can copy it to user space...
1530		 *
1531		 * The actor routine returns how many bytes were actually used..
1532		 * NOTE! This may not be the same as how much of a user buffer
1533		 * we filled up (we may be padding etc), so we can only update
1534		 * "pos" here (the actor routine has to update the user buffer
1535		 * pointers and the remaining count).
1536		 */
1537		ret = actor(desc, page, offset, nr);
1538		offset += ret;
1539		index += offset >> PAGE_CACHE_SHIFT;
1540		offset &= ~PAGE_CACHE_MASK;
1541
1542		page_cache_release(page);
1543		if (ret != nr || !desc->count)
1544			break;
1545
1546		cond_resched();
1547	}
1548
1549	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1550	file_accessed(filp);
1551}
1552
1553static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1554		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1555{
1556	struct file *filp = iocb->ki_filp;
1557	ssize_t retval;
1558	unsigned long seg;
1559	size_t count;
1560	loff_t *ppos = &iocb->ki_pos;
1561
1562	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1563	if (retval)
1564		return retval;
1565
1566	for (seg = 0; seg < nr_segs; seg++) {
1567		read_descriptor_t desc;
1568
1569		desc.written = 0;
1570		desc.arg.buf = iov[seg].iov_base;
1571		desc.count = iov[seg].iov_len;
1572		if (desc.count == 0)
1573			continue;
1574		desc.error = 0;
1575		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1576		retval += desc.written;
1577		if (desc.error) {
1578			retval = retval ?: desc.error;
1579			break;
1580		}
1581		if (desc.count > 0)
1582			break;
1583	}
1584	return retval;
1585}
1586
1587static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1588				struct pipe_inode_info *pipe, size_t len,
1589				unsigned int flags)
1590{
1591	struct address_space *mapping = in->f_mapping;
1592	struct inode *inode = mapping->host;
1593	unsigned int loff, nr_pages, req_pages;
1594	struct page *pages[PIPE_DEF_BUFFERS];
1595	struct partial_page partial[PIPE_DEF_BUFFERS];
1596	struct page *page;
1597	pgoff_t index, end_index;
1598	loff_t isize, left;
1599	int error, page_nr;
1600	struct splice_pipe_desc spd = {
1601		.pages = pages,
1602		.partial = partial,
1603		.nr_pages_max = PIPE_DEF_BUFFERS,
1604		.flags = flags,
1605		.ops = &page_cache_pipe_buf_ops,
1606		.spd_release = spd_release_page,
1607	};
1608
1609	isize = i_size_read(inode);
1610	if (unlikely(*ppos >= isize))
1611		return 0;
1612
1613	left = isize - *ppos;
1614	if (unlikely(left < len))
1615		len = left;
1616
1617	if (splice_grow_spd(pipe, &spd))
1618		return -ENOMEM;
1619
1620	index = *ppos >> PAGE_CACHE_SHIFT;
1621	loff = *ppos & ~PAGE_CACHE_MASK;
1622	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1623	nr_pages = min(req_pages, pipe->buffers);
1624
1625	spd.nr_pages = find_get_pages_contig(mapping, index,
1626						nr_pages, spd.pages);
1627	index += spd.nr_pages;
1628	error = 0;
1629
1630	while (spd.nr_pages < nr_pages) {
1631		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1632		if (error)
1633			break;
1634		unlock_page(page);
1635		spd.pages[spd.nr_pages++] = page;
1636		index++;
1637	}
1638
1639	index = *ppos >> PAGE_CACHE_SHIFT;
1640	nr_pages = spd.nr_pages;
1641	spd.nr_pages = 0;
1642
1643	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1644		unsigned int this_len;
1645
1646		if (!len)
1647			break;
1648
1649		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1650		page = spd.pages[page_nr];
1651
1652		if (!PageUptodate(page) || page->mapping != mapping) {
1653			error = shmem_getpage(inode, index, &page,
1654							SGP_CACHE, NULL);
1655			if (error)
1656				break;
1657			unlock_page(page);
1658			page_cache_release(spd.pages[page_nr]);
1659			spd.pages[page_nr] = page;
1660		}
1661
1662		isize = i_size_read(inode);
1663		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1664		if (unlikely(!isize || index > end_index))
1665			break;
1666
1667		if (end_index == index) {
1668			unsigned int plen;
1669
1670			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1671			if (plen <= loff)
1672				break;
1673
1674			this_len = min(this_len, plen - loff);
1675			len = this_len;
1676		}
1677
1678		spd.partial[page_nr].offset = loff;
1679		spd.partial[page_nr].len = this_len;
1680		len -= this_len;
1681		loff = 0;
1682		spd.nr_pages++;
1683		index++;
1684	}
1685
1686	while (page_nr < nr_pages)
1687		page_cache_release(spd.pages[page_nr++]);
1688
1689	if (spd.nr_pages)
1690		error = splice_to_pipe(pipe, &spd);
1691
1692	splice_shrink_spd(&spd);
1693
1694	if (error > 0) {
1695		*ppos += error;
1696		file_accessed(in);
1697	}
1698	return error;
1699}
1700
1701static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1702							 loff_t len)
1703{
1704	struct inode *inode = file->f_path.dentry->d_inode;
1705	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1706	struct shmem_falloc shmem_falloc;
1707	pgoff_t start, index, end;
1708	int error;
1709
1710	mutex_lock(&inode->i_mutex);
1711
1712	if (mode & FALLOC_FL_PUNCH_HOLE) {
1713		struct address_space *mapping = file->f_mapping;
1714		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1715		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1716
1717		if ((u64)unmap_end > (u64)unmap_start)
1718			unmap_mapping_range(mapping, unmap_start,
1719					    1 + unmap_end - unmap_start, 0);
1720		shmem_truncate_range(inode, offset, offset + len - 1);
1721		/* No need to unmap again: hole-punching leaves COWed pages */
1722		error = 0;
1723		goto out;
1724	}
1725
1726	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1727	error = inode_newsize_ok(inode, offset + len);
1728	if (error)
1729		goto out;
1730
1731	start = offset >> PAGE_CACHE_SHIFT;
1732	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1733	/* Try to avoid a swapstorm if len is impossible to satisfy */
1734	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1735		error = -ENOSPC;
1736		goto out;
1737	}
1738
1739	shmem_falloc.start = start;
1740	shmem_falloc.next  = start;
1741	shmem_falloc.nr_falloced = 0;
1742	shmem_falloc.nr_unswapped = 0;
1743	spin_lock(&inode->i_lock);
1744	inode->i_private = &shmem_falloc;
1745	spin_unlock(&inode->i_lock);
1746
1747	for (index = start; index < end; index++) {
1748		struct page *page;
1749
1750		/*
1751		 * Good, the fallocate(2) manpage permits EINTR: we may have
1752		 * been interrupted because we are using up too much memory.
1753		 */
1754		if (signal_pending(current))
1755			error = -EINTR;
1756		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1757			error = -ENOMEM;
1758		else
1759			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1760									NULL);
1761		if (error) {
1762			/* Remove the !PageUptodate pages we added */
1763			shmem_undo_range(inode,
1764				(loff_t)start << PAGE_CACHE_SHIFT,
1765				(loff_t)index << PAGE_CACHE_SHIFT, true);
1766			goto undone;
1767		}
1768
1769		/*
1770		 * Inform shmem_writepage() how far we have reached.
1771		 * No need for lock or barrier: we have the page lock.
1772		 */
1773		shmem_falloc.next++;
1774		if (!PageUptodate(page))
1775			shmem_falloc.nr_falloced++;
1776
1777		/*
1778		 * If !PageUptodate, leave it that way so that freeable pages
1779		 * can be recognized if we need to rollback on error later.
1780		 * But set_page_dirty so that memory pressure will swap rather
1781		 * than free the pages we are allocating (and SGP_CACHE pages
1782		 * might still be clean: we now need to mark those dirty too).
1783		 */
1784		set_page_dirty(page);
1785		unlock_page(page);
1786		page_cache_release(page);
1787		cond_resched();
1788	}
1789
1790	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1791		i_size_write(inode, offset + len);
1792	inode->i_ctime = CURRENT_TIME;
1793undone:
1794	spin_lock(&inode->i_lock);
1795	inode->i_private = NULL;
1796	spin_unlock(&inode->i_lock);
1797out:
1798	mutex_unlock(&inode->i_mutex);
1799	return error;
1800}
1801
1802static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1803{
1804	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1805
1806	buf->f_type = TMPFS_MAGIC;
1807	buf->f_bsize = PAGE_CACHE_SIZE;
1808	buf->f_namelen = NAME_MAX;
1809	if (sbinfo->max_blocks) {
1810		buf->f_blocks = sbinfo->max_blocks;
1811		buf->f_bavail =
1812		buf->f_bfree  = sbinfo->max_blocks -
1813				percpu_counter_sum(&sbinfo->used_blocks);
1814	}
1815	if (sbinfo->max_inodes) {
1816		buf->f_files = sbinfo->max_inodes;
1817		buf->f_ffree = sbinfo->free_inodes;
1818	}
1819	/* else leave those fields 0 like simple_statfs */
1820	return 0;
1821}
1822
1823/*
1824 * File creation. Allocate an inode, and we're done..
1825 */
1826static int
1827shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1828{
1829	struct inode *inode;
1830	int error = -ENOSPC;
1831
1832	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1833	if (inode) {
1834		error = security_inode_init_security(inode, dir,
1835						     &dentry->d_name,
1836						     shmem_initxattrs, NULL);
1837		if (error) {
1838			if (error != -EOPNOTSUPP) {
1839				iput(inode);
1840				return error;
1841			}
1842		}
1843#ifdef CONFIG_TMPFS_POSIX_ACL
1844		error = generic_acl_init(inode, dir);
1845		if (error) {
1846			iput(inode);
1847			return error;
1848		}
1849#else
1850		error = 0;
1851#endif
1852		dir->i_size += BOGO_DIRENT_SIZE;
1853		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1854		d_instantiate(dentry, inode);
1855		dget(dentry); /* Extra count - pin the dentry in core */
1856	}
1857	return error;
1858}
1859
1860static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1861{
1862	int error;
1863
1864	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1865		return error;
1866	inc_nlink(dir);
1867	return 0;
1868}
1869
1870static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1871		bool excl)
1872{
1873	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1874}
1875
1876/*
1877 * Link a file..
1878 */
1879static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1880{
1881	struct inode *inode = old_dentry->d_inode;
1882	int ret;
1883
1884	/*
1885	 * No ordinary (disk based) filesystem counts links as inodes;
1886	 * but each new link needs a new dentry, pinning lowmem, and
1887	 * tmpfs dentries cannot be pruned until they are unlinked.
1888	 */
1889	ret = shmem_reserve_inode(inode->i_sb);
1890	if (ret)
1891		goto out;
1892
1893	dir->i_size += BOGO_DIRENT_SIZE;
1894	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1895	inc_nlink(inode);
1896	ihold(inode);	/* New dentry reference */
1897	dget(dentry);		/* Extra pinning count for the created dentry */
1898	d_instantiate(dentry, inode);
1899out:
1900	return ret;
1901}
1902
1903static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1904{
1905	struct inode *inode = dentry->d_inode;
1906
1907	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1908		shmem_free_inode(inode->i_sb);
1909
1910	dir->i_size -= BOGO_DIRENT_SIZE;
1911	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1912	drop_nlink(inode);
1913	dput(dentry);	/* Undo the count from "create" - this does all the work */
1914	return 0;
1915}
1916
1917static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1918{
1919	if (!simple_empty(dentry))
1920		return -ENOTEMPTY;
1921
1922	drop_nlink(dentry->d_inode);
1923	drop_nlink(dir);
1924	return shmem_unlink(dir, dentry);
1925}
1926
1927/*
1928 * The VFS layer already does all the dentry stuff for rename,
1929 * we just have to decrement the usage count for the target if
1930 * it exists so that the VFS layer correctly free's it when it
1931 * gets overwritten.
1932 */
1933static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1934{
1935	struct inode *inode = old_dentry->d_inode;
1936	int they_are_dirs = S_ISDIR(inode->i_mode);
1937
1938	if (!simple_empty(new_dentry))
1939		return -ENOTEMPTY;
1940
1941	if (new_dentry->d_inode) {
1942		(void) shmem_unlink(new_dir, new_dentry);
1943		if (they_are_dirs)
1944			drop_nlink(old_dir);
1945	} else if (they_are_dirs) {
1946		drop_nlink(old_dir);
1947		inc_nlink(new_dir);
1948	}
1949
1950	old_dir->i_size -= BOGO_DIRENT_SIZE;
1951	new_dir->i_size += BOGO_DIRENT_SIZE;
1952	old_dir->i_ctime = old_dir->i_mtime =
1953	new_dir->i_ctime = new_dir->i_mtime =
1954	inode->i_ctime = CURRENT_TIME;
1955	return 0;
1956}
1957
1958static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1959{
1960	int error;
1961	int len;
1962	struct inode *inode;
1963	struct page *page;
1964	char *kaddr;
1965	struct shmem_inode_info *info;
1966
1967	len = strlen(symname) + 1;
1968	if (len > PAGE_CACHE_SIZE)
1969		return -ENAMETOOLONG;
1970
1971	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1972	if (!inode)
1973		return -ENOSPC;
1974
1975	error = security_inode_init_security(inode, dir, &dentry->d_name,
1976					     shmem_initxattrs, NULL);
1977	if (error) {
1978		if (error != -EOPNOTSUPP) {
1979			iput(inode);
1980			return error;
1981		}
1982		error = 0;
1983	}
1984
1985	info = SHMEM_I(inode);
1986	inode->i_size = len-1;
1987	if (len <= SHORT_SYMLINK_LEN) {
1988		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1989		if (!info->symlink) {
1990			iput(inode);
1991			return -ENOMEM;
1992		}
1993		inode->i_op = &shmem_short_symlink_operations;
1994	} else {
1995		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1996		if (error) {
1997			iput(inode);
1998			return error;
1999		}
2000		inode->i_mapping->a_ops = &shmem_aops;
2001		inode->i_op = &shmem_symlink_inode_operations;
2002		kaddr = kmap_atomic(page);
2003		memcpy(kaddr, symname, len);
2004		kunmap_atomic(kaddr);
2005		SetPageUptodate(page);
2006		set_page_dirty(page);
2007		unlock_page(page);
2008		page_cache_release(page);
2009	}
2010	dir->i_size += BOGO_DIRENT_SIZE;
2011	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2012	d_instantiate(dentry, inode);
2013	dget(dentry);
2014	return 0;
2015}
2016
2017static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2018{
2019	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2020	return NULL;
2021}
2022
2023static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2024{
2025	struct page *page = NULL;
2026	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2027	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2028	if (page)
2029		unlock_page(page);
2030	return page;
2031}
2032
2033static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2034{
2035	if (!IS_ERR(nd_get_link(nd))) {
2036		struct page *page = cookie;
2037		kunmap(page);
2038		mark_page_accessed(page);
2039		page_cache_release(page);
2040	}
2041}
2042
2043#ifdef CONFIG_TMPFS_XATTR
2044/*
2045 * Superblocks without xattr inode operations may get some security.* xattr
2046 * support from the LSM "for free". As soon as we have any other xattrs
2047 * like ACLs, we also need to implement the security.* handlers at
2048 * filesystem level, though.
2049 */
2050
2051/*
2052 * Callback for security_inode_init_security() for acquiring xattrs.
2053 */
2054static int shmem_initxattrs(struct inode *inode,
2055			    const struct xattr *xattr_array,
2056			    void *fs_info)
2057{
2058	struct shmem_inode_info *info = SHMEM_I(inode);
2059	const struct xattr *xattr;
2060	struct simple_xattr *new_xattr;
2061	size_t len;
2062
2063	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2064		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2065		if (!new_xattr)
2066			return -ENOMEM;
2067
2068		len = strlen(xattr->name) + 1;
2069		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2070					  GFP_KERNEL);
2071		if (!new_xattr->name) {
2072			kfree(new_xattr);
2073			return -ENOMEM;
2074		}
2075
2076		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2077		       XATTR_SECURITY_PREFIX_LEN);
2078		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2079		       xattr->name, len);
2080
2081		simple_xattr_list_add(&info->xattrs, new_xattr);
2082	}
2083
2084	return 0;
2085}
2086
2087static const struct xattr_handler *shmem_xattr_handlers[] = {
2088#ifdef CONFIG_TMPFS_POSIX_ACL
2089	&generic_acl_access_handler,
2090	&generic_acl_default_handler,
2091#endif
2092	NULL
2093};
2094
2095static int shmem_xattr_validate(const char *name)
2096{
2097	struct { const char *prefix; size_t len; } arr[] = {
2098		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2099		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2100	};
2101	int i;
2102
2103	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2104		size_t preflen = arr[i].len;
2105		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2106			if (!name[preflen])
2107				return -EINVAL;
2108			return 0;
2109		}
2110	}
2111	return -EOPNOTSUPP;
2112}
2113
2114static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2115			      void *buffer, size_t size)
2116{
2117	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2118	int err;
2119
2120	/*
2121	 * If this is a request for a synthetic attribute in the system.*
2122	 * namespace use the generic infrastructure to resolve a handler
2123	 * for it via sb->s_xattr.
2124	 */
2125	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2126		return generic_getxattr(dentry, name, buffer, size);
2127
2128	err = shmem_xattr_validate(name);
2129	if (err)
2130		return err;
2131
2132	return simple_xattr_get(&info->xattrs, name, buffer, size);
2133}
2134
2135static int shmem_setxattr(struct dentry *dentry, const char *name,
2136			  const void *value, size_t size, int flags)
2137{
2138	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2139	int err;
2140
2141	/*
2142	 * If this is a request for a synthetic attribute in the system.*
2143	 * namespace use the generic infrastructure to resolve a handler
2144	 * for it via sb->s_xattr.
2145	 */
2146	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2147		return generic_setxattr(dentry, name, value, size, flags);
2148
2149	err = shmem_xattr_validate(name);
2150	if (err)
2151		return err;
2152
2153	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2154}
2155
2156static int shmem_removexattr(struct dentry *dentry, const char *name)
2157{
2158	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2159	int err;
2160
2161	/*
2162	 * If this is a request for a synthetic attribute in the system.*
2163	 * namespace use the generic infrastructure to resolve a handler
2164	 * for it via sb->s_xattr.
2165	 */
2166	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2167		return generic_removexattr(dentry, name);
2168
2169	err = shmem_xattr_validate(name);
2170	if (err)
2171		return err;
2172
2173	return simple_xattr_remove(&info->xattrs, name);
2174}
2175
2176static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2177{
2178	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2179	return simple_xattr_list(&info->xattrs, buffer, size);
2180}
2181#endif /* CONFIG_TMPFS_XATTR */
2182
2183static const struct inode_operations shmem_short_symlink_operations = {
2184	.readlink	= generic_readlink,
2185	.follow_link	= shmem_follow_short_symlink,
2186#ifdef CONFIG_TMPFS_XATTR
2187	.setxattr	= shmem_setxattr,
2188	.getxattr	= shmem_getxattr,
2189	.listxattr	= shmem_listxattr,
2190	.removexattr	= shmem_removexattr,
2191#endif
2192};
2193
2194static const struct inode_operations shmem_symlink_inode_operations = {
2195	.readlink	= generic_readlink,
2196	.follow_link	= shmem_follow_link,
2197	.put_link	= shmem_put_link,
2198#ifdef CONFIG_TMPFS_XATTR
2199	.setxattr	= shmem_setxattr,
2200	.getxattr	= shmem_getxattr,
2201	.listxattr	= shmem_listxattr,
2202	.removexattr	= shmem_removexattr,
2203#endif
2204};
2205
2206static struct dentry *shmem_get_parent(struct dentry *child)
2207{
2208	return ERR_PTR(-ESTALE);
2209}
2210
2211static int shmem_match(struct inode *ino, void *vfh)
2212{
2213	__u32 *fh = vfh;
2214	__u64 inum = fh[2];
2215	inum = (inum << 32) | fh[1];
2216	return ino->i_ino == inum && fh[0] == ino->i_generation;
2217}
2218
2219static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2220		struct fid *fid, int fh_len, int fh_type)
2221{
2222	struct inode *inode;
2223	struct dentry *dentry = NULL;
2224	u64 inum = fid->raw[2];
2225	inum = (inum << 32) | fid->raw[1];
2226
2227	if (fh_len < 3)
2228		return NULL;
2229
2230	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2231			shmem_match, fid->raw);
2232	if (inode) {
2233		dentry = d_find_alias(inode);
2234		iput(inode);
2235	}
2236
2237	return dentry;
2238}
2239
2240static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2241				struct inode *parent)
2242{
2243	if (*len < 3) {
2244		*len = 3;
2245		return 255;
2246	}
2247
2248	if (inode_unhashed(inode)) {
2249		/* Unfortunately insert_inode_hash is not idempotent,
2250		 * so as we hash inodes here rather than at creation
2251		 * time, we need a lock to ensure we only try
2252		 * to do it once
2253		 */
2254		static DEFINE_SPINLOCK(lock);
2255		spin_lock(&lock);
2256		if (inode_unhashed(inode))
2257			__insert_inode_hash(inode,
2258					    inode->i_ino + inode->i_generation);
2259		spin_unlock(&lock);
2260	}
2261
2262	fh[0] = inode->i_generation;
2263	fh[1] = inode->i_ino;
2264	fh[2] = ((__u64)inode->i_ino) >> 32;
2265
2266	*len = 3;
2267	return 1;
2268}
2269
2270static const struct export_operations shmem_export_ops = {
2271	.get_parent     = shmem_get_parent,
2272	.encode_fh      = shmem_encode_fh,
2273	.fh_to_dentry	= shmem_fh_to_dentry,
2274};
2275
2276static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2277			       bool remount)
2278{
2279	char *this_char, *value, *rest;
2280	uid_t uid;
2281	gid_t gid;
2282
2283	while (options != NULL) {
2284		this_char = options;
2285		for (;;) {
2286			/*
2287			 * NUL-terminate this option: unfortunately,
2288			 * mount options form a comma-separated list,
2289			 * but mpol's nodelist may also contain commas.
2290			 */
2291			options = strchr(options, ',');
2292			if (options == NULL)
2293				break;
2294			options++;
2295			if (!isdigit(*options)) {
2296				options[-1] = '\0';
2297				break;
2298			}
2299		}
2300		if (!*this_char)
2301			continue;
2302		if ((value = strchr(this_char,'=')) != NULL) {
2303			*value++ = 0;
2304		} else {
2305			printk(KERN_ERR
2306			    "tmpfs: No value for mount option '%s'\n",
2307			    this_char);
2308			return 1;
2309		}
2310
2311		if (!strcmp(this_char,"size")) {
2312			unsigned long long size;
2313			size = memparse(value,&rest);
2314			if (*rest == '%') {
2315				size <<= PAGE_SHIFT;
2316				size *= totalram_pages;
2317				do_div(size, 100);
2318				rest++;
2319			}
2320			if (*rest)
2321				goto bad_val;
2322			sbinfo->max_blocks =
2323				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2324		} else if (!strcmp(this_char,"nr_blocks")) {
2325			sbinfo->max_blocks = memparse(value, &rest);
2326			if (*rest)
2327				goto bad_val;
2328		} else if (!strcmp(this_char,"nr_inodes")) {
2329			sbinfo->max_inodes = memparse(value, &rest);
2330			if (*rest)
2331				goto bad_val;
2332		} else if (!strcmp(this_char,"mode")) {
2333			if (remount)
2334				continue;
2335			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2336			if (*rest)
2337				goto bad_val;
2338		} else if (!strcmp(this_char,"uid")) {
2339			if (remount)
2340				continue;
2341			uid = simple_strtoul(value, &rest, 0);
2342			if (*rest)
2343				goto bad_val;
2344			sbinfo->uid = make_kuid(current_user_ns(), uid);
2345			if (!uid_valid(sbinfo->uid))
2346				goto bad_val;
2347		} else if (!strcmp(this_char,"gid")) {
2348			if (remount)
2349				continue;
2350			gid = simple_strtoul(value, &rest, 0);
2351			if (*rest)
2352				goto bad_val;
2353			sbinfo->gid = make_kgid(current_user_ns(), gid);
2354			if (!gid_valid(sbinfo->gid))
2355				goto bad_val;
2356		} else if (!strcmp(this_char,"mpol")) {
2357			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2358				goto bad_val;
2359		} else {
2360			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2361			       this_char);
2362			return 1;
2363		}
2364	}
2365	return 0;
2366
2367bad_val:
2368	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2369	       value, this_char);
2370	return 1;
2371
2372}
2373
2374static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2375{
2376	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2377	struct shmem_sb_info config = *sbinfo;
2378	unsigned long inodes;
2379	int error = -EINVAL;
2380
2381	if (shmem_parse_options(data, &config, true))
2382		return error;
2383
2384	spin_lock(&sbinfo->stat_lock);
2385	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2386	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2387		goto out;
2388	if (config.max_inodes < inodes)
2389		goto out;
2390	/*
2391	 * Those tests disallow limited->unlimited while any are in use;
2392	 * but we must separately disallow unlimited->limited, because
2393	 * in that case we have no record of how much is already in use.
2394	 */
2395	if (config.max_blocks && !sbinfo->max_blocks)
2396		goto out;
2397	if (config.max_inodes && !sbinfo->max_inodes)
2398		goto out;
2399
2400	error = 0;
2401	sbinfo->max_blocks  = config.max_blocks;
2402	sbinfo->max_inodes  = config.max_inodes;
2403	sbinfo->free_inodes = config.max_inodes - inodes;
2404
2405	mpol_put(sbinfo->mpol);
2406	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2407out:
2408	spin_unlock(&sbinfo->stat_lock);
2409	return error;
2410}
2411
2412static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2413{
2414	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2415
2416	if (sbinfo->max_blocks != shmem_default_max_blocks())
2417		seq_printf(seq, ",size=%luk",
2418			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2419	if (sbinfo->max_inodes != shmem_default_max_inodes())
2420		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2421	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2422		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2423	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2424		seq_printf(seq, ",uid=%u",
2425				from_kuid_munged(&init_user_ns, sbinfo->uid));
2426	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2427		seq_printf(seq, ",gid=%u",
2428				from_kgid_munged(&init_user_ns, sbinfo->gid));
2429	shmem_show_mpol(seq, sbinfo->mpol);
2430	return 0;
2431}
2432#endif /* CONFIG_TMPFS */
2433
2434static void shmem_put_super(struct super_block *sb)
2435{
2436	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2437
2438	percpu_counter_destroy(&sbinfo->used_blocks);
2439	kfree(sbinfo);
2440	sb->s_fs_info = NULL;
2441}
2442
2443int shmem_fill_super(struct super_block *sb, void *data, int silent)
2444{
2445	struct inode *inode;
2446	struct shmem_sb_info *sbinfo;
2447	int err = -ENOMEM;
2448
2449	/* Round up to L1_CACHE_BYTES to resist false sharing */
2450	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2451				L1_CACHE_BYTES), GFP_KERNEL);
2452	if (!sbinfo)
2453		return -ENOMEM;
2454
2455	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2456	sbinfo->uid = current_fsuid();
2457	sbinfo->gid = current_fsgid();
2458	sb->s_fs_info = sbinfo;
2459
2460#ifdef CONFIG_TMPFS
2461	/*
2462	 * Per default we only allow half of the physical ram per
2463	 * tmpfs instance, limiting inodes to one per page of lowmem;
2464	 * but the internal instance is left unlimited.
2465	 */
2466	if (!(sb->s_flags & MS_NOUSER)) {
2467		sbinfo->max_blocks = shmem_default_max_blocks();
2468		sbinfo->max_inodes = shmem_default_max_inodes();
2469		if (shmem_parse_options(data, sbinfo, false)) {
2470			err = -EINVAL;
2471			goto failed;
2472		}
2473	}
2474	sb->s_export_op = &shmem_export_ops;
2475	sb->s_flags |= MS_NOSEC;
2476#else
2477	sb->s_flags |= MS_NOUSER;
2478#endif
2479
2480	spin_lock_init(&sbinfo->stat_lock);
2481	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2482		goto failed;
2483	sbinfo->free_inodes = sbinfo->max_inodes;
2484
2485	sb->s_maxbytes = MAX_LFS_FILESIZE;
2486	sb->s_blocksize = PAGE_CACHE_SIZE;
2487	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2488	sb->s_magic = TMPFS_MAGIC;
2489	sb->s_op = &shmem_ops;
2490	sb->s_time_gran = 1;
2491#ifdef CONFIG_TMPFS_XATTR
2492	sb->s_xattr = shmem_xattr_handlers;
2493#endif
2494#ifdef CONFIG_TMPFS_POSIX_ACL
2495	sb->s_flags |= MS_POSIXACL;
2496#endif
2497
2498	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2499	if (!inode)
2500		goto failed;
2501	inode->i_uid = sbinfo->uid;
2502	inode->i_gid = sbinfo->gid;
2503	sb->s_root = d_make_root(inode);
2504	if (!sb->s_root)
2505		goto failed;
2506	return 0;
2507
2508failed:
2509	shmem_put_super(sb);
2510	return err;
2511}
2512
2513static struct kmem_cache *shmem_inode_cachep;
2514
2515static struct inode *shmem_alloc_inode(struct super_block *sb)
2516{
2517	struct shmem_inode_info *info;
2518	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2519	if (!info)
2520		return NULL;
2521	return &info->vfs_inode;
2522}
2523
2524static void shmem_destroy_callback(struct rcu_head *head)
2525{
2526	struct inode *inode = container_of(head, struct inode, i_rcu);
2527	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2528}
2529
2530static void shmem_destroy_inode(struct inode *inode)
2531{
2532	if (S_ISREG(inode->i_mode))
2533		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2534	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2535}
2536
2537static void shmem_init_inode(void *foo)
2538{
2539	struct shmem_inode_info *info = foo;
2540	inode_init_once(&info->vfs_inode);
2541}
2542
2543static int shmem_init_inodecache(void)
2544{
2545	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2546				sizeof(struct shmem_inode_info),
2547				0, SLAB_PANIC, shmem_init_inode);
2548	return 0;
2549}
2550
2551static void shmem_destroy_inodecache(void)
2552{
2553	kmem_cache_destroy(shmem_inode_cachep);
2554}
2555
2556static const struct address_space_operations shmem_aops = {
2557	.writepage	= shmem_writepage,
2558	.set_page_dirty	= __set_page_dirty_no_writeback,
2559#ifdef CONFIG_TMPFS
2560	.write_begin	= shmem_write_begin,
2561	.write_end	= shmem_write_end,
2562#endif
2563	.migratepage	= migrate_page,
2564	.error_remove_page = generic_error_remove_page,
2565};
2566
2567static const struct file_operations shmem_file_operations = {
2568	.mmap		= shmem_mmap,
2569#ifdef CONFIG_TMPFS
2570	.llseek		= generic_file_llseek,
2571	.read		= do_sync_read,
2572	.write		= do_sync_write,
2573	.aio_read	= shmem_file_aio_read,
2574	.aio_write	= generic_file_aio_write,
2575	.fsync		= noop_fsync,
2576	.splice_read	= shmem_file_splice_read,
2577	.splice_write	= generic_file_splice_write,
2578	.fallocate	= shmem_fallocate,
2579#endif
2580};
2581
2582static const struct inode_operations shmem_inode_operations = {
2583	.setattr	= shmem_setattr,
2584#ifdef CONFIG_TMPFS_XATTR
2585	.setxattr	= shmem_setxattr,
2586	.getxattr	= shmem_getxattr,
2587	.listxattr	= shmem_listxattr,
2588	.removexattr	= shmem_removexattr,
2589#endif
2590};
2591
2592static const struct inode_operations shmem_dir_inode_operations = {
2593#ifdef CONFIG_TMPFS
2594	.create		= shmem_create,
2595	.lookup		= simple_lookup,
2596	.link		= shmem_link,
2597	.unlink		= shmem_unlink,
2598	.symlink	= shmem_symlink,
2599	.mkdir		= shmem_mkdir,
2600	.rmdir		= shmem_rmdir,
2601	.mknod		= shmem_mknod,
2602	.rename		= shmem_rename,
2603#endif
2604#ifdef CONFIG_TMPFS_XATTR
2605	.setxattr	= shmem_setxattr,
2606	.getxattr	= shmem_getxattr,
2607	.listxattr	= shmem_listxattr,
2608	.removexattr	= shmem_removexattr,
2609#endif
2610#ifdef CONFIG_TMPFS_POSIX_ACL
2611	.setattr	= shmem_setattr,
2612#endif
2613};
2614
2615static const struct inode_operations shmem_special_inode_operations = {
2616#ifdef CONFIG_TMPFS_XATTR
2617	.setxattr	= shmem_setxattr,
2618	.getxattr	= shmem_getxattr,
2619	.listxattr	= shmem_listxattr,
2620	.removexattr	= shmem_removexattr,
2621#endif
2622#ifdef CONFIG_TMPFS_POSIX_ACL
2623	.setattr	= shmem_setattr,
2624#endif
2625};
2626
2627static const struct super_operations shmem_ops = {
2628	.alloc_inode	= shmem_alloc_inode,
2629	.destroy_inode	= shmem_destroy_inode,
2630#ifdef CONFIG_TMPFS
2631	.statfs		= shmem_statfs,
2632	.remount_fs	= shmem_remount_fs,
2633	.show_options	= shmem_show_options,
2634#endif
2635	.evict_inode	= shmem_evict_inode,
2636	.drop_inode	= generic_delete_inode,
2637	.put_super	= shmem_put_super,
2638};
2639
2640static const struct vm_operations_struct shmem_vm_ops = {
2641	.fault		= shmem_fault,
2642#ifdef CONFIG_NUMA
2643	.set_policy     = shmem_set_policy,
2644	.get_policy     = shmem_get_policy,
2645#endif
2646};
2647
2648static struct dentry *shmem_mount(struct file_system_type *fs_type,
2649	int flags, const char *dev_name, void *data)
2650{
2651	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2652}
2653
2654static struct file_system_type shmem_fs_type = {
2655	.owner		= THIS_MODULE,
2656	.name		= "tmpfs",
2657	.mount		= shmem_mount,
2658	.kill_sb	= kill_litter_super,
2659};
2660
2661int __init shmem_init(void)
2662{
2663	int error;
2664
2665	error = bdi_init(&shmem_backing_dev_info);
2666	if (error)
2667		goto out4;
2668
2669	error = shmem_init_inodecache();
2670	if (error)
2671		goto out3;
2672
2673	error = register_filesystem(&shmem_fs_type);
2674	if (error) {
2675		printk(KERN_ERR "Could not register tmpfs\n");
2676		goto out2;
2677	}
2678
2679	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2680				 shmem_fs_type.name, NULL);
2681	if (IS_ERR(shm_mnt)) {
2682		error = PTR_ERR(shm_mnt);
2683		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2684		goto out1;
2685	}
2686	return 0;
2687
2688out1:
2689	unregister_filesystem(&shmem_fs_type);
2690out2:
2691	shmem_destroy_inodecache();
2692out3:
2693	bdi_destroy(&shmem_backing_dev_info);
2694out4:
2695	shm_mnt = ERR_PTR(error);
2696	return error;
2697}
2698
2699#else /* !CONFIG_SHMEM */
2700
2701/*
2702 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2703 *
2704 * This is intended for small system where the benefits of the full
2705 * shmem code (swap-backed and resource-limited) are outweighed by
2706 * their complexity. On systems without swap this code should be
2707 * effectively equivalent, but much lighter weight.
2708 */
2709
2710#include <linux/ramfs.h>
2711
2712static struct file_system_type shmem_fs_type = {
2713	.name		= "tmpfs",
2714	.mount		= ramfs_mount,
2715	.kill_sb	= kill_litter_super,
2716};
2717
2718int __init shmem_init(void)
2719{
2720	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2721
2722	shm_mnt = kern_mount(&shmem_fs_type);
2723	BUG_ON(IS_ERR(shm_mnt));
2724
2725	return 0;
2726}
2727
2728int shmem_unuse(swp_entry_t swap, struct page *page)
2729{
2730	return 0;
2731}
2732
2733int shmem_lock(struct file *file, int lock, struct user_struct *user)
2734{
2735	return 0;
2736}
2737
2738void shmem_unlock_mapping(struct address_space *mapping)
2739{
2740}
2741
2742void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2743{
2744	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2745}
2746EXPORT_SYMBOL_GPL(shmem_truncate_range);
2747
2748#define shmem_vm_ops				generic_file_vm_ops
2749#define shmem_file_operations			ramfs_file_operations
2750#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2751#define shmem_acct_size(flags, size)		0
2752#define shmem_unacct_size(flags, size)		do {} while (0)
2753
2754#endif /* CONFIG_SHMEM */
2755
2756/* common code */
2757
2758/**
2759 * shmem_file_setup - get an unlinked file living in tmpfs
2760 * @name: name for dentry (to be seen in /proc/<pid>/maps
2761 * @size: size to be set for the file
2762 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2763 */
2764struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2765{
2766	int error;
2767	struct file *file;
2768	struct inode *inode;
2769	struct path path;
2770	struct dentry *root;
2771	struct qstr this;
2772
2773	if (IS_ERR(shm_mnt))
2774		return (void *)shm_mnt;
2775
2776	if (size < 0 || size > MAX_LFS_FILESIZE)
2777		return ERR_PTR(-EINVAL);
2778
2779	if (shmem_acct_size(flags, size))
2780		return ERR_PTR(-ENOMEM);
2781
2782	error = -ENOMEM;
2783	this.name = name;
2784	this.len = strlen(name);
2785	this.hash = 0; /* will go */
2786	root = shm_mnt->mnt_root;
2787	path.dentry = d_alloc(root, &this);
2788	if (!path.dentry)
2789		goto put_memory;
2790	path.mnt = mntget(shm_mnt);
2791
2792	error = -ENOSPC;
2793	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2794	if (!inode)
2795		goto put_dentry;
2796
2797	d_instantiate(path.dentry, inode);
2798	inode->i_size = size;
2799	clear_nlink(inode);	/* It is unlinked */
2800#ifndef CONFIG_MMU
2801	error = ramfs_nommu_expand_for_mapping(inode, size);
2802	if (error)
2803		goto put_dentry;
2804#endif
2805
2806	error = -ENFILE;
2807	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2808		  &shmem_file_operations);
2809	if (!file)
2810		goto put_dentry;
2811
2812	return file;
2813
2814put_dentry:
2815	path_put(&path);
2816put_memory:
2817	shmem_unacct_size(flags, size);
2818	return ERR_PTR(error);
2819}
2820EXPORT_SYMBOL_GPL(shmem_file_setup);
2821
2822/**
2823 * shmem_zero_setup - setup a shared anonymous mapping
2824 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2825 */
2826int shmem_zero_setup(struct vm_area_struct *vma)
2827{
2828	struct file *file;
2829	loff_t size = vma->vm_end - vma->vm_start;
2830
2831	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2832	if (IS_ERR(file))
2833		return PTR_ERR(file);
2834
2835	if (vma->vm_file)
2836		fput(vma->vm_file);
2837	vma->vm_file = file;
2838	vma->vm_ops = &shmem_vm_ops;
2839	vma->vm_flags |= VM_CAN_NONLINEAR;
2840	return 0;
2841}
2842
2843/**
2844 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2845 * @mapping:	the page's address_space
2846 * @index:	the page index
2847 * @gfp:	the page allocator flags to use if allocating
2848 *
2849 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2850 * with any new page allocations done using the specified allocation flags.
2851 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2852 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2853 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2854 *
2855 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2856 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2857 */
2858struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2859					 pgoff_t index, gfp_t gfp)
2860{
2861#ifdef CONFIG_SHMEM
2862	struct inode *inode = mapping->host;
2863	struct page *page;
2864	int error;
2865
2866	BUG_ON(mapping->a_ops != &shmem_aops);
2867	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2868	if (error)
2869		page = ERR_PTR(error);
2870	else
2871		unlock_page(page);
2872	return page;
2873#else
2874	/*
2875	 * The tiny !SHMEM case uses ramfs without swap
2876	 */
2877	return read_cache_page_gfp(mapping, index, gfp);
2878#endif
2879}
2880EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2881