shmem.c revision 3fcfab16c5b86eaa3db3a9a31adba550c5b67141
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/generic_acl.h>
31#include <linux/mm.h>
32#include <linux/mman.h>
33#include <linux/file.h>
34#include <linux/swap.h>
35#include <linux/pagemap.h>
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/backing-dev.h>
39#include <linux/shmem_fs.h>
40#include <linux/mount.h>
41#include <linux/writeback.h>
42#include <linux/vfs.h>
43#include <linux/blkdev.h>
44#include <linux/security.h>
45#include <linux/swapops.h>
46#include <linux/mempolicy.h>
47#include <linux/namei.h>
48#include <linux/ctype.h>
49#include <linux/migrate.h>
50#include <linux/highmem.h>
51#include <linux/backing-dev.h>
52
53#include <asm/uaccess.h>
54#include <asm/div64.h>
55#include <asm/pgtable.h>
56
57/* This magic number is used in glibc for posix shared memory */
58#define TMPFS_MAGIC	0x01021994
59
60#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70#define SHMEM_PAGEIN	 VM_READ
71#define SHMEM_TRUNCATE	 VM_WRITE
72
73/* Definition to limit shmem_truncate's steps between cond_rescheds */
74#define LATENCY_LIMIT	 64
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80enum sgp_type {
81	SGP_QUICK,	/* don't try more than file page cache lookup */
82	SGP_READ,	/* don't exceed i_size, don't allocate page */
83	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84	SGP_WRITE,	/* may exceed i_size, may allocate page */
85};
86
87static int shmem_getpage(struct inode *inode, unsigned long idx,
88			 struct page **pagep, enum sgp_type sgp, int *type);
89
90static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91{
92	/*
93	 * The above definition of ENTRIES_PER_PAGE, and the use of
94	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95	 * might be reconsidered if it ever diverges from PAGE_SIZE.
96	 */
97	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
98}
99
100static inline void shmem_dir_free(struct page *page)
101{
102	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
103}
104
105static struct page **shmem_dir_map(struct page *page)
106{
107	return (struct page **)kmap_atomic(page, KM_USER0);
108}
109
110static inline void shmem_dir_unmap(struct page **dir)
111{
112	kunmap_atomic(dir, KM_USER0);
113}
114
115static swp_entry_t *shmem_swp_map(struct page *page)
116{
117	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
118}
119
120static inline void shmem_swp_balance_unmap(void)
121{
122	/*
123	 * When passing a pointer to an i_direct entry, to code which
124	 * also handles indirect entries and so will shmem_swp_unmap,
125	 * we must arrange for the preempt count to remain in balance.
126	 * What kmap_atomic of a lowmem page does depends on config
127	 * and architecture, so pretend to kmap_atomic some lowmem page.
128	 */
129	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
130}
131
132static inline void shmem_swp_unmap(swp_entry_t *entry)
133{
134	kunmap_atomic(entry, KM_USER1);
135}
136
137static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
138{
139	return sb->s_fs_info;
140}
141
142/*
143 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
144 * for shared memory and for shared anonymous (/dev/zero) mappings
145 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
146 * consistent with the pre-accounting of private mappings ...
147 */
148static inline int shmem_acct_size(unsigned long flags, loff_t size)
149{
150	return (flags & VM_ACCOUNT)?
151		security_vm_enough_memory(VM_ACCT(size)): 0;
152}
153
154static inline void shmem_unacct_size(unsigned long flags, loff_t size)
155{
156	if (flags & VM_ACCOUNT)
157		vm_unacct_memory(VM_ACCT(size));
158}
159
160/*
161 * ... whereas tmpfs objects are accounted incrementally as
162 * pages are allocated, in order to allow huge sparse files.
163 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
164 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
165 */
166static inline int shmem_acct_block(unsigned long flags)
167{
168	return (flags & VM_ACCOUNT)?
169		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
170}
171
172static inline void shmem_unacct_blocks(unsigned long flags, long pages)
173{
174	if (!(flags & VM_ACCOUNT))
175		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
176}
177
178static struct super_operations shmem_ops;
179static const struct address_space_operations shmem_aops;
180static struct file_operations shmem_file_operations;
181static struct inode_operations shmem_inode_operations;
182static struct inode_operations shmem_dir_inode_operations;
183static struct inode_operations shmem_special_inode_operations;
184static struct vm_operations_struct shmem_vm_ops;
185
186static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
187	.ra_pages	= 0,	/* No readahead */
188	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
189	.unplug_io_fn	= default_unplug_io_fn,
190};
191
192static LIST_HEAD(shmem_swaplist);
193static DEFINE_SPINLOCK(shmem_swaplist_lock);
194
195static void shmem_free_blocks(struct inode *inode, long pages)
196{
197	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
198	if (sbinfo->max_blocks) {
199		spin_lock(&sbinfo->stat_lock);
200		sbinfo->free_blocks += pages;
201		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
202		spin_unlock(&sbinfo->stat_lock);
203	}
204}
205
206/*
207 * shmem_recalc_inode - recalculate the size of an inode
208 *
209 * @inode: inode to recalc
210 *
211 * We have to calculate the free blocks since the mm can drop
212 * undirtied hole pages behind our back.
213 *
214 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
215 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
216 *
217 * It has to be called with the spinlock held.
218 */
219static void shmem_recalc_inode(struct inode *inode)
220{
221	struct shmem_inode_info *info = SHMEM_I(inode);
222	long freed;
223
224	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
225	if (freed > 0) {
226		info->alloced -= freed;
227		shmem_unacct_blocks(info->flags, freed);
228		shmem_free_blocks(inode, freed);
229	}
230}
231
232/*
233 * shmem_swp_entry - find the swap vector position in the info structure
234 *
235 * @info:  info structure for the inode
236 * @index: index of the page to find
237 * @page:  optional page to add to the structure. Has to be preset to
238 *         all zeros
239 *
240 * If there is no space allocated yet it will return NULL when
241 * page is NULL, else it will use the page for the needed block,
242 * setting it to NULL on return to indicate that it has been used.
243 *
244 * The swap vector is organized the following way:
245 *
246 * There are SHMEM_NR_DIRECT entries directly stored in the
247 * shmem_inode_info structure. So small files do not need an addional
248 * allocation.
249 *
250 * For pages with index > SHMEM_NR_DIRECT there is the pointer
251 * i_indirect which points to a page which holds in the first half
252 * doubly indirect blocks, in the second half triple indirect blocks:
253 *
254 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
255 * following layout (for SHMEM_NR_DIRECT == 16):
256 *
257 * i_indirect -> dir --> 16-19
258 * 	      |	     +-> 20-23
259 * 	      |
260 * 	      +-->dir2 --> 24-27
261 * 	      |	       +-> 28-31
262 * 	      |	       +-> 32-35
263 * 	      |	       +-> 36-39
264 * 	      |
265 * 	      +-->dir3 --> 40-43
266 * 	       	       +-> 44-47
267 * 	      	       +-> 48-51
268 * 	      	       +-> 52-55
269 */
270static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
271{
272	unsigned long offset;
273	struct page **dir;
274	struct page *subdir;
275
276	if (index < SHMEM_NR_DIRECT) {
277		shmem_swp_balance_unmap();
278		return info->i_direct+index;
279	}
280	if (!info->i_indirect) {
281		if (page) {
282			info->i_indirect = *page;
283			*page = NULL;
284		}
285		return NULL;			/* need another page */
286	}
287
288	index -= SHMEM_NR_DIRECT;
289	offset = index % ENTRIES_PER_PAGE;
290	index /= ENTRIES_PER_PAGE;
291	dir = shmem_dir_map(info->i_indirect);
292
293	if (index >= ENTRIES_PER_PAGE/2) {
294		index -= ENTRIES_PER_PAGE/2;
295		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
296		index %= ENTRIES_PER_PAGE;
297		subdir = *dir;
298		if (!subdir) {
299			if (page) {
300				*dir = *page;
301				*page = NULL;
302			}
303			shmem_dir_unmap(dir);
304			return NULL;		/* need another page */
305		}
306		shmem_dir_unmap(dir);
307		dir = shmem_dir_map(subdir);
308	}
309
310	dir += index;
311	subdir = *dir;
312	if (!subdir) {
313		if (!page || !(subdir = *page)) {
314			shmem_dir_unmap(dir);
315			return NULL;		/* need a page */
316		}
317		*dir = subdir;
318		*page = NULL;
319	}
320	shmem_dir_unmap(dir);
321	return shmem_swp_map(subdir) + offset;
322}
323
324static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
325{
326	long incdec = value? 1: -1;
327
328	entry->val = value;
329	info->swapped += incdec;
330	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
331		struct page *page = kmap_atomic_to_page(entry);
332		set_page_private(page, page_private(page) + incdec);
333	}
334}
335
336/*
337 * shmem_swp_alloc - get the position of the swap entry for the page.
338 *                   If it does not exist allocate the entry.
339 *
340 * @info:	info structure for the inode
341 * @index:	index of the page to find
342 * @sgp:	check and recheck i_size? skip allocation?
343 */
344static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
345{
346	struct inode *inode = &info->vfs_inode;
347	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
348	struct page *page = NULL;
349	swp_entry_t *entry;
350
351	if (sgp != SGP_WRITE &&
352	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
353		return ERR_PTR(-EINVAL);
354
355	while (!(entry = shmem_swp_entry(info, index, &page))) {
356		if (sgp == SGP_READ)
357			return shmem_swp_map(ZERO_PAGE(0));
358		/*
359		 * Test free_blocks against 1 not 0, since we have 1 data
360		 * page (and perhaps indirect index pages) yet to allocate:
361		 * a waste to allocate index if we cannot allocate data.
362		 */
363		if (sbinfo->max_blocks) {
364			spin_lock(&sbinfo->stat_lock);
365			if (sbinfo->free_blocks <= 1) {
366				spin_unlock(&sbinfo->stat_lock);
367				return ERR_PTR(-ENOSPC);
368			}
369			sbinfo->free_blocks--;
370			inode->i_blocks += BLOCKS_PER_PAGE;
371			spin_unlock(&sbinfo->stat_lock);
372		}
373
374		spin_unlock(&info->lock);
375		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
376		if (page)
377			set_page_private(page, 0);
378		spin_lock(&info->lock);
379
380		if (!page) {
381			shmem_free_blocks(inode, 1);
382			return ERR_PTR(-ENOMEM);
383		}
384		if (sgp != SGP_WRITE &&
385		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
386			entry = ERR_PTR(-EINVAL);
387			break;
388		}
389		if (info->next_index <= index)
390			info->next_index = index + 1;
391	}
392	if (page) {
393		/* another task gave its page, or truncated the file */
394		shmem_free_blocks(inode, 1);
395		shmem_dir_free(page);
396	}
397	if (info->next_index <= index && !IS_ERR(entry))
398		info->next_index = index + 1;
399	return entry;
400}
401
402/*
403 * shmem_free_swp - free some swap entries in a directory
404 *
405 * @dir:   pointer to the directory
406 * @edir:  pointer after last entry of the directory
407 */
408static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
409{
410	swp_entry_t *ptr;
411	int freed = 0;
412
413	for (ptr = dir; ptr < edir; ptr++) {
414		if (ptr->val) {
415			free_swap_and_cache(*ptr);
416			*ptr = (swp_entry_t){0};
417			freed++;
418		}
419	}
420	return freed;
421}
422
423static int shmem_map_and_free_swp(struct page *subdir,
424		int offset, int limit, struct page ***dir)
425{
426	swp_entry_t *ptr;
427	int freed = 0;
428
429	ptr = shmem_swp_map(subdir);
430	for (; offset < limit; offset += LATENCY_LIMIT) {
431		int size = limit - offset;
432		if (size > LATENCY_LIMIT)
433			size = LATENCY_LIMIT;
434		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
435		if (need_resched()) {
436			shmem_swp_unmap(ptr);
437			if (*dir) {
438				shmem_dir_unmap(*dir);
439				*dir = NULL;
440			}
441			cond_resched();
442			ptr = shmem_swp_map(subdir);
443		}
444	}
445	shmem_swp_unmap(ptr);
446	return freed;
447}
448
449static void shmem_free_pages(struct list_head *next)
450{
451	struct page *page;
452	int freed = 0;
453
454	do {
455		page = container_of(next, struct page, lru);
456		next = next->next;
457		shmem_dir_free(page);
458		freed++;
459		if (freed >= LATENCY_LIMIT) {
460			cond_resched();
461			freed = 0;
462		}
463	} while (next);
464}
465
466static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
467{
468	struct shmem_inode_info *info = SHMEM_I(inode);
469	unsigned long idx;
470	unsigned long size;
471	unsigned long limit;
472	unsigned long stage;
473	unsigned long diroff;
474	struct page **dir;
475	struct page *topdir;
476	struct page *middir;
477	struct page *subdir;
478	swp_entry_t *ptr;
479	LIST_HEAD(pages_to_free);
480	long nr_pages_to_free = 0;
481	long nr_swaps_freed = 0;
482	int offset;
483	int freed;
484	int punch_hole = 0;
485
486	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
487	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
488	if (idx >= info->next_index)
489		return;
490
491	spin_lock(&info->lock);
492	info->flags |= SHMEM_TRUNCATE;
493	if (likely(end == (loff_t) -1)) {
494		limit = info->next_index;
495		info->next_index = idx;
496	} else {
497		limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
498		if (limit > info->next_index)
499			limit = info->next_index;
500		punch_hole = 1;
501	}
502
503	topdir = info->i_indirect;
504	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
505		info->i_indirect = NULL;
506		nr_pages_to_free++;
507		list_add(&topdir->lru, &pages_to_free);
508	}
509	spin_unlock(&info->lock);
510
511	if (info->swapped && idx < SHMEM_NR_DIRECT) {
512		ptr = info->i_direct;
513		size = limit;
514		if (size > SHMEM_NR_DIRECT)
515			size = SHMEM_NR_DIRECT;
516		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
517	}
518	if (!topdir)
519		goto done2;
520
521	BUG_ON(limit <= SHMEM_NR_DIRECT);
522	limit -= SHMEM_NR_DIRECT;
523	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
524	offset = idx % ENTRIES_PER_PAGE;
525	idx -= offset;
526
527	dir = shmem_dir_map(topdir);
528	stage = ENTRIES_PER_PAGEPAGE/2;
529	if (idx < ENTRIES_PER_PAGEPAGE/2) {
530		middir = topdir;
531		diroff = idx/ENTRIES_PER_PAGE;
532	} else {
533		dir += ENTRIES_PER_PAGE/2;
534		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
535		while (stage <= idx)
536			stage += ENTRIES_PER_PAGEPAGE;
537		middir = *dir;
538		if (*dir) {
539			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
540				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
541			if (!diroff && !offset) {
542				*dir = NULL;
543				nr_pages_to_free++;
544				list_add(&middir->lru, &pages_to_free);
545			}
546			shmem_dir_unmap(dir);
547			dir = shmem_dir_map(middir);
548		} else {
549			diroff = 0;
550			offset = 0;
551			idx = stage;
552		}
553	}
554
555	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
556		if (unlikely(idx == stage)) {
557			shmem_dir_unmap(dir);
558			dir = shmem_dir_map(topdir) +
559			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
560			while (!*dir) {
561				dir++;
562				idx += ENTRIES_PER_PAGEPAGE;
563				if (idx >= limit)
564					goto done1;
565			}
566			stage = idx + ENTRIES_PER_PAGEPAGE;
567			middir = *dir;
568			*dir = NULL;
569			nr_pages_to_free++;
570			list_add(&middir->lru, &pages_to_free);
571			shmem_dir_unmap(dir);
572			cond_resched();
573			dir = shmem_dir_map(middir);
574			diroff = 0;
575		}
576		subdir = dir[diroff];
577		if (subdir && page_private(subdir)) {
578			size = limit - idx;
579			if (size > ENTRIES_PER_PAGE)
580				size = ENTRIES_PER_PAGE;
581			freed = shmem_map_and_free_swp(subdir,
582						offset, size, &dir);
583			if (!dir)
584				dir = shmem_dir_map(middir);
585			nr_swaps_freed += freed;
586			if (offset)
587				spin_lock(&info->lock);
588			set_page_private(subdir, page_private(subdir) - freed);
589			if (offset)
590				spin_unlock(&info->lock);
591			if (!punch_hole)
592				BUG_ON(page_private(subdir) > offset);
593		}
594		if (offset)
595			offset = 0;
596		else if (subdir && !page_private(subdir)) {
597			dir[diroff] = NULL;
598			nr_pages_to_free++;
599			list_add(&subdir->lru, &pages_to_free);
600		}
601	}
602done1:
603	shmem_dir_unmap(dir);
604done2:
605	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
606		/*
607		 * Call truncate_inode_pages again: racing shmem_unuse_inode
608		 * may have swizzled a page in from swap since vmtruncate or
609		 * generic_delete_inode did it, before we lowered next_index.
610		 * Also, though shmem_getpage checks i_size before adding to
611		 * cache, no recheck after: so fix the narrow window there too.
612		 */
613		truncate_inode_pages_range(inode->i_mapping, start, end);
614	}
615
616	spin_lock(&info->lock);
617	info->flags &= ~SHMEM_TRUNCATE;
618	info->swapped -= nr_swaps_freed;
619	if (nr_pages_to_free)
620		shmem_free_blocks(inode, nr_pages_to_free);
621	shmem_recalc_inode(inode);
622	spin_unlock(&info->lock);
623
624	/*
625	 * Empty swap vector directory pages to be freed?
626	 */
627	if (!list_empty(&pages_to_free)) {
628		pages_to_free.prev->next = NULL;
629		shmem_free_pages(pages_to_free.next);
630	}
631}
632
633static void shmem_truncate(struct inode *inode)
634{
635	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
636}
637
638static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
639{
640	struct inode *inode = dentry->d_inode;
641	struct page *page = NULL;
642	int error;
643
644	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
645		if (attr->ia_size < inode->i_size) {
646			/*
647			 * If truncating down to a partial page, then
648			 * if that page is already allocated, hold it
649			 * in memory until the truncation is over, so
650			 * truncate_partial_page cannnot miss it were
651			 * it assigned to swap.
652			 */
653			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
654				(void) shmem_getpage(inode,
655					attr->ia_size>>PAGE_CACHE_SHIFT,
656						&page, SGP_READ, NULL);
657			}
658			/*
659			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
660			 * detect if any pages might have been added to cache
661			 * after truncate_inode_pages.  But we needn't bother
662			 * if it's being fully truncated to zero-length: the
663			 * nrpages check is efficient enough in that case.
664			 */
665			if (attr->ia_size) {
666				struct shmem_inode_info *info = SHMEM_I(inode);
667				spin_lock(&info->lock);
668				info->flags &= ~SHMEM_PAGEIN;
669				spin_unlock(&info->lock);
670			}
671		}
672	}
673
674	error = inode_change_ok(inode, attr);
675	if (!error)
676		error = inode_setattr(inode, attr);
677#ifdef CONFIG_TMPFS_POSIX_ACL
678	if (!error && (attr->ia_valid & ATTR_MODE))
679		error = generic_acl_chmod(inode, &shmem_acl_ops);
680#endif
681	if (page)
682		page_cache_release(page);
683	return error;
684}
685
686static void shmem_delete_inode(struct inode *inode)
687{
688	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
689	struct shmem_inode_info *info = SHMEM_I(inode);
690
691	if (inode->i_op->truncate == shmem_truncate) {
692		truncate_inode_pages(inode->i_mapping, 0);
693		shmem_unacct_size(info->flags, inode->i_size);
694		inode->i_size = 0;
695		shmem_truncate(inode);
696		if (!list_empty(&info->swaplist)) {
697			spin_lock(&shmem_swaplist_lock);
698			list_del_init(&info->swaplist);
699			spin_unlock(&shmem_swaplist_lock);
700		}
701	}
702	BUG_ON(inode->i_blocks);
703	if (sbinfo->max_inodes) {
704		spin_lock(&sbinfo->stat_lock);
705		sbinfo->free_inodes++;
706		spin_unlock(&sbinfo->stat_lock);
707	}
708	clear_inode(inode);
709}
710
711static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
712{
713	swp_entry_t *ptr;
714
715	for (ptr = dir; ptr < edir; ptr++) {
716		if (ptr->val == entry.val)
717			return ptr - dir;
718	}
719	return -1;
720}
721
722static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
723{
724	struct inode *inode;
725	unsigned long idx;
726	unsigned long size;
727	unsigned long limit;
728	unsigned long stage;
729	struct page **dir;
730	struct page *subdir;
731	swp_entry_t *ptr;
732	int offset;
733
734	idx = 0;
735	ptr = info->i_direct;
736	spin_lock(&info->lock);
737	limit = info->next_index;
738	size = limit;
739	if (size > SHMEM_NR_DIRECT)
740		size = SHMEM_NR_DIRECT;
741	offset = shmem_find_swp(entry, ptr, ptr+size);
742	if (offset >= 0) {
743		shmem_swp_balance_unmap();
744		goto found;
745	}
746	if (!info->i_indirect)
747		goto lost2;
748
749	dir = shmem_dir_map(info->i_indirect);
750	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
751
752	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
753		if (unlikely(idx == stage)) {
754			shmem_dir_unmap(dir-1);
755			dir = shmem_dir_map(info->i_indirect) +
756			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
757			while (!*dir) {
758				dir++;
759				idx += ENTRIES_PER_PAGEPAGE;
760				if (idx >= limit)
761					goto lost1;
762			}
763			stage = idx + ENTRIES_PER_PAGEPAGE;
764			subdir = *dir;
765			shmem_dir_unmap(dir);
766			dir = shmem_dir_map(subdir);
767		}
768		subdir = *dir;
769		if (subdir && page_private(subdir)) {
770			ptr = shmem_swp_map(subdir);
771			size = limit - idx;
772			if (size > ENTRIES_PER_PAGE)
773				size = ENTRIES_PER_PAGE;
774			offset = shmem_find_swp(entry, ptr, ptr+size);
775			if (offset >= 0) {
776				shmem_dir_unmap(dir);
777				goto found;
778			}
779			shmem_swp_unmap(ptr);
780		}
781	}
782lost1:
783	shmem_dir_unmap(dir-1);
784lost2:
785	spin_unlock(&info->lock);
786	return 0;
787found:
788	idx += offset;
789	inode = &info->vfs_inode;
790	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
791		info->flags |= SHMEM_PAGEIN;
792		shmem_swp_set(info, ptr + offset, 0);
793	}
794	shmem_swp_unmap(ptr);
795	spin_unlock(&info->lock);
796	/*
797	 * Decrement swap count even when the entry is left behind:
798	 * try_to_unuse will skip over mms, then reincrement count.
799	 */
800	swap_free(entry);
801	return 1;
802}
803
804/*
805 * shmem_unuse() search for an eventually swapped out shmem page.
806 */
807int shmem_unuse(swp_entry_t entry, struct page *page)
808{
809	struct list_head *p, *next;
810	struct shmem_inode_info *info;
811	int found = 0;
812
813	spin_lock(&shmem_swaplist_lock);
814	list_for_each_safe(p, next, &shmem_swaplist) {
815		info = list_entry(p, struct shmem_inode_info, swaplist);
816		if (!info->swapped)
817			list_del_init(&info->swaplist);
818		else if (shmem_unuse_inode(info, entry, page)) {
819			/* move head to start search for next from here */
820			list_move_tail(&shmem_swaplist, &info->swaplist);
821			found = 1;
822			break;
823		}
824	}
825	spin_unlock(&shmem_swaplist_lock);
826	return found;
827}
828
829/*
830 * Move the page from the page cache to the swap cache.
831 */
832static int shmem_writepage(struct page *page, struct writeback_control *wbc)
833{
834	struct shmem_inode_info *info;
835	swp_entry_t *entry, swap;
836	struct address_space *mapping;
837	unsigned long index;
838	struct inode *inode;
839
840	BUG_ON(!PageLocked(page));
841	BUG_ON(page_mapped(page));
842
843	mapping = page->mapping;
844	index = page->index;
845	inode = mapping->host;
846	info = SHMEM_I(inode);
847	if (info->flags & VM_LOCKED)
848		goto redirty;
849	swap = get_swap_page();
850	if (!swap.val)
851		goto redirty;
852
853	spin_lock(&info->lock);
854	shmem_recalc_inode(inode);
855	if (index >= info->next_index) {
856		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
857		goto unlock;
858	}
859	entry = shmem_swp_entry(info, index, NULL);
860	BUG_ON(!entry);
861	BUG_ON(entry->val);
862
863	if (move_to_swap_cache(page, swap) == 0) {
864		shmem_swp_set(info, entry, swap.val);
865		shmem_swp_unmap(entry);
866		spin_unlock(&info->lock);
867		if (list_empty(&info->swaplist)) {
868			spin_lock(&shmem_swaplist_lock);
869			/* move instead of add in case we're racing */
870			list_move_tail(&info->swaplist, &shmem_swaplist);
871			spin_unlock(&shmem_swaplist_lock);
872		}
873		unlock_page(page);
874		return 0;
875	}
876
877	shmem_swp_unmap(entry);
878unlock:
879	spin_unlock(&info->lock);
880	swap_free(swap);
881redirty:
882	set_page_dirty(page);
883	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
884}
885
886#ifdef CONFIG_NUMA
887static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
888{
889	char *nodelist = strchr(value, ':');
890	int err = 1;
891
892	if (nodelist) {
893		/* NUL-terminate policy string */
894		*nodelist++ = '\0';
895		if (nodelist_parse(nodelist, *policy_nodes))
896			goto out;
897	}
898	if (!strcmp(value, "default")) {
899		*policy = MPOL_DEFAULT;
900		/* Don't allow a nodelist */
901		if (!nodelist)
902			err = 0;
903	} else if (!strcmp(value, "prefer")) {
904		*policy = MPOL_PREFERRED;
905		/* Insist on a nodelist of one node only */
906		if (nodelist) {
907			char *rest = nodelist;
908			while (isdigit(*rest))
909				rest++;
910			if (!*rest)
911				err = 0;
912		}
913	} else if (!strcmp(value, "bind")) {
914		*policy = MPOL_BIND;
915		/* Insist on a nodelist */
916		if (nodelist)
917			err = 0;
918	} else if (!strcmp(value, "interleave")) {
919		*policy = MPOL_INTERLEAVE;
920		/* Default to nodes online if no nodelist */
921		if (!nodelist)
922			*policy_nodes = node_online_map;
923		err = 0;
924	}
925out:
926	/* Restore string for error message */
927	if (nodelist)
928		*--nodelist = ':';
929	return err;
930}
931
932static struct page *shmem_swapin_async(struct shared_policy *p,
933				       swp_entry_t entry, unsigned long idx)
934{
935	struct page *page;
936	struct vm_area_struct pvma;
937
938	/* Create a pseudo vma that just contains the policy */
939	memset(&pvma, 0, sizeof(struct vm_area_struct));
940	pvma.vm_end = PAGE_SIZE;
941	pvma.vm_pgoff = idx;
942	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
943	page = read_swap_cache_async(entry, &pvma, 0);
944	mpol_free(pvma.vm_policy);
945	return page;
946}
947
948struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
949			  unsigned long idx)
950{
951	struct shared_policy *p = &info->policy;
952	int i, num;
953	struct page *page;
954	unsigned long offset;
955
956	num = valid_swaphandles(entry, &offset);
957	for (i = 0; i < num; offset++, i++) {
958		page = shmem_swapin_async(p,
959				swp_entry(swp_type(entry), offset), idx);
960		if (!page)
961			break;
962		page_cache_release(page);
963	}
964	lru_add_drain();	/* Push any new pages onto the LRU now */
965	return shmem_swapin_async(p, entry, idx);
966}
967
968static struct page *
969shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
970		 unsigned long idx)
971{
972	struct vm_area_struct pvma;
973	struct page *page;
974
975	memset(&pvma, 0, sizeof(struct vm_area_struct));
976	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
977	pvma.vm_pgoff = idx;
978	pvma.vm_end = PAGE_SIZE;
979	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
980	mpol_free(pvma.vm_policy);
981	return page;
982}
983#else
984static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
985{
986	return 1;
987}
988
989static inline struct page *
990shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
991{
992	swapin_readahead(entry, 0, NULL);
993	return read_swap_cache_async(entry, NULL, 0);
994}
995
996static inline struct page *
997shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
998{
999	return alloc_page(gfp | __GFP_ZERO);
1000}
1001#endif
1002
1003/*
1004 * shmem_getpage - either get the page from swap or allocate a new one
1005 *
1006 * If we allocate a new one we do not mark it dirty. That's up to the
1007 * vm. If we swap it in we mark it dirty since we also free the swap
1008 * entry since a page cannot live in both the swap and page cache
1009 */
1010static int shmem_getpage(struct inode *inode, unsigned long idx,
1011			struct page **pagep, enum sgp_type sgp, int *type)
1012{
1013	struct address_space *mapping = inode->i_mapping;
1014	struct shmem_inode_info *info = SHMEM_I(inode);
1015	struct shmem_sb_info *sbinfo;
1016	struct page *filepage = *pagep;
1017	struct page *swappage;
1018	swp_entry_t *entry;
1019	swp_entry_t swap;
1020	int error;
1021
1022	if (idx >= SHMEM_MAX_INDEX)
1023		return -EFBIG;
1024	/*
1025	 * Normally, filepage is NULL on entry, and either found
1026	 * uptodate immediately, or allocated and zeroed, or read
1027	 * in under swappage, which is then assigned to filepage.
1028	 * But shmem_prepare_write passes in a locked filepage,
1029	 * which may be found not uptodate by other callers too,
1030	 * and may need to be copied from the swappage read in.
1031	 */
1032repeat:
1033	if (!filepage)
1034		filepage = find_lock_page(mapping, idx);
1035	if (filepage && PageUptodate(filepage))
1036		goto done;
1037	error = 0;
1038	if (sgp == SGP_QUICK)
1039		goto failed;
1040
1041	spin_lock(&info->lock);
1042	shmem_recalc_inode(inode);
1043	entry = shmem_swp_alloc(info, idx, sgp);
1044	if (IS_ERR(entry)) {
1045		spin_unlock(&info->lock);
1046		error = PTR_ERR(entry);
1047		goto failed;
1048	}
1049	swap = *entry;
1050
1051	if (swap.val) {
1052		/* Look it up and read it in.. */
1053		swappage = lookup_swap_cache(swap);
1054		if (!swappage) {
1055			shmem_swp_unmap(entry);
1056			/* here we actually do the io */
1057			if (type && *type == VM_FAULT_MINOR) {
1058				__count_vm_event(PGMAJFAULT);
1059				*type = VM_FAULT_MAJOR;
1060			}
1061			spin_unlock(&info->lock);
1062			swappage = shmem_swapin(info, swap, idx);
1063			if (!swappage) {
1064				spin_lock(&info->lock);
1065				entry = shmem_swp_alloc(info, idx, sgp);
1066				if (IS_ERR(entry))
1067					error = PTR_ERR(entry);
1068				else {
1069					if (entry->val == swap.val)
1070						error = -ENOMEM;
1071					shmem_swp_unmap(entry);
1072				}
1073				spin_unlock(&info->lock);
1074				if (error)
1075					goto failed;
1076				goto repeat;
1077			}
1078			wait_on_page_locked(swappage);
1079			page_cache_release(swappage);
1080			goto repeat;
1081		}
1082
1083		/* We have to do this with page locked to prevent races */
1084		if (TestSetPageLocked(swappage)) {
1085			shmem_swp_unmap(entry);
1086			spin_unlock(&info->lock);
1087			wait_on_page_locked(swappage);
1088			page_cache_release(swappage);
1089			goto repeat;
1090		}
1091		if (PageWriteback(swappage)) {
1092			shmem_swp_unmap(entry);
1093			spin_unlock(&info->lock);
1094			wait_on_page_writeback(swappage);
1095			unlock_page(swappage);
1096			page_cache_release(swappage);
1097			goto repeat;
1098		}
1099		if (!PageUptodate(swappage)) {
1100			shmem_swp_unmap(entry);
1101			spin_unlock(&info->lock);
1102			unlock_page(swappage);
1103			page_cache_release(swappage);
1104			error = -EIO;
1105			goto failed;
1106		}
1107
1108		if (filepage) {
1109			shmem_swp_set(info, entry, 0);
1110			shmem_swp_unmap(entry);
1111			delete_from_swap_cache(swappage);
1112			spin_unlock(&info->lock);
1113			copy_highpage(filepage, swappage);
1114			unlock_page(swappage);
1115			page_cache_release(swappage);
1116			flush_dcache_page(filepage);
1117			SetPageUptodate(filepage);
1118			set_page_dirty(filepage);
1119			swap_free(swap);
1120		} else if (!(error = move_from_swap_cache(
1121				swappage, idx, mapping))) {
1122			info->flags |= SHMEM_PAGEIN;
1123			shmem_swp_set(info, entry, 0);
1124			shmem_swp_unmap(entry);
1125			spin_unlock(&info->lock);
1126			filepage = swappage;
1127			swap_free(swap);
1128		} else {
1129			shmem_swp_unmap(entry);
1130			spin_unlock(&info->lock);
1131			unlock_page(swappage);
1132			page_cache_release(swappage);
1133			if (error == -ENOMEM) {
1134				/* let kswapd refresh zone for GFP_ATOMICs */
1135				congestion_wait(WRITE, HZ/50);
1136			}
1137			goto repeat;
1138		}
1139	} else if (sgp == SGP_READ && !filepage) {
1140		shmem_swp_unmap(entry);
1141		filepage = find_get_page(mapping, idx);
1142		if (filepage &&
1143		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1144			spin_unlock(&info->lock);
1145			wait_on_page_locked(filepage);
1146			page_cache_release(filepage);
1147			filepage = NULL;
1148			goto repeat;
1149		}
1150		spin_unlock(&info->lock);
1151	} else {
1152		shmem_swp_unmap(entry);
1153		sbinfo = SHMEM_SB(inode->i_sb);
1154		if (sbinfo->max_blocks) {
1155			spin_lock(&sbinfo->stat_lock);
1156			if (sbinfo->free_blocks == 0 ||
1157			    shmem_acct_block(info->flags)) {
1158				spin_unlock(&sbinfo->stat_lock);
1159				spin_unlock(&info->lock);
1160				error = -ENOSPC;
1161				goto failed;
1162			}
1163			sbinfo->free_blocks--;
1164			inode->i_blocks += BLOCKS_PER_PAGE;
1165			spin_unlock(&sbinfo->stat_lock);
1166		} else if (shmem_acct_block(info->flags)) {
1167			spin_unlock(&info->lock);
1168			error = -ENOSPC;
1169			goto failed;
1170		}
1171
1172		if (!filepage) {
1173			spin_unlock(&info->lock);
1174			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1175						    info,
1176						    idx);
1177			if (!filepage) {
1178				shmem_unacct_blocks(info->flags, 1);
1179				shmem_free_blocks(inode, 1);
1180				error = -ENOMEM;
1181				goto failed;
1182			}
1183
1184			spin_lock(&info->lock);
1185			entry = shmem_swp_alloc(info, idx, sgp);
1186			if (IS_ERR(entry))
1187				error = PTR_ERR(entry);
1188			else {
1189				swap = *entry;
1190				shmem_swp_unmap(entry);
1191			}
1192			if (error || swap.val || 0 != add_to_page_cache_lru(
1193					filepage, mapping, idx, GFP_ATOMIC)) {
1194				spin_unlock(&info->lock);
1195				page_cache_release(filepage);
1196				shmem_unacct_blocks(info->flags, 1);
1197				shmem_free_blocks(inode, 1);
1198				filepage = NULL;
1199				if (error)
1200					goto failed;
1201				goto repeat;
1202			}
1203			info->flags |= SHMEM_PAGEIN;
1204		}
1205
1206		info->alloced++;
1207		spin_unlock(&info->lock);
1208		flush_dcache_page(filepage);
1209		SetPageUptodate(filepage);
1210	}
1211done:
1212	if (*pagep != filepage) {
1213		unlock_page(filepage);
1214		*pagep = filepage;
1215	}
1216	return 0;
1217
1218failed:
1219	if (*pagep != filepage) {
1220		unlock_page(filepage);
1221		page_cache_release(filepage);
1222	}
1223	return error;
1224}
1225
1226struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1227{
1228	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1229	struct page *page = NULL;
1230	unsigned long idx;
1231	int error;
1232
1233	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1234	idx += vma->vm_pgoff;
1235	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1236	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1237		return NOPAGE_SIGBUS;
1238
1239	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1240	if (error)
1241		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1242
1243	mark_page_accessed(page);
1244	return page;
1245}
1246
1247static int shmem_populate(struct vm_area_struct *vma,
1248	unsigned long addr, unsigned long len,
1249	pgprot_t prot, unsigned long pgoff, int nonblock)
1250{
1251	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1252	struct mm_struct *mm = vma->vm_mm;
1253	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1254	unsigned long size;
1255
1256	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1257	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1258		return -EINVAL;
1259
1260	while ((long) len > 0) {
1261		struct page *page = NULL;
1262		int err;
1263		/*
1264		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1265		 */
1266		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1267		if (err)
1268			return err;
1269		/* Page may still be null, but only if nonblock was set. */
1270		if (page) {
1271			mark_page_accessed(page);
1272			err = install_page(mm, vma, addr, page, prot);
1273			if (err) {
1274				page_cache_release(page);
1275				return err;
1276			}
1277		} else if (vma->vm_flags & VM_NONLINEAR) {
1278			/* No page was found just because we can't read it in
1279			 * now (being here implies nonblock != 0), but the page
1280			 * may exist, so set the PTE to fault it in later. */
1281    			err = install_file_pte(mm, vma, addr, pgoff, prot);
1282			if (err)
1283	    			return err;
1284		}
1285
1286		len -= PAGE_SIZE;
1287		addr += PAGE_SIZE;
1288		pgoff++;
1289	}
1290	return 0;
1291}
1292
1293#ifdef CONFIG_NUMA
1294int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1295{
1296	struct inode *i = vma->vm_file->f_dentry->d_inode;
1297	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1298}
1299
1300struct mempolicy *
1301shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1302{
1303	struct inode *i = vma->vm_file->f_dentry->d_inode;
1304	unsigned long idx;
1305
1306	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1307	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1308}
1309#endif
1310
1311int shmem_lock(struct file *file, int lock, struct user_struct *user)
1312{
1313	struct inode *inode = file->f_dentry->d_inode;
1314	struct shmem_inode_info *info = SHMEM_I(inode);
1315	int retval = -ENOMEM;
1316
1317	spin_lock(&info->lock);
1318	if (lock && !(info->flags & VM_LOCKED)) {
1319		if (!user_shm_lock(inode->i_size, user))
1320			goto out_nomem;
1321		info->flags |= VM_LOCKED;
1322	}
1323	if (!lock && (info->flags & VM_LOCKED) && user) {
1324		user_shm_unlock(inode->i_size, user);
1325		info->flags &= ~VM_LOCKED;
1326	}
1327	retval = 0;
1328out_nomem:
1329	spin_unlock(&info->lock);
1330	return retval;
1331}
1332
1333int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1334{
1335	file_accessed(file);
1336	vma->vm_ops = &shmem_vm_ops;
1337	return 0;
1338}
1339
1340static struct inode *
1341shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1342{
1343	struct inode *inode;
1344	struct shmem_inode_info *info;
1345	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1346
1347	if (sbinfo->max_inodes) {
1348		spin_lock(&sbinfo->stat_lock);
1349		if (!sbinfo->free_inodes) {
1350			spin_unlock(&sbinfo->stat_lock);
1351			return NULL;
1352		}
1353		sbinfo->free_inodes--;
1354		spin_unlock(&sbinfo->stat_lock);
1355	}
1356
1357	inode = new_inode(sb);
1358	if (inode) {
1359		inode->i_mode = mode;
1360		inode->i_uid = current->fsuid;
1361		inode->i_gid = current->fsgid;
1362		inode->i_blocks = 0;
1363		inode->i_mapping->a_ops = &shmem_aops;
1364		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1365		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1366		inode->i_generation = get_seconds();
1367		info = SHMEM_I(inode);
1368		memset(info, 0, (char *)inode - (char *)info);
1369		spin_lock_init(&info->lock);
1370		INIT_LIST_HEAD(&info->swaplist);
1371
1372		switch (mode & S_IFMT) {
1373		default:
1374			inode->i_op = &shmem_special_inode_operations;
1375			init_special_inode(inode, mode, dev);
1376			break;
1377		case S_IFREG:
1378			inode->i_op = &shmem_inode_operations;
1379			inode->i_fop = &shmem_file_operations;
1380			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1381							&sbinfo->policy_nodes);
1382			break;
1383		case S_IFDIR:
1384			inc_nlink(inode);
1385			/* Some things misbehave if size == 0 on a directory */
1386			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1387			inode->i_op = &shmem_dir_inode_operations;
1388			inode->i_fop = &simple_dir_operations;
1389			break;
1390		case S_IFLNK:
1391			/*
1392			 * Must not load anything in the rbtree,
1393			 * mpol_free_shared_policy will not be called.
1394			 */
1395			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1396						NULL);
1397			break;
1398		}
1399	} else if (sbinfo->max_inodes) {
1400		spin_lock(&sbinfo->stat_lock);
1401		sbinfo->free_inodes++;
1402		spin_unlock(&sbinfo->stat_lock);
1403	}
1404	return inode;
1405}
1406
1407#ifdef CONFIG_TMPFS
1408static struct inode_operations shmem_symlink_inode_operations;
1409static struct inode_operations shmem_symlink_inline_operations;
1410
1411/*
1412 * Normally tmpfs makes no use of shmem_prepare_write, but it
1413 * lets a tmpfs file be used read-write below the loop driver.
1414 */
1415static int
1416shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1417{
1418	struct inode *inode = page->mapping->host;
1419	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1420}
1421
1422static ssize_t
1423shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1424{
1425	struct inode	*inode = file->f_dentry->d_inode;
1426	loff_t		pos;
1427	unsigned long	written;
1428	ssize_t		err;
1429
1430	if ((ssize_t) count < 0)
1431		return -EINVAL;
1432
1433	if (!access_ok(VERIFY_READ, buf, count))
1434		return -EFAULT;
1435
1436	mutex_lock(&inode->i_mutex);
1437
1438	pos = *ppos;
1439	written = 0;
1440
1441	err = generic_write_checks(file, &pos, &count, 0);
1442	if (err || !count)
1443		goto out;
1444
1445	err = remove_suid(file->f_dentry);
1446	if (err)
1447		goto out;
1448
1449	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1450
1451	do {
1452		struct page *page = NULL;
1453		unsigned long bytes, index, offset;
1454		char *kaddr;
1455		int left;
1456
1457		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1458		index = pos >> PAGE_CACHE_SHIFT;
1459		bytes = PAGE_CACHE_SIZE - offset;
1460		if (bytes > count)
1461			bytes = count;
1462
1463		/*
1464		 * We don't hold page lock across copy from user -
1465		 * what would it guard against? - so no deadlock here.
1466		 * But it still may be a good idea to prefault below.
1467		 */
1468
1469		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1470		if (err)
1471			break;
1472
1473		left = bytes;
1474		if (PageHighMem(page)) {
1475			volatile unsigned char dummy;
1476			__get_user(dummy, buf);
1477			__get_user(dummy, buf + bytes - 1);
1478
1479			kaddr = kmap_atomic(page, KM_USER0);
1480			left = __copy_from_user_inatomic(kaddr + offset,
1481							buf, bytes);
1482			kunmap_atomic(kaddr, KM_USER0);
1483		}
1484		if (left) {
1485			kaddr = kmap(page);
1486			left = __copy_from_user(kaddr + offset, buf, bytes);
1487			kunmap(page);
1488		}
1489
1490		written += bytes;
1491		count -= bytes;
1492		pos += bytes;
1493		buf += bytes;
1494		if (pos > inode->i_size)
1495			i_size_write(inode, pos);
1496
1497		flush_dcache_page(page);
1498		set_page_dirty(page);
1499		mark_page_accessed(page);
1500		page_cache_release(page);
1501
1502		if (left) {
1503			pos -= left;
1504			written -= left;
1505			err = -EFAULT;
1506			break;
1507		}
1508
1509		/*
1510		 * Our dirty pages are not counted in nr_dirty,
1511		 * and we do not attempt to balance dirty pages.
1512		 */
1513
1514		cond_resched();
1515	} while (count);
1516
1517	*ppos = pos;
1518	if (written)
1519		err = written;
1520out:
1521	mutex_unlock(&inode->i_mutex);
1522	return err;
1523}
1524
1525static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1526{
1527	struct inode *inode = filp->f_dentry->d_inode;
1528	struct address_space *mapping = inode->i_mapping;
1529	unsigned long index, offset;
1530
1531	index = *ppos >> PAGE_CACHE_SHIFT;
1532	offset = *ppos & ~PAGE_CACHE_MASK;
1533
1534	for (;;) {
1535		struct page *page = NULL;
1536		unsigned long end_index, nr, ret;
1537		loff_t i_size = i_size_read(inode);
1538
1539		end_index = i_size >> PAGE_CACHE_SHIFT;
1540		if (index > end_index)
1541			break;
1542		if (index == end_index) {
1543			nr = i_size & ~PAGE_CACHE_MASK;
1544			if (nr <= offset)
1545				break;
1546		}
1547
1548		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1549		if (desc->error) {
1550			if (desc->error == -EINVAL)
1551				desc->error = 0;
1552			break;
1553		}
1554
1555		/*
1556		 * We must evaluate after, since reads (unlike writes)
1557		 * are called without i_mutex protection against truncate
1558		 */
1559		nr = PAGE_CACHE_SIZE;
1560		i_size = i_size_read(inode);
1561		end_index = i_size >> PAGE_CACHE_SHIFT;
1562		if (index == end_index) {
1563			nr = i_size & ~PAGE_CACHE_MASK;
1564			if (nr <= offset) {
1565				if (page)
1566					page_cache_release(page);
1567				break;
1568			}
1569		}
1570		nr -= offset;
1571
1572		if (page) {
1573			/*
1574			 * If users can be writing to this page using arbitrary
1575			 * virtual addresses, take care about potential aliasing
1576			 * before reading the page on the kernel side.
1577			 */
1578			if (mapping_writably_mapped(mapping))
1579				flush_dcache_page(page);
1580			/*
1581			 * Mark the page accessed if we read the beginning.
1582			 */
1583			if (!offset)
1584				mark_page_accessed(page);
1585		} else {
1586			page = ZERO_PAGE(0);
1587			page_cache_get(page);
1588		}
1589
1590		/*
1591		 * Ok, we have the page, and it's up-to-date, so
1592		 * now we can copy it to user space...
1593		 *
1594		 * The actor routine returns how many bytes were actually used..
1595		 * NOTE! This may not be the same as how much of a user buffer
1596		 * we filled up (we may be padding etc), so we can only update
1597		 * "pos" here (the actor routine has to update the user buffer
1598		 * pointers and the remaining count).
1599		 */
1600		ret = actor(desc, page, offset, nr);
1601		offset += ret;
1602		index += offset >> PAGE_CACHE_SHIFT;
1603		offset &= ~PAGE_CACHE_MASK;
1604
1605		page_cache_release(page);
1606		if (ret != nr || !desc->count)
1607			break;
1608
1609		cond_resched();
1610	}
1611
1612	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1613	file_accessed(filp);
1614}
1615
1616static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1617{
1618	read_descriptor_t desc;
1619
1620	if ((ssize_t) count < 0)
1621		return -EINVAL;
1622	if (!access_ok(VERIFY_WRITE, buf, count))
1623		return -EFAULT;
1624	if (!count)
1625		return 0;
1626
1627	desc.written = 0;
1628	desc.count = count;
1629	desc.arg.buf = buf;
1630	desc.error = 0;
1631
1632	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1633	if (desc.written)
1634		return desc.written;
1635	return desc.error;
1636}
1637
1638static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1639			 size_t count, read_actor_t actor, void *target)
1640{
1641	read_descriptor_t desc;
1642
1643	if (!count)
1644		return 0;
1645
1646	desc.written = 0;
1647	desc.count = count;
1648	desc.arg.data = target;
1649	desc.error = 0;
1650
1651	do_shmem_file_read(in_file, ppos, &desc, actor);
1652	if (desc.written)
1653		return desc.written;
1654	return desc.error;
1655}
1656
1657static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1658{
1659	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1660
1661	buf->f_type = TMPFS_MAGIC;
1662	buf->f_bsize = PAGE_CACHE_SIZE;
1663	buf->f_namelen = NAME_MAX;
1664	spin_lock(&sbinfo->stat_lock);
1665	if (sbinfo->max_blocks) {
1666		buf->f_blocks = sbinfo->max_blocks;
1667		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1668	}
1669	if (sbinfo->max_inodes) {
1670		buf->f_files = sbinfo->max_inodes;
1671		buf->f_ffree = sbinfo->free_inodes;
1672	}
1673	/* else leave those fields 0 like simple_statfs */
1674	spin_unlock(&sbinfo->stat_lock);
1675	return 0;
1676}
1677
1678/*
1679 * File creation. Allocate an inode, and we're done..
1680 */
1681static int
1682shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1683{
1684	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1685	int error = -ENOSPC;
1686
1687	if (inode) {
1688		error = security_inode_init_security(inode, dir, NULL, NULL,
1689						     NULL);
1690		if (error) {
1691			if (error != -EOPNOTSUPP) {
1692				iput(inode);
1693				return error;
1694			}
1695		}
1696		error = shmem_acl_init(inode, dir);
1697		if (error) {
1698			iput(inode);
1699			return error;
1700		}
1701		if (dir->i_mode & S_ISGID) {
1702			inode->i_gid = dir->i_gid;
1703			if (S_ISDIR(mode))
1704				inode->i_mode |= S_ISGID;
1705		}
1706		dir->i_size += BOGO_DIRENT_SIZE;
1707		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1708		d_instantiate(dentry, inode);
1709		dget(dentry); /* Extra count - pin the dentry in core */
1710	}
1711	return error;
1712}
1713
1714static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1715{
1716	int error;
1717
1718	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1719		return error;
1720	inc_nlink(dir);
1721	return 0;
1722}
1723
1724static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1725		struct nameidata *nd)
1726{
1727	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1728}
1729
1730/*
1731 * Link a file..
1732 */
1733static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1734{
1735	struct inode *inode = old_dentry->d_inode;
1736	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1737
1738	/*
1739	 * No ordinary (disk based) filesystem counts links as inodes;
1740	 * but each new link needs a new dentry, pinning lowmem, and
1741	 * tmpfs dentries cannot be pruned until they are unlinked.
1742	 */
1743	if (sbinfo->max_inodes) {
1744		spin_lock(&sbinfo->stat_lock);
1745		if (!sbinfo->free_inodes) {
1746			spin_unlock(&sbinfo->stat_lock);
1747			return -ENOSPC;
1748		}
1749		sbinfo->free_inodes--;
1750		spin_unlock(&sbinfo->stat_lock);
1751	}
1752
1753	dir->i_size += BOGO_DIRENT_SIZE;
1754	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1755	inc_nlink(inode);
1756	atomic_inc(&inode->i_count);	/* New dentry reference */
1757	dget(dentry);		/* Extra pinning count for the created dentry */
1758	d_instantiate(dentry, inode);
1759	return 0;
1760}
1761
1762static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1763{
1764	struct inode *inode = dentry->d_inode;
1765
1766	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1767		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1768		if (sbinfo->max_inodes) {
1769			spin_lock(&sbinfo->stat_lock);
1770			sbinfo->free_inodes++;
1771			spin_unlock(&sbinfo->stat_lock);
1772		}
1773	}
1774
1775	dir->i_size -= BOGO_DIRENT_SIZE;
1776	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1777	drop_nlink(inode);
1778	dput(dentry);	/* Undo the count from "create" - this does all the work */
1779	return 0;
1780}
1781
1782static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1783{
1784	if (!simple_empty(dentry))
1785		return -ENOTEMPTY;
1786
1787	drop_nlink(dentry->d_inode);
1788	drop_nlink(dir);
1789	return shmem_unlink(dir, dentry);
1790}
1791
1792/*
1793 * The VFS layer already does all the dentry stuff for rename,
1794 * we just have to decrement the usage count for the target if
1795 * it exists so that the VFS layer correctly free's it when it
1796 * gets overwritten.
1797 */
1798static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1799{
1800	struct inode *inode = old_dentry->d_inode;
1801	int they_are_dirs = S_ISDIR(inode->i_mode);
1802
1803	if (!simple_empty(new_dentry))
1804		return -ENOTEMPTY;
1805
1806	if (new_dentry->d_inode) {
1807		(void) shmem_unlink(new_dir, new_dentry);
1808		if (they_are_dirs)
1809			drop_nlink(old_dir);
1810	} else if (they_are_dirs) {
1811		drop_nlink(old_dir);
1812		inc_nlink(new_dir);
1813	}
1814
1815	old_dir->i_size -= BOGO_DIRENT_SIZE;
1816	new_dir->i_size += BOGO_DIRENT_SIZE;
1817	old_dir->i_ctime = old_dir->i_mtime =
1818	new_dir->i_ctime = new_dir->i_mtime =
1819	inode->i_ctime = CURRENT_TIME;
1820	return 0;
1821}
1822
1823static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1824{
1825	int error;
1826	int len;
1827	struct inode *inode;
1828	struct page *page = NULL;
1829	char *kaddr;
1830	struct shmem_inode_info *info;
1831
1832	len = strlen(symname) + 1;
1833	if (len > PAGE_CACHE_SIZE)
1834		return -ENAMETOOLONG;
1835
1836	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1837	if (!inode)
1838		return -ENOSPC;
1839
1840	error = security_inode_init_security(inode, dir, NULL, NULL,
1841					     NULL);
1842	if (error) {
1843		if (error != -EOPNOTSUPP) {
1844			iput(inode);
1845			return error;
1846		}
1847		error = 0;
1848	}
1849
1850	info = SHMEM_I(inode);
1851	inode->i_size = len-1;
1852	if (len <= (char *)inode - (char *)info) {
1853		/* do it inline */
1854		memcpy(info, symname, len);
1855		inode->i_op = &shmem_symlink_inline_operations;
1856	} else {
1857		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1858		if (error) {
1859			iput(inode);
1860			return error;
1861		}
1862		inode->i_op = &shmem_symlink_inode_operations;
1863		kaddr = kmap_atomic(page, KM_USER0);
1864		memcpy(kaddr, symname, len);
1865		kunmap_atomic(kaddr, KM_USER0);
1866		set_page_dirty(page);
1867		page_cache_release(page);
1868	}
1869	if (dir->i_mode & S_ISGID)
1870		inode->i_gid = dir->i_gid;
1871	dir->i_size += BOGO_DIRENT_SIZE;
1872	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1873	d_instantiate(dentry, inode);
1874	dget(dentry);
1875	return 0;
1876}
1877
1878static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1879{
1880	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1881	return NULL;
1882}
1883
1884static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1885{
1886	struct page *page = NULL;
1887	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1888	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1889	return page;
1890}
1891
1892static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1893{
1894	if (!IS_ERR(nd_get_link(nd))) {
1895		struct page *page = cookie;
1896		kunmap(page);
1897		mark_page_accessed(page);
1898		page_cache_release(page);
1899	}
1900}
1901
1902static struct inode_operations shmem_symlink_inline_operations = {
1903	.readlink	= generic_readlink,
1904	.follow_link	= shmem_follow_link_inline,
1905};
1906
1907static struct inode_operations shmem_symlink_inode_operations = {
1908	.truncate	= shmem_truncate,
1909	.readlink	= generic_readlink,
1910	.follow_link	= shmem_follow_link,
1911	.put_link	= shmem_put_link,
1912};
1913
1914#ifdef CONFIG_TMPFS_POSIX_ACL
1915/**
1916 * Superblocks without xattr inode operations will get security.* xattr
1917 * support from the VFS "for free". As soon as we have any other xattrs
1918 * like ACLs, we also need to implement the security.* handlers at
1919 * filesystem level, though.
1920 */
1921
1922static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1923					size_t list_len, const char *name,
1924					size_t name_len)
1925{
1926	return security_inode_listsecurity(inode, list, list_len);
1927}
1928
1929static int shmem_xattr_security_get(struct inode *inode, const char *name,
1930				    void *buffer, size_t size)
1931{
1932	if (strcmp(name, "") == 0)
1933		return -EINVAL;
1934	return security_inode_getsecurity(inode, name, buffer, size,
1935					  -EOPNOTSUPP);
1936}
1937
1938static int shmem_xattr_security_set(struct inode *inode, const char *name,
1939				    const void *value, size_t size, int flags)
1940{
1941	if (strcmp(name, "") == 0)
1942		return -EINVAL;
1943	return security_inode_setsecurity(inode, name, value, size, flags);
1944}
1945
1946struct xattr_handler shmem_xattr_security_handler = {
1947	.prefix = XATTR_SECURITY_PREFIX,
1948	.list   = shmem_xattr_security_list,
1949	.get    = shmem_xattr_security_get,
1950	.set    = shmem_xattr_security_set,
1951};
1952
1953static struct xattr_handler *shmem_xattr_handlers[] = {
1954	&shmem_xattr_acl_access_handler,
1955	&shmem_xattr_acl_default_handler,
1956	&shmem_xattr_security_handler,
1957	NULL
1958};
1959#endif
1960
1961static struct dentry *shmem_get_parent(struct dentry *child)
1962{
1963	return ERR_PTR(-ESTALE);
1964}
1965
1966static int shmem_match(struct inode *ino, void *vfh)
1967{
1968	__u32 *fh = vfh;
1969	__u64 inum = fh[2];
1970	inum = (inum << 32) | fh[1];
1971	return ino->i_ino == inum && fh[0] == ino->i_generation;
1972}
1973
1974static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
1975{
1976	struct dentry *de = NULL;
1977	struct inode *inode;
1978	__u32 *fh = vfh;
1979	__u64 inum = fh[2];
1980	inum = (inum << 32) | fh[1];
1981
1982	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
1983	if (inode) {
1984		de = d_find_alias(inode);
1985		iput(inode);
1986	}
1987
1988	return de? de: ERR_PTR(-ESTALE);
1989}
1990
1991static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
1992		int len, int type,
1993		int (*acceptable)(void *context, struct dentry *de),
1994		void *context)
1995{
1996	if (len < 3)
1997		return ERR_PTR(-ESTALE);
1998
1999	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2000							context);
2001}
2002
2003static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2004				int connectable)
2005{
2006	struct inode *inode = dentry->d_inode;
2007
2008	if (*len < 3)
2009		return 255;
2010
2011	if (hlist_unhashed(&inode->i_hash)) {
2012		/* Unfortunately insert_inode_hash is not idempotent,
2013		 * so as we hash inodes here rather than at creation
2014		 * time, we need a lock to ensure we only try
2015		 * to do it once
2016		 */
2017		static DEFINE_SPINLOCK(lock);
2018		spin_lock(&lock);
2019		if (hlist_unhashed(&inode->i_hash))
2020			__insert_inode_hash(inode,
2021					    inode->i_ino + inode->i_generation);
2022		spin_unlock(&lock);
2023	}
2024
2025	fh[0] = inode->i_generation;
2026	fh[1] = inode->i_ino;
2027	fh[2] = ((__u64)inode->i_ino) >> 32;
2028
2029	*len = 3;
2030	return 1;
2031}
2032
2033static struct export_operations shmem_export_ops = {
2034	.get_parent     = shmem_get_parent,
2035	.get_dentry     = shmem_get_dentry,
2036	.encode_fh      = shmem_encode_fh,
2037	.decode_fh      = shmem_decode_fh,
2038};
2039
2040static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2041	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2042	int *policy, nodemask_t *policy_nodes)
2043{
2044	char *this_char, *value, *rest;
2045
2046	while (options != NULL) {
2047		this_char = options;
2048		for (;;) {
2049			/*
2050			 * NUL-terminate this option: unfortunately,
2051			 * mount options form a comma-separated list,
2052			 * but mpol's nodelist may also contain commas.
2053			 */
2054			options = strchr(options, ',');
2055			if (options == NULL)
2056				break;
2057			options++;
2058			if (!isdigit(*options)) {
2059				options[-1] = '\0';
2060				break;
2061			}
2062		}
2063		if (!*this_char)
2064			continue;
2065		if ((value = strchr(this_char,'=')) != NULL) {
2066			*value++ = 0;
2067		} else {
2068			printk(KERN_ERR
2069			    "tmpfs: No value for mount option '%s'\n",
2070			    this_char);
2071			return 1;
2072		}
2073
2074		if (!strcmp(this_char,"size")) {
2075			unsigned long long size;
2076			size = memparse(value,&rest);
2077			if (*rest == '%') {
2078				size <<= PAGE_SHIFT;
2079				size *= totalram_pages;
2080				do_div(size, 100);
2081				rest++;
2082			}
2083			if (*rest)
2084				goto bad_val;
2085			*blocks = size >> PAGE_CACHE_SHIFT;
2086		} else if (!strcmp(this_char,"nr_blocks")) {
2087			*blocks = memparse(value,&rest);
2088			if (*rest)
2089				goto bad_val;
2090		} else if (!strcmp(this_char,"nr_inodes")) {
2091			*inodes = memparse(value,&rest);
2092			if (*rest)
2093				goto bad_val;
2094		} else if (!strcmp(this_char,"mode")) {
2095			if (!mode)
2096				continue;
2097			*mode = simple_strtoul(value,&rest,8);
2098			if (*rest)
2099				goto bad_val;
2100		} else if (!strcmp(this_char,"uid")) {
2101			if (!uid)
2102				continue;
2103			*uid = simple_strtoul(value,&rest,0);
2104			if (*rest)
2105				goto bad_val;
2106		} else if (!strcmp(this_char,"gid")) {
2107			if (!gid)
2108				continue;
2109			*gid = simple_strtoul(value,&rest,0);
2110			if (*rest)
2111				goto bad_val;
2112		} else if (!strcmp(this_char,"mpol")) {
2113			if (shmem_parse_mpol(value,policy,policy_nodes))
2114				goto bad_val;
2115		} else {
2116			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2117			       this_char);
2118			return 1;
2119		}
2120	}
2121	return 0;
2122
2123bad_val:
2124	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2125	       value, this_char);
2126	return 1;
2127
2128}
2129
2130static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2131{
2132	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2133	unsigned long max_blocks = sbinfo->max_blocks;
2134	unsigned long max_inodes = sbinfo->max_inodes;
2135	int policy = sbinfo->policy;
2136	nodemask_t policy_nodes = sbinfo->policy_nodes;
2137	unsigned long blocks;
2138	unsigned long inodes;
2139	int error = -EINVAL;
2140
2141	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2142				&max_inodes, &policy, &policy_nodes))
2143		return error;
2144
2145	spin_lock(&sbinfo->stat_lock);
2146	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2147	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2148	if (max_blocks < blocks)
2149		goto out;
2150	if (max_inodes < inodes)
2151		goto out;
2152	/*
2153	 * Those tests also disallow limited->unlimited while any are in
2154	 * use, so i_blocks will always be zero when max_blocks is zero;
2155	 * but we must separately disallow unlimited->limited, because
2156	 * in that case we have no record of how much is already in use.
2157	 */
2158	if (max_blocks && !sbinfo->max_blocks)
2159		goto out;
2160	if (max_inodes && !sbinfo->max_inodes)
2161		goto out;
2162
2163	error = 0;
2164	sbinfo->max_blocks  = max_blocks;
2165	sbinfo->free_blocks = max_blocks - blocks;
2166	sbinfo->max_inodes  = max_inodes;
2167	sbinfo->free_inodes = max_inodes - inodes;
2168	sbinfo->policy = policy;
2169	sbinfo->policy_nodes = policy_nodes;
2170out:
2171	spin_unlock(&sbinfo->stat_lock);
2172	return error;
2173}
2174#endif
2175
2176static void shmem_put_super(struct super_block *sb)
2177{
2178	kfree(sb->s_fs_info);
2179	sb->s_fs_info = NULL;
2180}
2181
2182static int shmem_fill_super(struct super_block *sb,
2183			    void *data, int silent)
2184{
2185	struct inode *inode;
2186	struct dentry *root;
2187	int mode   = S_IRWXUGO | S_ISVTX;
2188	uid_t uid = current->fsuid;
2189	gid_t gid = current->fsgid;
2190	int err = -ENOMEM;
2191	struct shmem_sb_info *sbinfo;
2192	unsigned long blocks = 0;
2193	unsigned long inodes = 0;
2194	int policy = MPOL_DEFAULT;
2195	nodemask_t policy_nodes = node_online_map;
2196
2197#ifdef CONFIG_TMPFS
2198	/*
2199	 * Per default we only allow half of the physical ram per
2200	 * tmpfs instance, limiting inodes to one per page of lowmem;
2201	 * but the internal instance is left unlimited.
2202	 */
2203	if (!(sb->s_flags & MS_NOUSER)) {
2204		blocks = totalram_pages / 2;
2205		inodes = totalram_pages - totalhigh_pages;
2206		if (inodes > blocks)
2207			inodes = blocks;
2208		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2209					&inodes, &policy, &policy_nodes))
2210			return -EINVAL;
2211	}
2212	sb->s_export_op = &shmem_export_ops;
2213#else
2214	sb->s_flags |= MS_NOUSER;
2215#endif
2216
2217	/* Round up to L1_CACHE_BYTES to resist false sharing */
2218	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2219				L1_CACHE_BYTES), GFP_KERNEL);
2220	if (!sbinfo)
2221		return -ENOMEM;
2222
2223	spin_lock_init(&sbinfo->stat_lock);
2224	sbinfo->max_blocks = blocks;
2225	sbinfo->free_blocks = blocks;
2226	sbinfo->max_inodes = inodes;
2227	sbinfo->free_inodes = inodes;
2228	sbinfo->policy = policy;
2229	sbinfo->policy_nodes = policy_nodes;
2230
2231	sb->s_fs_info = sbinfo;
2232	sb->s_maxbytes = SHMEM_MAX_BYTES;
2233	sb->s_blocksize = PAGE_CACHE_SIZE;
2234	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2235	sb->s_magic = TMPFS_MAGIC;
2236	sb->s_op = &shmem_ops;
2237	sb->s_time_gran = 1;
2238#ifdef CONFIG_TMPFS_POSIX_ACL
2239	sb->s_xattr = shmem_xattr_handlers;
2240	sb->s_flags |= MS_POSIXACL;
2241#endif
2242
2243	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2244	if (!inode)
2245		goto failed;
2246	inode->i_uid = uid;
2247	inode->i_gid = gid;
2248	root = d_alloc_root(inode);
2249	if (!root)
2250		goto failed_iput;
2251	sb->s_root = root;
2252	return 0;
2253
2254failed_iput:
2255	iput(inode);
2256failed:
2257	shmem_put_super(sb);
2258	return err;
2259}
2260
2261static struct kmem_cache *shmem_inode_cachep;
2262
2263static struct inode *shmem_alloc_inode(struct super_block *sb)
2264{
2265	struct shmem_inode_info *p;
2266	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2267	if (!p)
2268		return NULL;
2269	return &p->vfs_inode;
2270}
2271
2272static void shmem_destroy_inode(struct inode *inode)
2273{
2274	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2275		/* only struct inode is valid if it's an inline symlink */
2276		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2277	}
2278	shmem_acl_destroy_inode(inode);
2279	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2280}
2281
2282static void init_once(void *foo, struct kmem_cache *cachep,
2283		      unsigned long flags)
2284{
2285	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2286
2287	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2288	    SLAB_CTOR_CONSTRUCTOR) {
2289		inode_init_once(&p->vfs_inode);
2290#ifdef CONFIG_TMPFS_POSIX_ACL
2291		p->i_acl = NULL;
2292		p->i_default_acl = NULL;
2293#endif
2294	}
2295}
2296
2297static int init_inodecache(void)
2298{
2299	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2300				sizeof(struct shmem_inode_info),
2301				0, 0, init_once, NULL);
2302	if (shmem_inode_cachep == NULL)
2303		return -ENOMEM;
2304	return 0;
2305}
2306
2307static void destroy_inodecache(void)
2308{
2309	kmem_cache_destroy(shmem_inode_cachep);
2310}
2311
2312static const struct address_space_operations shmem_aops = {
2313	.writepage	= shmem_writepage,
2314	.set_page_dirty	= __set_page_dirty_nobuffers,
2315#ifdef CONFIG_TMPFS
2316	.prepare_write	= shmem_prepare_write,
2317	.commit_write	= simple_commit_write,
2318#endif
2319	.migratepage	= migrate_page,
2320};
2321
2322static struct file_operations shmem_file_operations = {
2323	.mmap		= shmem_mmap,
2324#ifdef CONFIG_TMPFS
2325	.llseek		= generic_file_llseek,
2326	.read		= shmem_file_read,
2327	.write		= shmem_file_write,
2328	.fsync		= simple_sync_file,
2329	.sendfile	= shmem_file_sendfile,
2330#endif
2331};
2332
2333static struct inode_operations shmem_inode_operations = {
2334	.truncate	= shmem_truncate,
2335	.setattr	= shmem_notify_change,
2336	.truncate_range	= shmem_truncate_range,
2337#ifdef CONFIG_TMPFS_POSIX_ACL
2338	.setxattr	= generic_setxattr,
2339	.getxattr	= generic_getxattr,
2340	.listxattr	= generic_listxattr,
2341	.removexattr	= generic_removexattr,
2342	.permission	= shmem_permission,
2343#endif
2344
2345};
2346
2347static struct inode_operations shmem_dir_inode_operations = {
2348#ifdef CONFIG_TMPFS
2349	.create		= shmem_create,
2350	.lookup		= simple_lookup,
2351	.link		= shmem_link,
2352	.unlink		= shmem_unlink,
2353	.symlink	= shmem_symlink,
2354	.mkdir		= shmem_mkdir,
2355	.rmdir		= shmem_rmdir,
2356	.mknod		= shmem_mknod,
2357	.rename		= shmem_rename,
2358#endif
2359#ifdef CONFIG_TMPFS_POSIX_ACL
2360	.setattr	= shmem_notify_change,
2361	.setxattr	= generic_setxattr,
2362	.getxattr	= generic_getxattr,
2363	.listxattr	= generic_listxattr,
2364	.removexattr	= generic_removexattr,
2365	.permission	= shmem_permission,
2366#endif
2367};
2368
2369static struct inode_operations shmem_special_inode_operations = {
2370#ifdef CONFIG_TMPFS_POSIX_ACL
2371	.setattr	= shmem_notify_change,
2372	.setxattr	= generic_setxattr,
2373	.getxattr	= generic_getxattr,
2374	.listxattr	= generic_listxattr,
2375	.removexattr	= generic_removexattr,
2376	.permission	= shmem_permission,
2377#endif
2378};
2379
2380static struct super_operations shmem_ops = {
2381	.alloc_inode	= shmem_alloc_inode,
2382	.destroy_inode	= shmem_destroy_inode,
2383#ifdef CONFIG_TMPFS
2384	.statfs		= shmem_statfs,
2385	.remount_fs	= shmem_remount_fs,
2386#endif
2387	.delete_inode	= shmem_delete_inode,
2388	.drop_inode	= generic_delete_inode,
2389	.put_super	= shmem_put_super,
2390};
2391
2392static struct vm_operations_struct shmem_vm_ops = {
2393	.nopage		= shmem_nopage,
2394	.populate	= shmem_populate,
2395#ifdef CONFIG_NUMA
2396	.set_policy     = shmem_set_policy,
2397	.get_policy     = shmem_get_policy,
2398#endif
2399};
2400
2401
2402static int shmem_get_sb(struct file_system_type *fs_type,
2403	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2404{
2405	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2406}
2407
2408static struct file_system_type tmpfs_fs_type = {
2409	.owner		= THIS_MODULE,
2410	.name		= "tmpfs",
2411	.get_sb		= shmem_get_sb,
2412	.kill_sb	= kill_litter_super,
2413};
2414static struct vfsmount *shm_mnt;
2415
2416static int __init init_tmpfs(void)
2417{
2418	int error;
2419
2420	error = init_inodecache();
2421	if (error)
2422		goto out3;
2423
2424	error = register_filesystem(&tmpfs_fs_type);
2425	if (error) {
2426		printk(KERN_ERR "Could not register tmpfs\n");
2427		goto out2;
2428	}
2429
2430	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2431				tmpfs_fs_type.name, NULL);
2432	if (IS_ERR(shm_mnt)) {
2433		error = PTR_ERR(shm_mnt);
2434		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2435		goto out1;
2436	}
2437	return 0;
2438
2439out1:
2440	unregister_filesystem(&tmpfs_fs_type);
2441out2:
2442	destroy_inodecache();
2443out3:
2444	shm_mnt = ERR_PTR(error);
2445	return error;
2446}
2447module_init(init_tmpfs)
2448
2449/*
2450 * shmem_file_setup - get an unlinked file living in tmpfs
2451 *
2452 * @name: name for dentry (to be seen in /proc/<pid>/maps
2453 * @size: size to be set for the file
2454 *
2455 */
2456struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2457{
2458	int error;
2459	struct file *file;
2460	struct inode *inode;
2461	struct dentry *dentry, *root;
2462	struct qstr this;
2463
2464	if (IS_ERR(shm_mnt))
2465		return (void *)shm_mnt;
2466
2467	if (size < 0 || size > SHMEM_MAX_BYTES)
2468		return ERR_PTR(-EINVAL);
2469
2470	if (shmem_acct_size(flags, size))
2471		return ERR_PTR(-ENOMEM);
2472
2473	error = -ENOMEM;
2474	this.name = name;
2475	this.len = strlen(name);
2476	this.hash = 0; /* will go */
2477	root = shm_mnt->mnt_root;
2478	dentry = d_alloc(root, &this);
2479	if (!dentry)
2480		goto put_memory;
2481
2482	error = -ENFILE;
2483	file = get_empty_filp();
2484	if (!file)
2485		goto put_dentry;
2486
2487	error = -ENOSPC;
2488	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2489	if (!inode)
2490		goto close_file;
2491
2492	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2493	d_instantiate(dentry, inode);
2494	inode->i_size = size;
2495	inode->i_nlink = 0;	/* It is unlinked */
2496	file->f_vfsmnt = mntget(shm_mnt);
2497	file->f_dentry = dentry;
2498	file->f_mapping = inode->i_mapping;
2499	file->f_op = &shmem_file_operations;
2500	file->f_mode = FMODE_WRITE | FMODE_READ;
2501	return file;
2502
2503close_file:
2504	put_filp(file);
2505put_dentry:
2506	dput(dentry);
2507put_memory:
2508	shmem_unacct_size(flags, size);
2509	return ERR_PTR(error);
2510}
2511
2512/*
2513 * shmem_zero_setup - setup a shared anonymous mapping
2514 *
2515 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2516 */
2517int shmem_zero_setup(struct vm_area_struct *vma)
2518{
2519	struct file *file;
2520	loff_t size = vma->vm_end - vma->vm_start;
2521
2522	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2523	if (IS_ERR(file))
2524		return PTR_ERR(file);
2525
2526	if (vma->vm_file)
2527		fput(vma->vm_file);
2528	vma->vm_file = file;
2529	vma->vm_ops = &shmem_vm_ops;
2530	return 0;
2531}
2532