shmem.c revision 46fdb794e3f52ef18b859ebc92f0a9d7db21c5df
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/aio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69#include <linux/syscalls.h>
70#include <linux/fcntl.h>
71#include <uapi/linux/memfd.h>
72
73#include <asm/uaccess.h>
74#include <asm/pgtable.h>
75
76#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
77#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
79/* Pretend that each entry is of this size in directory's i_size */
80#define BOGO_DIRENT_SIZE 20
81
82/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83#define SHORT_SYMLINK_LEN 128
84
85/*
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
89 */
90struct shmem_falloc {
91	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92	pgoff_t start;		/* start of range currently being fallocated */
93	pgoff_t next;		/* the next page offset to be fallocated */
94	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
95	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
96};
97
98/* Flag allocation requirements to shmem_getpage */
99enum sgp_type {
100	SGP_READ,	/* don't exceed i_size, don't allocate page */
101	SGP_CACHE,	/* don't exceed i_size, may allocate page */
102	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
103	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
104	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
105};
106
107#ifdef CONFIG_TMPFS
108static unsigned long shmem_default_max_blocks(void)
109{
110	return totalram_pages / 2;
111}
112
113static unsigned long shmem_default_max_inodes(void)
114{
115	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116}
117#endif
118
119static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121				struct shmem_inode_info *info, pgoff_t index);
122static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126	struct page **pagep, enum sgp_type sgp, int *fault_type)
127{
128	return shmem_getpage_gfp(inode, index, pagep, sgp,
129			mapping_gfp_mask(inode->i_mapping), fault_type);
130}
131
132static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133{
134	return sb->s_fs_info;
135}
136
137/*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143static inline int shmem_acct_size(unsigned long flags, loff_t size)
144{
145	return (flags & VM_NORESERVE) ?
146		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147}
148
149static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150{
151	if (!(flags & VM_NORESERVE))
152		vm_unacct_memory(VM_ACCT(size));
153}
154
155static inline int shmem_reacct_size(unsigned long flags,
156		loff_t oldsize, loff_t newsize)
157{
158	if (!(flags & VM_NORESERVE)) {
159		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160			return security_vm_enough_memory_mm(current->mm,
161					VM_ACCT(newsize) - VM_ACCT(oldsize));
162		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164	}
165	return 0;
166}
167
168/*
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173 */
174static inline int shmem_acct_block(unsigned long flags)
175{
176	return (flags & VM_NORESERVE) ?
177		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178}
179
180static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181{
182	if (flags & VM_NORESERVE)
183		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184}
185
186static const struct super_operations shmem_ops;
187static const struct address_space_operations shmem_aops;
188static const struct file_operations shmem_file_operations;
189static const struct inode_operations shmem_inode_operations;
190static const struct inode_operations shmem_dir_inode_operations;
191static const struct inode_operations shmem_special_inode_operations;
192static const struct vm_operations_struct shmem_vm_ops;
193
194static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
195	.ra_pages	= 0,	/* No readahead */
196	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
197};
198
199static LIST_HEAD(shmem_swaplist);
200static DEFINE_MUTEX(shmem_swaplist_mutex);
201
202static int shmem_reserve_inode(struct super_block *sb)
203{
204	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
205	if (sbinfo->max_inodes) {
206		spin_lock(&sbinfo->stat_lock);
207		if (!sbinfo->free_inodes) {
208			spin_unlock(&sbinfo->stat_lock);
209			return -ENOSPC;
210		}
211		sbinfo->free_inodes--;
212		spin_unlock(&sbinfo->stat_lock);
213	}
214	return 0;
215}
216
217static void shmem_free_inode(struct super_block *sb)
218{
219	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
220	if (sbinfo->max_inodes) {
221		spin_lock(&sbinfo->stat_lock);
222		sbinfo->free_inodes++;
223		spin_unlock(&sbinfo->stat_lock);
224	}
225}
226
227/**
228 * shmem_recalc_inode - recalculate the block usage of an inode
229 * @inode: inode to recalc
230 *
231 * We have to calculate the free blocks since the mm can drop
232 * undirtied hole pages behind our back.
233 *
234 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
235 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
236 *
237 * It has to be called with the spinlock held.
238 */
239static void shmem_recalc_inode(struct inode *inode)
240{
241	struct shmem_inode_info *info = SHMEM_I(inode);
242	long freed;
243
244	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
245	if (freed > 0) {
246		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247		if (sbinfo->max_blocks)
248			percpu_counter_add(&sbinfo->used_blocks, -freed);
249		info->alloced -= freed;
250		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
251		shmem_unacct_blocks(info->flags, freed);
252	}
253}
254
255/*
256 * Replace item expected in radix tree by a new item, while holding tree lock.
257 */
258static int shmem_radix_tree_replace(struct address_space *mapping,
259			pgoff_t index, void *expected, void *replacement)
260{
261	void **pslot;
262	void *item;
263
264	VM_BUG_ON(!expected);
265	VM_BUG_ON(!replacement);
266	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
267	if (!pslot)
268		return -ENOENT;
269	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
270	if (item != expected)
271		return -ENOENT;
272	radix_tree_replace_slot(pslot, replacement);
273	return 0;
274}
275
276/*
277 * Sometimes, before we decide whether to proceed or to fail, we must check
278 * that an entry was not already brought back from swap by a racing thread.
279 *
280 * Checking page is not enough: by the time a SwapCache page is locked, it
281 * might be reused, and again be SwapCache, using the same swap as before.
282 */
283static bool shmem_confirm_swap(struct address_space *mapping,
284			       pgoff_t index, swp_entry_t swap)
285{
286	void *item;
287
288	rcu_read_lock();
289	item = radix_tree_lookup(&mapping->page_tree, index);
290	rcu_read_unlock();
291	return item == swp_to_radix_entry(swap);
292}
293
294/*
295 * Like add_to_page_cache_locked, but error if expected item has gone.
296 */
297static int shmem_add_to_page_cache(struct page *page,
298				   struct address_space *mapping,
299				   pgoff_t index, void *expected)
300{
301	int error;
302
303	VM_BUG_ON_PAGE(!PageLocked(page), page);
304	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
305
306	page_cache_get(page);
307	page->mapping = mapping;
308	page->index = index;
309
310	spin_lock_irq(&mapping->tree_lock);
311	if (!expected)
312		error = radix_tree_insert(&mapping->page_tree, index, page);
313	else
314		error = shmem_radix_tree_replace(mapping, index, expected,
315								 page);
316	if (!error) {
317		mapping->nrpages++;
318		__inc_zone_page_state(page, NR_FILE_PAGES);
319		__inc_zone_page_state(page, NR_SHMEM);
320		spin_unlock_irq(&mapping->tree_lock);
321	} else {
322		page->mapping = NULL;
323		spin_unlock_irq(&mapping->tree_lock);
324		page_cache_release(page);
325	}
326	return error;
327}
328
329/*
330 * Like delete_from_page_cache, but substitutes swap for page.
331 */
332static void shmem_delete_from_page_cache(struct page *page, void *radswap)
333{
334	struct address_space *mapping = page->mapping;
335	int error;
336
337	spin_lock_irq(&mapping->tree_lock);
338	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
339	page->mapping = NULL;
340	mapping->nrpages--;
341	__dec_zone_page_state(page, NR_FILE_PAGES);
342	__dec_zone_page_state(page, NR_SHMEM);
343	spin_unlock_irq(&mapping->tree_lock);
344	page_cache_release(page);
345	BUG_ON(error);
346}
347
348/*
349 * Remove swap entry from radix tree, free the swap and its page cache.
350 */
351static int shmem_free_swap(struct address_space *mapping,
352			   pgoff_t index, void *radswap)
353{
354	void *old;
355
356	spin_lock_irq(&mapping->tree_lock);
357	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
358	spin_unlock_irq(&mapping->tree_lock);
359	if (old != radswap)
360		return -ENOENT;
361	free_swap_and_cache(radix_to_swp_entry(radswap));
362	return 0;
363}
364
365/*
366 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
367 */
368void shmem_unlock_mapping(struct address_space *mapping)
369{
370	struct pagevec pvec;
371	pgoff_t indices[PAGEVEC_SIZE];
372	pgoff_t index = 0;
373
374	pagevec_init(&pvec, 0);
375	/*
376	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
377	 */
378	while (!mapping_unevictable(mapping)) {
379		/*
380		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
381		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
382		 */
383		pvec.nr = find_get_entries(mapping, index,
384					   PAGEVEC_SIZE, pvec.pages, indices);
385		if (!pvec.nr)
386			break;
387		index = indices[pvec.nr - 1] + 1;
388		pagevec_remove_exceptionals(&pvec);
389		check_move_unevictable_pages(pvec.pages, pvec.nr);
390		pagevec_release(&pvec);
391		cond_resched();
392	}
393}
394
395/*
396 * Remove range of pages and swap entries from radix tree, and free them.
397 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
398 */
399static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
400								 bool unfalloc)
401{
402	struct address_space *mapping = inode->i_mapping;
403	struct shmem_inode_info *info = SHMEM_I(inode);
404	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
405	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
406	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
407	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
408	struct pagevec pvec;
409	pgoff_t indices[PAGEVEC_SIZE];
410	long nr_swaps_freed = 0;
411	pgoff_t index;
412	int i;
413
414	if (lend == -1)
415		end = -1;	/* unsigned, so actually very big */
416
417	pagevec_init(&pvec, 0);
418	index = start;
419	while (index < end) {
420		pvec.nr = find_get_entries(mapping, index,
421			min(end - index, (pgoff_t)PAGEVEC_SIZE),
422			pvec.pages, indices);
423		if (!pvec.nr)
424			break;
425		for (i = 0; i < pagevec_count(&pvec); i++) {
426			struct page *page = pvec.pages[i];
427
428			index = indices[i];
429			if (index >= end)
430				break;
431
432			if (radix_tree_exceptional_entry(page)) {
433				if (unfalloc)
434					continue;
435				nr_swaps_freed += !shmem_free_swap(mapping,
436								index, page);
437				continue;
438			}
439
440			if (!trylock_page(page))
441				continue;
442			if (!unfalloc || !PageUptodate(page)) {
443				if (page->mapping == mapping) {
444					VM_BUG_ON_PAGE(PageWriteback(page), page);
445					truncate_inode_page(mapping, page);
446				}
447			}
448			unlock_page(page);
449		}
450		pagevec_remove_exceptionals(&pvec);
451		pagevec_release(&pvec);
452		cond_resched();
453		index++;
454	}
455
456	if (partial_start) {
457		struct page *page = NULL;
458		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
459		if (page) {
460			unsigned int top = PAGE_CACHE_SIZE;
461			if (start > end) {
462				top = partial_end;
463				partial_end = 0;
464			}
465			zero_user_segment(page, partial_start, top);
466			set_page_dirty(page);
467			unlock_page(page);
468			page_cache_release(page);
469		}
470	}
471	if (partial_end) {
472		struct page *page = NULL;
473		shmem_getpage(inode, end, &page, SGP_READ, NULL);
474		if (page) {
475			zero_user_segment(page, 0, partial_end);
476			set_page_dirty(page);
477			unlock_page(page);
478			page_cache_release(page);
479		}
480	}
481	if (start >= end)
482		return;
483
484	index = start;
485	while (index < end) {
486		cond_resched();
487
488		pvec.nr = find_get_entries(mapping, index,
489				min(end - index, (pgoff_t)PAGEVEC_SIZE),
490				pvec.pages, indices);
491		if (!pvec.nr) {
492			/* If all gone or hole-punch or unfalloc, we're done */
493			if (index == start || end != -1)
494				break;
495			/* But if truncating, restart to make sure all gone */
496			index = start;
497			continue;
498		}
499		for (i = 0; i < pagevec_count(&pvec); i++) {
500			struct page *page = pvec.pages[i];
501
502			index = indices[i];
503			if (index >= end)
504				break;
505
506			if (radix_tree_exceptional_entry(page)) {
507				if (unfalloc)
508					continue;
509				if (shmem_free_swap(mapping, index, page)) {
510					/* Swap was replaced by page: retry */
511					index--;
512					break;
513				}
514				nr_swaps_freed++;
515				continue;
516			}
517
518			lock_page(page);
519			if (!unfalloc || !PageUptodate(page)) {
520				if (page->mapping == mapping) {
521					VM_BUG_ON_PAGE(PageWriteback(page), page);
522					truncate_inode_page(mapping, page);
523				} else {
524					/* Page was replaced by swap: retry */
525					unlock_page(page);
526					index--;
527					break;
528				}
529			}
530			unlock_page(page);
531		}
532		pagevec_remove_exceptionals(&pvec);
533		pagevec_release(&pvec);
534		index++;
535	}
536
537	spin_lock(&info->lock);
538	info->swapped -= nr_swaps_freed;
539	shmem_recalc_inode(inode);
540	spin_unlock(&info->lock);
541}
542
543void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
544{
545	shmem_undo_range(inode, lstart, lend, false);
546	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547}
548EXPORT_SYMBOL_GPL(shmem_truncate_range);
549
550static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
551{
552	struct inode *inode = dentry->d_inode;
553	struct shmem_inode_info *info = SHMEM_I(inode);
554	int error;
555
556	error = inode_change_ok(inode, attr);
557	if (error)
558		return error;
559
560	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561		loff_t oldsize = inode->i_size;
562		loff_t newsize = attr->ia_size;
563
564		/* protected by i_mutex */
565		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
566		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
567			return -EPERM;
568
569		if (newsize != oldsize) {
570			error = shmem_reacct_size(SHMEM_I(inode)->flags,
571					oldsize, newsize);
572			if (error)
573				return error;
574			i_size_write(inode, newsize);
575			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
576		}
577		if (newsize < oldsize) {
578			loff_t holebegin = round_up(newsize, PAGE_SIZE);
579			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
580			shmem_truncate_range(inode, newsize, (loff_t)-1);
581			/* unmap again to remove racily COWed private pages */
582			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
583		}
584	}
585
586	setattr_copy(inode, attr);
587	if (attr->ia_valid & ATTR_MODE)
588		error = posix_acl_chmod(inode, inode->i_mode);
589	return error;
590}
591
592static void shmem_evict_inode(struct inode *inode)
593{
594	struct shmem_inode_info *info = SHMEM_I(inode);
595
596	if (inode->i_mapping->a_ops == &shmem_aops) {
597		shmem_unacct_size(info->flags, inode->i_size);
598		inode->i_size = 0;
599		shmem_truncate_range(inode, 0, (loff_t)-1);
600		if (!list_empty(&info->swaplist)) {
601			mutex_lock(&shmem_swaplist_mutex);
602			list_del_init(&info->swaplist);
603			mutex_unlock(&shmem_swaplist_mutex);
604		}
605	} else
606		kfree(info->symlink);
607
608	simple_xattrs_free(&info->xattrs);
609	WARN_ON(inode->i_blocks);
610	shmem_free_inode(inode->i_sb);
611	clear_inode(inode);
612}
613
614/*
615 * If swap found in inode, free it and move page from swapcache to filecache.
616 */
617static int shmem_unuse_inode(struct shmem_inode_info *info,
618			     swp_entry_t swap, struct page **pagep)
619{
620	struct address_space *mapping = info->vfs_inode.i_mapping;
621	void *radswap;
622	pgoff_t index;
623	gfp_t gfp;
624	int error = 0;
625
626	radswap = swp_to_radix_entry(swap);
627	index = radix_tree_locate_item(&mapping->page_tree, radswap);
628	if (index == -1)
629		return -EAGAIN;	/* tell shmem_unuse we found nothing */
630
631	/*
632	 * Move _head_ to start search for next from here.
633	 * But be careful: shmem_evict_inode checks list_empty without taking
634	 * mutex, and there's an instant in list_move_tail when info->swaplist
635	 * would appear empty, if it were the only one on shmem_swaplist.
636	 */
637	if (shmem_swaplist.next != &info->swaplist)
638		list_move_tail(&shmem_swaplist, &info->swaplist);
639
640	gfp = mapping_gfp_mask(mapping);
641	if (shmem_should_replace_page(*pagep, gfp)) {
642		mutex_unlock(&shmem_swaplist_mutex);
643		error = shmem_replace_page(pagep, gfp, info, index);
644		mutex_lock(&shmem_swaplist_mutex);
645		/*
646		 * We needed to drop mutex to make that restrictive page
647		 * allocation, but the inode might have been freed while we
648		 * dropped it: although a racing shmem_evict_inode() cannot
649		 * complete without emptying the radix_tree, our page lock
650		 * on this swapcache page is not enough to prevent that -
651		 * free_swap_and_cache() of our swap entry will only
652		 * trylock_page(), removing swap from radix_tree whatever.
653		 *
654		 * We must not proceed to shmem_add_to_page_cache() if the
655		 * inode has been freed, but of course we cannot rely on
656		 * inode or mapping or info to check that.  However, we can
657		 * safely check if our swap entry is still in use (and here
658		 * it can't have got reused for another page): if it's still
659		 * in use, then the inode cannot have been freed yet, and we
660		 * can safely proceed (if it's no longer in use, that tells
661		 * nothing about the inode, but we don't need to unuse swap).
662		 */
663		if (!page_swapcount(*pagep))
664			error = -ENOENT;
665	}
666
667	/*
668	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
669	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
670	 * beneath us (pagelock doesn't help until the page is in pagecache).
671	 */
672	if (!error)
673		error = shmem_add_to_page_cache(*pagep, mapping, index,
674						radswap);
675	if (error != -ENOMEM) {
676		/*
677		 * Truncation and eviction use free_swap_and_cache(), which
678		 * only does trylock page: if we raced, best clean up here.
679		 */
680		delete_from_swap_cache(*pagep);
681		set_page_dirty(*pagep);
682		if (!error) {
683			spin_lock(&info->lock);
684			info->swapped--;
685			spin_unlock(&info->lock);
686			swap_free(swap);
687		}
688	}
689	return error;
690}
691
692/*
693 * Search through swapped inodes to find and replace swap by page.
694 */
695int shmem_unuse(swp_entry_t swap, struct page *page)
696{
697	struct list_head *this, *next;
698	struct shmem_inode_info *info;
699	struct mem_cgroup *memcg;
700	int error = 0;
701
702	/*
703	 * There's a faint possibility that swap page was replaced before
704	 * caller locked it: caller will come back later with the right page.
705	 */
706	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
707		goto out;
708
709	/*
710	 * Charge page using GFP_KERNEL while we can wait, before taking
711	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
712	 * Charged back to the user (not to caller) when swap account is used.
713	 */
714	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
715	if (error)
716		goto out;
717	/* No radix_tree_preload: swap entry keeps a place for page in tree */
718	error = -EAGAIN;
719
720	mutex_lock(&shmem_swaplist_mutex);
721	list_for_each_safe(this, next, &shmem_swaplist) {
722		info = list_entry(this, struct shmem_inode_info, swaplist);
723		if (info->swapped)
724			error = shmem_unuse_inode(info, swap, &page);
725		else
726			list_del_init(&info->swaplist);
727		cond_resched();
728		if (error != -EAGAIN)
729			break;
730		/* found nothing in this: move on to search the next */
731	}
732	mutex_unlock(&shmem_swaplist_mutex);
733
734	if (error) {
735		if (error != -ENOMEM)
736			error = 0;
737		mem_cgroup_cancel_charge(page, memcg);
738	} else
739		mem_cgroup_commit_charge(page, memcg, true);
740out:
741	unlock_page(page);
742	page_cache_release(page);
743	return error;
744}
745
746/*
747 * Move the page from the page cache to the swap cache.
748 */
749static int shmem_writepage(struct page *page, struct writeback_control *wbc)
750{
751	struct shmem_inode_info *info;
752	struct address_space *mapping;
753	struct inode *inode;
754	swp_entry_t swap;
755	pgoff_t index;
756
757	BUG_ON(!PageLocked(page));
758	mapping = page->mapping;
759	index = page->index;
760	inode = mapping->host;
761	info = SHMEM_I(inode);
762	if (info->flags & VM_LOCKED)
763		goto redirty;
764	if (!total_swap_pages)
765		goto redirty;
766
767	/*
768	 * shmem_backing_dev_info's capabilities prevent regular writeback or
769	 * sync from ever calling shmem_writepage; but a stacking filesystem
770	 * might use ->writepage of its underlying filesystem, in which case
771	 * tmpfs should write out to swap only in response to memory pressure,
772	 * and not for the writeback threads or sync.
773	 */
774	if (!wbc->for_reclaim) {
775		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
776		goto redirty;
777	}
778
779	/*
780	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
781	 * value into swapfile.c, the only way we can correctly account for a
782	 * fallocated page arriving here is now to initialize it and write it.
783	 *
784	 * That's okay for a page already fallocated earlier, but if we have
785	 * not yet completed the fallocation, then (a) we want to keep track
786	 * of this page in case we have to undo it, and (b) it may not be a
787	 * good idea to continue anyway, once we're pushing into swap.  So
788	 * reactivate the page, and let shmem_fallocate() quit when too many.
789	 */
790	if (!PageUptodate(page)) {
791		if (inode->i_private) {
792			struct shmem_falloc *shmem_falloc;
793			spin_lock(&inode->i_lock);
794			shmem_falloc = inode->i_private;
795			if (shmem_falloc &&
796			    !shmem_falloc->waitq &&
797			    index >= shmem_falloc->start &&
798			    index < shmem_falloc->next)
799				shmem_falloc->nr_unswapped++;
800			else
801				shmem_falloc = NULL;
802			spin_unlock(&inode->i_lock);
803			if (shmem_falloc)
804				goto redirty;
805		}
806		clear_highpage(page);
807		flush_dcache_page(page);
808		SetPageUptodate(page);
809	}
810
811	swap = get_swap_page();
812	if (!swap.val)
813		goto redirty;
814
815	/*
816	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
817	 * if it's not already there.  Do it now before the page is
818	 * moved to swap cache, when its pagelock no longer protects
819	 * the inode from eviction.  But don't unlock the mutex until
820	 * we've incremented swapped, because shmem_unuse_inode() will
821	 * prune a !swapped inode from the swaplist under this mutex.
822	 */
823	mutex_lock(&shmem_swaplist_mutex);
824	if (list_empty(&info->swaplist))
825		list_add_tail(&info->swaplist, &shmem_swaplist);
826
827	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
828		swap_shmem_alloc(swap);
829		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
830
831		spin_lock(&info->lock);
832		info->swapped++;
833		shmem_recalc_inode(inode);
834		spin_unlock(&info->lock);
835
836		mutex_unlock(&shmem_swaplist_mutex);
837		BUG_ON(page_mapped(page));
838		swap_writepage(page, wbc);
839		return 0;
840	}
841
842	mutex_unlock(&shmem_swaplist_mutex);
843	swapcache_free(swap);
844redirty:
845	set_page_dirty(page);
846	if (wbc->for_reclaim)
847		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
848	unlock_page(page);
849	return 0;
850}
851
852#ifdef CONFIG_NUMA
853#ifdef CONFIG_TMPFS
854static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
855{
856	char buffer[64];
857
858	if (!mpol || mpol->mode == MPOL_DEFAULT)
859		return;		/* show nothing */
860
861	mpol_to_str(buffer, sizeof(buffer), mpol);
862
863	seq_printf(seq, ",mpol=%s", buffer);
864}
865
866static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
867{
868	struct mempolicy *mpol = NULL;
869	if (sbinfo->mpol) {
870		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
871		mpol = sbinfo->mpol;
872		mpol_get(mpol);
873		spin_unlock(&sbinfo->stat_lock);
874	}
875	return mpol;
876}
877#endif /* CONFIG_TMPFS */
878
879static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
880			struct shmem_inode_info *info, pgoff_t index)
881{
882	struct vm_area_struct pvma;
883	struct page *page;
884
885	/* Create a pseudo vma that just contains the policy */
886	pvma.vm_start = 0;
887	/* Bias interleave by inode number to distribute better across nodes */
888	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
889	pvma.vm_ops = NULL;
890	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
891
892	page = swapin_readahead(swap, gfp, &pvma, 0);
893
894	/* Drop reference taken by mpol_shared_policy_lookup() */
895	mpol_cond_put(pvma.vm_policy);
896
897	return page;
898}
899
900static struct page *shmem_alloc_page(gfp_t gfp,
901			struct shmem_inode_info *info, pgoff_t index)
902{
903	struct vm_area_struct pvma;
904	struct page *page;
905
906	/* Create a pseudo vma that just contains the policy */
907	pvma.vm_start = 0;
908	/* Bias interleave by inode number to distribute better across nodes */
909	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
910	pvma.vm_ops = NULL;
911	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
912
913	page = alloc_page_vma(gfp, &pvma, 0);
914
915	/* Drop reference taken by mpol_shared_policy_lookup() */
916	mpol_cond_put(pvma.vm_policy);
917
918	return page;
919}
920#else /* !CONFIG_NUMA */
921#ifdef CONFIG_TMPFS
922static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
923{
924}
925#endif /* CONFIG_TMPFS */
926
927static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
928			struct shmem_inode_info *info, pgoff_t index)
929{
930	return swapin_readahead(swap, gfp, NULL, 0);
931}
932
933static inline struct page *shmem_alloc_page(gfp_t gfp,
934			struct shmem_inode_info *info, pgoff_t index)
935{
936	return alloc_page(gfp);
937}
938#endif /* CONFIG_NUMA */
939
940#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
941static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
942{
943	return NULL;
944}
945#endif
946
947/*
948 * When a page is moved from swapcache to shmem filecache (either by the
949 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
950 * shmem_unuse_inode()), it may have been read in earlier from swap, in
951 * ignorance of the mapping it belongs to.  If that mapping has special
952 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
953 * we may need to copy to a suitable page before moving to filecache.
954 *
955 * In a future release, this may well be extended to respect cpuset and
956 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
957 * but for now it is a simple matter of zone.
958 */
959static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
960{
961	return page_zonenum(page) > gfp_zone(gfp);
962}
963
964static int shmem_replace_page(struct page **pagep, gfp_t gfp,
965				struct shmem_inode_info *info, pgoff_t index)
966{
967	struct page *oldpage, *newpage;
968	struct address_space *swap_mapping;
969	pgoff_t swap_index;
970	int error;
971
972	oldpage = *pagep;
973	swap_index = page_private(oldpage);
974	swap_mapping = page_mapping(oldpage);
975
976	/*
977	 * We have arrived here because our zones are constrained, so don't
978	 * limit chance of success by further cpuset and node constraints.
979	 */
980	gfp &= ~GFP_CONSTRAINT_MASK;
981	newpage = shmem_alloc_page(gfp, info, index);
982	if (!newpage)
983		return -ENOMEM;
984
985	page_cache_get(newpage);
986	copy_highpage(newpage, oldpage);
987	flush_dcache_page(newpage);
988
989	__set_page_locked(newpage);
990	SetPageUptodate(newpage);
991	SetPageSwapBacked(newpage);
992	set_page_private(newpage, swap_index);
993	SetPageSwapCache(newpage);
994
995	/*
996	 * Our caller will very soon move newpage out of swapcache, but it's
997	 * a nice clean interface for us to replace oldpage by newpage there.
998	 */
999	spin_lock_irq(&swap_mapping->tree_lock);
1000	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1001								   newpage);
1002	if (!error) {
1003		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1004		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1005	}
1006	spin_unlock_irq(&swap_mapping->tree_lock);
1007
1008	if (unlikely(error)) {
1009		/*
1010		 * Is this possible?  I think not, now that our callers check
1011		 * both PageSwapCache and page_private after getting page lock;
1012		 * but be defensive.  Reverse old to newpage for clear and free.
1013		 */
1014		oldpage = newpage;
1015	} else {
1016		mem_cgroup_migrate(oldpage, newpage, false);
1017		lru_cache_add_anon(newpage);
1018		*pagep = newpage;
1019	}
1020
1021	ClearPageSwapCache(oldpage);
1022	set_page_private(oldpage, 0);
1023
1024	unlock_page(oldpage);
1025	page_cache_release(oldpage);
1026	page_cache_release(oldpage);
1027	return error;
1028}
1029
1030/*
1031 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1032 *
1033 * If we allocate a new one we do not mark it dirty. That's up to the
1034 * vm. If we swap it in we mark it dirty since we also free the swap
1035 * entry since a page cannot live in both the swap and page cache
1036 */
1037static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1038	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1039{
1040	struct address_space *mapping = inode->i_mapping;
1041	struct shmem_inode_info *info;
1042	struct shmem_sb_info *sbinfo;
1043	struct mem_cgroup *memcg;
1044	struct page *page;
1045	swp_entry_t swap;
1046	int error;
1047	int once = 0;
1048	int alloced = 0;
1049
1050	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1051		return -EFBIG;
1052repeat:
1053	swap.val = 0;
1054	page = find_lock_entry(mapping, index);
1055	if (radix_tree_exceptional_entry(page)) {
1056		swap = radix_to_swp_entry(page);
1057		page = NULL;
1058	}
1059
1060	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1061	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1062		error = -EINVAL;
1063		goto failed;
1064	}
1065
1066	if (page && sgp == SGP_WRITE)
1067		mark_page_accessed(page);
1068
1069	/* fallocated page? */
1070	if (page && !PageUptodate(page)) {
1071		if (sgp != SGP_READ)
1072			goto clear;
1073		unlock_page(page);
1074		page_cache_release(page);
1075		page = NULL;
1076	}
1077	if (page || (sgp == SGP_READ && !swap.val)) {
1078		*pagep = page;
1079		return 0;
1080	}
1081
1082	/*
1083	 * Fast cache lookup did not find it:
1084	 * bring it back from swap or allocate.
1085	 */
1086	info = SHMEM_I(inode);
1087	sbinfo = SHMEM_SB(inode->i_sb);
1088
1089	if (swap.val) {
1090		/* Look it up and read it in.. */
1091		page = lookup_swap_cache(swap);
1092		if (!page) {
1093			/* here we actually do the io */
1094			if (fault_type)
1095				*fault_type |= VM_FAULT_MAJOR;
1096			page = shmem_swapin(swap, gfp, info, index);
1097			if (!page) {
1098				error = -ENOMEM;
1099				goto failed;
1100			}
1101		}
1102
1103		/* We have to do this with page locked to prevent races */
1104		lock_page(page);
1105		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1106		    !shmem_confirm_swap(mapping, index, swap)) {
1107			error = -EEXIST;	/* try again */
1108			goto unlock;
1109		}
1110		if (!PageUptodate(page)) {
1111			error = -EIO;
1112			goto failed;
1113		}
1114		wait_on_page_writeback(page);
1115
1116		if (shmem_should_replace_page(page, gfp)) {
1117			error = shmem_replace_page(&page, gfp, info, index);
1118			if (error)
1119				goto failed;
1120		}
1121
1122		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1123		if (!error) {
1124			error = shmem_add_to_page_cache(page, mapping, index,
1125						swp_to_radix_entry(swap));
1126			/*
1127			 * We already confirmed swap under page lock, and make
1128			 * no memory allocation here, so usually no possibility
1129			 * of error; but free_swap_and_cache() only trylocks a
1130			 * page, so it is just possible that the entry has been
1131			 * truncated or holepunched since swap was confirmed.
1132			 * shmem_undo_range() will have done some of the
1133			 * unaccounting, now delete_from_swap_cache() will do
1134			 * the rest (including mem_cgroup_uncharge_swapcache).
1135			 * Reset swap.val? No, leave it so "failed" goes back to
1136			 * "repeat": reading a hole and writing should succeed.
1137			 */
1138			if (error) {
1139				mem_cgroup_cancel_charge(page, memcg);
1140				delete_from_swap_cache(page);
1141			}
1142		}
1143		if (error)
1144			goto failed;
1145
1146		mem_cgroup_commit_charge(page, memcg, true);
1147
1148		spin_lock(&info->lock);
1149		info->swapped--;
1150		shmem_recalc_inode(inode);
1151		spin_unlock(&info->lock);
1152
1153		if (sgp == SGP_WRITE)
1154			mark_page_accessed(page);
1155
1156		delete_from_swap_cache(page);
1157		set_page_dirty(page);
1158		swap_free(swap);
1159
1160	} else {
1161		if (shmem_acct_block(info->flags)) {
1162			error = -ENOSPC;
1163			goto failed;
1164		}
1165		if (sbinfo->max_blocks) {
1166			if (percpu_counter_compare(&sbinfo->used_blocks,
1167						sbinfo->max_blocks) >= 0) {
1168				error = -ENOSPC;
1169				goto unacct;
1170			}
1171			percpu_counter_inc(&sbinfo->used_blocks);
1172		}
1173
1174		page = shmem_alloc_page(gfp, info, index);
1175		if (!page) {
1176			error = -ENOMEM;
1177			goto decused;
1178		}
1179
1180		__SetPageSwapBacked(page);
1181		__set_page_locked(page);
1182		if (sgp == SGP_WRITE)
1183			__SetPageReferenced(page);
1184
1185		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1186		if (error)
1187			goto decused;
1188		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1189		if (!error) {
1190			error = shmem_add_to_page_cache(page, mapping, index,
1191							NULL);
1192			radix_tree_preload_end();
1193		}
1194		if (error) {
1195			mem_cgroup_cancel_charge(page, memcg);
1196			goto decused;
1197		}
1198		mem_cgroup_commit_charge(page, memcg, false);
1199		lru_cache_add_anon(page);
1200
1201		spin_lock(&info->lock);
1202		info->alloced++;
1203		inode->i_blocks += BLOCKS_PER_PAGE;
1204		shmem_recalc_inode(inode);
1205		spin_unlock(&info->lock);
1206		alloced = true;
1207
1208		/*
1209		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1210		 */
1211		if (sgp == SGP_FALLOC)
1212			sgp = SGP_WRITE;
1213clear:
1214		/*
1215		 * Let SGP_WRITE caller clear ends if write does not fill page;
1216		 * but SGP_FALLOC on a page fallocated earlier must initialize
1217		 * it now, lest undo on failure cancel our earlier guarantee.
1218		 */
1219		if (sgp != SGP_WRITE) {
1220			clear_highpage(page);
1221			flush_dcache_page(page);
1222			SetPageUptodate(page);
1223		}
1224		if (sgp == SGP_DIRTY)
1225			set_page_dirty(page);
1226	}
1227
1228	/* Perhaps the file has been truncated since we checked */
1229	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1230	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231		error = -EINVAL;
1232		if (alloced)
1233			goto trunc;
1234		else
1235			goto failed;
1236	}
1237	*pagep = page;
1238	return 0;
1239
1240	/*
1241	 * Error recovery.
1242	 */
1243trunc:
1244	info = SHMEM_I(inode);
1245	ClearPageDirty(page);
1246	delete_from_page_cache(page);
1247	spin_lock(&info->lock);
1248	info->alloced--;
1249	inode->i_blocks -= BLOCKS_PER_PAGE;
1250	spin_unlock(&info->lock);
1251decused:
1252	sbinfo = SHMEM_SB(inode->i_sb);
1253	if (sbinfo->max_blocks)
1254		percpu_counter_add(&sbinfo->used_blocks, -1);
1255unacct:
1256	shmem_unacct_blocks(info->flags, 1);
1257failed:
1258	if (swap.val && error != -EINVAL &&
1259	    !shmem_confirm_swap(mapping, index, swap))
1260		error = -EEXIST;
1261unlock:
1262	if (page) {
1263		unlock_page(page);
1264		page_cache_release(page);
1265	}
1266	if (error == -ENOSPC && !once++) {
1267		info = SHMEM_I(inode);
1268		spin_lock(&info->lock);
1269		shmem_recalc_inode(inode);
1270		spin_unlock(&info->lock);
1271		goto repeat;
1272	}
1273	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1274		goto repeat;
1275	return error;
1276}
1277
1278static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1279{
1280	struct inode *inode = file_inode(vma->vm_file);
1281	int error;
1282	int ret = VM_FAULT_LOCKED;
1283
1284	/*
1285	 * Trinity finds that probing a hole which tmpfs is punching can
1286	 * prevent the hole-punch from ever completing: which in turn
1287	 * locks writers out with its hold on i_mutex.  So refrain from
1288	 * faulting pages into the hole while it's being punched.  Although
1289	 * shmem_undo_range() does remove the additions, it may be unable to
1290	 * keep up, as each new page needs its own unmap_mapping_range() call,
1291	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1292	 *
1293	 * It does not matter if we sometimes reach this check just before the
1294	 * hole-punch begins, so that one fault then races with the punch:
1295	 * we just need to make racing faults a rare case.
1296	 *
1297	 * The implementation below would be much simpler if we just used a
1298	 * standard mutex or completion: but we cannot take i_mutex in fault,
1299	 * and bloating every shmem inode for this unlikely case would be sad.
1300	 */
1301	if (unlikely(inode->i_private)) {
1302		struct shmem_falloc *shmem_falloc;
1303
1304		spin_lock(&inode->i_lock);
1305		shmem_falloc = inode->i_private;
1306		if (shmem_falloc &&
1307		    shmem_falloc->waitq &&
1308		    vmf->pgoff >= shmem_falloc->start &&
1309		    vmf->pgoff < shmem_falloc->next) {
1310			wait_queue_head_t *shmem_falloc_waitq;
1311			DEFINE_WAIT(shmem_fault_wait);
1312
1313			ret = VM_FAULT_NOPAGE;
1314			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1315			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1316				/* It's polite to up mmap_sem if we can */
1317				up_read(&vma->vm_mm->mmap_sem);
1318				ret = VM_FAULT_RETRY;
1319			}
1320
1321			shmem_falloc_waitq = shmem_falloc->waitq;
1322			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1323					TASK_UNINTERRUPTIBLE);
1324			spin_unlock(&inode->i_lock);
1325			schedule();
1326
1327			/*
1328			 * shmem_falloc_waitq points into the shmem_fallocate()
1329			 * stack of the hole-punching task: shmem_falloc_waitq
1330			 * is usually invalid by the time we reach here, but
1331			 * finish_wait() does not dereference it in that case;
1332			 * though i_lock needed lest racing with wake_up_all().
1333			 */
1334			spin_lock(&inode->i_lock);
1335			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1336			spin_unlock(&inode->i_lock);
1337			return ret;
1338		}
1339		spin_unlock(&inode->i_lock);
1340	}
1341
1342	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1343	if (error)
1344		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1345
1346	if (ret & VM_FAULT_MAJOR) {
1347		count_vm_event(PGMAJFAULT);
1348		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1349	}
1350	return ret;
1351}
1352
1353#ifdef CONFIG_NUMA
1354static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1355{
1356	struct inode *inode = file_inode(vma->vm_file);
1357	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1358}
1359
1360static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1361					  unsigned long addr)
1362{
1363	struct inode *inode = file_inode(vma->vm_file);
1364	pgoff_t index;
1365
1366	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1367	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1368}
1369#endif
1370
1371int shmem_lock(struct file *file, int lock, struct user_struct *user)
1372{
1373	struct inode *inode = file_inode(file);
1374	struct shmem_inode_info *info = SHMEM_I(inode);
1375	int retval = -ENOMEM;
1376
1377	spin_lock(&info->lock);
1378	if (lock && !(info->flags & VM_LOCKED)) {
1379		if (!user_shm_lock(inode->i_size, user))
1380			goto out_nomem;
1381		info->flags |= VM_LOCKED;
1382		mapping_set_unevictable(file->f_mapping);
1383	}
1384	if (!lock && (info->flags & VM_LOCKED) && user) {
1385		user_shm_unlock(inode->i_size, user);
1386		info->flags &= ~VM_LOCKED;
1387		mapping_clear_unevictable(file->f_mapping);
1388	}
1389	retval = 0;
1390
1391out_nomem:
1392	spin_unlock(&info->lock);
1393	return retval;
1394}
1395
1396static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1397{
1398	file_accessed(file);
1399	vma->vm_ops = &shmem_vm_ops;
1400	return 0;
1401}
1402
1403static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1404				     umode_t mode, dev_t dev, unsigned long flags)
1405{
1406	struct inode *inode;
1407	struct shmem_inode_info *info;
1408	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1409
1410	if (shmem_reserve_inode(sb))
1411		return NULL;
1412
1413	inode = new_inode(sb);
1414	if (inode) {
1415		inode->i_ino = get_next_ino();
1416		inode_init_owner(inode, dir, mode);
1417		inode->i_blocks = 0;
1418		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1419		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1420		inode->i_generation = get_seconds();
1421		info = SHMEM_I(inode);
1422		memset(info, 0, (char *)inode - (char *)info);
1423		spin_lock_init(&info->lock);
1424		info->seals = F_SEAL_SEAL;
1425		info->flags = flags & VM_NORESERVE;
1426		INIT_LIST_HEAD(&info->swaplist);
1427		simple_xattrs_init(&info->xattrs);
1428		cache_no_acl(inode);
1429
1430		switch (mode & S_IFMT) {
1431		default:
1432			inode->i_op = &shmem_special_inode_operations;
1433			init_special_inode(inode, mode, dev);
1434			break;
1435		case S_IFREG:
1436			inode->i_mapping->a_ops = &shmem_aops;
1437			inode->i_op = &shmem_inode_operations;
1438			inode->i_fop = &shmem_file_operations;
1439			mpol_shared_policy_init(&info->policy,
1440						 shmem_get_sbmpol(sbinfo));
1441			break;
1442		case S_IFDIR:
1443			inc_nlink(inode);
1444			/* Some things misbehave if size == 0 on a directory */
1445			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1446			inode->i_op = &shmem_dir_inode_operations;
1447			inode->i_fop = &simple_dir_operations;
1448			break;
1449		case S_IFLNK:
1450			/*
1451			 * Must not load anything in the rbtree,
1452			 * mpol_free_shared_policy will not be called.
1453			 */
1454			mpol_shared_policy_init(&info->policy, NULL);
1455			break;
1456		}
1457	} else
1458		shmem_free_inode(sb);
1459	return inode;
1460}
1461
1462bool shmem_mapping(struct address_space *mapping)
1463{
1464	return mapping->backing_dev_info == &shmem_backing_dev_info;
1465}
1466
1467#ifdef CONFIG_TMPFS
1468static const struct inode_operations shmem_symlink_inode_operations;
1469static const struct inode_operations shmem_short_symlink_operations;
1470
1471#ifdef CONFIG_TMPFS_XATTR
1472static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1473#else
1474#define shmem_initxattrs NULL
1475#endif
1476
1477static int
1478shmem_write_begin(struct file *file, struct address_space *mapping,
1479			loff_t pos, unsigned len, unsigned flags,
1480			struct page **pagep, void **fsdata)
1481{
1482	struct inode *inode = mapping->host;
1483	struct shmem_inode_info *info = SHMEM_I(inode);
1484	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1485
1486	/* i_mutex is held by caller */
1487	if (unlikely(info->seals)) {
1488		if (info->seals & F_SEAL_WRITE)
1489			return -EPERM;
1490		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1491			return -EPERM;
1492	}
1493
1494	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1495}
1496
1497static int
1498shmem_write_end(struct file *file, struct address_space *mapping,
1499			loff_t pos, unsigned len, unsigned copied,
1500			struct page *page, void *fsdata)
1501{
1502	struct inode *inode = mapping->host;
1503
1504	if (pos + copied > inode->i_size)
1505		i_size_write(inode, pos + copied);
1506
1507	if (!PageUptodate(page)) {
1508		if (copied < PAGE_CACHE_SIZE) {
1509			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1510			zero_user_segments(page, 0, from,
1511					from + copied, PAGE_CACHE_SIZE);
1512		}
1513		SetPageUptodate(page);
1514	}
1515	set_page_dirty(page);
1516	unlock_page(page);
1517	page_cache_release(page);
1518
1519	return copied;
1520}
1521
1522static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1523{
1524	struct file *file = iocb->ki_filp;
1525	struct inode *inode = file_inode(file);
1526	struct address_space *mapping = inode->i_mapping;
1527	pgoff_t index;
1528	unsigned long offset;
1529	enum sgp_type sgp = SGP_READ;
1530	int error = 0;
1531	ssize_t retval = 0;
1532	loff_t *ppos = &iocb->ki_pos;
1533
1534	/*
1535	 * Might this read be for a stacking filesystem?  Then when reading
1536	 * holes of a sparse file, we actually need to allocate those pages,
1537	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1538	 */
1539	if (segment_eq(get_fs(), KERNEL_DS))
1540		sgp = SGP_DIRTY;
1541
1542	index = *ppos >> PAGE_CACHE_SHIFT;
1543	offset = *ppos & ~PAGE_CACHE_MASK;
1544
1545	for (;;) {
1546		struct page *page = NULL;
1547		pgoff_t end_index;
1548		unsigned long nr, ret;
1549		loff_t i_size = i_size_read(inode);
1550
1551		end_index = i_size >> PAGE_CACHE_SHIFT;
1552		if (index > end_index)
1553			break;
1554		if (index == end_index) {
1555			nr = i_size & ~PAGE_CACHE_MASK;
1556			if (nr <= offset)
1557				break;
1558		}
1559
1560		error = shmem_getpage(inode, index, &page, sgp, NULL);
1561		if (error) {
1562			if (error == -EINVAL)
1563				error = 0;
1564			break;
1565		}
1566		if (page)
1567			unlock_page(page);
1568
1569		/*
1570		 * We must evaluate after, since reads (unlike writes)
1571		 * are called without i_mutex protection against truncate
1572		 */
1573		nr = PAGE_CACHE_SIZE;
1574		i_size = i_size_read(inode);
1575		end_index = i_size >> PAGE_CACHE_SHIFT;
1576		if (index == end_index) {
1577			nr = i_size & ~PAGE_CACHE_MASK;
1578			if (nr <= offset) {
1579				if (page)
1580					page_cache_release(page);
1581				break;
1582			}
1583		}
1584		nr -= offset;
1585
1586		if (page) {
1587			/*
1588			 * If users can be writing to this page using arbitrary
1589			 * virtual addresses, take care about potential aliasing
1590			 * before reading the page on the kernel side.
1591			 */
1592			if (mapping_writably_mapped(mapping))
1593				flush_dcache_page(page);
1594			/*
1595			 * Mark the page accessed if we read the beginning.
1596			 */
1597			if (!offset)
1598				mark_page_accessed(page);
1599		} else {
1600			page = ZERO_PAGE(0);
1601			page_cache_get(page);
1602		}
1603
1604		/*
1605		 * Ok, we have the page, and it's up-to-date, so
1606		 * now we can copy it to user space...
1607		 */
1608		ret = copy_page_to_iter(page, offset, nr, to);
1609		retval += ret;
1610		offset += ret;
1611		index += offset >> PAGE_CACHE_SHIFT;
1612		offset &= ~PAGE_CACHE_MASK;
1613
1614		page_cache_release(page);
1615		if (!iov_iter_count(to))
1616			break;
1617		if (ret < nr) {
1618			error = -EFAULT;
1619			break;
1620		}
1621		cond_resched();
1622	}
1623
1624	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1625	file_accessed(file);
1626	return retval ? retval : error;
1627}
1628
1629static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1630				struct pipe_inode_info *pipe, size_t len,
1631				unsigned int flags)
1632{
1633	struct address_space *mapping = in->f_mapping;
1634	struct inode *inode = mapping->host;
1635	unsigned int loff, nr_pages, req_pages;
1636	struct page *pages[PIPE_DEF_BUFFERS];
1637	struct partial_page partial[PIPE_DEF_BUFFERS];
1638	struct page *page;
1639	pgoff_t index, end_index;
1640	loff_t isize, left;
1641	int error, page_nr;
1642	struct splice_pipe_desc spd = {
1643		.pages = pages,
1644		.partial = partial,
1645		.nr_pages_max = PIPE_DEF_BUFFERS,
1646		.flags = flags,
1647		.ops = &page_cache_pipe_buf_ops,
1648		.spd_release = spd_release_page,
1649	};
1650
1651	isize = i_size_read(inode);
1652	if (unlikely(*ppos >= isize))
1653		return 0;
1654
1655	left = isize - *ppos;
1656	if (unlikely(left < len))
1657		len = left;
1658
1659	if (splice_grow_spd(pipe, &spd))
1660		return -ENOMEM;
1661
1662	index = *ppos >> PAGE_CACHE_SHIFT;
1663	loff = *ppos & ~PAGE_CACHE_MASK;
1664	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1665	nr_pages = min(req_pages, spd.nr_pages_max);
1666
1667	spd.nr_pages = find_get_pages_contig(mapping, index,
1668						nr_pages, spd.pages);
1669	index += spd.nr_pages;
1670	error = 0;
1671
1672	while (spd.nr_pages < nr_pages) {
1673		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1674		if (error)
1675			break;
1676		unlock_page(page);
1677		spd.pages[spd.nr_pages++] = page;
1678		index++;
1679	}
1680
1681	index = *ppos >> PAGE_CACHE_SHIFT;
1682	nr_pages = spd.nr_pages;
1683	spd.nr_pages = 0;
1684
1685	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1686		unsigned int this_len;
1687
1688		if (!len)
1689			break;
1690
1691		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1692		page = spd.pages[page_nr];
1693
1694		if (!PageUptodate(page) || page->mapping != mapping) {
1695			error = shmem_getpage(inode, index, &page,
1696							SGP_CACHE, NULL);
1697			if (error)
1698				break;
1699			unlock_page(page);
1700			page_cache_release(spd.pages[page_nr]);
1701			spd.pages[page_nr] = page;
1702		}
1703
1704		isize = i_size_read(inode);
1705		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1706		if (unlikely(!isize || index > end_index))
1707			break;
1708
1709		if (end_index == index) {
1710			unsigned int plen;
1711
1712			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1713			if (plen <= loff)
1714				break;
1715
1716			this_len = min(this_len, plen - loff);
1717			len = this_len;
1718		}
1719
1720		spd.partial[page_nr].offset = loff;
1721		spd.partial[page_nr].len = this_len;
1722		len -= this_len;
1723		loff = 0;
1724		spd.nr_pages++;
1725		index++;
1726	}
1727
1728	while (page_nr < nr_pages)
1729		page_cache_release(spd.pages[page_nr++]);
1730
1731	if (spd.nr_pages)
1732		error = splice_to_pipe(pipe, &spd);
1733
1734	splice_shrink_spd(&spd);
1735
1736	if (error > 0) {
1737		*ppos += error;
1738		file_accessed(in);
1739	}
1740	return error;
1741}
1742
1743/*
1744 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1745 */
1746static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1747				    pgoff_t index, pgoff_t end, int whence)
1748{
1749	struct page *page;
1750	struct pagevec pvec;
1751	pgoff_t indices[PAGEVEC_SIZE];
1752	bool done = false;
1753	int i;
1754
1755	pagevec_init(&pvec, 0);
1756	pvec.nr = 1;		/* start small: we may be there already */
1757	while (!done) {
1758		pvec.nr = find_get_entries(mapping, index,
1759					pvec.nr, pvec.pages, indices);
1760		if (!pvec.nr) {
1761			if (whence == SEEK_DATA)
1762				index = end;
1763			break;
1764		}
1765		for (i = 0; i < pvec.nr; i++, index++) {
1766			if (index < indices[i]) {
1767				if (whence == SEEK_HOLE) {
1768					done = true;
1769					break;
1770				}
1771				index = indices[i];
1772			}
1773			page = pvec.pages[i];
1774			if (page && !radix_tree_exceptional_entry(page)) {
1775				if (!PageUptodate(page))
1776					page = NULL;
1777			}
1778			if (index >= end ||
1779			    (page && whence == SEEK_DATA) ||
1780			    (!page && whence == SEEK_HOLE)) {
1781				done = true;
1782				break;
1783			}
1784		}
1785		pagevec_remove_exceptionals(&pvec);
1786		pagevec_release(&pvec);
1787		pvec.nr = PAGEVEC_SIZE;
1788		cond_resched();
1789	}
1790	return index;
1791}
1792
1793static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1794{
1795	struct address_space *mapping = file->f_mapping;
1796	struct inode *inode = mapping->host;
1797	pgoff_t start, end;
1798	loff_t new_offset;
1799
1800	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1801		return generic_file_llseek_size(file, offset, whence,
1802					MAX_LFS_FILESIZE, i_size_read(inode));
1803	mutex_lock(&inode->i_mutex);
1804	/* We're holding i_mutex so we can access i_size directly */
1805
1806	if (offset < 0)
1807		offset = -EINVAL;
1808	else if (offset >= inode->i_size)
1809		offset = -ENXIO;
1810	else {
1811		start = offset >> PAGE_CACHE_SHIFT;
1812		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1813		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1814		new_offset <<= PAGE_CACHE_SHIFT;
1815		if (new_offset > offset) {
1816			if (new_offset < inode->i_size)
1817				offset = new_offset;
1818			else if (whence == SEEK_DATA)
1819				offset = -ENXIO;
1820			else
1821				offset = inode->i_size;
1822		}
1823	}
1824
1825	if (offset >= 0)
1826		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1827	mutex_unlock(&inode->i_mutex);
1828	return offset;
1829}
1830
1831/*
1832 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1833 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1834 */
1835#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1836#define LAST_SCAN               4       /* about 150ms max */
1837
1838static void shmem_tag_pins(struct address_space *mapping)
1839{
1840	struct radix_tree_iter iter;
1841	void **slot;
1842	pgoff_t start;
1843	struct page *page;
1844
1845	lru_add_drain();
1846	start = 0;
1847	rcu_read_lock();
1848
1849restart:
1850	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1851		page = radix_tree_deref_slot(slot);
1852		if (!page || radix_tree_exception(page)) {
1853			if (radix_tree_deref_retry(page))
1854				goto restart;
1855		} else if (page_count(page) - page_mapcount(page) > 1) {
1856			spin_lock_irq(&mapping->tree_lock);
1857			radix_tree_tag_set(&mapping->page_tree, iter.index,
1858					   SHMEM_TAG_PINNED);
1859			spin_unlock_irq(&mapping->tree_lock);
1860		}
1861
1862		if (need_resched()) {
1863			cond_resched_rcu();
1864			start = iter.index + 1;
1865			goto restart;
1866		}
1867	}
1868	rcu_read_unlock();
1869}
1870
1871/*
1872 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1873 * via get_user_pages(), drivers might have some pending I/O without any active
1874 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1875 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1876 * them to be dropped.
1877 * The caller must guarantee that no new user will acquire writable references
1878 * to those pages to avoid races.
1879 */
1880static int shmem_wait_for_pins(struct address_space *mapping)
1881{
1882	struct radix_tree_iter iter;
1883	void **slot;
1884	pgoff_t start;
1885	struct page *page;
1886	int error, scan;
1887
1888	shmem_tag_pins(mapping);
1889
1890	error = 0;
1891	for (scan = 0; scan <= LAST_SCAN; scan++) {
1892		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1893			break;
1894
1895		if (!scan)
1896			lru_add_drain_all();
1897		else if (schedule_timeout_killable((HZ << scan) / 200))
1898			scan = LAST_SCAN;
1899
1900		start = 0;
1901		rcu_read_lock();
1902restart:
1903		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1904					   start, SHMEM_TAG_PINNED) {
1905
1906			page = radix_tree_deref_slot(slot);
1907			if (radix_tree_exception(page)) {
1908				if (radix_tree_deref_retry(page))
1909					goto restart;
1910
1911				page = NULL;
1912			}
1913
1914			if (page &&
1915			    page_count(page) - page_mapcount(page) != 1) {
1916				if (scan < LAST_SCAN)
1917					goto continue_resched;
1918
1919				/*
1920				 * On the last scan, we clean up all those tags
1921				 * we inserted; but make a note that we still
1922				 * found pages pinned.
1923				 */
1924				error = -EBUSY;
1925			}
1926
1927			spin_lock_irq(&mapping->tree_lock);
1928			radix_tree_tag_clear(&mapping->page_tree,
1929					     iter.index, SHMEM_TAG_PINNED);
1930			spin_unlock_irq(&mapping->tree_lock);
1931continue_resched:
1932			if (need_resched()) {
1933				cond_resched_rcu();
1934				start = iter.index + 1;
1935				goto restart;
1936			}
1937		}
1938		rcu_read_unlock();
1939	}
1940
1941	return error;
1942}
1943
1944#define F_ALL_SEALS (F_SEAL_SEAL | \
1945		     F_SEAL_SHRINK | \
1946		     F_SEAL_GROW | \
1947		     F_SEAL_WRITE)
1948
1949int shmem_add_seals(struct file *file, unsigned int seals)
1950{
1951	struct inode *inode = file_inode(file);
1952	struct shmem_inode_info *info = SHMEM_I(inode);
1953	int error;
1954
1955	/*
1956	 * SEALING
1957	 * Sealing allows multiple parties to share a shmem-file but restrict
1958	 * access to a specific subset of file operations. Seals can only be
1959	 * added, but never removed. This way, mutually untrusted parties can
1960	 * share common memory regions with a well-defined policy. A malicious
1961	 * peer can thus never perform unwanted operations on a shared object.
1962	 *
1963	 * Seals are only supported on special shmem-files and always affect
1964	 * the whole underlying inode. Once a seal is set, it may prevent some
1965	 * kinds of access to the file. Currently, the following seals are
1966	 * defined:
1967	 *   SEAL_SEAL: Prevent further seals from being set on this file
1968	 *   SEAL_SHRINK: Prevent the file from shrinking
1969	 *   SEAL_GROW: Prevent the file from growing
1970	 *   SEAL_WRITE: Prevent write access to the file
1971	 *
1972	 * As we don't require any trust relationship between two parties, we
1973	 * must prevent seals from being removed. Therefore, sealing a file
1974	 * only adds a given set of seals to the file, it never touches
1975	 * existing seals. Furthermore, the "setting seals"-operation can be
1976	 * sealed itself, which basically prevents any further seal from being
1977	 * added.
1978	 *
1979	 * Semantics of sealing are only defined on volatile files. Only
1980	 * anonymous shmem files support sealing. More importantly, seals are
1981	 * never written to disk. Therefore, there's no plan to support it on
1982	 * other file types.
1983	 */
1984
1985	if (file->f_op != &shmem_file_operations)
1986		return -EINVAL;
1987	if (!(file->f_mode & FMODE_WRITE))
1988		return -EPERM;
1989	if (seals & ~(unsigned int)F_ALL_SEALS)
1990		return -EINVAL;
1991
1992	mutex_lock(&inode->i_mutex);
1993
1994	if (info->seals & F_SEAL_SEAL) {
1995		error = -EPERM;
1996		goto unlock;
1997	}
1998
1999	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2000		error = mapping_deny_writable(file->f_mapping);
2001		if (error)
2002			goto unlock;
2003
2004		error = shmem_wait_for_pins(file->f_mapping);
2005		if (error) {
2006			mapping_allow_writable(file->f_mapping);
2007			goto unlock;
2008		}
2009	}
2010
2011	info->seals |= seals;
2012	error = 0;
2013
2014unlock:
2015	mutex_unlock(&inode->i_mutex);
2016	return error;
2017}
2018EXPORT_SYMBOL_GPL(shmem_add_seals);
2019
2020int shmem_get_seals(struct file *file)
2021{
2022	if (file->f_op != &shmem_file_operations)
2023		return -EINVAL;
2024
2025	return SHMEM_I(file_inode(file))->seals;
2026}
2027EXPORT_SYMBOL_GPL(shmem_get_seals);
2028
2029long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2030{
2031	long error;
2032
2033	switch (cmd) {
2034	case F_ADD_SEALS:
2035		/* disallow upper 32bit */
2036		if (arg > UINT_MAX)
2037			return -EINVAL;
2038
2039		error = shmem_add_seals(file, arg);
2040		break;
2041	case F_GET_SEALS:
2042		error = shmem_get_seals(file);
2043		break;
2044	default:
2045		error = -EINVAL;
2046		break;
2047	}
2048
2049	return error;
2050}
2051
2052static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2053							 loff_t len)
2054{
2055	struct inode *inode = file_inode(file);
2056	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2057	struct shmem_inode_info *info = SHMEM_I(inode);
2058	struct shmem_falloc shmem_falloc;
2059	pgoff_t start, index, end;
2060	int error;
2061
2062	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2063		return -EOPNOTSUPP;
2064
2065	mutex_lock(&inode->i_mutex);
2066
2067	if (mode & FALLOC_FL_PUNCH_HOLE) {
2068		struct address_space *mapping = file->f_mapping;
2069		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2070		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2071		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2072
2073		/* protected by i_mutex */
2074		if (info->seals & F_SEAL_WRITE) {
2075			error = -EPERM;
2076			goto out;
2077		}
2078
2079		shmem_falloc.waitq = &shmem_falloc_waitq;
2080		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2081		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2082		spin_lock(&inode->i_lock);
2083		inode->i_private = &shmem_falloc;
2084		spin_unlock(&inode->i_lock);
2085
2086		if ((u64)unmap_end > (u64)unmap_start)
2087			unmap_mapping_range(mapping, unmap_start,
2088					    1 + unmap_end - unmap_start, 0);
2089		shmem_truncate_range(inode, offset, offset + len - 1);
2090		/* No need to unmap again: hole-punching leaves COWed pages */
2091
2092		spin_lock(&inode->i_lock);
2093		inode->i_private = NULL;
2094		wake_up_all(&shmem_falloc_waitq);
2095		spin_unlock(&inode->i_lock);
2096		error = 0;
2097		goto out;
2098	}
2099
2100	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2101	error = inode_newsize_ok(inode, offset + len);
2102	if (error)
2103		goto out;
2104
2105	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2106		error = -EPERM;
2107		goto out;
2108	}
2109
2110	start = offset >> PAGE_CACHE_SHIFT;
2111	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2112	/* Try to avoid a swapstorm if len is impossible to satisfy */
2113	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2114		error = -ENOSPC;
2115		goto out;
2116	}
2117
2118	shmem_falloc.waitq = NULL;
2119	shmem_falloc.start = start;
2120	shmem_falloc.next  = start;
2121	shmem_falloc.nr_falloced = 0;
2122	shmem_falloc.nr_unswapped = 0;
2123	spin_lock(&inode->i_lock);
2124	inode->i_private = &shmem_falloc;
2125	spin_unlock(&inode->i_lock);
2126
2127	for (index = start; index < end; index++) {
2128		struct page *page;
2129
2130		/*
2131		 * Good, the fallocate(2) manpage permits EINTR: we may have
2132		 * been interrupted because we are using up too much memory.
2133		 */
2134		if (signal_pending(current))
2135			error = -EINTR;
2136		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2137			error = -ENOMEM;
2138		else
2139			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2140									NULL);
2141		if (error) {
2142			/* Remove the !PageUptodate pages we added */
2143			shmem_undo_range(inode,
2144				(loff_t)start << PAGE_CACHE_SHIFT,
2145				(loff_t)index << PAGE_CACHE_SHIFT, true);
2146			goto undone;
2147		}
2148
2149		/*
2150		 * Inform shmem_writepage() how far we have reached.
2151		 * No need for lock or barrier: we have the page lock.
2152		 */
2153		shmem_falloc.next++;
2154		if (!PageUptodate(page))
2155			shmem_falloc.nr_falloced++;
2156
2157		/*
2158		 * If !PageUptodate, leave it that way so that freeable pages
2159		 * can be recognized if we need to rollback on error later.
2160		 * But set_page_dirty so that memory pressure will swap rather
2161		 * than free the pages we are allocating (and SGP_CACHE pages
2162		 * might still be clean: we now need to mark those dirty too).
2163		 */
2164		set_page_dirty(page);
2165		unlock_page(page);
2166		page_cache_release(page);
2167		cond_resched();
2168	}
2169
2170	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2171		i_size_write(inode, offset + len);
2172	inode->i_ctime = CURRENT_TIME;
2173undone:
2174	spin_lock(&inode->i_lock);
2175	inode->i_private = NULL;
2176	spin_unlock(&inode->i_lock);
2177out:
2178	mutex_unlock(&inode->i_mutex);
2179	return error;
2180}
2181
2182static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2183{
2184	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2185
2186	buf->f_type = TMPFS_MAGIC;
2187	buf->f_bsize = PAGE_CACHE_SIZE;
2188	buf->f_namelen = NAME_MAX;
2189	if (sbinfo->max_blocks) {
2190		buf->f_blocks = sbinfo->max_blocks;
2191		buf->f_bavail =
2192		buf->f_bfree  = sbinfo->max_blocks -
2193				percpu_counter_sum(&sbinfo->used_blocks);
2194	}
2195	if (sbinfo->max_inodes) {
2196		buf->f_files = sbinfo->max_inodes;
2197		buf->f_ffree = sbinfo->free_inodes;
2198	}
2199	/* else leave those fields 0 like simple_statfs */
2200	return 0;
2201}
2202
2203/*
2204 * File creation. Allocate an inode, and we're done..
2205 */
2206static int
2207shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2208{
2209	struct inode *inode;
2210	int error = -ENOSPC;
2211
2212	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2213	if (inode) {
2214		error = simple_acl_create(dir, inode);
2215		if (error)
2216			goto out_iput;
2217		error = security_inode_init_security(inode, dir,
2218						     &dentry->d_name,
2219						     shmem_initxattrs, NULL);
2220		if (error && error != -EOPNOTSUPP)
2221			goto out_iput;
2222
2223		error = 0;
2224		dir->i_size += BOGO_DIRENT_SIZE;
2225		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2226		d_instantiate(dentry, inode);
2227		dget(dentry); /* Extra count - pin the dentry in core */
2228	}
2229	return error;
2230out_iput:
2231	iput(inode);
2232	return error;
2233}
2234
2235static int
2236shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2237{
2238	struct inode *inode;
2239	int error = -ENOSPC;
2240
2241	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2242	if (inode) {
2243		error = security_inode_init_security(inode, dir,
2244						     NULL,
2245						     shmem_initxattrs, NULL);
2246		if (error && error != -EOPNOTSUPP)
2247			goto out_iput;
2248		error = simple_acl_create(dir, inode);
2249		if (error)
2250			goto out_iput;
2251		d_tmpfile(dentry, inode);
2252	}
2253	return error;
2254out_iput:
2255	iput(inode);
2256	return error;
2257}
2258
2259static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2260{
2261	int error;
2262
2263	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2264		return error;
2265	inc_nlink(dir);
2266	return 0;
2267}
2268
2269static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2270		bool excl)
2271{
2272	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2273}
2274
2275/*
2276 * Link a file..
2277 */
2278static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2279{
2280	struct inode *inode = old_dentry->d_inode;
2281	int ret;
2282
2283	/*
2284	 * No ordinary (disk based) filesystem counts links as inodes;
2285	 * but each new link needs a new dentry, pinning lowmem, and
2286	 * tmpfs dentries cannot be pruned until they are unlinked.
2287	 */
2288	ret = shmem_reserve_inode(inode->i_sb);
2289	if (ret)
2290		goto out;
2291
2292	dir->i_size += BOGO_DIRENT_SIZE;
2293	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2294	inc_nlink(inode);
2295	ihold(inode);	/* New dentry reference */
2296	dget(dentry);		/* Extra pinning count for the created dentry */
2297	d_instantiate(dentry, inode);
2298out:
2299	return ret;
2300}
2301
2302static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2303{
2304	struct inode *inode = dentry->d_inode;
2305
2306	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2307		shmem_free_inode(inode->i_sb);
2308
2309	dir->i_size -= BOGO_DIRENT_SIZE;
2310	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2311	drop_nlink(inode);
2312	dput(dentry);	/* Undo the count from "create" - this does all the work */
2313	return 0;
2314}
2315
2316static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2317{
2318	if (!simple_empty(dentry))
2319		return -ENOTEMPTY;
2320
2321	drop_nlink(dentry->d_inode);
2322	drop_nlink(dir);
2323	return shmem_unlink(dir, dentry);
2324}
2325
2326static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2327{
2328	bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2329	bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
2330
2331	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2332		if (old_is_dir) {
2333			drop_nlink(old_dir);
2334			inc_nlink(new_dir);
2335		} else {
2336			drop_nlink(new_dir);
2337			inc_nlink(old_dir);
2338		}
2339	}
2340	old_dir->i_ctime = old_dir->i_mtime =
2341	new_dir->i_ctime = new_dir->i_mtime =
2342	old_dentry->d_inode->i_ctime =
2343	new_dentry->d_inode->i_ctime = CURRENT_TIME;
2344
2345	return 0;
2346}
2347
2348static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2349{
2350	struct dentry *whiteout;
2351	int error;
2352
2353	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2354	if (!whiteout)
2355		return -ENOMEM;
2356
2357	error = shmem_mknod(old_dir, whiteout,
2358			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2359	dput(whiteout);
2360	if (error)
2361		return error;
2362
2363	/*
2364	 * Cheat and hash the whiteout while the old dentry is still in
2365	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2366	 *
2367	 * d_lookup() will consistently find one of them at this point,
2368	 * not sure which one, but that isn't even important.
2369	 */
2370	d_rehash(whiteout);
2371	return 0;
2372}
2373
2374/*
2375 * The VFS layer already does all the dentry stuff for rename,
2376 * we just have to decrement the usage count for the target if
2377 * it exists so that the VFS layer correctly free's it when it
2378 * gets overwritten.
2379 */
2380static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2381{
2382	struct inode *inode = old_dentry->d_inode;
2383	int they_are_dirs = S_ISDIR(inode->i_mode);
2384
2385	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2386		return -EINVAL;
2387
2388	if (flags & RENAME_EXCHANGE)
2389		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2390
2391	if (!simple_empty(new_dentry))
2392		return -ENOTEMPTY;
2393
2394	if (flags & RENAME_WHITEOUT) {
2395		int error;
2396
2397		error = shmem_whiteout(old_dir, old_dentry);
2398		if (error)
2399			return error;
2400	}
2401
2402	if (new_dentry->d_inode) {
2403		(void) shmem_unlink(new_dir, new_dentry);
2404		if (they_are_dirs) {
2405			drop_nlink(new_dentry->d_inode);
2406			drop_nlink(old_dir);
2407		}
2408	} else if (they_are_dirs) {
2409		drop_nlink(old_dir);
2410		inc_nlink(new_dir);
2411	}
2412
2413	old_dir->i_size -= BOGO_DIRENT_SIZE;
2414	new_dir->i_size += BOGO_DIRENT_SIZE;
2415	old_dir->i_ctime = old_dir->i_mtime =
2416	new_dir->i_ctime = new_dir->i_mtime =
2417	inode->i_ctime = CURRENT_TIME;
2418	return 0;
2419}
2420
2421static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2422{
2423	int error;
2424	int len;
2425	struct inode *inode;
2426	struct page *page;
2427	char *kaddr;
2428	struct shmem_inode_info *info;
2429
2430	len = strlen(symname) + 1;
2431	if (len > PAGE_CACHE_SIZE)
2432		return -ENAMETOOLONG;
2433
2434	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2435	if (!inode)
2436		return -ENOSPC;
2437
2438	error = security_inode_init_security(inode, dir, &dentry->d_name,
2439					     shmem_initxattrs, NULL);
2440	if (error) {
2441		if (error != -EOPNOTSUPP) {
2442			iput(inode);
2443			return error;
2444		}
2445		error = 0;
2446	}
2447
2448	info = SHMEM_I(inode);
2449	inode->i_size = len-1;
2450	if (len <= SHORT_SYMLINK_LEN) {
2451		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2452		if (!info->symlink) {
2453			iput(inode);
2454			return -ENOMEM;
2455		}
2456		inode->i_op = &shmem_short_symlink_operations;
2457	} else {
2458		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2459		if (error) {
2460			iput(inode);
2461			return error;
2462		}
2463		inode->i_mapping->a_ops = &shmem_aops;
2464		inode->i_op = &shmem_symlink_inode_operations;
2465		kaddr = kmap_atomic(page);
2466		memcpy(kaddr, symname, len);
2467		kunmap_atomic(kaddr);
2468		SetPageUptodate(page);
2469		set_page_dirty(page);
2470		unlock_page(page);
2471		page_cache_release(page);
2472	}
2473	dir->i_size += BOGO_DIRENT_SIZE;
2474	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2475	d_instantiate(dentry, inode);
2476	dget(dentry);
2477	return 0;
2478}
2479
2480static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2481{
2482	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2483	return NULL;
2484}
2485
2486static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2487{
2488	struct page *page = NULL;
2489	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2490	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2491	if (page)
2492		unlock_page(page);
2493	return page;
2494}
2495
2496static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2497{
2498	if (!IS_ERR(nd_get_link(nd))) {
2499		struct page *page = cookie;
2500		kunmap(page);
2501		mark_page_accessed(page);
2502		page_cache_release(page);
2503	}
2504}
2505
2506#ifdef CONFIG_TMPFS_XATTR
2507/*
2508 * Superblocks without xattr inode operations may get some security.* xattr
2509 * support from the LSM "for free". As soon as we have any other xattrs
2510 * like ACLs, we also need to implement the security.* handlers at
2511 * filesystem level, though.
2512 */
2513
2514/*
2515 * Callback for security_inode_init_security() for acquiring xattrs.
2516 */
2517static int shmem_initxattrs(struct inode *inode,
2518			    const struct xattr *xattr_array,
2519			    void *fs_info)
2520{
2521	struct shmem_inode_info *info = SHMEM_I(inode);
2522	const struct xattr *xattr;
2523	struct simple_xattr *new_xattr;
2524	size_t len;
2525
2526	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2527		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2528		if (!new_xattr)
2529			return -ENOMEM;
2530
2531		len = strlen(xattr->name) + 1;
2532		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2533					  GFP_KERNEL);
2534		if (!new_xattr->name) {
2535			kfree(new_xattr);
2536			return -ENOMEM;
2537		}
2538
2539		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2540		       XATTR_SECURITY_PREFIX_LEN);
2541		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2542		       xattr->name, len);
2543
2544		simple_xattr_list_add(&info->xattrs, new_xattr);
2545	}
2546
2547	return 0;
2548}
2549
2550static const struct xattr_handler *shmem_xattr_handlers[] = {
2551#ifdef CONFIG_TMPFS_POSIX_ACL
2552	&posix_acl_access_xattr_handler,
2553	&posix_acl_default_xattr_handler,
2554#endif
2555	NULL
2556};
2557
2558static int shmem_xattr_validate(const char *name)
2559{
2560	struct { const char *prefix; size_t len; } arr[] = {
2561		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2562		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2563	};
2564	int i;
2565
2566	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2567		size_t preflen = arr[i].len;
2568		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2569			if (!name[preflen])
2570				return -EINVAL;
2571			return 0;
2572		}
2573	}
2574	return -EOPNOTSUPP;
2575}
2576
2577static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2578			      void *buffer, size_t size)
2579{
2580	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2581	int err;
2582
2583	/*
2584	 * If this is a request for a synthetic attribute in the system.*
2585	 * namespace use the generic infrastructure to resolve a handler
2586	 * for it via sb->s_xattr.
2587	 */
2588	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2589		return generic_getxattr(dentry, name, buffer, size);
2590
2591	err = shmem_xattr_validate(name);
2592	if (err)
2593		return err;
2594
2595	return simple_xattr_get(&info->xattrs, name, buffer, size);
2596}
2597
2598static int shmem_setxattr(struct dentry *dentry, const char *name,
2599			  const void *value, size_t size, int flags)
2600{
2601	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2602	int err;
2603
2604	/*
2605	 * If this is a request for a synthetic attribute in the system.*
2606	 * namespace use the generic infrastructure to resolve a handler
2607	 * for it via sb->s_xattr.
2608	 */
2609	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2610		return generic_setxattr(dentry, name, value, size, flags);
2611
2612	err = shmem_xattr_validate(name);
2613	if (err)
2614		return err;
2615
2616	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2617}
2618
2619static int shmem_removexattr(struct dentry *dentry, const char *name)
2620{
2621	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2622	int err;
2623
2624	/*
2625	 * If this is a request for a synthetic attribute in the system.*
2626	 * namespace use the generic infrastructure to resolve a handler
2627	 * for it via sb->s_xattr.
2628	 */
2629	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2630		return generic_removexattr(dentry, name);
2631
2632	err = shmem_xattr_validate(name);
2633	if (err)
2634		return err;
2635
2636	return simple_xattr_remove(&info->xattrs, name);
2637}
2638
2639static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2640{
2641	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2642	return simple_xattr_list(&info->xattrs, buffer, size);
2643}
2644#endif /* CONFIG_TMPFS_XATTR */
2645
2646static const struct inode_operations shmem_short_symlink_operations = {
2647	.readlink	= generic_readlink,
2648	.follow_link	= shmem_follow_short_symlink,
2649#ifdef CONFIG_TMPFS_XATTR
2650	.setxattr	= shmem_setxattr,
2651	.getxattr	= shmem_getxattr,
2652	.listxattr	= shmem_listxattr,
2653	.removexattr	= shmem_removexattr,
2654#endif
2655};
2656
2657static const struct inode_operations shmem_symlink_inode_operations = {
2658	.readlink	= generic_readlink,
2659	.follow_link	= shmem_follow_link,
2660	.put_link	= shmem_put_link,
2661#ifdef CONFIG_TMPFS_XATTR
2662	.setxattr	= shmem_setxattr,
2663	.getxattr	= shmem_getxattr,
2664	.listxattr	= shmem_listxattr,
2665	.removexattr	= shmem_removexattr,
2666#endif
2667};
2668
2669static struct dentry *shmem_get_parent(struct dentry *child)
2670{
2671	return ERR_PTR(-ESTALE);
2672}
2673
2674static int shmem_match(struct inode *ino, void *vfh)
2675{
2676	__u32 *fh = vfh;
2677	__u64 inum = fh[2];
2678	inum = (inum << 32) | fh[1];
2679	return ino->i_ino == inum && fh[0] == ino->i_generation;
2680}
2681
2682static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2683		struct fid *fid, int fh_len, int fh_type)
2684{
2685	struct inode *inode;
2686	struct dentry *dentry = NULL;
2687	u64 inum;
2688
2689	if (fh_len < 3)
2690		return NULL;
2691
2692	inum = fid->raw[2];
2693	inum = (inum << 32) | fid->raw[1];
2694
2695	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2696			shmem_match, fid->raw);
2697	if (inode) {
2698		dentry = d_find_alias(inode);
2699		iput(inode);
2700	}
2701
2702	return dentry;
2703}
2704
2705static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2706				struct inode *parent)
2707{
2708	if (*len < 3) {
2709		*len = 3;
2710		return FILEID_INVALID;
2711	}
2712
2713	if (inode_unhashed(inode)) {
2714		/* Unfortunately insert_inode_hash is not idempotent,
2715		 * so as we hash inodes here rather than at creation
2716		 * time, we need a lock to ensure we only try
2717		 * to do it once
2718		 */
2719		static DEFINE_SPINLOCK(lock);
2720		spin_lock(&lock);
2721		if (inode_unhashed(inode))
2722			__insert_inode_hash(inode,
2723					    inode->i_ino + inode->i_generation);
2724		spin_unlock(&lock);
2725	}
2726
2727	fh[0] = inode->i_generation;
2728	fh[1] = inode->i_ino;
2729	fh[2] = ((__u64)inode->i_ino) >> 32;
2730
2731	*len = 3;
2732	return 1;
2733}
2734
2735static const struct export_operations shmem_export_ops = {
2736	.get_parent     = shmem_get_parent,
2737	.encode_fh      = shmem_encode_fh,
2738	.fh_to_dentry	= shmem_fh_to_dentry,
2739};
2740
2741static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2742			       bool remount)
2743{
2744	char *this_char, *value, *rest;
2745	struct mempolicy *mpol = NULL;
2746	uid_t uid;
2747	gid_t gid;
2748
2749	while (options != NULL) {
2750		this_char = options;
2751		for (;;) {
2752			/*
2753			 * NUL-terminate this option: unfortunately,
2754			 * mount options form a comma-separated list,
2755			 * but mpol's nodelist may also contain commas.
2756			 */
2757			options = strchr(options, ',');
2758			if (options == NULL)
2759				break;
2760			options++;
2761			if (!isdigit(*options)) {
2762				options[-1] = '\0';
2763				break;
2764			}
2765		}
2766		if (!*this_char)
2767			continue;
2768		if ((value = strchr(this_char,'=')) != NULL) {
2769			*value++ = 0;
2770		} else {
2771			printk(KERN_ERR
2772			    "tmpfs: No value for mount option '%s'\n",
2773			    this_char);
2774			goto error;
2775		}
2776
2777		if (!strcmp(this_char,"size")) {
2778			unsigned long long size;
2779			size = memparse(value,&rest);
2780			if (*rest == '%') {
2781				size <<= PAGE_SHIFT;
2782				size *= totalram_pages;
2783				do_div(size, 100);
2784				rest++;
2785			}
2786			if (*rest)
2787				goto bad_val;
2788			sbinfo->max_blocks =
2789				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2790		} else if (!strcmp(this_char,"nr_blocks")) {
2791			sbinfo->max_blocks = memparse(value, &rest);
2792			if (*rest)
2793				goto bad_val;
2794		} else if (!strcmp(this_char,"nr_inodes")) {
2795			sbinfo->max_inodes = memparse(value, &rest);
2796			if (*rest)
2797				goto bad_val;
2798		} else if (!strcmp(this_char,"mode")) {
2799			if (remount)
2800				continue;
2801			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2802			if (*rest)
2803				goto bad_val;
2804		} else if (!strcmp(this_char,"uid")) {
2805			if (remount)
2806				continue;
2807			uid = simple_strtoul(value, &rest, 0);
2808			if (*rest)
2809				goto bad_val;
2810			sbinfo->uid = make_kuid(current_user_ns(), uid);
2811			if (!uid_valid(sbinfo->uid))
2812				goto bad_val;
2813		} else if (!strcmp(this_char,"gid")) {
2814			if (remount)
2815				continue;
2816			gid = simple_strtoul(value, &rest, 0);
2817			if (*rest)
2818				goto bad_val;
2819			sbinfo->gid = make_kgid(current_user_ns(), gid);
2820			if (!gid_valid(sbinfo->gid))
2821				goto bad_val;
2822		} else if (!strcmp(this_char,"mpol")) {
2823			mpol_put(mpol);
2824			mpol = NULL;
2825			if (mpol_parse_str(value, &mpol))
2826				goto bad_val;
2827		} else {
2828			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2829			       this_char);
2830			goto error;
2831		}
2832	}
2833	sbinfo->mpol = mpol;
2834	return 0;
2835
2836bad_val:
2837	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2838	       value, this_char);
2839error:
2840	mpol_put(mpol);
2841	return 1;
2842
2843}
2844
2845static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2846{
2847	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2848	struct shmem_sb_info config = *sbinfo;
2849	unsigned long inodes;
2850	int error = -EINVAL;
2851
2852	config.mpol = NULL;
2853	if (shmem_parse_options(data, &config, true))
2854		return error;
2855
2856	spin_lock(&sbinfo->stat_lock);
2857	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2858	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2859		goto out;
2860	if (config.max_inodes < inodes)
2861		goto out;
2862	/*
2863	 * Those tests disallow limited->unlimited while any are in use;
2864	 * but we must separately disallow unlimited->limited, because
2865	 * in that case we have no record of how much is already in use.
2866	 */
2867	if (config.max_blocks && !sbinfo->max_blocks)
2868		goto out;
2869	if (config.max_inodes && !sbinfo->max_inodes)
2870		goto out;
2871
2872	error = 0;
2873	sbinfo->max_blocks  = config.max_blocks;
2874	sbinfo->max_inodes  = config.max_inodes;
2875	sbinfo->free_inodes = config.max_inodes - inodes;
2876
2877	/*
2878	 * Preserve previous mempolicy unless mpol remount option was specified.
2879	 */
2880	if (config.mpol) {
2881		mpol_put(sbinfo->mpol);
2882		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2883	}
2884out:
2885	spin_unlock(&sbinfo->stat_lock);
2886	return error;
2887}
2888
2889static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2890{
2891	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2892
2893	if (sbinfo->max_blocks != shmem_default_max_blocks())
2894		seq_printf(seq, ",size=%luk",
2895			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2896	if (sbinfo->max_inodes != shmem_default_max_inodes())
2897		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2898	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2899		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2900	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2901		seq_printf(seq, ",uid=%u",
2902				from_kuid_munged(&init_user_ns, sbinfo->uid));
2903	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2904		seq_printf(seq, ",gid=%u",
2905				from_kgid_munged(&init_user_ns, sbinfo->gid));
2906	shmem_show_mpol(seq, sbinfo->mpol);
2907	return 0;
2908}
2909
2910#define MFD_NAME_PREFIX "memfd:"
2911#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2912#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2913
2914#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2915
2916SYSCALL_DEFINE2(memfd_create,
2917		const char __user *, uname,
2918		unsigned int, flags)
2919{
2920	struct shmem_inode_info *info;
2921	struct file *file;
2922	int fd, error;
2923	char *name;
2924	long len;
2925
2926	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2927		return -EINVAL;
2928
2929	/* length includes terminating zero */
2930	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2931	if (len <= 0)
2932		return -EFAULT;
2933	if (len > MFD_NAME_MAX_LEN + 1)
2934		return -EINVAL;
2935
2936	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2937	if (!name)
2938		return -ENOMEM;
2939
2940	strcpy(name, MFD_NAME_PREFIX);
2941	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2942		error = -EFAULT;
2943		goto err_name;
2944	}
2945
2946	/* terminating-zero may have changed after strnlen_user() returned */
2947	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2948		error = -EFAULT;
2949		goto err_name;
2950	}
2951
2952	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2953	if (fd < 0) {
2954		error = fd;
2955		goto err_name;
2956	}
2957
2958	file = shmem_file_setup(name, 0, VM_NORESERVE);
2959	if (IS_ERR(file)) {
2960		error = PTR_ERR(file);
2961		goto err_fd;
2962	}
2963	info = SHMEM_I(file_inode(file));
2964	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2965	file->f_flags |= O_RDWR | O_LARGEFILE;
2966	if (flags & MFD_ALLOW_SEALING)
2967		info->seals &= ~F_SEAL_SEAL;
2968
2969	fd_install(fd, file);
2970	kfree(name);
2971	return fd;
2972
2973err_fd:
2974	put_unused_fd(fd);
2975err_name:
2976	kfree(name);
2977	return error;
2978}
2979
2980#endif /* CONFIG_TMPFS */
2981
2982static void shmem_put_super(struct super_block *sb)
2983{
2984	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2985
2986	percpu_counter_destroy(&sbinfo->used_blocks);
2987	mpol_put(sbinfo->mpol);
2988	kfree(sbinfo);
2989	sb->s_fs_info = NULL;
2990}
2991
2992int shmem_fill_super(struct super_block *sb, void *data, int silent)
2993{
2994	struct inode *inode;
2995	struct shmem_sb_info *sbinfo;
2996	int err = -ENOMEM;
2997
2998	/* Round up to L1_CACHE_BYTES to resist false sharing */
2999	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3000				L1_CACHE_BYTES), GFP_KERNEL);
3001	if (!sbinfo)
3002		return -ENOMEM;
3003
3004	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3005	sbinfo->uid = current_fsuid();
3006	sbinfo->gid = current_fsgid();
3007	sb->s_fs_info = sbinfo;
3008
3009#ifdef CONFIG_TMPFS
3010	/*
3011	 * Per default we only allow half of the physical ram per
3012	 * tmpfs instance, limiting inodes to one per page of lowmem;
3013	 * but the internal instance is left unlimited.
3014	 */
3015	if (!(sb->s_flags & MS_KERNMOUNT)) {
3016		sbinfo->max_blocks = shmem_default_max_blocks();
3017		sbinfo->max_inodes = shmem_default_max_inodes();
3018		if (shmem_parse_options(data, sbinfo, false)) {
3019			err = -EINVAL;
3020			goto failed;
3021		}
3022	} else {
3023		sb->s_flags |= MS_NOUSER;
3024	}
3025	sb->s_export_op = &shmem_export_ops;
3026	sb->s_flags |= MS_NOSEC;
3027#else
3028	sb->s_flags |= MS_NOUSER;
3029#endif
3030
3031	spin_lock_init(&sbinfo->stat_lock);
3032	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3033		goto failed;
3034	sbinfo->free_inodes = sbinfo->max_inodes;
3035
3036	sb->s_maxbytes = MAX_LFS_FILESIZE;
3037	sb->s_blocksize = PAGE_CACHE_SIZE;
3038	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3039	sb->s_magic = TMPFS_MAGIC;
3040	sb->s_op = &shmem_ops;
3041	sb->s_time_gran = 1;
3042#ifdef CONFIG_TMPFS_XATTR
3043	sb->s_xattr = shmem_xattr_handlers;
3044#endif
3045#ifdef CONFIG_TMPFS_POSIX_ACL
3046	sb->s_flags |= MS_POSIXACL;
3047#endif
3048
3049	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3050	if (!inode)
3051		goto failed;
3052	inode->i_uid = sbinfo->uid;
3053	inode->i_gid = sbinfo->gid;
3054	sb->s_root = d_make_root(inode);
3055	if (!sb->s_root)
3056		goto failed;
3057	return 0;
3058
3059failed:
3060	shmem_put_super(sb);
3061	return err;
3062}
3063
3064static struct kmem_cache *shmem_inode_cachep;
3065
3066static struct inode *shmem_alloc_inode(struct super_block *sb)
3067{
3068	struct shmem_inode_info *info;
3069	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3070	if (!info)
3071		return NULL;
3072	return &info->vfs_inode;
3073}
3074
3075static void shmem_destroy_callback(struct rcu_head *head)
3076{
3077	struct inode *inode = container_of(head, struct inode, i_rcu);
3078	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3079}
3080
3081static void shmem_destroy_inode(struct inode *inode)
3082{
3083	if (S_ISREG(inode->i_mode))
3084		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3085	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3086}
3087
3088static void shmem_init_inode(void *foo)
3089{
3090	struct shmem_inode_info *info = foo;
3091	inode_init_once(&info->vfs_inode);
3092}
3093
3094static int shmem_init_inodecache(void)
3095{
3096	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3097				sizeof(struct shmem_inode_info),
3098				0, SLAB_PANIC, shmem_init_inode);
3099	return 0;
3100}
3101
3102static void shmem_destroy_inodecache(void)
3103{
3104	kmem_cache_destroy(shmem_inode_cachep);
3105}
3106
3107static const struct address_space_operations shmem_aops = {
3108	.writepage	= shmem_writepage,
3109	.set_page_dirty	= __set_page_dirty_no_writeback,
3110#ifdef CONFIG_TMPFS
3111	.write_begin	= shmem_write_begin,
3112	.write_end	= shmem_write_end,
3113#endif
3114#ifdef CONFIG_MIGRATION
3115	.migratepage	= migrate_page,
3116#endif
3117	.error_remove_page = generic_error_remove_page,
3118};
3119
3120static const struct file_operations shmem_file_operations = {
3121	.mmap		= shmem_mmap,
3122#ifdef CONFIG_TMPFS
3123	.llseek		= shmem_file_llseek,
3124	.read		= new_sync_read,
3125	.write		= new_sync_write,
3126	.read_iter	= shmem_file_read_iter,
3127	.write_iter	= generic_file_write_iter,
3128	.fsync		= noop_fsync,
3129	.splice_read	= shmem_file_splice_read,
3130	.splice_write	= iter_file_splice_write,
3131	.fallocate	= shmem_fallocate,
3132#endif
3133};
3134
3135static const struct inode_operations shmem_inode_operations = {
3136	.setattr	= shmem_setattr,
3137#ifdef CONFIG_TMPFS_XATTR
3138	.setxattr	= shmem_setxattr,
3139	.getxattr	= shmem_getxattr,
3140	.listxattr	= shmem_listxattr,
3141	.removexattr	= shmem_removexattr,
3142	.set_acl	= simple_set_acl,
3143#endif
3144};
3145
3146static const struct inode_operations shmem_dir_inode_operations = {
3147#ifdef CONFIG_TMPFS
3148	.create		= shmem_create,
3149	.lookup		= simple_lookup,
3150	.link		= shmem_link,
3151	.unlink		= shmem_unlink,
3152	.symlink	= shmem_symlink,
3153	.mkdir		= shmem_mkdir,
3154	.rmdir		= shmem_rmdir,
3155	.mknod		= shmem_mknod,
3156	.rename2	= shmem_rename2,
3157	.tmpfile	= shmem_tmpfile,
3158#endif
3159#ifdef CONFIG_TMPFS_XATTR
3160	.setxattr	= shmem_setxattr,
3161	.getxattr	= shmem_getxattr,
3162	.listxattr	= shmem_listxattr,
3163	.removexattr	= shmem_removexattr,
3164#endif
3165#ifdef CONFIG_TMPFS_POSIX_ACL
3166	.setattr	= shmem_setattr,
3167	.set_acl	= simple_set_acl,
3168#endif
3169};
3170
3171static const struct inode_operations shmem_special_inode_operations = {
3172#ifdef CONFIG_TMPFS_XATTR
3173	.setxattr	= shmem_setxattr,
3174	.getxattr	= shmem_getxattr,
3175	.listxattr	= shmem_listxattr,
3176	.removexattr	= shmem_removexattr,
3177#endif
3178#ifdef CONFIG_TMPFS_POSIX_ACL
3179	.setattr	= shmem_setattr,
3180	.set_acl	= simple_set_acl,
3181#endif
3182};
3183
3184static const struct super_operations shmem_ops = {
3185	.alloc_inode	= shmem_alloc_inode,
3186	.destroy_inode	= shmem_destroy_inode,
3187#ifdef CONFIG_TMPFS
3188	.statfs		= shmem_statfs,
3189	.remount_fs	= shmem_remount_fs,
3190	.show_options	= shmem_show_options,
3191#endif
3192	.evict_inode	= shmem_evict_inode,
3193	.drop_inode	= generic_delete_inode,
3194	.put_super	= shmem_put_super,
3195};
3196
3197static const struct vm_operations_struct shmem_vm_ops = {
3198	.fault		= shmem_fault,
3199	.map_pages	= filemap_map_pages,
3200#ifdef CONFIG_NUMA
3201	.set_policy     = shmem_set_policy,
3202	.get_policy     = shmem_get_policy,
3203#endif
3204	.remap_pages	= generic_file_remap_pages,
3205};
3206
3207static struct dentry *shmem_mount(struct file_system_type *fs_type,
3208	int flags, const char *dev_name, void *data)
3209{
3210	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3211}
3212
3213static struct file_system_type shmem_fs_type = {
3214	.owner		= THIS_MODULE,
3215	.name		= "tmpfs",
3216	.mount		= shmem_mount,
3217	.kill_sb	= kill_litter_super,
3218	.fs_flags	= FS_USERNS_MOUNT,
3219};
3220
3221int __init shmem_init(void)
3222{
3223	int error;
3224
3225	/* If rootfs called this, don't re-init */
3226	if (shmem_inode_cachep)
3227		return 0;
3228
3229	error = bdi_init(&shmem_backing_dev_info);
3230	if (error)
3231		goto out4;
3232
3233	error = shmem_init_inodecache();
3234	if (error)
3235		goto out3;
3236
3237	error = register_filesystem(&shmem_fs_type);
3238	if (error) {
3239		printk(KERN_ERR "Could not register tmpfs\n");
3240		goto out2;
3241	}
3242
3243	shm_mnt = kern_mount(&shmem_fs_type);
3244	if (IS_ERR(shm_mnt)) {
3245		error = PTR_ERR(shm_mnt);
3246		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3247		goto out1;
3248	}
3249	return 0;
3250
3251out1:
3252	unregister_filesystem(&shmem_fs_type);
3253out2:
3254	shmem_destroy_inodecache();
3255out3:
3256	bdi_destroy(&shmem_backing_dev_info);
3257out4:
3258	shm_mnt = ERR_PTR(error);
3259	return error;
3260}
3261
3262#else /* !CONFIG_SHMEM */
3263
3264/*
3265 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3266 *
3267 * This is intended for small system where the benefits of the full
3268 * shmem code (swap-backed and resource-limited) are outweighed by
3269 * their complexity. On systems without swap this code should be
3270 * effectively equivalent, but much lighter weight.
3271 */
3272
3273static struct file_system_type shmem_fs_type = {
3274	.name		= "tmpfs",
3275	.mount		= ramfs_mount,
3276	.kill_sb	= kill_litter_super,
3277	.fs_flags	= FS_USERNS_MOUNT,
3278};
3279
3280int __init shmem_init(void)
3281{
3282	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3283
3284	shm_mnt = kern_mount(&shmem_fs_type);
3285	BUG_ON(IS_ERR(shm_mnt));
3286
3287	return 0;
3288}
3289
3290int shmem_unuse(swp_entry_t swap, struct page *page)
3291{
3292	return 0;
3293}
3294
3295int shmem_lock(struct file *file, int lock, struct user_struct *user)
3296{
3297	return 0;
3298}
3299
3300void shmem_unlock_mapping(struct address_space *mapping)
3301{
3302}
3303
3304void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3305{
3306	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3307}
3308EXPORT_SYMBOL_GPL(shmem_truncate_range);
3309
3310#define shmem_vm_ops				generic_file_vm_ops
3311#define shmem_file_operations			ramfs_file_operations
3312#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3313#define shmem_acct_size(flags, size)		0
3314#define shmem_unacct_size(flags, size)		do {} while (0)
3315
3316#endif /* CONFIG_SHMEM */
3317
3318/* common code */
3319
3320static struct dentry_operations anon_ops = {
3321	.d_dname = simple_dname
3322};
3323
3324static struct file *__shmem_file_setup(const char *name, loff_t size,
3325				       unsigned long flags, unsigned int i_flags)
3326{
3327	struct file *res;
3328	struct inode *inode;
3329	struct path path;
3330	struct super_block *sb;
3331	struct qstr this;
3332
3333	if (IS_ERR(shm_mnt))
3334		return ERR_CAST(shm_mnt);
3335
3336	if (size < 0 || size > MAX_LFS_FILESIZE)
3337		return ERR_PTR(-EINVAL);
3338
3339	if (shmem_acct_size(flags, size))
3340		return ERR_PTR(-ENOMEM);
3341
3342	res = ERR_PTR(-ENOMEM);
3343	this.name = name;
3344	this.len = strlen(name);
3345	this.hash = 0; /* will go */
3346	sb = shm_mnt->mnt_sb;
3347	path.mnt = mntget(shm_mnt);
3348	path.dentry = d_alloc_pseudo(sb, &this);
3349	if (!path.dentry)
3350		goto put_memory;
3351	d_set_d_op(path.dentry, &anon_ops);
3352
3353	res = ERR_PTR(-ENOSPC);
3354	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3355	if (!inode)
3356		goto put_memory;
3357
3358	inode->i_flags |= i_flags;
3359	d_instantiate(path.dentry, inode);
3360	inode->i_size = size;
3361	clear_nlink(inode);	/* It is unlinked */
3362	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3363	if (IS_ERR(res))
3364		goto put_path;
3365
3366	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3367		  &shmem_file_operations);
3368	if (IS_ERR(res))
3369		goto put_path;
3370
3371	return res;
3372
3373put_memory:
3374	shmem_unacct_size(flags, size);
3375put_path:
3376	path_put(&path);
3377	return res;
3378}
3379
3380/**
3381 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3382 * 	kernel internal.  There will be NO LSM permission checks against the
3383 * 	underlying inode.  So users of this interface must do LSM checks at a
3384 * 	higher layer.  The one user is the big_key implementation.  LSM checks
3385 * 	are provided at the key level rather than the inode level.
3386 * @name: name for dentry (to be seen in /proc/<pid>/maps
3387 * @size: size to be set for the file
3388 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3389 */
3390struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3391{
3392	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3393}
3394
3395/**
3396 * shmem_file_setup - get an unlinked file living in tmpfs
3397 * @name: name for dentry (to be seen in /proc/<pid>/maps
3398 * @size: size to be set for the file
3399 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3400 */
3401struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3402{
3403	return __shmem_file_setup(name, size, flags, 0);
3404}
3405EXPORT_SYMBOL_GPL(shmem_file_setup);
3406
3407/**
3408 * shmem_zero_setup - setup a shared anonymous mapping
3409 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3410 */
3411int shmem_zero_setup(struct vm_area_struct *vma)
3412{
3413	struct file *file;
3414	loff_t size = vma->vm_end - vma->vm_start;
3415
3416	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3417	if (IS_ERR(file))
3418		return PTR_ERR(file);
3419
3420	if (vma->vm_file)
3421		fput(vma->vm_file);
3422	vma->vm_file = file;
3423	vma->vm_ops = &shmem_vm_ops;
3424	return 0;
3425}
3426
3427/**
3428 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3429 * @mapping:	the page's address_space
3430 * @index:	the page index
3431 * @gfp:	the page allocator flags to use if allocating
3432 *
3433 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3434 * with any new page allocations done using the specified allocation flags.
3435 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3436 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3437 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3438 *
3439 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3440 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3441 */
3442struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3443					 pgoff_t index, gfp_t gfp)
3444{
3445#ifdef CONFIG_SHMEM
3446	struct inode *inode = mapping->host;
3447	struct page *page;
3448	int error;
3449
3450	BUG_ON(mapping->a_ops != &shmem_aops);
3451	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3452	if (error)
3453		page = ERR_PTR(error);
3454	else
3455		unlock_page(page);
3456	return page;
3457#else
3458	/*
3459	 * The tiny !SHMEM case uses ramfs without swap
3460	 */
3461	return read_cache_page_gfp(mapping, index, gfp);
3462#endif
3463}
3464EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3465