shmem.c revision 48f170fb7d7db8789ccc23e051af61f62af5f685
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/percpu_counter.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/splice.h>
55#include <linux/security.h>
56#include <linux/swapops.h>
57#include <linux/mempolicy.h>
58#include <linux/namei.h>
59#include <linux/ctype.h>
60#include <linux/migrate.h>
61#include <linux/highmem.h>
62#include <linux/seq_file.h>
63#include <linux/magic.h>
64
65#include <asm/uaccess.h>
66#include <asm/div64.h>
67#include <asm/pgtable.h>
68
69/*
70 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
71 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 *
73 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
74 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
75 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
76 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 *
78 * We use / and * instead of shifts in the definitions below, so that the swap
79 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 */
81#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
82#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83
84#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
85#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86
87#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
88#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89
90#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
91#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92
93/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
94#define SHMEM_PAGEIN	 VM_READ
95#define SHMEM_TRUNCATE	 VM_WRITE
96
97/* Definition to limit shmem_truncate's steps between cond_rescheds */
98#define LATENCY_LIMIT	 64
99
100/* Pretend that each entry is of this size in directory's i_size */
101#define BOGO_DIRENT_SIZE 20
102
103struct shmem_xattr {
104	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
105	char *name;		/* xattr name */
106	size_t size;
107	char value[0];
108};
109
110/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
111enum sgp_type {
112	SGP_READ,	/* don't exceed i_size, don't allocate page */
113	SGP_CACHE,	/* don't exceed i_size, may allocate page */
114	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
115	SGP_WRITE,	/* may exceed i_size, may allocate page */
116};
117
118#ifdef CONFIG_TMPFS
119static unsigned long shmem_default_max_blocks(void)
120{
121	return totalram_pages / 2;
122}
123
124static unsigned long shmem_default_max_inodes(void)
125{
126	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
127}
128#endif
129
130static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
131	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
132
133static inline int shmem_getpage(struct inode *inode, pgoff_t index,
134	struct page **pagep, enum sgp_type sgp, int *fault_type)
135{
136	return shmem_getpage_gfp(inode, index, pagep, sgp,
137			mapping_gfp_mask(inode->i_mapping), fault_type);
138}
139
140static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
141{
142	/*
143	 * The above definition of ENTRIES_PER_PAGE, and the use of
144	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
145	 * might be reconsidered if it ever diverges from PAGE_SIZE.
146	 *
147	 * Mobility flags are masked out as swap vectors cannot move
148	 */
149	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
150				PAGE_CACHE_SHIFT-PAGE_SHIFT);
151}
152
153static inline void shmem_dir_free(struct page *page)
154{
155	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
156}
157
158static struct page **shmem_dir_map(struct page *page)
159{
160	return (struct page **)kmap_atomic(page, KM_USER0);
161}
162
163static inline void shmem_dir_unmap(struct page **dir)
164{
165	kunmap_atomic(dir, KM_USER0);
166}
167
168static swp_entry_t *shmem_swp_map(struct page *page)
169{
170	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
171}
172
173static inline void shmem_swp_balance_unmap(void)
174{
175	/*
176	 * When passing a pointer to an i_direct entry, to code which
177	 * also handles indirect entries and so will shmem_swp_unmap,
178	 * we must arrange for the preempt count to remain in balance.
179	 * What kmap_atomic of a lowmem page does depends on config
180	 * and architecture, so pretend to kmap_atomic some lowmem page.
181	 */
182	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
183}
184
185static inline void shmem_swp_unmap(swp_entry_t *entry)
186{
187	kunmap_atomic(entry, KM_USER1);
188}
189
190static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
191{
192	return sb->s_fs_info;
193}
194
195/*
196 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
197 * for shared memory and for shared anonymous (/dev/zero) mappings
198 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
199 * consistent with the pre-accounting of private mappings ...
200 */
201static inline int shmem_acct_size(unsigned long flags, loff_t size)
202{
203	return (flags & VM_NORESERVE) ?
204		0 : security_vm_enough_memory_kern(VM_ACCT(size));
205}
206
207static inline void shmem_unacct_size(unsigned long flags, loff_t size)
208{
209	if (!(flags & VM_NORESERVE))
210		vm_unacct_memory(VM_ACCT(size));
211}
212
213/*
214 * ... whereas tmpfs objects are accounted incrementally as
215 * pages are allocated, in order to allow huge sparse files.
216 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
217 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
218 */
219static inline int shmem_acct_block(unsigned long flags)
220{
221	return (flags & VM_NORESERVE) ?
222		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
223}
224
225static inline void shmem_unacct_blocks(unsigned long flags, long pages)
226{
227	if (flags & VM_NORESERVE)
228		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
229}
230
231static const struct super_operations shmem_ops;
232static const struct address_space_operations shmem_aops;
233static const struct file_operations shmem_file_operations;
234static const struct inode_operations shmem_inode_operations;
235static const struct inode_operations shmem_dir_inode_operations;
236static const struct inode_operations shmem_special_inode_operations;
237static const struct vm_operations_struct shmem_vm_ops;
238
239static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
240	.ra_pages	= 0,	/* No readahead */
241	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
242};
243
244static LIST_HEAD(shmem_swaplist);
245static DEFINE_MUTEX(shmem_swaplist_mutex);
246
247static void shmem_free_blocks(struct inode *inode, long pages)
248{
249	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
250	if (sbinfo->max_blocks) {
251		percpu_counter_add(&sbinfo->used_blocks, -pages);
252		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
253	}
254}
255
256static int shmem_reserve_inode(struct super_block *sb)
257{
258	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259	if (sbinfo->max_inodes) {
260		spin_lock(&sbinfo->stat_lock);
261		if (!sbinfo->free_inodes) {
262			spin_unlock(&sbinfo->stat_lock);
263			return -ENOSPC;
264		}
265		sbinfo->free_inodes--;
266		spin_unlock(&sbinfo->stat_lock);
267	}
268	return 0;
269}
270
271static void shmem_free_inode(struct super_block *sb)
272{
273	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274	if (sbinfo->max_inodes) {
275		spin_lock(&sbinfo->stat_lock);
276		sbinfo->free_inodes++;
277		spin_unlock(&sbinfo->stat_lock);
278	}
279}
280
281/**
282 * shmem_recalc_inode - recalculate the size of an inode
283 * @inode: inode to recalc
284 *
285 * We have to calculate the free blocks since the mm can drop
286 * undirtied hole pages behind our back.
287 *
288 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
289 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
290 *
291 * It has to be called with the spinlock held.
292 */
293static void shmem_recalc_inode(struct inode *inode)
294{
295	struct shmem_inode_info *info = SHMEM_I(inode);
296	long freed;
297
298	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
299	if (freed > 0) {
300		info->alloced -= freed;
301		shmem_unacct_blocks(info->flags, freed);
302		shmem_free_blocks(inode, freed);
303	}
304}
305
306/**
307 * shmem_swp_entry - find the swap vector position in the info structure
308 * @info:  info structure for the inode
309 * @index: index of the page to find
310 * @page:  optional page to add to the structure. Has to be preset to
311 *         all zeros
312 *
313 * If there is no space allocated yet it will return NULL when
314 * page is NULL, else it will use the page for the needed block,
315 * setting it to NULL on return to indicate that it has been used.
316 *
317 * The swap vector is organized the following way:
318 *
319 * There are SHMEM_NR_DIRECT entries directly stored in the
320 * shmem_inode_info structure. So small files do not need an addional
321 * allocation.
322 *
323 * For pages with index > SHMEM_NR_DIRECT there is the pointer
324 * i_indirect which points to a page which holds in the first half
325 * doubly indirect blocks, in the second half triple indirect blocks:
326 *
327 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
328 * following layout (for SHMEM_NR_DIRECT == 16):
329 *
330 * i_indirect -> dir --> 16-19
331 * 	      |	     +-> 20-23
332 * 	      |
333 * 	      +-->dir2 --> 24-27
334 * 	      |	       +-> 28-31
335 * 	      |	       +-> 32-35
336 * 	      |	       +-> 36-39
337 * 	      |
338 * 	      +-->dir3 --> 40-43
339 * 	       	       +-> 44-47
340 * 	      	       +-> 48-51
341 * 	      	       +-> 52-55
342 */
343static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
344{
345	unsigned long offset;
346	struct page **dir;
347	struct page *subdir;
348
349	if (index < SHMEM_NR_DIRECT) {
350		shmem_swp_balance_unmap();
351		return info->i_direct+index;
352	}
353	if (!info->i_indirect) {
354		if (page) {
355			info->i_indirect = *page;
356			*page = NULL;
357		}
358		return NULL;			/* need another page */
359	}
360
361	index -= SHMEM_NR_DIRECT;
362	offset = index % ENTRIES_PER_PAGE;
363	index /= ENTRIES_PER_PAGE;
364	dir = shmem_dir_map(info->i_indirect);
365
366	if (index >= ENTRIES_PER_PAGE/2) {
367		index -= ENTRIES_PER_PAGE/2;
368		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
369		index %= ENTRIES_PER_PAGE;
370		subdir = *dir;
371		if (!subdir) {
372			if (page) {
373				*dir = *page;
374				*page = NULL;
375			}
376			shmem_dir_unmap(dir);
377			return NULL;		/* need another page */
378		}
379		shmem_dir_unmap(dir);
380		dir = shmem_dir_map(subdir);
381	}
382
383	dir += index;
384	subdir = *dir;
385	if (!subdir) {
386		if (!page || !(subdir = *page)) {
387			shmem_dir_unmap(dir);
388			return NULL;		/* need a page */
389		}
390		*dir = subdir;
391		*page = NULL;
392	}
393	shmem_dir_unmap(dir);
394	return shmem_swp_map(subdir) + offset;
395}
396
397static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
398{
399	long incdec = value? 1: -1;
400
401	entry->val = value;
402	info->swapped += incdec;
403	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
404		struct page *page = kmap_atomic_to_page(entry);
405		set_page_private(page, page_private(page) + incdec);
406	}
407}
408
409/**
410 * shmem_swp_alloc - get the position of the swap entry for the page.
411 * @info:	info structure for the inode
412 * @index:	index of the page to find
413 * @sgp:	check and recheck i_size? skip allocation?
414 * @gfp:	gfp mask to use for any page allocation
415 *
416 * If the entry does not exist, allocate it.
417 */
418static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info,
419			unsigned long index, enum sgp_type sgp, gfp_t gfp)
420{
421	struct inode *inode = &info->vfs_inode;
422	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
423	struct page *page = NULL;
424	swp_entry_t *entry;
425
426	if (sgp != SGP_WRITE &&
427	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
428		return ERR_PTR(-EINVAL);
429
430	while (!(entry = shmem_swp_entry(info, index, &page))) {
431		if (sgp == SGP_READ)
432			return shmem_swp_map(ZERO_PAGE(0));
433		/*
434		 * Test used_blocks against 1 less max_blocks, since we have 1 data
435		 * page (and perhaps indirect index pages) yet to allocate:
436		 * a waste to allocate index if we cannot allocate data.
437		 */
438		if (sbinfo->max_blocks) {
439			if (percpu_counter_compare(&sbinfo->used_blocks,
440						sbinfo->max_blocks - 1) >= 0)
441				return ERR_PTR(-ENOSPC);
442			percpu_counter_inc(&sbinfo->used_blocks);
443			inode->i_blocks += BLOCKS_PER_PAGE;
444		}
445
446		spin_unlock(&info->lock);
447		page = shmem_dir_alloc(gfp);
448		spin_lock(&info->lock);
449
450		if (!page) {
451			shmem_free_blocks(inode, 1);
452			return ERR_PTR(-ENOMEM);
453		}
454		if (sgp != SGP_WRITE &&
455		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
456			entry = ERR_PTR(-EINVAL);
457			break;
458		}
459		if (info->next_index <= index)
460			info->next_index = index + 1;
461	}
462	if (page) {
463		/* another task gave its page, or truncated the file */
464		shmem_free_blocks(inode, 1);
465		shmem_dir_free(page);
466	}
467	if (info->next_index <= index && !IS_ERR(entry))
468		info->next_index = index + 1;
469	return entry;
470}
471
472/**
473 * shmem_free_swp - free some swap entries in a directory
474 * @dir:        pointer to the directory
475 * @edir:       pointer after last entry of the directory
476 * @punch_lock: pointer to spinlock when needed for the holepunch case
477 */
478static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
479						spinlock_t *punch_lock)
480{
481	spinlock_t *punch_unlock = NULL;
482	swp_entry_t *ptr;
483	int freed = 0;
484
485	for (ptr = dir; ptr < edir; ptr++) {
486		if (ptr->val) {
487			if (unlikely(punch_lock)) {
488				punch_unlock = punch_lock;
489				punch_lock = NULL;
490				spin_lock(punch_unlock);
491				if (!ptr->val)
492					continue;
493			}
494			free_swap_and_cache(*ptr);
495			*ptr = (swp_entry_t){0};
496			freed++;
497		}
498	}
499	if (punch_unlock)
500		spin_unlock(punch_unlock);
501	return freed;
502}
503
504static int shmem_map_and_free_swp(struct page *subdir, int offset,
505		int limit, struct page ***dir, spinlock_t *punch_lock)
506{
507	swp_entry_t *ptr;
508	int freed = 0;
509
510	ptr = shmem_swp_map(subdir);
511	for (; offset < limit; offset += LATENCY_LIMIT) {
512		int size = limit - offset;
513		if (size > LATENCY_LIMIT)
514			size = LATENCY_LIMIT;
515		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
516							punch_lock);
517		if (need_resched()) {
518			shmem_swp_unmap(ptr);
519			if (*dir) {
520				shmem_dir_unmap(*dir);
521				*dir = NULL;
522			}
523			cond_resched();
524			ptr = shmem_swp_map(subdir);
525		}
526	}
527	shmem_swp_unmap(ptr);
528	return freed;
529}
530
531static void shmem_free_pages(struct list_head *next)
532{
533	struct page *page;
534	int freed = 0;
535
536	do {
537		page = container_of(next, struct page, lru);
538		next = next->next;
539		shmem_dir_free(page);
540		freed++;
541		if (freed >= LATENCY_LIMIT) {
542			cond_resched();
543			freed = 0;
544		}
545	} while (next);
546}
547
548void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
549{
550	struct shmem_inode_info *info = SHMEM_I(inode);
551	unsigned long idx;
552	unsigned long size;
553	unsigned long limit;
554	unsigned long stage;
555	unsigned long diroff;
556	struct page **dir;
557	struct page *topdir;
558	struct page *middir;
559	struct page *subdir;
560	swp_entry_t *ptr;
561	LIST_HEAD(pages_to_free);
562	long nr_pages_to_free = 0;
563	long nr_swaps_freed = 0;
564	int offset;
565	int freed;
566	int punch_hole;
567	spinlock_t *needs_lock;
568	spinlock_t *punch_lock;
569	unsigned long upper_limit;
570
571	truncate_inode_pages_range(inode->i_mapping, start, end);
572
573	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
574	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
575	if (idx >= info->next_index)
576		return;
577
578	spin_lock(&info->lock);
579	info->flags |= SHMEM_TRUNCATE;
580	if (likely(end == (loff_t) -1)) {
581		limit = info->next_index;
582		upper_limit = SHMEM_MAX_INDEX;
583		info->next_index = idx;
584		needs_lock = NULL;
585		punch_hole = 0;
586	} else {
587		if (end + 1 >= inode->i_size) {	/* we may free a little more */
588			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
589							PAGE_CACHE_SHIFT;
590			upper_limit = SHMEM_MAX_INDEX;
591		} else {
592			limit = (end + 1) >> PAGE_CACHE_SHIFT;
593			upper_limit = limit;
594		}
595		needs_lock = &info->lock;
596		punch_hole = 1;
597	}
598
599	topdir = info->i_indirect;
600	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
601		info->i_indirect = NULL;
602		nr_pages_to_free++;
603		list_add(&topdir->lru, &pages_to_free);
604	}
605	spin_unlock(&info->lock);
606
607	if (info->swapped && idx < SHMEM_NR_DIRECT) {
608		ptr = info->i_direct;
609		size = limit;
610		if (size > SHMEM_NR_DIRECT)
611			size = SHMEM_NR_DIRECT;
612		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
613	}
614
615	/*
616	 * If there are no indirect blocks or we are punching a hole
617	 * below indirect blocks, nothing to be done.
618	 */
619	if (!topdir || limit <= SHMEM_NR_DIRECT)
620		goto done2;
621
622	/*
623	 * The truncation case has already dropped info->lock, and we're safe
624	 * because i_size and next_index have already been lowered, preventing
625	 * access beyond.  But in the punch_hole case, we still need to take
626	 * the lock when updating the swap directory, because there might be
627	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
628	 * shmem_writepage.  However, whenever we find we can remove a whole
629	 * directory page (not at the misaligned start or end of the range),
630	 * we first NULLify its pointer in the level above, and then have no
631	 * need to take the lock when updating its contents: needs_lock and
632	 * punch_lock (either pointing to info->lock or NULL) manage this.
633	 */
634
635	upper_limit -= SHMEM_NR_DIRECT;
636	limit -= SHMEM_NR_DIRECT;
637	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
638	offset = idx % ENTRIES_PER_PAGE;
639	idx -= offset;
640
641	dir = shmem_dir_map(topdir);
642	stage = ENTRIES_PER_PAGEPAGE/2;
643	if (idx < ENTRIES_PER_PAGEPAGE/2) {
644		middir = topdir;
645		diroff = idx/ENTRIES_PER_PAGE;
646	} else {
647		dir += ENTRIES_PER_PAGE/2;
648		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
649		while (stage <= idx)
650			stage += ENTRIES_PER_PAGEPAGE;
651		middir = *dir;
652		if (*dir) {
653			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
654				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
655			if (!diroff && !offset && upper_limit >= stage) {
656				if (needs_lock) {
657					spin_lock(needs_lock);
658					*dir = NULL;
659					spin_unlock(needs_lock);
660					needs_lock = NULL;
661				} else
662					*dir = NULL;
663				nr_pages_to_free++;
664				list_add(&middir->lru, &pages_to_free);
665			}
666			shmem_dir_unmap(dir);
667			dir = shmem_dir_map(middir);
668		} else {
669			diroff = 0;
670			offset = 0;
671			idx = stage;
672		}
673	}
674
675	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
676		if (unlikely(idx == stage)) {
677			shmem_dir_unmap(dir);
678			dir = shmem_dir_map(topdir) +
679			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
680			while (!*dir) {
681				dir++;
682				idx += ENTRIES_PER_PAGEPAGE;
683				if (idx >= limit)
684					goto done1;
685			}
686			stage = idx + ENTRIES_PER_PAGEPAGE;
687			middir = *dir;
688			if (punch_hole)
689				needs_lock = &info->lock;
690			if (upper_limit >= stage) {
691				if (needs_lock) {
692					spin_lock(needs_lock);
693					*dir = NULL;
694					spin_unlock(needs_lock);
695					needs_lock = NULL;
696				} else
697					*dir = NULL;
698				nr_pages_to_free++;
699				list_add(&middir->lru, &pages_to_free);
700			}
701			shmem_dir_unmap(dir);
702			cond_resched();
703			dir = shmem_dir_map(middir);
704			diroff = 0;
705		}
706		punch_lock = needs_lock;
707		subdir = dir[diroff];
708		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
709			if (needs_lock) {
710				spin_lock(needs_lock);
711				dir[diroff] = NULL;
712				spin_unlock(needs_lock);
713				punch_lock = NULL;
714			} else
715				dir[diroff] = NULL;
716			nr_pages_to_free++;
717			list_add(&subdir->lru, &pages_to_free);
718		}
719		if (subdir && page_private(subdir) /* has swap entries */) {
720			size = limit - idx;
721			if (size > ENTRIES_PER_PAGE)
722				size = ENTRIES_PER_PAGE;
723			freed = shmem_map_and_free_swp(subdir,
724					offset, size, &dir, punch_lock);
725			if (!dir)
726				dir = shmem_dir_map(middir);
727			nr_swaps_freed += freed;
728			if (offset || punch_lock) {
729				spin_lock(&info->lock);
730				set_page_private(subdir,
731					page_private(subdir) - freed);
732				spin_unlock(&info->lock);
733			} else
734				BUG_ON(page_private(subdir) != freed);
735		}
736		offset = 0;
737	}
738done1:
739	shmem_dir_unmap(dir);
740done2:
741	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
742		/*
743		 * Call truncate_inode_pages again: racing shmem_unuse_inode
744		 * may have swizzled a page in from swap since
745		 * truncate_pagecache or generic_delete_inode did it, before we
746		 * lowered next_index.  Also, though shmem_getpage checks
747		 * i_size before adding to cache, no recheck after: so fix the
748		 * narrow window there too.
749		 */
750		truncate_inode_pages_range(inode->i_mapping, start, end);
751	}
752
753	spin_lock(&info->lock);
754	info->flags &= ~SHMEM_TRUNCATE;
755	info->swapped -= nr_swaps_freed;
756	if (nr_pages_to_free)
757		shmem_free_blocks(inode, nr_pages_to_free);
758	shmem_recalc_inode(inode);
759	spin_unlock(&info->lock);
760
761	/*
762	 * Empty swap vector directory pages to be freed?
763	 */
764	if (!list_empty(&pages_to_free)) {
765		pages_to_free.prev->next = NULL;
766		shmem_free_pages(pages_to_free.next);
767	}
768}
769EXPORT_SYMBOL_GPL(shmem_truncate_range);
770
771static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
772{
773	struct inode *inode = dentry->d_inode;
774	int error;
775
776	error = inode_change_ok(inode, attr);
777	if (error)
778		return error;
779
780	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
781		loff_t oldsize = inode->i_size;
782		loff_t newsize = attr->ia_size;
783		struct page *page = NULL;
784
785		if (newsize < oldsize) {
786			/*
787			 * If truncating down to a partial page, then
788			 * if that page is already allocated, hold it
789			 * in memory until the truncation is over, so
790			 * truncate_partial_page cannot miss it were
791			 * it assigned to swap.
792			 */
793			if (newsize & (PAGE_CACHE_SIZE-1)) {
794				(void) shmem_getpage(inode,
795					newsize >> PAGE_CACHE_SHIFT,
796						&page, SGP_READ, NULL);
797				if (page)
798					unlock_page(page);
799			}
800			/*
801			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
802			 * detect if any pages might have been added to cache
803			 * after truncate_inode_pages.  But we needn't bother
804			 * if it's being fully truncated to zero-length: the
805			 * nrpages check is efficient enough in that case.
806			 */
807			if (newsize) {
808				struct shmem_inode_info *info = SHMEM_I(inode);
809				spin_lock(&info->lock);
810				info->flags &= ~SHMEM_PAGEIN;
811				spin_unlock(&info->lock);
812			}
813		}
814		if (newsize != oldsize) {
815			i_size_write(inode, newsize);
816			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
817		}
818		if (newsize < oldsize) {
819			loff_t holebegin = round_up(newsize, PAGE_SIZE);
820			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
821			shmem_truncate_range(inode, newsize, (loff_t)-1);
822			/* unmap again to remove racily COWed private pages */
823			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
824		}
825		if (page)
826			page_cache_release(page);
827	}
828
829	setattr_copy(inode, attr);
830#ifdef CONFIG_TMPFS_POSIX_ACL
831	if (attr->ia_valid & ATTR_MODE)
832		error = generic_acl_chmod(inode);
833#endif
834	return error;
835}
836
837static void shmem_evict_inode(struct inode *inode)
838{
839	struct shmem_inode_info *info = SHMEM_I(inode);
840	struct shmem_xattr *xattr, *nxattr;
841
842	if (inode->i_mapping->a_ops == &shmem_aops) {
843		shmem_unacct_size(info->flags, inode->i_size);
844		inode->i_size = 0;
845		shmem_truncate_range(inode, 0, (loff_t)-1);
846		if (!list_empty(&info->swaplist)) {
847			mutex_lock(&shmem_swaplist_mutex);
848			list_del_init(&info->swaplist);
849			mutex_unlock(&shmem_swaplist_mutex);
850		}
851	}
852
853	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
854		kfree(xattr->name);
855		kfree(xattr);
856	}
857	BUG_ON(inode->i_blocks);
858	shmem_free_inode(inode->i_sb);
859	end_writeback(inode);
860}
861
862static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
863{
864	swp_entry_t *ptr;
865
866	for (ptr = dir; ptr < edir; ptr++) {
867		if (ptr->val == entry.val)
868			return ptr - dir;
869	}
870	return -1;
871}
872
873static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
874{
875	struct address_space *mapping;
876	unsigned long idx;
877	unsigned long size;
878	unsigned long limit;
879	unsigned long stage;
880	struct page **dir;
881	struct page *subdir;
882	swp_entry_t *ptr;
883	int offset;
884	int error;
885
886	idx = 0;
887	ptr = info->i_direct;
888	spin_lock(&info->lock);
889	if (!info->swapped) {
890		list_del_init(&info->swaplist);
891		goto lost2;
892	}
893	limit = info->next_index;
894	size = limit;
895	if (size > SHMEM_NR_DIRECT)
896		size = SHMEM_NR_DIRECT;
897	offset = shmem_find_swp(entry, ptr, ptr+size);
898	if (offset >= 0) {
899		shmem_swp_balance_unmap();
900		goto found;
901	}
902	if (!info->i_indirect)
903		goto lost2;
904
905	dir = shmem_dir_map(info->i_indirect);
906	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
907
908	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
909		if (unlikely(idx == stage)) {
910			shmem_dir_unmap(dir-1);
911			if (cond_resched_lock(&info->lock)) {
912				/* check it has not been truncated */
913				if (limit > info->next_index) {
914					limit = info->next_index;
915					if (idx >= limit)
916						goto lost2;
917				}
918			}
919			dir = shmem_dir_map(info->i_indirect) +
920			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
921			while (!*dir) {
922				dir++;
923				idx += ENTRIES_PER_PAGEPAGE;
924				if (idx >= limit)
925					goto lost1;
926			}
927			stage = idx + ENTRIES_PER_PAGEPAGE;
928			subdir = *dir;
929			shmem_dir_unmap(dir);
930			dir = shmem_dir_map(subdir);
931		}
932		subdir = *dir;
933		if (subdir && page_private(subdir)) {
934			ptr = shmem_swp_map(subdir);
935			size = limit - idx;
936			if (size > ENTRIES_PER_PAGE)
937				size = ENTRIES_PER_PAGE;
938			offset = shmem_find_swp(entry, ptr, ptr+size);
939			shmem_swp_unmap(ptr);
940			if (offset >= 0) {
941				shmem_dir_unmap(dir);
942				ptr = shmem_swp_map(subdir);
943				goto found;
944			}
945		}
946	}
947lost1:
948	shmem_dir_unmap(dir-1);
949lost2:
950	spin_unlock(&info->lock);
951	return 0;
952found:
953	idx += offset;
954	ptr += offset;
955
956	/*
957	 * Move _head_ to start search for next from here.
958	 * But be careful: shmem_evict_inode checks list_empty without taking
959	 * mutex, and there's an instant in list_move_tail when info->swaplist
960	 * would appear empty, if it were the only one on shmem_swaplist.  We
961	 * could avoid doing it if inode NULL; or use this minor optimization.
962	 */
963	if (shmem_swaplist.next != &info->swaplist)
964		list_move_tail(&shmem_swaplist, &info->swaplist);
965
966	/*
967	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
968	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
969	 * beneath us (pagelock doesn't help until the page is in pagecache).
970	 */
971	mapping = info->vfs_inode.i_mapping;
972	error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
973	/* which does mem_cgroup_uncharge_cache_page on error */
974
975	if (error != -ENOMEM) {
976		delete_from_swap_cache(page);
977		set_page_dirty(page);
978		info->flags |= SHMEM_PAGEIN;
979		shmem_swp_set(info, ptr, 0);
980		swap_free(entry);
981		error = 1;	/* not an error, but entry was found */
982	}
983	shmem_swp_unmap(ptr);
984	spin_unlock(&info->lock);
985	return error;
986}
987
988/*
989 * shmem_unuse() search for an eventually swapped out shmem page.
990 */
991int shmem_unuse(swp_entry_t entry, struct page *page)
992{
993	struct list_head *p, *next;
994	struct shmem_inode_info *info;
995	int found = 0;
996	int error;
997
998	/*
999	 * Charge page using GFP_KERNEL while we can wait, before taking
1000	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1001	 * Charged back to the user (not to caller) when swap account is used.
1002	 * add_to_page_cache() will be called with GFP_NOWAIT.
1003	 */
1004	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1005	if (error)
1006		goto out;
1007	/*
1008	 * Try to preload while we can wait, to not make a habit of
1009	 * draining atomic reserves; but don't latch on to this cpu,
1010	 * it's okay if sometimes we get rescheduled after this.
1011	 */
1012	error = radix_tree_preload(GFP_KERNEL);
1013	if (error)
1014		goto uncharge;
1015	radix_tree_preload_end();
1016
1017	mutex_lock(&shmem_swaplist_mutex);
1018	list_for_each_safe(p, next, &shmem_swaplist) {
1019		info = list_entry(p, struct shmem_inode_info, swaplist);
1020		found = shmem_unuse_inode(info, entry, page);
1021		cond_resched();
1022		if (found)
1023			break;
1024	}
1025	mutex_unlock(&shmem_swaplist_mutex);
1026
1027uncharge:
1028	if (!found)
1029		mem_cgroup_uncharge_cache_page(page);
1030	if (found < 0)
1031		error = found;
1032out:
1033	unlock_page(page);
1034	page_cache_release(page);
1035	return error;
1036}
1037
1038/*
1039 * Move the page from the page cache to the swap cache.
1040 */
1041static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1042{
1043	struct shmem_inode_info *info;
1044	swp_entry_t *entry, swap;
1045	struct address_space *mapping;
1046	unsigned long index;
1047	struct inode *inode;
1048
1049	BUG_ON(!PageLocked(page));
1050	mapping = page->mapping;
1051	index = page->index;
1052	inode = mapping->host;
1053	info = SHMEM_I(inode);
1054	if (info->flags & VM_LOCKED)
1055		goto redirty;
1056	if (!total_swap_pages)
1057		goto redirty;
1058
1059	/*
1060	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1061	 * sync from ever calling shmem_writepage; but a stacking filesystem
1062	 * might use ->writepage of its underlying filesystem, in which case
1063	 * tmpfs should write out to swap only in response to memory pressure,
1064	 * and not for the writeback threads or sync.
1065	 */
1066	if (!wbc->for_reclaim) {
1067		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1068		goto redirty;
1069	}
1070	swap = get_swap_page();
1071	if (!swap.val)
1072		goto redirty;
1073
1074	/*
1075	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1076	 * if it's not already there.  Do it now because we cannot take
1077	 * mutex while holding spinlock, and must do so before the page
1078	 * is moved to swap cache, when its pagelock no longer protects
1079	 * the inode from eviction.  But don't unlock the mutex until
1080	 * we've taken the spinlock, because shmem_unuse_inode() will
1081	 * prune a !swapped inode from the swaplist under both locks.
1082	 */
1083	mutex_lock(&shmem_swaplist_mutex);
1084	if (list_empty(&info->swaplist))
1085		list_add_tail(&info->swaplist, &shmem_swaplist);
1086
1087	spin_lock(&info->lock);
1088	mutex_unlock(&shmem_swaplist_mutex);
1089
1090	if (index >= info->next_index) {
1091		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1092		goto unlock;
1093	}
1094	entry = shmem_swp_entry(info, index, NULL);
1095	if (entry->val) {
1096		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1097		free_swap_and_cache(*entry);
1098		shmem_swp_set(info, entry, 0);
1099	}
1100	shmem_recalc_inode(inode);
1101
1102	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1103		delete_from_page_cache(page);
1104		shmem_swp_set(info, entry, swap.val);
1105		shmem_swp_unmap(entry);
1106		swap_shmem_alloc(swap);
1107		spin_unlock(&info->lock);
1108		BUG_ON(page_mapped(page));
1109		swap_writepage(page, wbc);
1110		return 0;
1111	}
1112
1113	shmem_swp_unmap(entry);
1114unlock:
1115	spin_unlock(&info->lock);
1116	/*
1117	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1118	 * clear SWAP_HAS_CACHE flag.
1119	 */
1120	swapcache_free(swap, NULL);
1121redirty:
1122	set_page_dirty(page);
1123	if (wbc->for_reclaim)
1124		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1125	unlock_page(page);
1126	return 0;
1127}
1128
1129#ifdef CONFIG_NUMA
1130#ifdef CONFIG_TMPFS
1131static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1132{
1133	char buffer[64];
1134
1135	if (!mpol || mpol->mode == MPOL_DEFAULT)
1136		return;		/* show nothing */
1137
1138	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1139
1140	seq_printf(seq, ",mpol=%s", buffer);
1141}
1142
1143static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1144{
1145	struct mempolicy *mpol = NULL;
1146	if (sbinfo->mpol) {
1147		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1148		mpol = sbinfo->mpol;
1149		mpol_get(mpol);
1150		spin_unlock(&sbinfo->stat_lock);
1151	}
1152	return mpol;
1153}
1154#endif /* CONFIG_TMPFS */
1155
1156static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1157			struct shmem_inode_info *info, unsigned long idx)
1158{
1159	struct mempolicy mpol, *spol;
1160	struct vm_area_struct pvma;
1161	struct page *page;
1162
1163	spol = mpol_cond_copy(&mpol,
1164				mpol_shared_policy_lookup(&info->policy, idx));
1165
1166	/* Create a pseudo vma that just contains the policy */
1167	pvma.vm_start = 0;
1168	pvma.vm_pgoff = idx;
1169	pvma.vm_ops = NULL;
1170	pvma.vm_policy = spol;
1171	page = swapin_readahead(entry, gfp, &pvma, 0);
1172	return page;
1173}
1174
1175static struct page *shmem_alloc_page(gfp_t gfp,
1176			struct shmem_inode_info *info, unsigned long idx)
1177{
1178	struct vm_area_struct pvma;
1179
1180	/* Create a pseudo vma that just contains the policy */
1181	pvma.vm_start = 0;
1182	pvma.vm_pgoff = idx;
1183	pvma.vm_ops = NULL;
1184	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1185
1186	/*
1187	 * alloc_page_vma() will drop the shared policy reference
1188	 */
1189	return alloc_page_vma(gfp, &pvma, 0);
1190}
1191#else /* !CONFIG_NUMA */
1192#ifdef CONFIG_TMPFS
1193static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1194{
1195}
1196#endif /* CONFIG_TMPFS */
1197
1198static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1199			struct shmem_inode_info *info, unsigned long idx)
1200{
1201	return swapin_readahead(entry, gfp, NULL, 0);
1202}
1203
1204static inline struct page *shmem_alloc_page(gfp_t gfp,
1205			struct shmem_inode_info *info, unsigned long idx)
1206{
1207	return alloc_page(gfp);
1208}
1209#endif /* CONFIG_NUMA */
1210
1211#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1212static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1213{
1214	return NULL;
1215}
1216#endif
1217
1218/*
1219 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1220 *
1221 * If we allocate a new one we do not mark it dirty. That's up to the
1222 * vm. If we swap it in we mark it dirty since we also free the swap
1223 * entry since a page cannot live in both the swap and page cache
1224 */
1225static int shmem_getpage_gfp(struct inode *inode, pgoff_t idx,
1226	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1227{
1228	struct address_space *mapping = inode->i_mapping;
1229	struct shmem_inode_info *info = SHMEM_I(inode);
1230	struct shmem_sb_info *sbinfo;
1231	struct page *page;
1232	struct page *prealloc_page = NULL;
1233	swp_entry_t *entry;
1234	swp_entry_t swap;
1235	int error;
1236	int ret;
1237
1238	if (idx >= SHMEM_MAX_INDEX)
1239		return -EFBIG;
1240repeat:
1241	page = find_lock_page(mapping, idx);
1242	if (page) {
1243		/*
1244		 * Once we can get the page lock, it must be uptodate:
1245		 * if there were an error in reading back from swap,
1246		 * the page would not be inserted into the filecache.
1247		 */
1248		BUG_ON(!PageUptodate(page));
1249		goto done;
1250	}
1251
1252	/*
1253	 * Try to preload while we can wait, to not make a habit of
1254	 * draining atomic reserves; but don't latch on to this cpu.
1255	 */
1256	error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1257	if (error)
1258		goto out;
1259	radix_tree_preload_end();
1260
1261	if (sgp != SGP_READ && !prealloc_page) {
1262		prealloc_page = shmem_alloc_page(gfp, info, idx);
1263		if (prealloc_page) {
1264			SetPageSwapBacked(prealloc_page);
1265			if (mem_cgroup_cache_charge(prealloc_page,
1266					current->mm, GFP_KERNEL)) {
1267				page_cache_release(prealloc_page);
1268				prealloc_page = NULL;
1269			}
1270		}
1271	}
1272
1273	spin_lock(&info->lock);
1274	shmem_recalc_inode(inode);
1275	entry = shmem_swp_alloc(info, idx, sgp, gfp);
1276	if (IS_ERR(entry)) {
1277		spin_unlock(&info->lock);
1278		error = PTR_ERR(entry);
1279		goto out;
1280	}
1281	swap = *entry;
1282
1283	if (swap.val) {
1284		/* Look it up and read it in.. */
1285		page = lookup_swap_cache(swap);
1286		if (!page) {
1287			shmem_swp_unmap(entry);
1288			spin_unlock(&info->lock);
1289			/* here we actually do the io */
1290			if (fault_type)
1291				*fault_type |= VM_FAULT_MAJOR;
1292			page = shmem_swapin(swap, gfp, info, idx);
1293			if (!page) {
1294				spin_lock(&info->lock);
1295				entry = shmem_swp_alloc(info, idx, sgp, gfp);
1296				if (IS_ERR(entry))
1297					error = PTR_ERR(entry);
1298				else {
1299					if (entry->val == swap.val)
1300						error = -ENOMEM;
1301					shmem_swp_unmap(entry);
1302				}
1303				spin_unlock(&info->lock);
1304				if (error)
1305					goto out;
1306				goto repeat;
1307			}
1308			wait_on_page_locked(page);
1309			page_cache_release(page);
1310			goto repeat;
1311		}
1312
1313		/* We have to do this with page locked to prevent races */
1314		if (!trylock_page(page)) {
1315			shmem_swp_unmap(entry);
1316			spin_unlock(&info->lock);
1317			wait_on_page_locked(page);
1318			page_cache_release(page);
1319			goto repeat;
1320		}
1321		if (PageWriteback(page)) {
1322			shmem_swp_unmap(entry);
1323			spin_unlock(&info->lock);
1324			wait_on_page_writeback(page);
1325			unlock_page(page);
1326			page_cache_release(page);
1327			goto repeat;
1328		}
1329		if (!PageUptodate(page)) {
1330			shmem_swp_unmap(entry);
1331			spin_unlock(&info->lock);
1332			unlock_page(page);
1333			page_cache_release(page);
1334			error = -EIO;
1335			goto out;
1336		}
1337
1338		error = add_to_page_cache_locked(page, mapping,
1339						 idx, GFP_NOWAIT);
1340		if (error) {
1341			shmem_swp_unmap(entry);
1342			spin_unlock(&info->lock);
1343			if (error == -ENOMEM) {
1344				/*
1345				 * reclaim from proper memory cgroup and
1346				 * call memcg's OOM if needed.
1347				 */
1348				error = mem_cgroup_shmem_charge_fallback(
1349						page, current->mm, gfp);
1350				if (error) {
1351					unlock_page(page);
1352					page_cache_release(page);
1353					goto out;
1354				}
1355			}
1356			unlock_page(page);
1357			page_cache_release(page);
1358			goto repeat;
1359		}
1360
1361		info->flags |= SHMEM_PAGEIN;
1362		shmem_swp_set(info, entry, 0);
1363		shmem_swp_unmap(entry);
1364		delete_from_swap_cache(page);
1365		spin_unlock(&info->lock);
1366		set_page_dirty(page);
1367		swap_free(swap);
1368
1369	} else if (sgp == SGP_READ) {
1370		shmem_swp_unmap(entry);
1371		page = find_get_page(mapping, idx);
1372		if (page && !trylock_page(page)) {
1373			spin_unlock(&info->lock);
1374			wait_on_page_locked(page);
1375			page_cache_release(page);
1376			goto repeat;
1377		}
1378		spin_unlock(&info->lock);
1379
1380	} else if (prealloc_page) {
1381		shmem_swp_unmap(entry);
1382		sbinfo = SHMEM_SB(inode->i_sb);
1383		if (sbinfo->max_blocks) {
1384			if (percpu_counter_compare(&sbinfo->used_blocks,
1385						sbinfo->max_blocks) >= 0 ||
1386			    shmem_acct_block(info->flags))
1387				goto nospace;
1388			percpu_counter_inc(&sbinfo->used_blocks);
1389			inode->i_blocks += BLOCKS_PER_PAGE;
1390		} else if (shmem_acct_block(info->flags))
1391			goto nospace;
1392
1393		page = prealloc_page;
1394		prealloc_page = NULL;
1395
1396		entry = shmem_swp_alloc(info, idx, sgp, gfp);
1397		if (IS_ERR(entry))
1398			error = PTR_ERR(entry);
1399		else {
1400			swap = *entry;
1401			shmem_swp_unmap(entry);
1402		}
1403		ret = error || swap.val;
1404		if (ret)
1405			mem_cgroup_uncharge_cache_page(page);
1406		else
1407			ret = add_to_page_cache_lru(page, mapping,
1408						idx, GFP_NOWAIT);
1409		/*
1410		 * At add_to_page_cache_lru() failure,
1411		 * uncharge will be done automatically.
1412		 */
1413		if (ret) {
1414			shmem_unacct_blocks(info->flags, 1);
1415			shmem_free_blocks(inode, 1);
1416			spin_unlock(&info->lock);
1417			page_cache_release(page);
1418			if (error)
1419				goto out;
1420			goto repeat;
1421		}
1422
1423		info->flags |= SHMEM_PAGEIN;
1424		info->alloced++;
1425		spin_unlock(&info->lock);
1426		clear_highpage(page);
1427		flush_dcache_page(page);
1428		SetPageUptodate(page);
1429		if (sgp == SGP_DIRTY)
1430			set_page_dirty(page);
1431
1432	} else {
1433		spin_unlock(&info->lock);
1434		error = -ENOMEM;
1435		goto out;
1436	}
1437done:
1438	*pagep = page;
1439	error = 0;
1440out:
1441	if (prealloc_page) {
1442		mem_cgroup_uncharge_cache_page(prealloc_page);
1443		page_cache_release(prealloc_page);
1444	}
1445	return error;
1446
1447nospace:
1448	/*
1449	 * Perhaps the page was brought in from swap between find_lock_page
1450	 * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1451	 * but must also avoid reporting a spurious ENOSPC while working on a
1452	 * full tmpfs.
1453	 */
1454	page = find_get_page(mapping, idx);
1455	spin_unlock(&info->lock);
1456	if (page) {
1457		page_cache_release(page);
1458		goto repeat;
1459	}
1460	error = -ENOSPC;
1461	goto out;
1462}
1463
1464static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1465{
1466	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1467	int error;
1468	int ret = VM_FAULT_LOCKED;
1469
1470	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1471		return VM_FAULT_SIGBUS;
1472
1473	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1474	if (error)
1475		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1476
1477	if (ret & VM_FAULT_MAJOR) {
1478		count_vm_event(PGMAJFAULT);
1479		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1480	}
1481	return ret;
1482}
1483
1484#ifdef CONFIG_NUMA
1485static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1486{
1487	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1488	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1489}
1490
1491static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1492					  unsigned long addr)
1493{
1494	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1495	unsigned long idx;
1496
1497	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1498	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1499}
1500#endif
1501
1502int shmem_lock(struct file *file, int lock, struct user_struct *user)
1503{
1504	struct inode *inode = file->f_path.dentry->d_inode;
1505	struct shmem_inode_info *info = SHMEM_I(inode);
1506	int retval = -ENOMEM;
1507
1508	spin_lock(&info->lock);
1509	if (lock && !(info->flags & VM_LOCKED)) {
1510		if (!user_shm_lock(inode->i_size, user))
1511			goto out_nomem;
1512		info->flags |= VM_LOCKED;
1513		mapping_set_unevictable(file->f_mapping);
1514	}
1515	if (!lock && (info->flags & VM_LOCKED) && user) {
1516		user_shm_unlock(inode->i_size, user);
1517		info->flags &= ~VM_LOCKED;
1518		mapping_clear_unevictable(file->f_mapping);
1519		scan_mapping_unevictable_pages(file->f_mapping);
1520	}
1521	retval = 0;
1522
1523out_nomem:
1524	spin_unlock(&info->lock);
1525	return retval;
1526}
1527
1528static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1529{
1530	file_accessed(file);
1531	vma->vm_ops = &shmem_vm_ops;
1532	vma->vm_flags |= VM_CAN_NONLINEAR;
1533	return 0;
1534}
1535
1536static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1537				     int mode, dev_t dev, unsigned long flags)
1538{
1539	struct inode *inode;
1540	struct shmem_inode_info *info;
1541	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1542
1543	if (shmem_reserve_inode(sb))
1544		return NULL;
1545
1546	inode = new_inode(sb);
1547	if (inode) {
1548		inode->i_ino = get_next_ino();
1549		inode_init_owner(inode, dir, mode);
1550		inode->i_blocks = 0;
1551		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1552		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1553		inode->i_generation = get_seconds();
1554		info = SHMEM_I(inode);
1555		memset(info, 0, (char *)inode - (char *)info);
1556		spin_lock_init(&info->lock);
1557		info->flags = flags & VM_NORESERVE;
1558		INIT_LIST_HEAD(&info->swaplist);
1559		INIT_LIST_HEAD(&info->xattr_list);
1560		cache_no_acl(inode);
1561
1562		switch (mode & S_IFMT) {
1563		default:
1564			inode->i_op = &shmem_special_inode_operations;
1565			init_special_inode(inode, mode, dev);
1566			break;
1567		case S_IFREG:
1568			inode->i_mapping->a_ops = &shmem_aops;
1569			inode->i_op = &shmem_inode_operations;
1570			inode->i_fop = &shmem_file_operations;
1571			mpol_shared_policy_init(&info->policy,
1572						 shmem_get_sbmpol(sbinfo));
1573			break;
1574		case S_IFDIR:
1575			inc_nlink(inode);
1576			/* Some things misbehave if size == 0 on a directory */
1577			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1578			inode->i_op = &shmem_dir_inode_operations;
1579			inode->i_fop = &simple_dir_operations;
1580			break;
1581		case S_IFLNK:
1582			/*
1583			 * Must not load anything in the rbtree,
1584			 * mpol_free_shared_policy will not be called.
1585			 */
1586			mpol_shared_policy_init(&info->policy, NULL);
1587			break;
1588		}
1589	} else
1590		shmem_free_inode(sb);
1591	return inode;
1592}
1593
1594#ifdef CONFIG_TMPFS
1595static const struct inode_operations shmem_symlink_inode_operations;
1596static const struct inode_operations shmem_symlink_inline_operations;
1597
1598static int
1599shmem_write_begin(struct file *file, struct address_space *mapping,
1600			loff_t pos, unsigned len, unsigned flags,
1601			struct page **pagep, void **fsdata)
1602{
1603	struct inode *inode = mapping->host;
1604	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1605	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1606}
1607
1608static int
1609shmem_write_end(struct file *file, struct address_space *mapping,
1610			loff_t pos, unsigned len, unsigned copied,
1611			struct page *page, void *fsdata)
1612{
1613	struct inode *inode = mapping->host;
1614
1615	if (pos + copied > inode->i_size)
1616		i_size_write(inode, pos + copied);
1617
1618	set_page_dirty(page);
1619	unlock_page(page);
1620	page_cache_release(page);
1621
1622	return copied;
1623}
1624
1625static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1626{
1627	struct inode *inode = filp->f_path.dentry->d_inode;
1628	struct address_space *mapping = inode->i_mapping;
1629	unsigned long index, offset;
1630	enum sgp_type sgp = SGP_READ;
1631
1632	/*
1633	 * Might this read be for a stacking filesystem?  Then when reading
1634	 * holes of a sparse file, we actually need to allocate those pages,
1635	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1636	 */
1637	if (segment_eq(get_fs(), KERNEL_DS))
1638		sgp = SGP_DIRTY;
1639
1640	index = *ppos >> PAGE_CACHE_SHIFT;
1641	offset = *ppos & ~PAGE_CACHE_MASK;
1642
1643	for (;;) {
1644		struct page *page = NULL;
1645		unsigned long end_index, nr, ret;
1646		loff_t i_size = i_size_read(inode);
1647
1648		end_index = i_size >> PAGE_CACHE_SHIFT;
1649		if (index > end_index)
1650			break;
1651		if (index == end_index) {
1652			nr = i_size & ~PAGE_CACHE_MASK;
1653			if (nr <= offset)
1654				break;
1655		}
1656
1657		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1658		if (desc->error) {
1659			if (desc->error == -EINVAL)
1660				desc->error = 0;
1661			break;
1662		}
1663		if (page)
1664			unlock_page(page);
1665
1666		/*
1667		 * We must evaluate after, since reads (unlike writes)
1668		 * are called without i_mutex protection against truncate
1669		 */
1670		nr = PAGE_CACHE_SIZE;
1671		i_size = i_size_read(inode);
1672		end_index = i_size >> PAGE_CACHE_SHIFT;
1673		if (index == end_index) {
1674			nr = i_size & ~PAGE_CACHE_MASK;
1675			if (nr <= offset) {
1676				if (page)
1677					page_cache_release(page);
1678				break;
1679			}
1680		}
1681		nr -= offset;
1682
1683		if (page) {
1684			/*
1685			 * If users can be writing to this page using arbitrary
1686			 * virtual addresses, take care about potential aliasing
1687			 * before reading the page on the kernel side.
1688			 */
1689			if (mapping_writably_mapped(mapping))
1690				flush_dcache_page(page);
1691			/*
1692			 * Mark the page accessed if we read the beginning.
1693			 */
1694			if (!offset)
1695				mark_page_accessed(page);
1696		} else {
1697			page = ZERO_PAGE(0);
1698			page_cache_get(page);
1699		}
1700
1701		/*
1702		 * Ok, we have the page, and it's up-to-date, so
1703		 * now we can copy it to user space...
1704		 *
1705		 * The actor routine returns how many bytes were actually used..
1706		 * NOTE! This may not be the same as how much of a user buffer
1707		 * we filled up (we may be padding etc), so we can only update
1708		 * "pos" here (the actor routine has to update the user buffer
1709		 * pointers and the remaining count).
1710		 */
1711		ret = actor(desc, page, offset, nr);
1712		offset += ret;
1713		index += offset >> PAGE_CACHE_SHIFT;
1714		offset &= ~PAGE_CACHE_MASK;
1715
1716		page_cache_release(page);
1717		if (ret != nr || !desc->count)
1718			break;
1719
1720		cond_resched();
1721	}
1722
1723	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1724	file_accessed(filp);
1725}
1726
1727static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1728		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1729{
1730	struct file *filp = iocb->ki_filp;
1731	ssize_t retval;
1732	unsigned long seg;
1733	size_t count;
1734	loff_t *ppos = &iocb->ki_pos;
1735
1736	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1737	if (retval)
1738		return retval;
1739
1740	for (seg = 0; seg < nr_segs; seg++) {
1741		read_descriptor_t desc;
1742
1743		desc.written = 0;
1744		desc.arg.buf = iov[seg].iov_base;
1745		desc.count = iov[seg].iov_len;
1746		if (desc.count == 0)
1747			continue;
1748		desc.error = 0;
1749		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1750		retval += desc.written;
1751		if (desc.error) {
1752			retval = retval ?: desc.error;
1753			break;
1754		}
1755		if (desc.count > 0)
1756			break;
1757	}
1758	return retval;
1759}
1760
1761static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1762				struct pipe_inode_info *pipe, size_t len,
1763				unsigned int flags)
1764{
1765	struct address_space *mapping = in->f_mapping;
1766	struct inode *inode = mapping->host;
1767	unsigned int loff, nr_pages, req_pages;
1768	struct page *pages[PIPE_DEF_BUFFERS];
1769	struct partial_page partial[PIPE_DEF_BUFFERS];
1770	struct page *page;
1771	pgoff_t index, end_index;
1772	loff_t isize, left;
1773	int error, page_nr;
1774	struct splice_pipe_desc spd = {
1775		.pages = pages,
1776		.partial = partial,
1777		.flags = flags,
1778		.ops = &page_cache_pipe_buf_ops,
1779		.spd_release = spd_release_page,
1780	};
1781
1782	isize = i_size_read(inode);
1783	if (unlikely(*ppos >= isize))
1784		return 0;
1785
1786	left = isize - *ppos;
1787	if (unlikely(left < len))
1788		len = left;
1789
1790	if (splice_grow_spd(pipe, &spd))
1791		return -ENOMEM;
1792
1793	index = *ppos >> PAGE_CACHE_SHIFT;
1794	loff = *ppos & ~PAGE_CACHE_MASK;
1795	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1796	nr_pages = min(req_pages, pipe->buffers);
1797
1798	spd.nr_pages = find_get_pages_contig(mapping, index,
1799						nr_pages, spd.pages);
1800	index += spd.nr_pages;
1801	error = 0;
1802
1803	while (spd.nr_pages < nr_pages) {
1804		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1805		if (error)
1806			break;
1807		unlock_page(page);
1808		spd.pages[spd.nr_pages++] = page;
1809		index++;
1810	}
1811
1812	index = *ppos >> PAGE_CACHE_SHIFT;
1813	nr_pages = spd.nr_pages;
1814	spd.nr_pages = 0;
1815
1816	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1817		unsigned int this_len;
1818
1819		if (!len)
1820			break;
1821
1822		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1823		page = spd.pages[page_nr];
1824
1825		if (!PageUptodate(page) || page->mapping != mapping) {
1826			error = shmem_getpage(inode, index, &page,
1827							SGP_CACHE, NULL);
1828			if (error)
1829				break;
1830			unlock_page(page);
1831			page_cache_release(spd.pages[page_nr]);
1832			spd.pages[page_nr] = page;
1833		}
1834
1835		isize = i_size_read(inode);
1836		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1837		if (unlikely(!isize || index > end_index))
1838			break;
1839
1840		if (end_index == index) {
1841			unsigned int plen;
1842
1843			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1844			if (plen <= loff)
1845				break;
1846
1847			this_len = min(this_len, plen - loff);
1848			len = this_len;
1849		}
1850
1851		spd.partial[page_nr].offset = loff;
1852		spd.partial[page_nr].len = this_len;
1853		len -= this_len;
1854		loff = 0;
1855		spd.nr_pages++;
1856		index++;
1857	}
1858
1859	while (page_nr < nr_pages)
1860		page_cache_release(spd.pages[page_nr++]);
1861
1862	if (spd.nr_pages)
1863		error = splice_to_pipe(pipe, &spd);
1864
1865	splice_shrink_spd(pipe, &spd);
1866
1867	if (error > 0) {
1868		*ppos += error;
1869		file_accessed(in);
1870	}
1871	return error;
1872}
1873
1874static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1875{
1876	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1877
1878	buf->f_type = TMPFS_MAGIC;
1879	buf->f_bsize = PAGE_CACHE_SIZE;
1880	buf->f_namelen = NAME_MAX;
1881	if (sbinfo->max_blocks) {
1882		buf->f_blocks = sbinfo->max_blocks;
1883		buf->f_bavail = buf->f_bfree =
1884				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1885	}
1886	if (sbinfo->max_inodes) {
1887		buf->f_files = sbinfo->max_inodes;
1888		buf->f_ffree = sbinfo->free_inodes;
1889	}
1890	/* else leave those fields 0 like simple_statfs */
1891	return 0;
1892}
1893
1894/*
1895 * File creation. Allocate an inode, and we're done..
1896 */
1897static int
1898shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1899{
1900	struct inode *inode;
1901	int error = -ENOSPC;
1902
1903	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1904	if (inode) {
1905		error = security_inode_init_security(inode, dir,
1906						     &dentry->d_name, NULL,
1907						     NULL, NULL);
1908		if (error) {
1909			if (error != -EOPNOTSUPP) {
1910				iput(inode);
1911				return error;
1912			}
1913		}
1914#ifdef CONFIG_TMPFS_POSIX_ACL
1915		error = generic_acl_init(inode, dir);
1916		if (error) {
1917			iput(inode);
1918			return error;
1919		}
1920#else
1921		error = 0;
1922#endif
1923		dir->i_size += BOGO_DIRENT_SIZE;
1924		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1925		d_instantiate(dentry, inode);
1926		dget(dentry); /* Extra count - pin the dentry in core */
1927	}
1928	return error;
1929}
1930
1931static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1932{
1933	int error;
1934
1935	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1936		return error;
1937	inc_nlink(dir);
1938	return 0;
1939}
1940
1941static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1942		struct nameidata *nd)
1943{
1944	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1945}
1946
1947/*
1948 * Link a file..
1949 */
1950static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1951{
1952	struct inode *inode = old_dentry->d_inode;
1953	int ret;
1954
1955	/*
1956	 * No ordinary (disk based) filesystem counts links as inodes;
1957	 * but each new link needs a new dentry, pinning lowmem, and
1958	 * tmpfs dentries cannot be pruned until they are unlinked.
1959	 */
1960	ret = shmem_reserve_inode(inode->i_sb);
1961	if (ret)
1962		goto out;
1963
1964	dir->i_size += BOGO_DIRENT_SIZE;
1965	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1966	inc_nlink(inode);
1967	ihold(inode);	/* New dentry reference */
1968	dget(dentry);		/* Extra pinning count for the created dentry */
1969	d_instantiate(dentry, inode);
1970out:
1971	return ret;
1972}
1973
1974static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1975{
1976	struct inode *inode = dentry->d_inode;
1977
1978	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1979		shmem_free_inode(inode->i_sb);
1980
1981	dir->i_size -= BOGO_DIRENT_SIZE;
1982	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1983	drop_nlink(inode);
1984	dput(dentry);	/* Undo the count from "create" - this does all the work */
1985	return 0;
1986}
1987
1988static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1989{
1990	if (!simple_empty(dentry))
1991		return -ENOTEMPTY;
1992
1993	drop_nlink(dentry->d_inode);
1994	drop_nlink(dir);
1995	return shmem_unlink(dir, dentry);
1996}
1997
1998/*
1999 * The VFS layer already does all the dentry stuff for rename,
2000 * we just have to decrement the usage count for the target if
2001 * it exists so that the VFS layer correctly free's it when it
2002 * gets overwritten.
2003 */
2004static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2005{
2006	struct inode *inode = old_dentry->d_inode;
2007	int they_are_dirs = S_ISDIR(inode->i_mode);
2008
2009	if (!simple_empty(new_dentry))
2010		return -ENOTEMPTY;
2011
2012	if (new_dentry->d_inode) {
2013		(void) shmem_unlink(new_dir, new_dentry);
2014		if (they_are_dirs)
2015			drop_nlink(old_dir);
2016	} else if (they_are_dirs) {
2017		drop_nlink(old_dir);
2018		inc_nlink(new_dir);
2019	}
2020
2021	old_dir->i_size -= BOGO_DIRENT_SIZE;
2022	new_dir->i_size += BOGO_DIRENT_SIZE;
2023	old_dir->i_ctime = old_dir->i_mtime =
2024	new_dir->i_ctime = new_dir->i_mtime =
2025	inode->i_ctime = CURRENT_TIME;
2026	return 0;
2027}
2028
2029static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2030{
2031	int error;
2032	int len;
2033	struct inode *inode;
2034	struct page *page;
2035	char *kaddr;
2036	struct shmem_inode_info *info;
2037
2038	len = strlen(symname) + 1;
2039	if (len > PAGE_CACHE_SIZE)
2040		return -ENAMETOOLONG;
2041
2042	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2043	if (!inode)
2044		return -ENOSPC;
2045
2046	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2047					     NULL, NULL);
2048	if (error) {
2049		if (error != -EOPNOTSUPP) {
2050			iput(inode);
2051			return error;
2052		}
2053		error = 0;
2054	}
2055
2056	info = SHMEM_I(inode);
2057	inode->i_size = len-1;
2058	if (len <= SHMEM_SYMLINK_INLINE_LEN) {
2059		/* do it inline */
2060		memcpy(info->inline_symlink, symname, len);
2061		inode->i_op = &shmem_symlink_inline_operations;
2062	} else {
2063		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2064		if (error) {
2065			iput(inode);
2066			return error;
2067		}
2068		inode->i_mapping->a_ops = &shmem_aops;
2069		inode->i_op = &shmem_symlink_inode_operations;
2070		kaddr = kmap_atomic(page, KM_USER0);
2071		memcpy(kaddr, symname, len);
2072		kunmap_atomic(kaddr, KM_USER0);
2073		set_page_dirty(page);
2074		unlock_page(page);
2075		page_cache_release(page);
2076	}
2077	dir->i_size += BOGO_DIRENT_SIZE;
2078	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2079	d_instantiate(dentry, inode);
2080	dget(dentry);
2081	return 0;
2082}
2083
2084static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2085{
2086	nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
2087	return NULL;
2088}
2089
2090static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2091{
2092	struct page *page = NULL;
2093	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2094	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2095	if (page)
2096		unlock_page(page);
2097	return page;
2098}
2099
2100static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2101{
2102	if (!IS_ERR(nd_get_link(nd))) {
2103		struct page *page = cookie;
2104		kunmap(page);
2105		mark_page_accessed(page);
2106		page_cache_release(page);
2107	}
2108}
2109
2110#ifdef CONFIG_TMPFS_XATTR
2111/*
2112 * Superblocks without xattr inode operations may get some security.* xattr
2113 * support from the LSM "for free". As soon as we have any other xattrs
2114 * like ACLs, we also need to implement the security.* handlers at
2115 * filesystem level, though.
2116 */
2117
2118static int shmem_xattr_get(struct dentry *dentry, const char *name,
2119			   void *buffer, size_t size)
2120{
2121	struct shmem_inode_info *info;
2122	struct shmem_xattr *xattr;
2123	int ret = -ENODATA;
2124
2125	info = SHMEM_I(dentry->d_inode);
2126
2127	spin_lock(&info->lock);
2128	list_for_each_entry(xattr, &info->xattr_list, list) {
2129		if (strcmp(name, xattr->name))
2130			continue;
2131
2132		ret = xattr->size;
2133		if (buffer) {
2134			if (size < xattr->size)
2135				ret = -ERANGE;
2136			else
2137				memcpy(buffer, xattr->value, xattr->size);
2138		}
2139		break;
2140	}
2141	spin_unlock(&info->lock);
2142	return ret;
2143}
2144
2145static int shmem_xattr_set(struct dentry *dentry, const char *name,
2146			   const void *value, size_t size, int flags)
2147{
2148	struct inode *inode = dentry->d_inode;
2149	struct shmem_inode_info *info = SHMEM_I(inode);
2150	struct shmem_xattr *xattr;
2151	struct shmem_xattr *new_xattr = NULL;
2152	size_t len;
2153	int err = 0;
2154
2155	/* value == NULL means remove */
2156	if (value) {
2157		/* wrap around? */
2158		len = sizeof(*new_xattr) + size;
2159		if (len <= sizeof(*new_xattr))
2160			return -ENOMEM;
2161
2162		new_xattr = kmalloc(len, GFP_KERNEL);
2163		if (!new_xattr)
2164			return -ENOMEM;
2165
2166		new_xattr->name = kstrdup(name, GFP_KERNEL);
2167		if (!new_xattr->name) {
2168			kfree(new_xattr);
2169			return -ENOMEM;
2170		}
2171
2172		new_xattr->size = size;
2173		memcpy(new_xattr->value, value, size);
2174	}
2175
2176	spin_lock(&info->lock);
2177	list_for_each_entry(xattr, &info->xattr_list, list) {
2178		if (!strcmp(name, xattr->name)) {
2179			if (flags & XATTR_CREATE) {
2180				xattr = new_xattr;
2181				err = -EEXIST;
2182			} else if (new_xattr) {
2183				list_replace(&xattr->list, &new_xattr->list);
2184			} else {
2185				list_del(&xattr->list);
2186			}
2187			goto out;
2188		}
2189	}
2190	if (flags & XATTR_REPLACE) {
2191		xattr = new_xattr;
2192		err = -ENODATA;
2193	} else {
2194		list_add(&new_xattr->list, &info->xattr_list);
2195		xattr = NULL;
2196	}
2197out:
2198	spin_unlock(&info->lock);
2199	if (xattr)
2200		kfree(xattr->name);
2201	kfree(xattr);
2202	return err;
2203}
2204
2205
2206static const struct xattr_handler *shmem_xattr_handlers[] = {
2207#ifdef CONFIG_TMPFS_POSIX_ACL
2208	&generic_acl_access_handler,
2209	&generic_acl_default_handler,
2210#endif
2211	NULL
2212};
2213
2214static int shmem_xattr_validate(const char *name)
2215{
2216	struct { const char *prefix; size_t len; } arr[] = {
2217		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2218		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2219	};
2220	int i;
2221
2222	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2223		size_t preflen = arr[i].len;
2224		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2225			if (!name[preflen])
2226				return -EINVAL;
2227			return 0;
2228		}
2229	}
2230	return -EOPNOTSUPP;
2231}
2232
2233static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2234			      void *buffer, size_t size)
2235{
2236	int err;
2237
2238	/*
2239	 * If this is a request for a synthetic attribute in the system.*
2240	 * namespace use the generic infrastructure to resolve a handler
2241	 * for it via sb->s_xattr.
2242	 */
2243	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2244		return generic_getxattr(dentry, name, buffer, size);
2245
2246	err = shmem_xattr_validate(name);
2247	if (err)
2248		return err;
2249
2250	return shmem_xattr_get(dentry, name, buffer, size);
2251}
2252
2253static int shmem_setxattr(struct dentry *dentry, const char *name,
2254			  const void *value, size_t size, int flags)
2255{
2256	int err;
2257
2258	/*
2259	 * If this is a request for a synthetic attribute in the system.*
2260	 * namespace use the generic infrastructure to resolve a handler
2261	 * for it via sb->s_xattr.
2262	 */
2263	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2264		return generic_setxattr(dentry, name, value, size, flags);
2265
2266	err = shmem_xattr_validate(name);
2267	if (err)
2268		return err;
2269
2270	if (size == 0)
2271		value = "";  /* empty EA, do not remove */
2272
2273	return shmem_xattr_set(dentry, name, value, size, flags);
2274
2275}
2276
2277static int shmem_removexattr(struct dentry *dentry, const char *name)
2278{
2279	int err;
2280
2281	/*
2282	 * If this is a request for a synthetic attribute in the system.*
2283	 * namespace use the generic infrastructure to resolve a handler
2284	 * for it via sb->s_xattr.
2285	 */
2286	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2287		return generic_removexattr(dentry, name);
2288
2289	err = shmem_xattr_validate(name);
2290	if (err)
2291		return err;
2292
2293	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2294}
2295
2296static bool xattr_is_trusted(const char *name)
2297{
2298	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2299}
2300
2301static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2302{
2303	bool trusted = capable(CAP_SYS_ADMIN);
2304	struct shmem_xattr *xattr;
2305	struct shmem_inode_info *info;
2306	size_t used = 0;
2307
2308	info = SHMEM_I(dentry->d_inode);
2309
2310	spin_lock(&info->lock);
2311	list_for_each_entry(xattr, &info->xattr_list, list) {
2312		size_t len;
2313
2314		/* skip "trusted." attributes for unprivileged callers */
2315		if (!trusted && xattr_is_trusted(xattr->name))
2316			continue;
2317
2318		len = strlen(xattr->name) + 1;
2319		used += len;
2320		if (buffer) {
2321			if (size < used) {
2322				used = -ERANGE;
2323				break;
2324			}
2325			memcpy(buffer, xattr->name, len);
2326			buffer += len;
2327		}
2328	}
2329	spin_unlock(&info->lock);
2330
2331	return used;
2332}
2333#endif /* CONFIG_TMPFS_XATTR */
2334
2335static const struct inode_operations shmem_symlink_inline_operations = {
2336	.readlink	= generic_readlink,
2337	.follow_link	= shmem_follow_link_inline,
2338#ifdef CONFIG_TMPFS_XATTR
2339	.setxattr	= shmem_setxattr,
2340	.getxattr	= shmem_getxattr,
2341	.listxattr	= shmem_listxattr,
2342	.removexattr	= shmem_removexattr,
2343#endif
2344};
2345
2346static const struct inode_operations shmem_symlink_inode_operations = {
2347	.readlink	= generic_readlink,
2348	.follow_link	= shmem_follow_link,
2349	.put_link	= shmem_put_link,
2350#ifdef CONFIG_TMPFS_XATTR
2351	.setxattr	= shmem_setxattr,
2352	.getxattr	= shmem_getxattr,
2353	.listxattr	= shmem_listxattr,
2354	.removexattr	= shmem_removexattr,
2355#endif
2356};
2357
2358static struct dentry *shmem_get_parent(struct dentry *child)
2359{
2360	return ERR_PTR(-ESTALE);
2361}
2362
2363static int shmem_match(struct inode *ino, void *vfh)
2364{
2365	__u32 *fh = vfh;
2366	__u64 inum = fh[2];
2367	inum = (inum << 32) | fh[1];
2368	return ino->i_ino == inum && fh[0] == ino->i_generation;
2369}
2370
2371static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2372		struct fid *fid, int fh_len, int fh_type)
2373{
2374	struct inode *inode;
2375	struct dentry *dentry = NULL;
2376	u64 inum = fid->raw[2];
2377	inum = (inum << 32) | fid->raw[1];
2378
2379	if (fh_len < 3)
2380		return NULL;
2381
2382	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2383			shmem_match, fid->raw);
2384	if (inode) {
2385		dentry = d_find_alias(inode);
2386		iput(inode);
2387	}
2388
2389	return dentry;
2390}
2391
2392static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2393				int connectable)
2394{
2395	struct inode *inode = dentry->d_inode;
2396
2397	if (*len < 3) {
2398		*len = 3;
2399		return 255;
2400	}
2401
2402	if (inode_unhashed(inode)) {
2403		/* Unfortunately insert_inode_hash is not idempotent,
2404		 * so as we hash inodes here rather than at creation
2405		 * time, we need a lock to ensure we only try
2406		 * to do it once
2407		 */
2408		static DEFINE_SPINLOCK(lock);
2409		spin_lock(&lock);
2410		if (inode_unhashed(inode))
2411			__insert_inode_hash(inode,
2412					    inode->i_ino + inode->i_generation);
2413		spin_unlock(&lock);
2414	}
2415
2416	fh[0] = inode->i_generation;
2417	fh[1] = inode->i_ino;
2418	fh[2] = ((__u64)inode->i_ino) >> 32;
2419
2420	*len = 3;
2421	return 1;
2422}
2423
2424static const struct export_operations shmem_export_ops = {
2425	.get_parent     = shmem_get_parent,
2426	.encode_fh      = shmem_encode_fh,
2427	.fh_to_dentry	= shmem_fh_to_dentry,
2428};
2429
2430static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2431			       bool remount)
2432{
2433	char *this_char, *value, *rest;
2434
2435	while (options != NULL) {
2436		this_char = options;
2437		for (;;) {
2438			/*
2439			 * NUL-terminate this option: unfortunately,
2440			 * mount options form a comma-separated list,
2441			 * but mpol's nodelist may also contain commas.
2442			 */
2443			options = strchr(options, ',');
2444			if (options == NULL)
2445				break;
2446			options++;
2447			if (!isdigit(*options)) {
2448				options[-1] = '\0';
2449				break;
2450			}
2451		}
2452		if (!*this_char)
2453			continue;
2454		if ((value = strchr(this_char,'=')) != NULL) {
2455			*value++ = 0;
2456		} else {
2457			printk(KERN_ERR
2458			    "tmpfs: No value for mount option '%s'\n",
2459			    this_char);
2460			return 1;
2461		}
2462
2463		if (!strcmp(this_char,"size")) {
2464			unsigned long long size;
2465			size = memparse(value,&rest);
2466			if (*rest == '%') {
2467				size <<= PAGE_SHIFT;
2468				size *= totalram_pages;
2469				do_div(size, 100);
2470				rest++;
2471			}
2472			if (*rest)
2473				goto bad_val;
2474			sbinfo->max_blocks =
2475				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2476		} else if (!strcmp(this_char,"nr_blocks")) {
2477			sbinfo->max_blocks = memparse(value, &rest);
2478			if (*rest)
2479				goto bad_val;
2480		} else if (!strcmp(this_char,"nr_inodes")) {
2481			sbinfo->max_inodes = memparse(value, &rest);
2482			if (*rest)
2483				goto bad_val;
2484		} else if (!strcmp(this_char,"mode")) {
2485			if (remount)
2486				continue;
2487			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2488			if (*rest)
2489				goto bad_val;
2490		} else if (!strcmp(this_char,"uid")) {
2491			if (remount)
2492				continue;
2493			sbinfo->uid = simple_strtoul(value, &rest, 0);
2494			if (*rest)
2495				goto bad_val;
2496		} else if (!strcmp(this_char,"gid")) {
2497			if (remount)
2498				continue;
2499			sbinfo->gid = simple_strtoul(value, &rest, 0);
2500			if (*rest)
2501				goto bad_val;
2502		} else if (!strcmp(this_char,"mpol")) {
2503			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2504				goto bad_val;
2505		} else {
2506			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2507			       this_char);
2508			return 1;
2509		}
2510	}
2511	return 0;
2512
2513bad_val:
2514	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2515	       value, this_char);
2516	return 1;
2517
2518}
2519
2520static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2521{
2522	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2523	struct shmem_sb_info config = *sbinfo;
2524	unsigned long inodes;
2525	int error = -EINVAL;
2526
2527	if (shmem_parse_options(data, &config, true))
2528		return error;
2529
2530	spin_lock(&sbinfo->stat_lock);
2531	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2532	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2533		goto out;
2534	if (config.max_inodes < inodes)
2535		goto out;
2536	/*
2537	 * Those tests also disallow limited->unlimited while any are in
2538	 * use, so i_blocks will always be zero when max_blocks is zero;
2539	 * but we must separately disallow unlimited->limited, because
2540	 * in that case we have no record of how much is already in use.
2541	 */
2542	if (config.max_blocks && !sbinfo->max_blocks)
2543		goto out;
2544	if (config.max_inodes && !sbinfo->max_inodes)
2545		goto out;
2546
2547	error = 0;
2548	sbinfo->max_blocks  = config.max_blocks;
2549	sbinfo->max_inodes  = config.max_inodes;
2550	sbinfo->free_inodes = config.max_inodes - inodes;
2551
2552	mpol_put(sbinfo->mpol);
2553	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2554out:
2555	spin_unlock(&sbinfo->stat_lock);
2556	return error;
2557}
2558
2559static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2560{
2561	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2562
2563	if (sbinfo->max_blocks != shmem_default_max_blocks())
2564		seq_printf(seq, ",size=%luk",
2565			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2566	if (sbinfo->max_inodes != shmem_default_max_inodes())
2567		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2568	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2569		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2570	if (sbinfo->uid != 0)
2571		seq_printf(seq, ",uid=%u", sbinfo->uid);
2572	if (sbinfo->gid != 0)
2573		seq_printf(seq, ",gid=%u", sbinfo->gid);
2574	shmem_show_mpol(seq, sbinfo->mpol);
2575	return 0;
2576}
2577#endif /* CONFIG_TMPFS */
2578
2579static void shmem_put_super(struct super_block *sb)
2580{
2581	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2582
2583	percpu_counter_destroy(&sbinfo->used_blocks);
2584	kfree(sbinfo);
2585	sb->s_fs_info = NULL;
2586}
2587
2588int shmem_fill_super(struct super_block *sb, void *data, int silent)
2589{
2590	struct inode *inode;
2591	struct dentry *root;
2592	struct shmem_sb_info *sbinfo;
2593	int err = -ENOMEM;
2594
2595	/* Round up to L1_CACHE_BYTES to resist false sharing */
2596	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2597				L1_CACHE_BYTES), GFP_KERNEL);
2598	if (!sbinfo)
2599		return -ENOMEM;
2600
2601	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2602	sbinfo->uid = current_fsuid();
2603	sbinfo->gid = current_fsgid();
2604	sb->s_fs_info = sbinfo;
2605
2606#ifdef CONFIG_TMPFS
2607	/*
2608	 * Per default we only allow half of the physical ram per
2609	 * tmpfs instance, limiting inodes to one per page of lowmem;
2610	 * but the internal instance is left unlimited.
2611	 */
2612	if (!(sb->s_flags & MS_NOUSER)) {
2613		sbinfo->max_blocks = shmem_default_max_blocks();
2614		sbinfo->max_inodes = shmem_default_max_inodes();
2615		if (shmem_parse_options(data, sbinfo, false)) {
2616			err = -EINVAL;
2617			goto failed;
2618		}
2619	}
2620	sb->s_export_op = &shmem_export_ops;
2621#else
2622	sb->s_flags |= MS_NOUSER;
2623#endif
2624
2625	spin_lock_init(&sbinfo->stat_lock);
2626	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2627		goto failed;
2628	sbinfo->free_inodes = sbinfo->max_inodes;
2629
2630	sb->s_maxbytes = SHMEM_MAX_BYTES;
2631	sb->s_blocksize = PAGE_CACHE_SIZE;
2632	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2633	sb->s_magic = TMPFS_MAGIC;
2634	sb->s_op = &shmem_ops;
2635	sb->s_time_gran = 1;
2636#ifdef CONFIG_TMPFS_XATTR
2637	sb->s_xattr = shmem_xattr_handlers;
2638#endif
2639#ifdef CONFIG_TMPFS_POSIX_ACL
2640	sb->s_flags |= MS_POSIXACL;
2641#endif
2642
2643	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2644	if (!inode)
2645		goto failed;
2646	inode->i_uid = sbinfo->uid;
2647	inode->i_gid = sbinfo->gid;
2648	root = d_alloc_root(inode);
2649	if (!root)
2650		goto failed_iput;
2651	sb->s_root = root;
2652	return 0;
2653
2654failed_iput:
2655	iput(inode);
2656failed:
2657	shmem_put_super(sb);
2658	return err;
2659}
2660
2661static struct kmem_cache *shmem_inode_cachep;
2662
2663static struct inode *shmem_alloc_inode(struct super_block *sb)
2664{
2665	struct shmem_inode_info *p;
2666	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2667	if (!p)
2668		return NULL;
2669	return &p->vfs_inode;
2670}
2671
2672static void shmem_i_callback(struct rcu_head *head)
2673{
2674	struct inode *inode = container_of(head, struct inode, i_rcu);
2675	INIT_LIST_HEAD(&inode->i_dentry);
2676	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2677}
2678
2679static void shmem_destroy_inode(struct inode *inode)
2680{
2681	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2682		/* only struct inode is valid if it's an inline symlink */
2683		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2684	}
2685	call_rcu(&inode->i_rcu, shmem_i_callback);
2686}
2687
2688static void init_once(void *foo)
2689{
2690	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2691
2692	inode_init_once(&p->vfs_inode);
2693}
2694
2695static int init_inodecache(void)
2696{
2697	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2698				sizeof(struct shmem_inode_info),
2699				0, SLAB_PANIC, init_once);
2700	return 0;
2701}
2702
2703static void destroy_inodecache(void)
2704{
2705	kmem_cache_destroy(shmem_inode_cachep);
2706}
2707
2708static const struct address_space_operations shmem_aops = {
2709	.writepage	= shmem_writepage,
2710	.set_page_dirty	= __set_page_dirty_no_writeback,
2711#ifdef CONFIG_TMPFS
2712	.write_begin	= shmem_write_begin,
2713	.write_end	= shmem_write_end,
2714#endif
2715	.migratepage	= migrate_page,
2716	.error_remove_page = generic_error_remove_page,
2717};
2718
2719static const struct file_operations shmem_file_operations = {
2720	.mmap		= shmem_mmap,
2721#ifdef CONFIG_TMPFS
2722	.llseek		= generic_file_llseek,
2723	.read		= do_sync_read,
2724	.write		= do_sync_write,
2725	.aio_read	= shmem_file_aio_read,
2726	.aio_write	= generic_file_aio_write,
2727	.fsync		= noop_fsync,
2728	.splice_read	= shmem_file_splice_read,
2729	.splice_write	= generic_file_splice_write,
2730#endif
2731};
2732
2733static const struct inode_operations shmem_inode_operations = {
2734	.setattr	= shmem_setattr,
2735	.truncate_range	= shmem_truncate_range,
2736#ifdef CONFIG_TMPFS_XATTR
2737	.setxattr	= shmem_setxattr,
2738	.getxattr	= shmem_getxattr,
2739	.listxattr	= shmem_listxattr,
2740	.removexattr	= shmem_removexattr,
2741#endif
2742#ifdef CONFIG_TMPFS_POSIX_ACL
2743	.check_acl	= generic_check_acl,
2744#endif
2745
2746};
2747
2748static const struct inode_operations shmem_dir_inode_operations = {
2749#ifdef CONFIG_TMPFS
2750	.create		= shmem_create,
2751	.lookup		= simple_lookup,
2752	.link		= shmem_link,
2753	.unlink		= shmem_unlink,
2754	.symlink	= shmem_symlink,
2755	.mkdir		= shmem_mkdir,
2756	.rmdir		= shmem_rmdir,
2757	.mknod		= shmem_mknod,
2758	.rename		= shmem_rename,
2759#endif
2760#ifdef CONFIG_TMPFS_XATTR
2761	.setxattr	= shmem_setxattr,
2762	.getxattr	= shmem_getxattr,
2763	.listxattr	= shmem_listxattr,
2764	.removexattr	= shmem_removexattr,
2765#endif
2766#ifdef CONFIG_TMPFS_POSIX_ACL
2767	.setattr	= shmem_setattr,
2768	.check_acl	= generic_check_acl,
2769#endif
2770};
2771
2772static const struct inode_operations shmem_special_inode_operations = {
2773#ifdef CONFIG_TMPFS_XATTR
2774	.setxattr	= shmem_setxattr,
2775	.getxattr	= shmem_getxattr,
2776	.listxattr	= shmem_listxattr,
2777	.removexattr	= shmem_removexattr,
2778#endif
2779#ifdef CONFIG_TMPFS_POSIX_ACL
2780	.setattr	= shmem_setattr,
2781	.check_acl	= generic_check_acl,
2782#endif
2783};
2784
2785static const struct super_operations shmem_ops = {
2786	.alloc_inode	= shmem_alloc_inode,
2787	.destroy_inode	= shmem_destroy_inode,
2788#ifdef CONFIG_TMPFS
2789	.statfs		= shmem_statfs,
2790	.remount_fs	= shmem_remount_fs,
2791	.show_options	= shmem_show_options,
2792#endif
2793	.evict_inode	= shmem_evict_inode,
2794	.drop_inode	= generic_delete_inode,
2795	.put_super	= shmem_put_super,
2796};
2797
2798static const struct vm_operations_struct shmem_vm_ops = {
2799	.fault		= shmem_fault,
2800#ifdef CONFIG_NUMA
2801	.set_policy     = shmem_set_policy,
2802	.get_policy     = shmem_get_policy,
2803#endif
2804};
2805
2806
2807static struct dentry *shmem_mount(struct file_system_type *fs_type,
2808	int flags, const char *dev_name, void *data)
2809{
2810	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2811}
2812
2813static struct file_system_type tmpfs_fs_type = {
2814	.owner		= THIS_MODULE,
2815	.name		= "tmpfs",
2816	.mount		= shmem_mount,
2817	.kill_sb	= kill_litter_super,
2818};
2819
2820int __init init_tmpfs(void)
2821{
2822	int error;
2823
2824	error = bdi_init(&shmem_backing_dev_info);
2825	if (error)
2826		goto out4;
2827
2828	error = init_inodecache();
2829	if (error)
2830		goto out3;
2831
2832	error = register_filesystem(&tmpfs_fs_type);
2833	if (error) {
2834		printk(KERN_ERR "Could not register tmpfs\n");
2835		goto out2;
2836	}
2837
2838	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2839				tmpfs_fs_type.name, NULL);
2840	if (IS_ERR(shm_mnt)) {
2841		error = PTR_ERR(shm_mnt);
2842		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2843		goto out1;
2844	}
2845	return 0;
2846
2847out1:
2848	unregister_filesystem(&tmpfs_fs_type);
2849out2:
2850	destroy_inodecache();
2851out3:
2852	bdi_destroy(&shmem_backing_dev_info);
2853out4:
2854	shm_mnt = ERR_PTR(error);
2855	return error;
2856}
2857
2858#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2859/**
2860 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2861 * @inode: the inode to be searched
2862 * @pgoff: the offset to be searched
2863 * @pagep: the pointer for the found page to be stored
2864 * @ent: the pointer for the found swap entry to be stored
2865 *
2866 * If a page is found, refcount of it is incremented. Callers should handle
2867 * these refcount.
2868 */
2869void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2870					struct page **pagep, swp_entry_t *ent)
2871{
2872	swp_entry_t entry = { .val = 0 }, *ptr;
2873	struct page *page = NULL;
2874	struct shmem_inode_info *info = SHMEM_I(inode);
2875
2876	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2877		goto out;
2878
2879	spin_lock(&info->lock);
2880	ptr = shmem_swp_entry(info, pgoff, NULL);
2881#ifdef CONFIG_SWAP
2882	if (ptr && ptr->val) {
2883		entry.val = ptr->val;
2884		page = find_get_page(&swapper_space, entry.val);
2885	} else
2886#endif
2887		page = find_get_page(inode->i_mapping, pgoff);
2888	if (ptr)
2889		shmem_swp_unmap(ptr);
2890	spin_unlock(&info->lock);
2891out:
2892	*pagep = page;
2893	*ent = entry;
2894}
2895#endif
2896
2897#else /* !CONFIG_SHMEM */
2898
2899/*
2900 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2901 *
2902 * This is intended for small system where the benefits of the full
2903 * shmem code (swap-backed and resource-limited) are outweighed by
2904 * their complexity. On systems without swap this code should be
2905 * effectively equivalent, but much lighter weight.
2906 */
2907
2908#include <linux/ramfs.h>
2909
2910static struct file_system_type tmpfs_fs_type = {
2911	.name		= "tmpfs",
2912	.mount		= ramfs_mount,
2913	.kill_sb	= kill_litter_super,
2914};
2915
2916int __init init_tmpfs(void)
2917{
2918	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2919
2920	shm_mnt = kern_mount(&tmpfs_fs_type);
2921	BUG_ON(IS_ERR(shm_mnt));
2922
2923	return 0;
2924}
2925
2926int shmem_unuse(swp_entry_t entry, struct page *page)
2927{
2928	return 0;
2929}
2930
2931int shmem_lock(struct file *file, int lock, struct user_struct *user)
2932{
2933	return 0;
2934}
2935
2936void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
2937{
2938	truncate_inode_pages_range(inode->i_mapping, start, end);
2939}
2940EXPORT_SYMBOL_GPL(shmem_truncate_range);
2941
2942#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2943/**
2944 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2945 * @inode: the inode to be searched
2946 * @pgoff: the offset to be searched
2947 * @pagep: the pointer for the found page to be stored
2948 * @ent: the pointer for the found swap entry to be stored
2949 *
2950 * If a page is found, refcount of it is incremented. Callers should handle
2951 * these refcount.
2952 */
2953void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2954					struct page **pagep, swp_entry_t *ent)
2955{
2956	struct page *page = NULL;
2957
2958	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2959		goto out;
2960	page = find_get_page(inode->i_mapping, pgoff);
2961out:
2962	*pagep = page;
2963	*ent = (swp_entry_t){ .val = 0 };
2964}
2965#endif
2966
2967#define shmem_vm_ops				generic_file_vm_ops
2968#define shmem_file_operations			ramfs_file_operations
2969#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2970#define shmem_acct_size(flags, size)		0
2971#define shmem_unacct_size(flags, size)		do {} while (0)
2972#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2973
2974#endif /* CONFIG_SHMEM */
2975
2976/* common code */
2977
2978/**
2979 * shmem_file_setup - get an unlinked file living in tmpfs
2980 * @name: name for dentry (to be seen in /proc/<pid>/maps
2981 * @size: size to be set for the file
2982 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2983 */
2984struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2985{
2986	int error;
2987	struct file *file;
2988	struct inode *inode;
2989	struct path path;
2990	struct dentry *root;
2991	struct qstr this;
2992
2993	if (IS_ERR(shm_mnt))
2994		return (void *)shm_mnt;
2995
2996	if (size < 0 || size > SHMEM_MAX_BYTES)
2997		return ERR_PTR(-EINVAL);
2998
2999	if (shmem_acct_size(flags, size))
3000		return ERR_PTR(-ENOMEM);
3001
3002	error = -ENOMEM;
3003	this.name = name;
3004	this.len = strlen(name);
3005	this.hash = 0; /* will go */
3006	root = shm_mnt->mnt_root;
3007	path.dentry = d_alloc(root, &this);
3008	if (!path.dentry)
3009		goto put_memory;
3010	path.mnt = mntget(shm_mnt);
3011
3012	error = -ENOSPC;
3013	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3014	if (!inode)
3015		goto put_dentry;
3016
3017	d_instantiate(path.dentry, inode);
3018	inode->i_size = size;
3019	inode->i_nlink = 0;	/* It is unlinked */
3020#ifndef CONFIG_MMU
3021	error = ramfs_nommu_expand_for_mapping(inode, size);
3022	if (error)
3023		goto put_dentry;
3024#endif
3025
3026	error = -ENFILE;
3027	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3028		  &shmem_file_operations);
3029	if (!file)
3030		goto put_dentry;
3031
3032	return file;
3033
3034put_dentry:
3035	path_put(&path);
3036put_memory:
3037	shmem_unacct_size(flags, size);
3038	return ERR_PTR(error);
3039}
3040EXPORT_SYMBOL_GPL(shmem_file_setup);
3041
3042/**
3043 * shmem_zero_setup - setup a shared anonymous mapping
3044 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3045 */
3046int shmem_zero_setup(struct vm_area_struct *vma)
3047{
3048	struct file *file;
3049	loff_t size = vma->vm_end - vma->vm_start;
3050
3051	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3052	if (IS_ERR(file))
3053		return PTR_ERR(file);
3054
3055	if (vma->vm_file)
3056		fput(vma->vm_file);
3057	vma->vm_file = file;
3058	vma->vm_ops = &shmem_vm_ops;
3059	vma->vm_flags |= VM_CAN_NONLINEAR;
3060	return 0;
3061}
3062
3063/**
3064 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3065 * @mapping:	the page's address_space
3066 * @index:	the page index
3067 * @gfp:	the page allocator flags to use if allocating
3068 *
3069 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3070 * with any new page allocations done using the specified allocation flags.
3071 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3072 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3073 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3074 *
3075 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3076 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3077 */
3078struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3079					 pgoff_t index, gfp_t gfp)
3080{
3081#ifdef CONFIG_SHMEM
3082	struct inode *inode = mapping->host;
3083	struct page *page;
3084	int error;
3085
3086	BUG_ON(mapping->a_ops != &shmem_aops);
3087	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3088	if (error)
3089		page = ERR_PTR(error);
3090	else
3091		unlock_page(page);
3092	return page;
3093#else
3094	/*
3095	 * The tiny !SHMEM case uses ramfs without swap
3096	 */
3097	return read_cache_page_gfp(mapping, index, gfp);
3098#endif
3099}
3100EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3101