shmem.c revision 570bc1c2e5ccdb408081e77507a385dc7ebed7fa
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/config.h>
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/devfs_fs_kernel.h>
30#include <linux/fs.h>
31#include <linux/mm.h>
32#include <linux/mman.h>
33#include <linux/file.h>
34#include <linux/swap.h>
35#include <linux/pagemap.h>
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/backing-dev.h>
39#include <linux/shmem_fs.h>
40#include <linux/mount.h>
41#include <linux/writeback.h>
42#include <linux/vfs.h>
43#include <linux/blkdev.h>
44#include <linux/security.h>
45#include <linux/swapops.h>
46#include <linux/mempolicy.h>
47#include <linux/namei.h>
48#include <asm/uaccess.h>
49#include <asm/div64.h>
50#include <asm/pgtable.h>
51
52/* This magic number is used in glibc for posix shared memory */
53#define TMPFS_MAGIC	0x01021994
54
55#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
56#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
57#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
58
59#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
60#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
61
62#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
63
64/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
65#define SHMEM_PAGEIN	 VM_READ
66#define SHMEM_TRUNCATE	 VM_WRITE
67
68/* Definition to limit shmem_truncate's steps between cond_rescheds */
69#define LATENCY_LIMIT	 64
70
71/* Pretend that each entry is of this size in directory's i_size */
72#define BOGO_DIRENT_SIZE 20
73
74/* Keep swapped page count in private field of indirect struct page */
75#define nr_swapped		private
76
77/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
78enum sgp_type {
79	SGP_QUICK,	/* don't try more than file page cache lookup */
80	SGP_READ,	/* don't exceed i_size, don't allocate page */
81	SGP_CACHE,	/* don't exceed i_size, may allocate page */
82	SGP_WRITE,	/* may exceed i_size, may allocate page */
83};
84
85static int shmem_getpage(struct inode *inode, unsigned long idx,
86			 struct page **pagep, enum sgp_type sgp, int *type);
87
88static inline struct page *shmem_dir_alloc(unsigned int gfp_mask)
89{
90	/*
91	 * The above definition of ENTRIES_PER_PAGE, and the use of
92	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
93	 * might be reconsidered if it ever diverges from PAGE_SIZE.
94	 */
95	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
96}
97
98static inline void shmem_dir_free(struct page *page)
99{
100	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
101}
102
103static struct page **shmem_dir_map(struct page *page)
104{
105	return (struct page **)kmap_atomic(page, KM_USER0);
106}
107
108static inline void shmem_dir_unmap(struct page **dir)
109{
110	kunmap_atomic(dir, KM_USER0);
111}
112
113static swp_entry_t *shmem_swp_map(struct page *page)
114{
115	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
116}
117
118static inline void shmem_swp_balance_unmap(void)
119{
120	/*
121	 * When passing a pointer to an i_direct entry, to code which
122	 * also handles indirect entries and so will shmem_swp_unmap,
123	 * we must arrange for the preempt count to remain in balance.
124	 * What kmap_atomic of a lowmem page does depends on config
125	 * and architecture, so pretend to kmap_atomic some lowmem page.
126	 */
127	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
128}
129
130static inline void shmem_swp_unmap(swp_entry_t *entry)
131{
132	kunmap_atomic(entry, KM_USER1);
133}
134
135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136{
137	return sb->s_fs_info;
138}
139
140/*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146static inline int shmem_acct_size(unsigned long flags, loff_t size)
147{
148	return (flags & VM_ACCOUNT)?
149		security_vm_enough_memory(VM_ACCT(size)): 0;
150}
151
152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153{
154	if (flags & VM_ACCOUNT)
155		vm_unacct_memory(VM_ACCT(size));
156}
157
158/*
159 * ... whereas tmpfs objects are accounted incrementally as
160 * pages are allocated, in order to allow huge sparse files.
161 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
162 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
163 */
164static inline int shmem_acct_block(unsigned long flags)
165{
166	return (flags & VM_ACCOUNT)?
167		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
168}
169
170static inline void shmem_unacct_blocks(unsigned long flags, long pages)
171{
172	if (!(flags & VM_ACCOUNT))
173		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
174}
175
176static struct super_operations shmem_ops;
177static struct address_space_operations shmem_aops;
178static struct file_operations shmem_file_operations;
179static struct inode_operations shmem_inode_operations;
180static struct inode_operations shmem_dir_inode_operations;
181static struct vm_operations_struct shmem_vm_ops;
182
183static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
184	.ra_pages	= 0,	/* No readahead */
185	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
186	.unplug_io_fn	= default_unplug_io_fn,
187};
188
189static LIST_HEAD(shmem_swaplist);
190static DEFINE_SPINLOCK(shmem_swaplist_lock);
191
192static void shmem_free_blocks(struct inode *inode, long pages)
193{
194	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
195	if (sbinfo->max_blocks) {
196		spin_lock(&sbinfo->stat_lock);
197		sbinfo->free_blocks += pages;
198		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
199		spin_unlock(&sbinfo->stat_lock);
200	}
201}
202
203/*
204 * shmem_recalc_inode - recalculate the size of an inode
205 *
206 * @inode: inode to recalc
207 *
208 * We have to calculate the free blocks since the mm can drop
209 * undirtied hole pages behind our back.
210 *
211 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
212 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
213 *
214 * It has to be called with the spinlock held.
215 */
216static void shmem_recalc_inode(struct inode *inode)
217{
218	struct shmem_inode_info *info = SHMEM_I(inode);
219	long freed;
220
221	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
222	if (freed > 0) {
223		info->alloced -= freed;
224		shmem_unacct_blocks(info->flags, freed);
225		shmem_free_blocks(inode, freed);
226	}
227}
228
229/*
230 * shmem_swp_entry - find the swap vector position in the info structure
231 *
232 * @info:  info structure for the inode
233 * @index: index of the page to find
234 * @page:  optional page to add to the structure. Has to be preset to
235 *         all zeros
236 *
237 * If there is no space allocated yet it will return NULL when
238 * page is NULL, else it will use the page for the needed block,
239 * setting it to NULL on return to indicate that it has been used.
240 *
241 * The swap vector is organized the following way:
242 *
243 * There are SHMEM_NR_DIRECT entries directly stored in the
244 * shmem_inode_info structure. So small files do not need an addional
245 * allocation.
246 *
247 * For pages with index > SHMEM_NR_DIRECT there is the pointer
248 * i_indirect which points to a page which holds in the first half
249 * doubly indirect blocks, in the second half triple indirect blocks:
250 *
251 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
252 * following layout (for SHMEM_NR_DIRECT == 16):
253 *
254 * i_indirect -> dir --> 16-19
255 * 	      |	     +-> 20-23
256 * 	      |
257 * 	      +-->dir2 --> 24-27
258 * 	      |	       +-> 28-31
259 * 	      |	       +-> 32-35
260 * 	      |	       +-> 36-39
261 * 	      |
262 * 	      +-->dir3 --> 40-43
263 * 	       	       +-> 44-47
264 * 	      	       +-> 48-51
265 * 	      	       +-> 52-55
266 */
267static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
268{
269	unsigned long offset;
270	struct page **dir;
271	struct page *subdir;
272
273	if (index < SHMEM_NR_DIRECT) {
274		shmem_swp_balance_unmap();
275		return info->i_direct+index;
276	}
277	if (!info->i_indirect) {
278		if (page) {
279			info->i_indirect = *page;
280			*page = NULL;
281		}
282		return NULL;			/* need another page */
283	}
284
285	index -= SHMEM_NR_DIRECT;
286	offset = index % ENTRIES_PER_PAGE;
287	index /= ENTRIES_PER_PAGE;
288	dir = shmem_dir_map(info->i_indirect);
289
290	if (index >= ENTRIES_PER_PAGE/2) {
291		index -= ENTRIES_PER_PAGE/2;
292		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
293		index %= ENTRIES_PER_PAGE;
294		subdir = *dir;
295		if (!subdir) {
296			if (page) {
297				*dir = *page;
298				*page = NULL;
299			}
300			shmem_dir_unmap(dir);
301			return NULL;		/* need another page */
302		}
303		shmem_dir_unmap(dir);
304		dir = shmem_dir_map(subdir);
305	}
306
307	dir += index;
308	subdir = *dir;
309	if (!subdir) {
310		if (!page || !(subdir = *page)) {
311			shmem_dir_unmap(dir);
312			return NULL;		/* need a page */
313		}
314		*dir = subdir;
315		*page = NULL;
316	}
317	shmem_dir_unmap(dir);
318	return shmem_swp_map(subdir) + offset;
319}
320
321static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
322{
323	long incdec = value? 1: -1;
324
325	entry->val = value;
326	info->swapped += incdec;
327	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT)
328		kmap_atomic_to_page(entry)->nr_swapped += incdec;
329}
330
331/*
332 * shmem_swp_alloc - get the position of the swap entry for the page.
333 *                   If it does not exist allocate the entry.
334 *
335 * @info:	info structure for the inode
336 * @index:	index of the page to find
337 * @sgp:	check and recheck i_size? skip allocation?
338 */
339static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
340{
341	struct inode *inode = &info->vfs_inode;
342	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
343	struct page *page = NULL;
344	swp_entry_t *entry;
345
346	if (sgp != SGP_WRITE &&
347	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
348		return ERR_PTR(-EINVAL);
349
350	while (!(entry = shmem_swp_entry(info, index, &page))) {
351		if (sgp == SGP_READ)
352			return shmem_swp_map(ZERO_PAGE(0));
353		/*
354		 * Test free_blocks against 1 not 0, since we have 1 data
355		 * page (and perhaps indirect index pages) yet to allocate:
356		 * a waste to allocate index if we cannot allocate data.
357		 */
358		if (sbinfo->max_blocks) {
359			spin_lock(&sbinfo->stat_lock);
360			if (sbinfo->free_blocks <= 1) {
361				spin_unlock(&sbinfo->stat_lock);
362				return ERR_PTR(-ENOSPC);
363			}
364			sbinfo->free_blocks--;
365			inode->i_blocks += BLOCKS_PER_PAGE;
366			spin_unlock(&sbinfo->stat_lock);
367		}
368
369		spin_unlock(&info->lock);
370		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
371		if (page) {
372			page->nr_swapped = 0;
373		}
374		spin_lock(&info->lock);
375
376		if (!page) {
377			shmem_free_blocks(inode, 1);
378			return ERR_PTR(-ENOMEM);
379		}
380		if (sgp != SGP_WRITE &&
381		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
382			entry = ERR_PTR(-EINVAL);
383			break;
384		}
385		if (info->next_index <= index)
386			info->next_index = index + 1;
387	}
388	if (page) {
389		/* another task gave its page, or truncated the file */
390		shmem_free_blocks(inode, 1);
391		shmem_dir_free(page);
392	}
393	if (info->next_index <= index && !IS_ERR(entry))
394		info->next_index = index + 1;
395	return entry;
396}
397
398/*
399 * shmem_free_swp - free some swap entries in a directory
400 *
401 * @dir:   pointer to the directory
402 * @edir:  pointer after last entry of the directory
403 */
404static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
405{
406	swp_entry_t *ptr;
407	int freed = 0;
408
409	for (ptr = dir; ptr < edir; ptr++) {
410		if (ptr->val) {
411			free_swap_and_cache(*ptr);
412			*ptr = (swp_entry_t){0};
413			freed++;
414		}
415	}
416	return freed;
417}
418
419static int shmem_map_and_free_swp(struct page *subdir,
420		int offset, int limit, struct page ***dir)
421{
422	swp_entry_t *ptr;
423	int freed = 0;
424
425	ptr = shmem_swp_map(subdir);
426	for (; offset < limit; offset += LATENCY_LIMIT) {
427		int size = limit - offset;
428		if (size > LATENCY_LIMIT)
429			size = LATENCY_LIMIT;
430		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
431		if (need_resched()) {
432			shmem_swp_unmap(ptr);
433			if (*dir) {
434				shmem_dir_unmap(*dir);
435				*dir = NULL;
436			}
437			cond_resched();
438			ptr = shmem_swp_map(subdir);
439		}
440	}
441	shmem_swp_unmap(ptr);
442	return freed;
443}
444
445static void shmem_free_pages(struct list_head *next)
446{
447	struct page *page;
448	int freed = 0;
449
450	do {
451		page = container_of(next, struct page, lru);
452		next = next->next;
453		shmem_dir_free(page);
454		freed++;
455		if (freed >= LATENCY_LIMIT) {
456			cond_resched();
457			freed = 0;
458		}
459	} while (next);
460}
461
462static void shmem_truncate(struct inode *inode)
463{
464	struct shmem_inode_info *info = SHMEM_I(inode);
465	unsigned long idx;
466	unsigned long size;
467	unsigned long limit;
468	unsigned long stage;
469	unsigned long diroff;
470	struct page **dir;
471	struct page *topdir;
472	struct page *middir;
473	struct page *subdir;
474	swp_entry_t *ptr;
475	LIST_HEAD(pages_to_free);
476	long nr_pages_to_free = 0;
477	long nr_swaps_freed = 0;
478	int offset;
479	int freed;
480
481	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
482	idx = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483	if (idx >= info->next_index)
484		return;
485
486	spin_lock(&info->lock);
487	info->flags |= SHMEM_TRUNCATE;
488	limit = info->next_index;
489	info->next_index = idx;
490	topdir = info->i_indirect;
491	if (topdir && idx <= SHMEM_NR_DIRECT) {
492		info->i_indirect = NULL;
493		nr_pages_to_free++;
494		list_add(&topdir->lru, &pages_to_free);
495	}
496	spin_unlock(&info->lock);
497
498	if (info->swapped && idx < SHMEM_NR_DIRECT) {
499		ptr = info->i_direct;
500		size = limit;
501		if (size > SHMEM_NR_DIRECT)
502			size = SHMEM_NR_DIRECT;
503		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
504	}
505	if (!topdir)
506		goto done2;
507
508	BUG_ON(limit <= SHMEM_NR_DIRECT);
509	limit -= SHMEM_NR_DIRECT;
510	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
511	offset = idx % ENTRIES_PER_PAGE;
512	idx -= offset;
513
514	dir = shmem_dir_map(topdir);
515	stage = ENTRIES_PER_PAGEPAGE/2;
516	if (idx < ENTRIES_PER_PAGEPAGE/2) {
517		middir = topdir;
518		diroff = idx/ENTRIES_PER_PAGE;
519	} else {
520		dir += ENTRIES_PER_PAGE/2;
521		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
522		while (stage <= idx)
523			stage += ENTRIES_PER_PAGEPAGE;
524		middir = *dir;
525		if (*dir) {
526			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
527				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
528			if (!diroff && !offset) {
529				*dir = NULL;
530				nr_pages_to_free++;
531				list_add(&middir->lru, &pages_to_free);
532			}
533			shmem_dir_unmap(dir);
534			dir = shmem_dir_map(middir);
535		} else {
536			diroff = 0;
537			offset = 0;
538			idx = stage;
539		}
540	}
541
542	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
543		if (unlikely(idx == stage)) {
544			shmem_dir_unmap(dir);
545			dir = shmem_dir_map(topdir) +
546			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
547			while (!*dir) {
548				dir++;
549				idx += ENTRIES_PER_PAGEPAGE;
550				if (idx >= limit)
551					goto done1;
552			}
553			stage = idx + ENTRIES_PER_PAGEPAGE;
554			middir = *dir;
555			*dir = NULL;
556			nr_pages_to_free++;
557			list_add(&middir->lru, &pages_to_free);
558			shmem_dir_unmap(dir);
559			cond_resched();
560			dir = shmem_dir_map(middir);
561			diroff = 0;
562		}
563		subdir = dir[diroff];
564		if (subdir && subdir->nr_swapped) {
565			size = limit - idx;
566			if (size > ENTRIES_PER_PAGE)
567				size = ENTRIES_PER_PAGE;
568			freed = shmem_map_and_free_swp(subdir,
569						offset, size, &dir);
570			if (!dir)
571				dir = shmem_dir_map(middir);
572			nr_swaps_freed += freed;
573			if (offset)
574				spin_lock(&info->lock);
575			subdir->nr_swapped -= freed;
576			if (offset)
577				spin_unlock(&info->lock);
578			BUG_ON(subdir->nr_swapped > offset);
579		}
580		if (offset)
581			offset = 0;
582		else if (subdir) {
583			dir[diroff] = NULL;
584			nr_pages_to_free++;
585			list_add(&subdir->lru, &pages_to_free);
586		}
587	}
588done1:
589	shmem_dir_unmap(dir);
590done2:
591	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
592		/*
593		 * Call truncate_inode_pages again: racing shmem_unuse_inode
594		 * may have swizzled a page in from swap since vmtruncate or
595		 * generic_delete_inode did it, before we lowered next_index.
596		 * Also, though shmem_getpage checks i_size before adding to
597		 * cache, no recheck after: so fix the narrow window there too.
598		 */
599		truncate_inode_pages(inode->i_mapping, inode->i_size);
600	}
601
602	spin_lock(&info->lock);
603	info->flags &= ~SHMEM_TRUNCATE;
604	info->swapped -= nr_swaps_freed;
605	if (nr_pages_to_free)
606		shmem_free_blocks(inode, nr_pages_to_free);
607	shmem_recalc_inode(inode);
608	spin_unlock(&info->lock);
609
610	/*
611	 * Empty swap vector directory pages to be freed?
612	 */
613	if (!list_empty(&pages_to_free)) {
614		pages_to_free.prev->next = NULL;
615		shmem_free_pages(pages_to_free.next);
616	}
617}
618
619static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
620{
621	struct inode *inode = dentry->d_inode;
622	struct page *page = NULL;
623	int error;
624
625	if (attr->ia_valid & ATTR_SIZE) {
626		if (attr->ia_size < inode->i_size) {
627			/*
628			 * If truncating down to a partial page, then
629			 * if that page is already allocated, hold it
630			 * in memory until the truncation is over, so
631			 * truncate_partial_page cannnot miss it were
632			 * it assigned to swap.
633			 */
634			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
635				(void) shmem_getpage(inode,
636					attr->ia_size>>PAGE_CACHE_SHIFT,
637						&page, SGP_READ, NULL);
638			}
639			/*
640			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
641			 * detect if any pages might have been added to cache
642			 * after truncate_inode_pages.  But we needn't bother
643			 * if it's being fully truncated to zero-length: the
644			 * nrpages check is efficient enough in that case.
645			 */
646			if (attr->ia_size) {
647				struct shmem_inode_info *info = SHMEM_I(inode);
648				spin_lock(&info->lock);
649				info->flags &= ~SHMEM_PAGEIN;
650				spin_unlock(&info->lock);
651			}
652		}
653	}
654
655	error = inode_change_ok(inode, attr);
656	if (!error)
657		error = inode_setattr(inode, attr);
658	if (page)
659		page_cache_release(page);
660	return error;
661}
662
663static void shmem_delete_inode(struct inode *inode)
664{
665	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
666	struct shmem_inode_info *info = SHMEM_I(inode);
667
668	if (inode->i_op->truncate == shmem_truncate) {
669		truncate_inode_pages(inode->i_mapping, 0);
670		shmem_unacct_size(info->flags, inode->i_size);
671		inode->i_size = 0;
672		shmem_truncate(inode);
673		if (!list_empty(&info->swaplist)) {
674			spin_lock(&shmem_swaplist_lock);
675			list_del_init(&info->swaplist);
676			spin_unlock(&shmem_swaplist_lock);
677		}
678	}
679	BUG_ON(inode->i_blocks);
680	if (sbinfo->max_inodes) {
681		spin_lock(&sbinfo->stat_lock);
682		sbinfo->free_inodes++;
683		spin_unlock(&sbinfo->stat_lock);
684	}
685	clear_inode(inode);
686}
687
688static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
689{
690	swp_entry_t *ptr;
691
692	for (ptr = dir; ptr < edir; ptr++) {
693		if (ptr->val == entry.val)
694			return ptr - dir;
695	}
696	return -1;
697}
698
699static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
700{
701	struct inode *inode;
702	unsigned long idx;
703	unsigned long size;
704	unsigned long limit;
705	unsigned long stage;
706	struct page **dir;
707	struct page *subdir;
708	swp_entry_t *ptr;
709	int offset;
710
711	idx = 0;
712	ptr = info->i_direct;
713	spin_lock(&info->lock);
714	limit = info->next_index;
715	size = limit;
716	if (size > SHMEM_NR_DIRECT)
717		size = SHMEM_NR_DIRECT;
718	offset = shmem_find_swp(entry, ptr, ptr+size);
719	if (offset >= 0) {
720		shmem_swp_balance_unmap();
721		goto found;
722	}
723	if (!info->i_indirect)
724		goto lost2;
725
726	dir = shmem_dir_map(info->i_indirect);
727	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
728
729	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
730		if (unlikely(idx == stage)) {
731			shmem_dir_unmap(dir-1);
732			dir = shmem_dir_map(info->i_indirect) +
733			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
734			while (!*dir) {
735				dir++;
736				idx += ENTRIES_PER_PAGEPAGE;
737				if (idx >= limit)
738					goto lost1;
739			}
740			stage = idx + ENTRIES_PER_PAGEPAGE;
741			subdir = *dir;
742			shmem_dir_unmap(dir);
743			dir = shmem_dir_map(subdir);
744		}
745		subdir = *dir;
746		if (subdir && subdir->nr_swapped) {
747			ptr = shmem_swp_map(subdir);
748			size = limit - idx;
749			if (size > ENTRIES_PER_PAGE)
750				size = ENTRIES_PER_PAGE;
751			offset = shmem_find_swp(entry, ptr, ptr+size);
752			if (offset >= 0) {
753				shmem_dir_unmap(dir);
754				goto found;
755			}
756			shmem_swp_unmap(ptr);
757		}
758	}
759lost1:
760	shmem_dir_unmap(dir-1);
761lost2:
762	spin_unlock(&info->lock);
763	return 0;
764found:
765	idx += offset;
766	inode = &info->vfs_inode;
767	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
768		info->flags |= SHMEM_PAGEIN;
769		shmem_swp_set(info, ptr + offset, 0);
770	}
771	shmem_swp_unmap(ptr);
772	spin_unlock(&info->lock);
773	/*
774	 * Decrement swap count even when the entry is left behind:
775	 * try_to_unuse will skip over mms, then reincrement count.
776	 */
777	swap_free(entry);
778	return 1;
779}
780
781/*
782 * shmem_unuse() search for an eventually swapped out shmem page.
783 */
784int shmem_unuse(swp_entry_t entry, struct page *page)
785{
786	struct list_head *p, *next;
787	struct shmem_inode_info *info;
788	int found = 0;
789
790	spin_lock(&shmem_swaplist_lock);
791	list_for_each_safe(p, next, &shmem_swaplist) {
792		info = list_entry(p, struct shmem_inode_info, swaplist);
793		if (!info->swapped)
794			list_del_init(&info->swaplist);
795		else if (shmem_unuse_inode(info, entry, page)) {
796			/* move head to start search for next from here */
797			list_move_tail(&shmem_swaplist, &info->swaplist);
798			found = 1;
799			break;
800		}
801	}
802	spin_unlock(&shmem_swaplist_lock);
803	return found;
804}
805
806/*
807 * Move the page from the page cache to the swap cache.
808 */
809static int shmem_writepage(struct page *page, struct writeback_control *wbc)
810{
811	struct shmem_inode_info *info;
812	swp_entry_t *entry, swap;
813	struct address_space *mapping;
814	unsigned long index;
815	struct inode *inode;
816
817	BUG_ON(!PageLocked(page));
818	BUG_ON(page_mapped(page));
819
820	mapping = page->mapping;
821	index = page->index;
822	inode = mapping->host;
823	info = SHMEM_I(inode);
824	if (info->flags & VM_LOCKED)
825		goto redirty;
826	swap = get_swap_page();
827	if (!swap.val)
828		goto redirty;
829
830	spin_lock(&info->lock);
831	shmem_recalc_inode(inode);
832	if (index >= info->next_index) {
833		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
834		goto unlock;
835	}
836	entry = shmem_swp_entry(info, index, NULL);
837	BUG_ON(!entry);
838	BUG_ON(entry->val);
839
840	if (move_to_swap_cache(page, swap) == 0) {
841		shmem_swp_set(info, entry, swap.val);
842		shmem_swp_unmap(entry);
843		spin_unlock(&info->lock);
844		if (list_empty(&info->swaplist)) {
845			spin_lock(&shmem_swaplist_lock);
846			/* move instead of add in case we're racing */
847			list_move_tail(&info->swaplist, &shmem_swaplist);
848			spin_unlock(&shmem_swaplist_lock);
849		}
850		unlock_page(page);
851		return 0;
852	}
853
854	shmem_swp_unmap(entry);
855unlock:
856	spin_unlock(&info->lock);
857	swap_free(swap);
858redirty:
859	set_page_dirty(page);
860	return WRITEPAGE_ACTIVATE;	/* Return with the page locked */
861}
862
863#ifdef CONFIG_NUMA
864static struct page *shmem_swapin_async(struct shared_policy *p,
865				       swp_entry_t entry, unsigned long idx)
866{
867	struct page *page;
868	struct vm_area_struct pvma;
869
870	/* Create a pseudo vma that just contains the policy */
871	memset(&pvma, 0, sizeof(struct vm_area_struct));
872	pvma.vm_end = PAGE_SIZE;
873	pvma.vm_pgoff = idx;
874	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
875	page = read_swap_cache_async(entry, &pvma, 0);
876	mpol_free(pvma.vm_policy);
877	return page;
878}
879
880struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
881			  unsigned long idx)
882{
883	struct shared_policy *p = &info->policy;
884	int i, num;
885	struct page *page;
886	unsigned long offset;
887
888	num = valid_swaphandles(entry, &offset);
889	for (i = 0; i < num; offset++, i++) {
890		page = shmem_swapin_async(p,
891				swp_entry(swp_type(entry), offset), idx);
892		if (!page)
893			break;
894		page_cache_release(page);
895	}
896	lru_add_drain();	/* Push any new pages onto the LRU now */
897	return shmem_swapin_async(p, entry, idx);
898}
899
900static struct page *
901shmem_alloc_page(unsigned long gfp, struct shmem_inode_info *info,
902		 unsigned long idx)
903{
904	struct vm_area_struct pvma;
905	struct page *page;
906
907	memset(&pvma, 0, sizeof(struct vm_area_struct));
908	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
909	pvma.vm_pgoff = idx;
910	pvma.vm_end = PAGE_SIZE;
911	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
912	mpol_free(pvma.vm_policy);
913	return page;
914}
915#else
916static inline struct page *
917shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
918{
919	swapin_readahead(entry, 0, NULL);
920	return read_swap_cache_async(entry, NULL, 0);
921}
922
923static inline struct page *
924shmem_alloc_page(unsigned int __nocast gfp,struct shmem_inode_info *info,
925				 unsigned long idx)
926{
927	return alloc_page(gfp | __GFP_ZERO);
928}
929#endif
930
931/*
932 * shmem_getpage - either get the page from swap or allocate a new one
933 *
934 * If we allocate a new one we do not mark it dirty. That's up to the
935 * vm. If we swap it in we mark it dirty since we also free the swap
936 * entry since a page cannot live in both the swap and page cache
937 */
938static int shmem_getpage(struct inode *inode, unsigned long idx,
939			struct page **pagep, enum sgp_type sgp, int *type)
940{
941	struct address_space *mapping = inode->i_mapping;
942	struct shmem_inode_info *info = SHMEM_I(inode);
943	struct shmem_sb_info *sbinfo;
944	struct page *filepage = *pagep;
945	struct page *swappage;
946	swp_entry_t *entry;
947	swp_entry_t swap;
948	int error;
949
950	if (idx >= SHMEM_MAX_INDEX)
951		return -EFBIG;
952	/*
953	 * Normally, filepage is NULL on entry, and either found
954	 * uptodate immediately, or allocated and zeroed, or read
955	 * in under swappage, which is then assigned to filepage.
956	 * But shmem_prepare_write passes in a locked filepage,
957	 * which may be found not uptodate by other callers too,
958	 * and may need to be copied from the swappage read in.
959	 */
960repeat:
961	if (!filepage)
962		filepage = find_lock_page(mapping, idx);
963	if (filepage && PageUptodate(filepage))
964		goto done;
965	error = 0;
966	if (sgp == SGP_QUICK)
967		goto failed;
968
969	spin_lock(&info->lock);
970	shmem_recalc_inode(inode);
971	entry = shmem_swp_alloc(info, idx, sgp);
972	if (IS_ERR(entry)) {
973		spin_unlock(&info->lock);
974		error = PTR_ERR(entry);
975		goto failed;
976	}
977	swap = *entry;
978
979	if (swap.val) {
980		/* Look it up and read it in.. */
981		swappage = lookup_swap_cache(swap);
982		if (!swappage) {
983			shmem_swp_unmap(entry);
984			spin_unlock(&info->lock);
985			/* here we actually do the io */
986			if (type && *type == VM_FAULT_MINOR) {
987				inc_page_state(pgmajfault);
988				*type = VM_FAULT_MAJOR;
989			}
990			swappage = shmem_swapin(info, swap, idx);
991			if (!swappage) {
992				spin_lock(&info->lock);
993				entry = shmem_swp_alloc(info, idx, sgp);
994				if (IS_ERR(entry))
995					error = PTR_ERR(entry);
996				else {
997					if (entry->val == swap.val)
998						error = -ENOMEM;
999					shmem_swp_unmap(entry);
1000				}
1001				spin_unlock(&info->lock);
1002				if (error)
1003					goto failed;
1004				goto repeat;
1005			}
1006			wait_on_page_locked(swappage);
1007			page_cache_release(swappage);
1008			goto repeat;
1009		}
1010
1011		/* We have to do this with page locked to prevent races */
1012		if (TestSetPageLocked(swappage)) {
1013			shmem_swp_unmap(entry);
1014			spin_unlock(&info->lock);
1015			wait_on_page_locked(swappage);
1016			page_cache_release(swappage);
1017			goto repeat;
1018		}
1019		if (PageWriteback(swappage)) {
1020			shmem_swp_unmap(entry);
1021			spin_unlock(&info->lock);
1022			wait_on_page_writeback(swappage);
1023			unlock_page(swappage);
1024			page_cache_release(swappage);
1025			goto repeat;
1026		}
1027		if (!PageUptodate(swappage)) {
1028			shmem_swp_unmap(entry);
1029			spin_unlock(&info->lock);
1030			unlock_page(swappage);
1031			page_cache_release(swappage);
1032			error = -EIO;
1033			goto failed;
1034		}
1035
1036		if (filepage) {
1037			shmem_swp_set(info, entry, 0);
1038			shmem_swp_unmap(entry);
1039			delete_from_swap_cache(swappage);
1040			spin_unlock(&info->lock);
1041			copy_highpage(filepage, swappage);
1042			unlock_page(swappage);
1043			page_cache_release(swappage);
1044			flush_dcache_page(filepage);
1045			SetPageUptodate(filepage);
1046			set_page_dirty(filepage);
1047			swap_free(swap);
1048		} else if (!(error = move_from_swap_cache(
1049				swappage, idx, mapping))) {
1050			info->flags |= SHMEM_PAGEIN;
1051			shmem_swp_set(info, entry, 0);
1052			shmem_swp_unmap(entry);
1053			spin_unlock(&info->lock);
1054			filepage = swappage;
1055			swap_free(swap);
1056		} else {
1057			shmem_swp_unmap(entry);
1058			spin_unlock(&info->lock);
1059			unlock_page(swappage);
1060			page_cache_release(swappage);
1061			if (error == -ENOMEM) {
1062				/* let kswapd refresh zone for GFP_ATOMICs */
1063				blk_congestion_wait(WRITE, HZ/50);
1064			}
1065			goto repeat;
1066		}
1067	} else if (sgp == SGP_READ && !filepage) {
1068		shmem_swp_unmap(entry);
1069		filepage = find_get_page(mapping, idx);
1070		if (filepage &&
1071		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1072			spin_unlock(&info->lock);
1073			wait_on_page_locked(filepage);
1074			page_cache_release(filepage);
1075			filepage = NULL;
1076			goto repeat;
1077		}
1078		spin_unlock(&info->lock);
1079	} else {
1080		shmem_swp_unmap(entry);
1081		sbinfo = SHMEM_SB(inode->i_sb);
1082		if (sbinfo->max_blocks) {
1083			spin_lock(&sbinfo->stat_lock);
1084			if (sbinfo->free_blocks == 0 ||
1085			    shmem_acct_block(info->flags)) {
1086				spin_unlock(&sbinfo->stat_lock);
1087				spin_unlock(&info->lock);
1088				error = -ENOSPC;
1089				goto failed;
1090			}
1091			sbinfo->free_blocks--;
1092			inode->i_blocks += BLOCKS_PER_PAGE;
1093			spin_unlock(&sbinfo->stat_lock);
1094		} else if (shmem_acct_block(info->flags)) {
1095			spin_unlock(&info->lock);
1096			error = -ENOSPC;
1097			goto failed;
1098		}
1099
1100		if (!filepage) {
1101			spin_unlock(&info->lock);
1102			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1103						    info,
1104						    idx);
1105			if (!filepage) {
1106				shmem_unacct_blocks(info->flags, 1);
1107				shmem_free_blocks(inode, 1);
1108				error = -ENOMEM;
1109				goto failed;
1110			}
1111
1112			spin_lock(&info->lock);
1113			entry = shmem_swp_alloc(info, idx, sgp);
1114			if (IS_ERR(entry))
1115				error = PTR_ERR(entry);
1116			else {
1117				swap = *entry;
1118				shmem_swp_unmap(entry);
1119			}
1120			if (error || swap.val || 0 != add_to_page_cache_lru(
1121					filepage, mapping, idx, GFP_ATOMIC)) {
1122				spin_unlock(&info->lock);
1123				page_cache_release(filepage);
1124				shmem_unacct_blocks(info->flags, 1);
1125				shmem_free_blocks(inode, 1);
1126				filepage = NULL;
1127				if (error)
1128					goto failed;
1129				goto repeat;
1130			}
1131			info->flags |= SHMEM_PAGEIN;
1132		}
1133
1134		info->alloced++;
1135		spin_unlock(&info->lock);
1136		flush_dcache_page(filepage);
1137		SetPageUptodate(filepage);
1138	}
1139done:
1140	if (*pagep != filepage) {
1141		unlock_page(filepage);
1142		*pagep = filepage;
1143	}
1144	return 0;
1145
1146failed:
1147	if (*pagep != filepage) {
1148		unlock_page(filepage);
1149		page_cache_release(filepage);
1150	}
1151	return error;
1152}
1153
1154struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1155{
1156	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1157	struct page *page = NULL;
1158	unsigned long idx;
1159	int error;
1160
1161	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1162	idx += vma->vm_pgoff;
1163	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1164	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1165		return NOPAGE_SIGBUS;
1166
1167	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1168	if (error)
1169		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1170
1171	mark_page_accessed(page);
1172	return page;
1173}
1174
1175static int shmem_populate(struct vm_area_struct *vma,
1176	unsigned long addr, unsigned long len,
1177	pgprot_t prot, unsigned long pgoff, int nonblock)
1178{
1179	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1180	struct mm_struct *mm = vma->vm_mm;
1181	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1182	unsigned long size;
1183
1184	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1186		return -EINVAL;
1187
1188	while ((long) len > 0) {
1189		struct page *page = NULL;
1190		int err;
1191		/*
1192		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1193		 */
1194		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1195		if (err)
1196			return err;
1197		/* Page may still be null, but only if nonblock was set. */
1198		if (page) {
1199			mark_page_accessed(page);
1200			err = install_page(mm, vma, addr, page, prot);
1201			if (err) {
1202				page_cache_release(page);
1203				return err;
1204			}
1205		} else {
1206			/* No page was found just because we can't read it in
1207			 * now (being here implies nonblock != 0), but the page
1208			 * may exist, so set the PTE to fault it in later. */
1209    			err = install_file_pte(mm, vma, addr, pgoff, prot);
1210			if (err)
1211	    			return err;
1212		}
1213
1214		len -= PAGE_SIZE;
1215		addr += PAGE_SIZE;
1216		pgoff++;
1217	}
1218	return 0;
1219}
1220
1221#ifdef CONFIG_NUMA
1222int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1223{
1224	struct inode *i = vma->vm_file->f_dentry->d_inode;
1225	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1226}
1227
1228struct mempolicy *
1229shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1230{
1231	struct inode *i = vma->vm_file->f_dentry->d_inode;
1232	unsigned long idx;
1233
1234	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1235	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1236}
1237#endif
1238
1239int shmem_lock(struct file *file, int lock, struct user_struct *user)
1240{
1241	struct inode *inode = file->f_dentry->d_inode;
1242	struct shmem_inode_info *info = SHMEM_I(inode);
1243	int retval = -ENOMEM;
1244
1245	spin_lock(&info->lock);
1246	if (lock && !(info->flags & VM_LOCKED)) {
1247		if (!user_shm_lock(inode->i_size, user))
1248			goto out_nomem;
1249		info->flags |= VM_LOCKED;
1250	}
1251	if (!lock && (info->flags & VM_LOCKED) && user) {
1252		user_shm_unlock(inode->i_size, user);
1253		info->flags &= ~VM_LOCKED;
1254	}
1255	retval = 0;
1256out_nomem:
1257	spin_unlock(&info->lock);
1258	return retval;
1259}
1260
1261static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1262{
1263	file_accessed(file);
1264	vma->vm_ops = &shmem_vm_ops;
1265	return 0;
1266}
1267
1268static struct inode *
1269shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1270{
1271	struct inode *inode;
1272	struct shmem_inode_info *info;
1273	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1274
1275	if (sbinfo->max_inodes) {
1276		spin_lock(&sbinfo->stat_lock);
1277		if (!sbinfo->free_inodes) {
1278			spin_unlock(&sbinfo->stat_lock);
1279			return NULL;
1280		}
1281		sbinfo->free_inodes--;
1282		spin_unlock(&sbinfo->stat_lock);
1283	}
1284
1285	inode = new_inode(sb);
1286	if (inode) {
1287		inode->i_mode = mode;
1288		inode->i_uid = current->fsuid;
1289		inode->i_gid = current->fsgid;
1290		inode->i_blksize = PAGE_CACHE_SIZE;
1291		inode->i_blocks = 0;
1292		inode->i_mapping->a_ops = &shmem_aops;
1293		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1294		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1295		info = SHMEM_I(inode);
1296		memset(info, 0, (char *)inode - (char *)info);
1297		spin_lock_init(&info->lock);
1298		INIT_LIST_HEAD(&info->swaplist);
1299
1300		switch (mode & S_IFMT) {
1301		default:
1302			init_special_inode(inode, mode, dev);
1303			break;
1304		case S_IFREG:
1305			inode->i_op = &shmem_inode_operations;
1306			inode->i_fop = &shmem_file_operations;
1307			mpol_shared_policy_init(&info->policy);
1308			break;
1309		case S_IFDIR:
1310			inode->i_nlink++;
1311			/* Some things misbehave if size == 0 on a directory */
1312			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1313			inode->i_op = &shmem_dir_inode_operations;
1314			inode->i_fop = &simple_dir_operations;
1315			break;
1316		case S_IFLNK:
1317			/*
1318			 * Must not load anything in the rbtree,
1319			 * mpol_free_shared_policy will not be called.
1320			 */
1321			mpol_shared_policy_init(&info->policy);
1322			break;
1323		}
1324	} else if (sbinfo->max_inodes) {
1325		spin_lock(&sbinfo->stat_lock);
1326		sbinfo->free_inodes++;
1327		spin_unlock(&sbinfo->stat_lock);
1328	}
1329	return inode;
1330}
1331
1332#ifdef CONFIG_TMPFS
1333static struct inode_operations shmem_symlink_inode_operations;
1334static struct inode_operations shmem_symlink_inline_operations;
1335
1336/*
1337 * Normally tmpfs makes no use of shmem_prepare_write, but it
1338 * lets a tmpfs file be used read-write below the loop driver.
1339 */
1340static int
1341shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1342{
1343	struct inode *inode = page->mapping->host;
1344	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1345}
1346
1347static ssize_t
1348shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1349{
1350	struct inode	*inode = file->f_dentry->d_inode;
1351	loff_t		pos;
1352	unsigned long	written;
1353	ssize_t		err;
1354
1355	if ((ssize_t) count < 0)
1356		return -EINVAL;
1357
1358	if (!access_ok(VERIFY_READ, buf, count))
1359		return -EFAULT;
1360
1361	down(&inode->i_sem);
1362
1363	pos = *ppos;
1364	written = 0;
1365
1366	err = generic_write_checks(file, &pos, &count, 0);
1367	if (err || !count)
1368		goto out;
1369
1370	err = remove_suid(file->f_dentry);
1371	if (err)
1372		goto out;
1373
1374	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1375
1376	do {
1377		struct page *page = NULL;
1378		unsigned long bytes, index, offset;
1379		char *kaddr;
1380		int left;
1381
1382		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1383		index = pos >> PAGE_CACHE_SHIFT;
1384		bytes = PAGE_CACHE_SIZE - offset;
1385		if (bytes > count)
1386			bytes = count;
1387
1388		/*
1389		 * We don't hold page lock across copy from user -
1390		 * what would it guard against? - so no deadlock here.
1391		 * But it still may be a good idea to prefault below.
1392		 */
1393
1394		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1395		if (err)
1396			break;
1397
1398		left = bytes;
1399		if (PageHighMem(page)) {
1400			volatile unsigned char dummy;
1401			__get_user(dummy, buf);
1402			__get_user(dummy, buf + bytes - 1);
1403
1404			kaddr = kmap_atomic(page, KM_USER0);
1405			left = __copy_from_user_inatomic(kaddr + offset,
1406							buf, bytes);
1407			kunmap_atomic(kaddr, KM_USER0);
1408		}
1409		if (left) {
1410			kaddr = kmap(page);
1411			left = __copy_from_user(kaddr + offset, buf, bytes);
1412			kunmap(page);
1413		}
1414
1415		written += bytes;
1416		count -= bytes;
1417		pos += bytes;
1418		buf += bytes;
1419		if (pos > inode->i_size)
1420			i_size_write(inode, pos);
1421
1422		flush_dcache_page(page);
1423		set_page_dirty(page);
1424		mark_page_accessed(page);
1425		page_cache_release(page);
1426
1427		if (left) {
1428			pos -= left;
1429			written -= left;
1430			err = -EFAULT;
1431			break;
1432		}
1433
1434		/*
1435		 * Our dirty pages are not counted in nr_dirty,
1436		 * and we do not attempt to balance dirty pages.
1437		 */
1438
1439		cond_resched();
1440	} while (count);
1441
1442	*ppos = pos;
1443	if (written)
1444		err = written;
1445out:
1446	up(&inode->i_sem);
1447	return err;
1448}
1449
1450static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1451{
1452	struct inode *inode = filp->f_dentry->d_inode;
1453	struct address_space *mapping = inode->i_mapping;
1454	unsigned long index, offset;
1455
1456	index = *ppos >> PAGE_CACHE_SHIFT;
1457	offset = *ppos & ~PAGE_CACHE_MASK;
1458
1459	for (;;) {
1460		struct page *page = NULL;
1461		unsigned long end_index, nr, ret;
1462		loff_t i_size = i_size_read(inode);
1463
1464		end_index = i_size >> PAGE_CACHE_SHIFT;
1465		if (index > end_index)
1466			break;
1467		if (index == end_index) {
1468			nr = i_size & ~PAGE_CACHE_MASK;
1469			if (nr <= offset)
1470				break;
1471		}
1472
1473		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1474		if (desc->error) {
1475			if (desc->error == -EINVAL)
1476				desc->error = 0;
1477			break;
1478		}
1479
1480		/*
1481		 * We must evaluate after, since reads (unlike writes)
1482		 * are called without i_sem protection against truncate
1483		 */
1484		nr = PAGE_CACHE_SIZE;
1485		i_size = i_size_read(inode);
1486		end_index = i_size >> PAGE_CACHE_SHIFT;
1487		if (index == end_index) {
1488			nr = i_size & ~PAGE_CACHE_MASK;
1489			if (nr <= offset) {
1490				if (page)
1491					page_cache_release(page);
1492				break;
1493			}
1494		}
1495		nr -= offset;
1496
1497		if (page) {
1498			/*
1499			 * If users can be writing to this page using arbitrary
1500			 * virtual addresses, take care about potential aliasing
1501			 * before reading the page on the kernel side.
1502			 */
1503			if (mapping_writably_mapped(mapping))
1504				flush_dcache_page(page);
1505			/*
1506			 * Mark the page accessed if we read the beginning.
1507			 */
1508			if (!offset)
1509				mark_page_accessed(page);
1510		} else
1511			page = ZERO_PAGE(0);
1512
1513		/*
1514		 * Ok, we have the page, and it's up-to-date, so
1515		 * now we can copy it to user space...
1516		 *
1517		 * The actor routine returns how many bytes were actually used..
1518		 * NOTE! This may not be the same as how much of a user buffer
1519		 * we filled up (we may be padding etc), so we can only update
1520		 * "pos" here (the actor routine has to update the user buffer
1521		 * pointers and the remaining count).
1522		 */
1523		ret = actor(desc, page, offset, nr);
1524		offset += ret;
1525		index += offset >> PAGE_CACHE_SHIFT;
1526		offset &= ~PAGE_CACHE_MASK;
1527
1528		page_cache_release(page);
1529		if (ret != nr || !desc->count)
1530			break;
1531
1532		cond_resched();
1533	}
1534
1535	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1536	file_accessed(filp);
1537}
1538
1539static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1540{
1541	read_descriptor_t desc;
1542
1543	if ((ssize_t) count < 0)
1544		return -EINVAL;
1545	if (!access_ok(VERIFY_WRITE, buf, count))
1546		return -EFAULT;
1547	if (!count)
1548		return 0;
1549
1550	desc.written = 0;
1551	desc.count = count;
1552	desc.arg.buf = buf;
1553	desc.error = 0;
1554
1555	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1556	if (desc.written)
1557		return desc.written;
1558	return desc.error;
1559}
1560
1561static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1562			 size_t count, read_actor_t actor, void *target)
1563{
1564	read_descriptor_t desc;
1565
1566	if (!count)
1567		return 0;
1568
1569	desc.written = 0;
1570	desc.count = count;
1571	desc.arg.data = target;
1572	desc.error = 0;
1573
1574	do_shmem_file_read(in_file, ppos, &desc, actor);
1575	if (desc.written)
1576		return desc.written;
1577	return desc.error;
1578}
1579
1580static int shmem_statfs(struct super_block *sb, struct kstatfs *buf)
1581{
1582	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1583
1584	buf->f_type = TMPFS_MAGIC;
1585	buf->f_bsize = PAGE_CACHE_SIZE;
1586	buf->f_namelen = NAME_MAX;
1587	spin_lock(&sbinfo->stat_lock);
1588	if (sbinfo->max_blocks) {
1589		buf->f_blocks = sbinfo->max_blocks;
1590		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1591	}
1592	if (sbinfo->max_inodes) {
1593		buf->f_files = sbinfo->max_inodes;
1594		buf->f_ffree = sbinfo->free_inodes;
1595	}
1596	/* else leave those fields 0 like simple_statfs */
1597	spin_unlock(&sbinfo->stat_lock);
1598	return 0;
1599}
1600
1601/*
1602 * File creation. Allocate an inode, and we're done..
1603 */
1604static int
1605shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1606{
1607	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1608	int error = -ENOSPC;
1609
1610	if (inode) {
1611		error = security_inode_init_security(inode, dir, NULL, NULL,
1612						     NULL);
1613		if (error) {
1614			if (error != -EOPNOTSUPP) {
1615				iput(inode);
1616				return error;
1617			}
1618			error = 0;
1619		}
1620		if (dir->i_mode & S_ISGID) {
1621			inode->i_gid = dir->i_gid;
1622			if (S_ISDIR(mode))
1623				inode->i_mode |= S_ISGID;
1624		}
1625		dir->i_size += BOGO_DIRENT_SIZE;
1626		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1627		d_instantiate(dentry, inode);
1628		dget(dentry); /* Extra count - pin the dentry in core */
1629	}
1630	return error;
1631}
1632
1633static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1634{
1635	int error;
1636
1637	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1638		return error;
1639	dir->i_nlink++;
1640	return 0;
1641}
1642
1643static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1644		struct nameidata *nd)
1645{
1646	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1647}
1648
1649/*
1650 * Link a file..
1651 */
1652static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1653{
1654	struct inode *inode = old_dentry->d_inode;
1655	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1656
1657	/*
1658	 * No ordinary (disk based) filesystem counts links as inodes;
1659	 * but each new link needs a new dentry, pinning lowmem, and
1660	 * tmpfs dentries cannot be pruned until they are unlinked.
1661	 */
1662	if (sbinfo->max_inodes) {
1663		spin_lock(&sbinfo->stat_lock);
1664		if (!sbinfo->free_inodes) {
1665			spin_unlock(&sbinfo->stat_lock);
1666			return -ENOSPC;
1667		}
1668		sbinfo->free_inodes--;
1669		spin_unlock(&sbinfo->stat_lock);
1670	}
1671
1672	dir->i_size += BOGO_DIRENT_SIZE;
1673	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1674	inode->i_nlink++;
1675	atomic_inc(&inode->i_count);	/* New dentry reference */
1676	dget(dentry);		/* Extra pinning count for the created dentry */
1677	d_instantiate(dentry, inode);
1678	return 0;
1679}
1680
1681static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1682{
1683	struct inode *inode = dentry->d_inode;
1684
1685	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1686		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1687		if (sbinfo->max_inodes) {
1688			spin_lock(&sbinfo->stat_lock);
1689			sbinfo->free_inodes++;
1690			spin_unlock(&sbinfo->stat_lock);
1691		}
1692	}
1693
1694	dir->i_size -= BOGO_DIRENT_SIZE;
1695	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1696	inode->i_nlink--;
1697	dput(dentry);	/* Undo the count from "create" - this does all the work */
1698	return 0;
1699}
1700
1701static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1702{
1703	if (!simple_empty(dentry))
1704		return -ENOTEMPTY;
1705
1706	dir->i_nlink--;
1707	return shmem_unlink(dir, dentry);
1708}
1709
1710/*
1711 * The VFS layer already does all the dentry stuff for rename,
1712 * we just have to decrement the usage count for the target if
1713 * it exists so that the VFS layer correctly free's it when it
1714 * gets overwritten.
1715 */
1716static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1717{
1718	struct inode *inode = old_dentry->d_inode;
1719	int they_are_dirs = S_ISDIR(inode->i_mode);
1720
1721	if (!simple_empty(new_dentry))
1722		return -ENOTEMPTY;
1723
1724	if (new_dentry->d_inode) {
1725		(void) shmem_unlink(new_dir, new_dentry);
1726		if (they_are_dirs)
1727			old_dir->i_nlink--;
1728	} else if (they_are_dirs) {
1729		old_dir->i_nlink--;
1730		new_dir->i_nlink++;
1731	}
1732
1733	old_dir->i_size -= BOGO_DIRENT_SIZE;
1734	new_dir->i_size += BOGO_DIRENT_SIZE;
1735	old_dir->i_ctime = old_dir->i_mtime =
1736	new_dir->i_ctime = new_dir->i_mtime =
1737	inode->i_ctime = CURRENT_TIME;
1738	return 0;
1739}
1740
1741static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1742{
1743	int error;
1744	int len;
1745	struct inode *inode;
1746	struct page *page = NULL;
1747	char *kaddr;
1748	struct shmem_inode_info *info;
1749
1750	len = strlen(symname) + 1;
1751	if (len > PAGE_CACHE_SIZE)
1752		return -ENAMETOOLONG;
1753
1754	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1755	if (!inode)
1756		return -ENOSPC;
1757
1758	error = security_inode_init_security(inode, dir, NULL, NULL,
1759					     NULL);
1760	if (error) {
1761		if (error != -EOPNOTSUPP) {
1762			iput(inode);
1763			return error;
1764		}
1765		error = 0;
1766	}
1767
1768	info = SHMEM_I(inode);
1769	inode->i_size = len-1;
1770	if (len <= (char *)inode - (char *)info) {
1771		/* do it inline */
1772		memcpy(info, symname, len);
1773		inode->i_op = &shmem_symlink_inline_operations;
1774	} else {
1775		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1776		if (error) {
1777			iput(inode);
1778			return error;
1779		}
1780		inode->i_op = &shmem_symlink_inode_operations;
1781		kaddr = kmap_atomic(page, KM_USER0);
1782		memcpy(kaddr, symname, len);
1783		kunmap_atomic(kaddr, KM_USER0);
1784		set_page_dirty(page);
1785		page_cache_release(page);
1786	}
1787	if (dir->i_mode & S_ISGID)
1788		inode->i_gid = dir->i_gid;
1789	dir->i_size += BOGO_DIRENT_SIZE;
1790	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1791	d_instantiate(dentry, inode);
1792	dget(dentry);
1793	return 0;
1794}
1795
1796static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1797{
1798	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1799	return NULL;
1800}
1801
1802static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1803{
1804	struct page *page = NULL;
1805	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1806	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1807	return page;
1808}
1809
1810static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1811{
1812	if (!IS_ERR(nd_get_link(nd))) {
1813		struct page *page = cookie;
1814		kunmap(page);
1815		mark_page_accessed(page);
1816		page_cache_release(page);
1817	}
1818}
1819
1820static struct inode_operations shmem_symlink_inline_operations = {
1821	.readlink	= generic_readlink,
1822	.follow_link	= shmem_follow_link_inline,
1823};
1824
1825static struct inode_operations shmem_symlink_inode_operations = {
1826	.truncate	= shmem_truncate,
1827	.readlink	= generic_readlink,
1828	.follow_link	= shmem_follow_link,
1829	.put_link	= shmem_put_link,
1830};
1831
1832static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, unsigned long *blocks, unsigned long *inodes)
1833{
1834	char *this_char, *value, *rest;
1835
1836	while ((this_char = strsep(&options, ",")) != NULL) {
1837		if (!*this_char)
1838			continue;
1839		if ((value = strchr(this_char,'=')) != NULL) {
1840			*value++ = 0;
1841		} else {
1842			printk(KERN_ERR
1843			    "tmpfs: No value for mount option '%s'\n",
1844			    this_char);
1845			return 1;
1846		}
1847
1848		if (!strcmp(this_char,"size")) {
1849			unsigned long long size;
1850			size = memparse(value,&rest);
1851			if (*rest == '%') {
1852				size <<= PAGE_SHIFT;
1853				size *= totalram_pages;
1854				do_div(size, 100);
1855				rest++;
1856			}
1857			if (*rest)
1858				goto bad_val;
1859			*blocks = size >> PAGE_CACHE_SHIFT;
1860		} else if (!strcmp(this_char,"nr_blocks")) {
1861			*blocks = memparse(value,&rest);
1862			if (*rest)
1863				goto bad_val;
1864		} else if (!strcmp(this_char,"nr_inodes")) {
1865			*inodes = memparse(value,&rest);
1866			if (*rest)
1867				goto bad_val;
1868		} else if (!strcmp(this_char,"mode")) {
1869			if (!mode)
1870				continue;
1871			*mode = simple_strtoul(value,&rest,8);
1872			if (*rest)
1873				goto bad_val;
1874		} else if (!strcmp(this_char,"uid")) {
1875			if (!uid)
1876				continue;
1877			*uid = simple_strtoul(value,&rest,0);
1878			if (*rest)
1879				goto bad_val;
1880		} else if (!strcmp(this_char,"gid")) {
1881			if (!gid)
1882				continue;
1883			*gid = simple_strtoul(value,&rest,0);
1884			if (*rest)
1885				goto bad_val;
1886		} else {
1887			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1888			       this_char);
1889			return 1;
1890		}
1891	}
1892	return 0;
1893
1894bad_val:
1895	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1896	       value, this_char);
1897	return 1;
1898
1899}
1900
1901static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1902{
1903	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1904	unsigned long max_blocks = sbinfo->max_blocks;
1905	unsigned long max_inodes = sbinfo->max_inodes;
1906	unsigned long blocks;
1907	unsigned long inodes;
1908	int error = -EINVAL;
1909
1910	if (shmem_parse_options(data, NULL, NULL, NULL,
1911				&max_blocks, &max_inodes))
1912		return error;
1913
1914	spin_lock(&sbinfo->stat_lock);
1915	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
1916	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
1917	if (max_blocks < blocks)
1918		goto out;
1919	if (max_inodes < inodes)
1920		goto out;
1921	/*
1922	 * Those tests also disallow limited->unlimited while any are in
1923	 * use, so i_blocks will always be zero when max_blocks is zero;
1924	 * but we must separately disallow unlimited->limited, because
1925	 * in that case we have no record of how much is already in use.
1926	 */
1927	if (max_blocks && !sbinfo->max_blocks)
1928		goto out;
1929	if (max_inodes && !sbinfo->max_inodes)
1930		goto out;
1931
1932	error = 0;
1933	sbinfo->max_blocks  = max_blocks;
1934	sbinfo->free_blocks = max_blocks - blocks;
1935	sbinfo->max_inodes  = max_inodes;
1936	sbinfo->free_inodes = max_inodes - inodes;
1937out:
1938	spin_unlock(&sbinfo->stat_lock);
1939	return error;
1940}
1941#endif
1942
1943static void shmem_put_super(struct super_block *sb)
1944{
1945	kfree(sb->s_fs_info);
1946	sb->s_fs_info = NULL;
1947}
1948
1949static int shmem_fill_super(struct super_block *sb,
1950			    void *data, int silent)
1951{
1952	struct inode *inode;
1953	struct dentry *root;
1954	int mode   = S_IRWXUGO | S_ISVTX;
1955	uid_t uid = current->fsuid;
1956	gid_t gid = current->fsgid;
1957	int err = -ENOMEM;
1958	struct shmem_sb_info *sbinfo;
1959	unsigned long blocks = 0;
1960	unsigned long inodes = 0;
1961
1962#ifdef CONFIG_TMPFS
1963	/*
1964	 * Per default we only allow half of the physical ram per
1965	 * tmpfs instance, limiting inodes to one per page of lowmem;
1966	 * but the internal instance is left unlimited.
1967	 */
1968	if (!(sb->s_flags & MS_NOUSER)) {
1969		blocks = totalram_pages / 2;
1970		inodes = totalram_pages - totalhigh_pages;
1971		if (inodes > blocks)
1972			inodes = blocks;
1973		if (shmem_parse_options(data, &mode, &uid, &gid,
1974					&blocks, &inodes))
1975			return -EINVAL;
1976	}
1977#else
1978	sb->s_flags |= MS_NOUSER;
1979#endif
1980
1981	/* Round up to L1_CACHE_BYTES to resist false sharing */
1982	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
1983				L1_CACHE_BYTES), GFP_KERNEL);
1984	if (!sbinfo)
1985		return -ENOMEM;
1986
1987	spin_lock_init(&sbinfo->stat_lock);
1988	sbinfo->max_blocks = blocks;
1989	sbinfo->free_blocks = blocks;
1990	sbinfo->max_inodes = inodes;
1991	sbinfo->free_inodes = inodes;
1992
1993	sb->s_fs_info = sbinfo;
1994	sb->s_maxbytes = SHMEM_MAX_BYTES;
1995	sb->s_blocksize = PAGE_CACHE_SIZE;
1996	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1997	sb->s_magic = TMPFS_MAGIC;
1998	sb->s_op = &shmem_ops;
1999
2000	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2001	if (!inode)
2002		goto failed;
2003	inode->i_uid = uid;
2004	inode->i_gid = gid;
2005	root = d_alloc_root(inode);
2006	if (!root)
2007		goto failed_iput;
2008	sb->s_root = root;
2009	return 0;
2010
2011failed_iput:
2012	iput(inode);
2013failed:
2014	shmem_put_super(sb);
2015	return err;
2016}
2017
2018static kmem_cache_t *shmem_inode_cachep;
2019
2020static struct inode *shmem_alloc_inode(struct super_block *sb)
2021{
2022	struct shmem_inode_info *p;
2023	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2024	if (!p)
2025		return NULL;
2026	return &p->vfs_inode;
2027}
2028
2029static void shmem_destroy_inode(struct inode *inode)
2030{
2031	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2032		/* only struct inode is valid if it's an inline symlink */
2033		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2034	}
2035	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2036}
2037
2038static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
2039{
2040	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2041
2042	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2043	    SLAB_CTOR_CONSTRUCTOR) {
2044		inode_init_once(&p->vfs_inode);
2045	}
2046}
2047
2048static int init_inodecache(void)
2049{
2050	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2051				sizeof(struct shmem_inode_info),
2052				0, 0, init_once, NULL);
2053	if (shmem_inode_cachep == NULL)
2054		return -ENOMEM;
2055	return 0;
2056}
2057
2058static void destroy_inodecache(void)
2059{
2060	if (kmem_cache_destroy(shmem_inode_cachep))
2061		printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2062}
2063
2064static struct address_space_operations shmem_aops = {
2065	.writepage	= shmem_writepage,
2066	.set_page_dirty	= __set_page_dirty_nobuffers,
2067#ifdef CONFIG_TMPFS
2068	.prepare_write	= shmem_prepare_write,
2069	.commit_write	= simple_commit_write,
2070#endif
2071};
2072
2073static struct file_operations shmem_file_operations = {
2074	.mmap		= shmem_mmap,
2075#ifdef CONFIG_TMPFS
2076	.llseek		= generic_file_llseek,
2077	.read		= shmem_file_read,
2078	.write		= shmem_file_write,
2079	.fsync		= simple_sync_file,
2080	.sendfile	= shmem_file_sendfile,
2081#endif
2082};
2083
2084static struct inode_operations shmem_inode_operations = {
2085	.truncate	= shmem_truncate,
2086	.setattr	= shmem_notify_change,
2087};
2088
2089static struct inode_operations shmem_dir_inode_operations = {
2090#ifdef CONFIG_TMPFS
2091	.create		= shmem_create,
2092	.lookup		= simple_lookup,
2093	.link		= shmem_link,
2094	.unlink		= shmem_unlink,
2095	.symlink	= shmem_symlink,
2096	.mkdir		= shmem_mkdir,
2097	.rmdir		= shmem_rmdir,
2098	.mknod		= shmem_mknod,
2099	.rename		= shmem_rename,
2100#endif
2101};
2102
2103static struct super_operations shmem_ops = {
2104	.alloc_inode	= shmem_alloc_inode,
2105	.destroy_inode	= shmem_destroy_inode,
2106#ifdef CONFIG_TMPFS
2107	.statfs		= shmem_statfs,
2108	.remount_fs	= shmem_remount_fs,
2109#endif
2110	.delete_inode	= shmem_delete_inode,
2111	.drop_inode	= generic_delete_inode,
2112	.put_super	= shmem_put_super,
2113};
2114
2115static struct vm_operations_struct shmem_vm_ops = {
2116	.nopage		= shmem_nopage,
2117	.populate	= shmem_populate,
2118#ifdef CONFIG_NUMA
2119	.set_policy     = shmem_set_policy,
2120	.get_policy     = shmem_get_policy,
2121#endif
2122};
2123
2124
2125static struct super_block *shmem_get_sb(struct file_system_type *fs_type,
2126	int flags, const char *dev_name, void *data)
2127{
2128	return get_sb_nodev(fs_type, flags, data, shmem_fill_super);
2129}
2130
2131static struct file_system_type tmpfs_fs_type = {
2132	.owner		= THIS_MODULE,
2133	.name		= "tmpfs",
2134	.get_sb		= shmem_get_sb,
2135	.kill_sb	= kill_litter_super,
2136};
2137static struct vfsmount *shm_mnt;
2138
2139static int __init init_tmpfs(void)
2140{
2141	int error;
2142
2143	error = init_inodecache();
2144	if (error)
2145		goto out3;
2146
2147	error = register_filesystem(&tmpfs_fs_type);
2148	if (error) {
2149		printk(KERN_ERR "Could not register tmpfs\n");
2150		goto out2;
2151	}
2152#ifdef CONFIG_TMPFS
2153	devfs_mk_dir("shm");
2154#endif
2155	shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER,
2156				tmpfs_fs_type.name, NULL);
2157	if (IS_ERR(shm_mnt)) {
2158		error = PTR_ERR(shm_mnt);
2159		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2160		goto out1;
2161	}
2162	return 0;
2163
2164out1:
2165	unregister_filesystem(&tmpfs_fs_type);
2166out2:
2167	destroy_inodecache();
2168out3:
2169	shm_mnt = ERR_PTR(error);
2170	return error;
2171}
2172module_init(init_tmpfs)
2173
2174/*
2175 * shmem_file_setup - get an unlinked file living in tmpfs
2176 *
2177 * @name: name for dentry (to be seen in /proc/<pid>/maps
2178 * @size: size to be set for the file
2179 *
2180 */
2181struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2182{
2183	int error;
2184	struct file *file;
2185	struct inode *inode;
2186	struct dentry *dentry, *root;
2187	struct qstr this;
2188
2189	if (IS_ERR(shm_mnt))
2190		return (void *)shm_mnt;
2191
2192	if (size < 0 || size > SHMEM_MAX_BYTES)
2193		return ERR_PTR(-EINVAL);
2194
2195	if (shmem_acct_size(flags, size))
2196		return ERR_PTR(-ENOMEM);
2197
2198	error = -ENOMEM;
2199	this.name = name;
2200	this.len = strlen(name);
2201	this.hash = 0; /* will go */
2202	root = shm_mnt->mnt_root;
2203	dentry = d_alloc(root, &this);
2204	if (!dentry)
2205		goto put_memory;
2206
2207	error = -ENFILE;
2208	file = get_empty_filp();
2209	if (!file)
2210		goto put_dentry;
2211
2212	error = -ENOSPC;
2213	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2214	if (!inode)
2215		goto close_file;
2216
2217	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2218	d_instantiate(dentry, inode);
2219	inode->i_size = size;
2220	inode->i_nlink = 0;	/* It is unlinked */
2221	file->f_vfsmnt = mntget(shm_mnt);
2222	file->f_dentry = dentry;
2223	file->f_mapping = inode->i_mapping;
2224	file->f_op = &shmem_file_operations;
2225	file->f_mode = FMODE_WRITE | FMODE_READ;
2226	return file;
2227
2228close_file:
2229	put_filp(file);
2230put_dentry:
2231	dput(dentry);
2232put_memory:
2233	shmem_unacct_size(flags, size);
2234	return ERR_PTR(error);
2235}
2236
2237/*
2238 * shmem_zero_setup - setup a shared anonymous mapping
2239 *
2240 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2241 */
2242int shmem_zero_setup(struct vm_area_struct *vma)
2243{
2244	struct file *file;
2245	loff_t size = vma->vm_end - vma->vm_start;
2246
2247	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2248	if (IS_ERR(file))
2249		return PTR_ERR(file);
2250
2251	if (vma->vm_file)
2252		fput(vma->vm_file);
2253	vma->vm_file = file;
2254	vma->vm_ops = &shmem_vm_ops;
2255	return 0;
2256}
2257