shmem.c revision 60545d0d4610b02e55f65d141c95b18ccf855b6e
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/aio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/generic_acl.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69
70#include <asm/uaccess.h>
71#include <asm/pgtable.h>
72
73#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
82/*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87struct shmem_falloc {
88	pgoff_t start;		/* start of range currently being fallocated */
89	pgoff_t next;		/* the next page offset to be fallocated */
90	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
91	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
92};
93
94/* Flag allocation requirements to shmem_getpage */
95enum sgp_type {
96	SGP_READ,	/* don't exceed i_size, don't allocate page */
97	SGP_CACHE,	/* don't exceed i_size, may allocate page */
98	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
99	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
100	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
101};
102
103#ifdef CONFIG_TMPFS
104static unsigned long shmem_default_max_blocks(void)
105{
106	return totalram_pages / 2;
107}
108
109static unsigned long shmem_default_max_inodes(void)
110{
111	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112}
113#endif
114
115static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117				struct shmem_inode_info *info, pgoff_t index);
118static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122	struct page **pagep, enum sgp_type sgp, int *fault_type)
123{
124	return shmem_getpage_gfp(inode, index, pagep, sgp,
125			mapping_gfp_mask(inode->i_mapping), fault_type);
126}
127
128static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129{
130	return sb->s_fs_info;
131}
132
133/*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139static inline int shmem_acct_size(unsigned long flags, loff_t size)
140{
141	return (flags & VM_NORESERVE) ?
142		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143}
144
145static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146{
147	if (!(flags & VM_NORESERVE))
148		vm_unacct_memory(VM_ACCT(size));
149}
150
151/*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157static inline int shmem_acct_block(unsigned long flags)
158{
159	return (flags & VM_NORESERVE) ?
160		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161}
162
163static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164{
165	if (flags & VM_NORESERVE)
166		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167}
168
169static const struct super_operations shmem_ops;
170static const struct address_space_operations shmem_aops;
171static const struct file_operations shmem_file_operations;
172static const struct inode_operations shmem_inode_operations;
173static const struct inode_operations shmem_dir_inode_operations;
174static const struct inode_operations shmem_special_inode_operations;
175static const struct vm_operations_struct shmem_vm_ops;
176
177static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
178	.ra_pages	= 0,	/* No readahead */
179	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180};
181
182static LIST_HEAD(shmem_swaplist);
183static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185static int shmem_reserve_inode(struct super_block *sb)
186{
187	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188	if (sbinfo->max_inodes) {
189		spin_lock(&sbinfo->stat_lock);
190		if (!sbinfo->free_inodes) {
191			spin_unlock(&sbinfo->stat_lock);
192			return -ENOSPC;
193		}
194		sbinfo->free_inodes--;
195		spin_unlock(&sbinfo->stat_lock);
196	}
197	return 0;
198}
199
200static void shmem_free_inode(struct super_block *sb)
201{
202	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203	if (sbinfo->max_inodes) {
204		spin_lock(&sbinfo->stat_lock);
205		sbinfo->free_inodes++;
206		spin_unlock(&sbinfo->stat_lock);
207	}
208}
209
210/**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222static void shmem_recalc_inode(struct inode *inode)
223{
224	struct shmem_inode_info *info = SHMEM_I(inode);
225	long freed;
226
227	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228	if (freed > 0) {
229		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230		if (sbinfo->max_blocks)
231			percpu_counter_add(&sbinfo->used_blocks, -freed);
232		info->alloced -= freed;
233		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234		shmem_unacct_blocks(info->flags, freed);
235	}
236}
237
238/*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241static int shmem_radix_tree_replace(struct address_space *mapping,
242			pgoff_t index, void *expected, void *replacement)
243{
244	void **pslot;
245	void *item = NULL;
246
247	VM_BUG_ON(!expected);
248	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
249	if (pslot)
250		item = radix_tree_deref_slot_protected(pslot,
251							&mapping->tree_lock);
252	if (item != expected)
253		return -ENOENT;
254	if (replacement)
255		radix_tree_replace_slot(pslot, replacement);
256	else
257		radix_tree_delete(&mapping->page_tree, index);
258	return 0;
259}
260
261/*
262 * Sometimes, before we decide whether to proceed or to fail, we must check
263 * that an entry was not already brought back from swap by a racing thread.
264 *
265 * Checking page is not enough: by the time a SwapCache page is locked, it
266 * might be reused, and again be SwapCache, using the same swap as before.
267 */
268static bool shmem_confirm_swap(struct address_space *mapping,
269			       pgoff_t index, swp_entry_t swap)
270{
271	void *item;
272
273	rcu_read_lock();
274	item = radix_tree_lookup(&mapping->page_tree, index);
275	rcu_read_unlock();
276	return item == swp_to_radix_entry(swap);
277}
278
279/*
280 * Like add_to_page_cache_locked, but error if expected item has gone.
281 */
282static int shmem_add_to_page_cache(struct page *page,
283				   struct address_space *mapping,
284				   pgoff_t index, gfp_t gfp, void *expected)
285{
286	int error;
287
288	VM_BUG_ON(!PageLocked(page));
289	VM_BUG_ON(!PageSwapBacked(page));
290
291	page_cache_get(page);
292	page->mapping = mapping;
293	page->index = index;
294
295	spin_lock_irq(&mapping->tree_lock);
296	if (!expected)
297		error = radix_tree_insert(&mapping->page_tree, index, page);
298	else
299		error = shmem_radix_tree_replace(mapping, index, expected,
300								 page);
301	if (!error) {
302		mapping->nrpages++;
303		__inc_zone_page_state(page, NR_FILE_PAGES);
304		__inc_zone_page_state(page, NR_SHMEM);
305		spin_unlock_irq(&mapping->tree_lock);
306	} else {
307		page->mapping = NULL;
308		spin_unlock_irq(&mapping->tree_lock);
309		page_cache_release(page);
310	}
311	return error;
312}
313
314/*
315 * Like delete_from_page_cache, but substitutes swap for page.
316 */
317static void shmem_delete_from_page_cache(struct page *page, void *radswap)
318{
319	struct address_space *mapping = page->mapping;
320	int error;
321
322	spin_lock_irq(&mapping->tree_lock);
323	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
324	page->mapping = NULL;
325	mapping->nrpages--;
326	__dec_zone_page_state(page, NR_FILE_PAGES);
327	__dec_zone_page_state(page, NR_SHMEM);
328	spin_unlock_irq(&mapping->tree_lock);
329	page_cache_release(page);
330	BUG_ON(error);
331}
332
333/*
334 * Like find_get_pages, but collecting swap entries as well as pages.
335 */
336static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
337					pgoff_t start, unsigned int nr_pages,
338					struct page **pages, pgoff_t *indices)
339{
340	void **slot;
341	unsigned int ret = 0;
342	struct radix_tree_iter iter;
343
344	if (!nr_pages)
345		return 0;
346
347	rcu_read_lock();
348restart:
349	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
350		struct page *page;
351repeat:
352		page = radix_tree_deref_slot(slot);
353		if (unlikely(!page))
354			continue;
355		if (radix_tree_exception(page)) {
356			if (radix_tree_deref_retry(page))
357				goto restart;
358			/*
359			 * Otherwise, we must be storing a swap entry
360			 * here as an exceptional entry: so return it
361			 * without attempting to raise page count.
362			 */
363			goto export;
364		}
365		if (!page_cache_get_speculative(page))
366			goto repeat;
367
368		/* Has the page moved? */
369		if (unlikely(page != *slot)) {
370			page_cache_release(page);
371			goto repeat;
372		}
373export:
374		indices[ret] = iter.index;
375		pages[ret] = page;
376		if (++ret == nr_pages)
377			break;
378	}
379	rcu_read_unlock();
380	return ret;
381}
382
383/*
384 * Remove swap entry from radix tree, free the swap and its page cache.
385 */
386static int shmem_free_swap(struct address_space *mapping,
387			   pgoff_t index, void *radswap)
388{
389	int error;
390
391	spin_lock_irq(&mapping->tree_lock);
392	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
393	spin_unlock_irq(&mapping->tree_lock);
394	if (!error)
395		free_swap_and_cache(radix_to_swp_entry(radswap));
396	return error;
397}
398
399/*
400 * Pagevec may contain swap entries, so shuffle up pages before releasing.
401 */
402static void shmem_deswap_pagevec(struct pagevec *pvec)
403{
404	int i, j;
405
406	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
407		struct page *page = pvec->pages[i];
408		if (!radix_tree_exceptional_entry(page))
409			pvec->pages[j++] = page;
410	}
411	pvec->nr = j;
412}
413
414/*
415 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416 */
417void shmem_unlock_mapping(struct address_space *mapping)
418{
419	struct pagevec pvec;
420	pgoff_t indices[PAGEVEC_SIZE];
421	pgoff_t index = 0;
422
423	pagevec_init(&pvec, 0);
424	/*
425	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426	 */
427	while (!mapping_unevictable(mapping)) {
428		/*
429		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
430		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431		 */
432		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
433					PAGEVEC_SIZE, pvec.pages, indices);
434		if (!pvec.nr)
435			break;
436		index = indices[pvec.nr - 1] + 1;
437		shmem_deswap_pagevec(&pvec);
438		check_move_unevictable_pages(pvec.pages, pvec.nr);
439		pagevec_release(&pvec);
440		cond_resched();
441	}
442}
443
444/*
445 * Remove range of pages and swap entries from radix tree, and free them.
446 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447 */
448static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
449								 bool unfalloc)
450{
451	struct address_space *mapping = inode->i_mapping;
452	struct shmem_inode_info *info = SHMEM_I(inode);
453	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
454	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
455	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
456	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
457	struct pagevec pvec;
458	pgoff_t indices[PAGEVEC_SIZE];
459	long nr_swaps_freed = 0;
460	pgoff_t index;
461	int i;
462
463	if (lend == -1)
464		end = -1;	/* unsigned, so actually very big */
465
466	pagevec_init(&pvec, 0);
467	index = start;
468	while (index < end) {
469		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
470				min(end - index, (pgoff_t)PAGEVEC_SIZE),
471							pvec.pages, indices);
472		if (!pvec.nr)
473			break;
474		mem_cgroup_uncharge_start();
475		for (i = 0; i < pagevec_count(&pvec); i++) {
476			struct page *page = pvec.pages[i];
477
478			index = indices[i];
479			if (index >= end)
480				break;
481
482			if (radix_tree_exceptional_entry(page)) {
483				if (unfalloc)
484					continue;
485				nr_swaps_freed += !shmem_free_swap(mapping,
486								index, page);
487				continue;
488			}
489
490			if (!trylock_page(page))
491				continue;
492			if (!unfalloc || !PageUptodate(page)) {
493				if (page->mapping == mapping) {
494					VM_BUG_ON(PageWriteback(page));
495					truncate_inode_page(mapping, page);
496				}
497			}
498			unlock_page(page);
499		}
500		shmem_deswap_pagevec(&pvec);
501		pagevec_release(&pvec);
502		mem_cgroup_uncharge_end();
503		cond_resched();
504		index++;
505	}
506
507	if (partial_start) {
508		struct page *page = NULL;
509		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
510		if (page) {
511			unsigned int top = PAGE_CACHE_SIZE;
512			if (start > end) {
513				top = partial_end;
514				partial_end = 0;
515			}
516			zero_user_segment(page, partial_start, top);
517			set_page_dirty(page);
518			unlock_page(page);
519			page_cache_release(page);
520		}
521	}
522	if (partial_end) {
523		struct page *page = NULL;
524		shmem_getpage(inode, end, &page, SGP_READ, NULL);
525		if (page) {
526			zero_user_segment(page, 0, partial_end);
527			set_page_dirty(page);
528			unlock_page(page);
529			page_cache_release(page);
530		}
531	}
532	if (start >= end)
533		return;
534
535	index = start;
536	for ( ; ; ) {
537		cond_resched();
538		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
539				min(end - index, (pgoff_t)PAGEVEC_SIZE),
540							pvec.pages, indices);
541		if (!pvec.nr) {
542			if (index == start || unfalloc)
543				break;
544			index = start;
545			continue;
546		}
547		if ((index == start || unfalloc) && indices[0] >= end) {
548			shmem_deswap_pagevec(&pvec);
549			pagevec_release(&pvec);
550			break;
551		}
552		mem_cgroup_uncharge_start();
553		for (i = 0; i < pagevec_count(&pvec); i++) {
554			struct page *page = pvec.pages[i];
555
556			index = indices[i];
557			if (index >= end)
558				break;
559
560			if (radix_tree_exceptional_entry(page)) {
561				if (unfalloc)
562					continue;
563				nr_swaps_freed += !shmem_free_swap(mapping,
564								index, page);
565				continue;
566			}
567
568			lock_page(page);
569			if (!unfalloc || !PageUptodate(page)) {
570				if (page->mapping == mapping) {
571					VM_BUG_ON(PageWriteback(page));
572					truncate_inode_page(mapping, page);
573				}
574			}
575			unlock_page(page);
576		}
577		shmem_deswap_pagevec(&pvec);
578		pagevec_release(&pvec);
579		mem_cgroup_uncharge_end();
580		index++;
581	}
582
583	spin_lock(&info->lock);
584	info->swapped -= nr_swaps_freed;
585	shmem_recalc_inode(inode);
586	spin_unlock(&info->lock);
587}
588
589void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
590{
591	shmem_undo_range(inode, lstart, lend, false);
592	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
593}
594EXPORT_SYMBOL_GPL(shmem_truncate_range);
595
596static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
597{
598	struct inode *inode = dentry->d_inode;
599	int error;
600
601	error = inode_change_ok(inode, attr);
602	if (error)
603		return error;
604
605	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
606		loff_t oldsize = inode->i_size;
607		loff_t newsize = attr->ia_size;
608
609		if (newsize != oldsize) {
610			i_size_write(inode, newsize);
611			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
612		}
613		if (newsize < oldsize) {
614			loff_t holebegin = round_up(newsize, PAGE_SIZE);
615			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616			shmem_truncate_range(inode, newsize, (loff_t)-1);
617			/* unmap again to remove racily COWed private pages */
618			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
619		}
620	}
621
622	setattr_copy(inode, attr);
623#ifdef CONFIG_TMPFS_POSIX_ACL
624	if (attr->ia_valid & ATTR_MODE)
625		error = generic_acl_chmod(inode);
626#endif
627	return error;
628}
629
630static void shmem_evict_inode(struct inode *inode)
631{
632	struct shmem_inode_info *info = SHMEM_I(inode);
633
634	if (inode->i_mapping->a_ops == &shmem_aops) {
635		shmem_unacct_size(info->flags, inode->i_size);
636		inode->i_size = 0;
637		shmem_truncate_range(inode, 0, (loff_t)-1);
638		if (!list_empty(&info->swaplist)) {
639			mutex_lock(&shmem_swaplist_mutex);
640			list_del_init(&info->swaplist);
641			mutex_unlock(&shmem_swaplist_mutex);
642		}
643	} else
644		kfree(info->symlink);
645
646	simple_xattrs_free(&info->xattrs);
647	WARN_ON(inode->i_blocks);
648	shmem_free_inode(inode->i_sb);
649	clear_inode(inode);
650}
651
652/*
653 * If swap found in inode, free it and move page from swapcache to filecache.
654 */
655static int shmem_unuse_inode(struct shmem_inode_info *info,
656			     swp_entry_t swap, struct page **pagep)
657{
658	struct address_space *mapping = info->vfs_inode.i_mapping;
659	void *radswap;
660	pgoff_t index;
661	gfp_t gfp;
662	int error = 0;
663
664	radswap = swp_to_radix_entry(swap);
665	index = radix_tree_locate_item(&mapping->page_tree, radswap);
666	if (index == -1)
667		return 0;
668
669	/*
670	 * Move _head_ to start search for next from here.
671	 * But be careful: shmem_evict_inode checks list_empty without taking
672	 * mutex, and there's an instant in list_move_tail when info->swaplist
673	 * would appear empty, if it were the only one on shmem_swaplist.
674	 */
675	if (shmem_swaplist.next != &info->swaplist)
676		list_move_tail(&shmem_swaplist, &info->swaplist);
677
678	gfp = mapping_gfp_mask(mapping);
679	if (shmem_should_replace_page(*pagep, gfp)) {
680		mutex_unlock(&shmem_swaplist_mutex);
681		error = shmem_replace_page(pagep, gfp, info, index);
682		mutex_lock(&shmem_swaplist_mutex);
683		/*
684		 * We needed to drop mutex to make that restrictive page
685		 * allocation, but the inode might have been freed while we
686		 * dropped it: although a racing shmem_evict_inode() cannot
687		 * complete without emptying the radix_tree, our page lock
688		 * on this swapcache page is not enough to prevent that -
689		 * free_swap_and_cache() of our swap entry will only
690		 * trylock_page(), removing swap from radix_tree whatever.
691		 *
692		 * We must not proceed to shmem_add_to_page_cache() if the
693		 * inode has been freed, but of course we cannot rely on
694		 * inode or mapping or info to check that.  However, we can
695		 * safely check if our swap entry is still in use (and here
696		 * it can't have got reused for another page): if it's still
697		 * in use, then the inode cannot have been freed yet, and we
698		 * can safely proceed (if it's no longer in use, that tells
699		 * nothing about the inode, but we don't need to unuse swap).
700		 */
701		if (!page_swapcount(*pagep))
702			error = -ENOENT;
703	}
704
705	/*
706	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
707	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
708	 * beneath us (pagelock doesn't help until the page is in pagecache).
709	 */
710	if (!error)
711		error = shmem_add_to_page_cache(*pagep, mapping, index,
712						GFP_NOWAIT, radswap);
713	if (error != -ENOMEM) {
714		/*
715		 * Truncation and eviction use free_swap_and_cache(), which
716		 * only does trylock page: if we raced, best clean up here.
717		 */
718		delete_from_swap_cache(*pagep);
719		set_page_dirty(*pagep);
720		if (!error) {
721			spin_lock(&info->lock);
722			info->swapped--;
723			spin_unlock(&info->lock);
724			swap_free(swap);
725		}
726		error = 1;	/* not an error, but entry was found */
727	}
728	return error;
729}
730
731/*
732 * Search through swapped inodes to find and replace swap by page.
733 */
734int shmem_unuse(swp_entry_t swap, struct page *page)
735{
736	struct list_head *this, *next;
737	struct shmem_inode_info *info;
738	int found = 0;
739	int error = 0;
740
741	/*
742	 * There's a faint possibility that swap page was replaced before
743	 * caller locked it: caller will come back later with the right page.
744	 */
745	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
746		goto out;
747
748	/*
749	 * Charge page using GFP_KERNEL while we can wait, before taking
750	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
751	 * Charged back to the user (not to caller) when swap account is used.
752	 */
753	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
754	if (error)
755		goto out;
756	/* No radix_tree_preload: swap entry keeps a place for page in tree */
757
758	mutex_lock(&shmem_swaplist_mutex);
759	list_for_each_safe(this, next, &shmem_swaplist) {
760		info = list_entry(this, struct shmem_inode_info, swaplist);
761		if (info->swapped)
762			found = shmem_unuse_inode(info, swap, &page);
763		else
764			list_del_init(&info->swaplist);
765		cond_resched();
766		if (found)
767			break;
768	}
769	mutex_unlock(&shmem_swaplist_mutex);
770
771	if (found < 0)
772		error = found;
773out:
774	unlock_page(page);
775	page_cache_release(page);
776	return error;
777}
778
779/*
780 * Move the page from the page cache to the swap cache.
781 */
782static int shmem_writepage(struct page *page, struct writeback_control *wbc)
783{
784	struct shmem_inode_info *info;
785	struct address_space *mapping;
786	struct inode *inode;
787	swp_entry_t swap;
788	pgoff_t index;
789
790	BUG_ON(!PageLocked(page));
791	mapping = page->mapping;
792	index = page->index;
793	inode = mapping->host;
794	info = SHMEM_I(inode);
795	if (info->flags & VM_LOCKED)
796		goto redirty;
797	if (!total_swap_pages)
798		goto redirty;
799
800	/*
801	 * shmem_backing_dev_info's capabilities prevent regular writeback or
802	 * sync from ever calling shmem_writepage; but a stacking filesystem
803	 * might use ->writepage of its underlying filesystem, in which case
804	 * tmpfs should write out to swap only in response to memory pressure,
805	 * and not for the writeback threads or sync.
806	 */
807	if (!wbc->for_reclaim) {
808		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
809		goto redirty;
810	}
811
812	/*
813	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
814	 * value into swapfile.c, the only way we can correctly account for a
815	 * fallocated page arriving here is now to initialize it and write it.
816	 *
817	 * That's okay for a page already fallocated earlier, but if we have
818	 * not yet completed the fallocation, then (a) we want to keep track
819	 * of this page in case we have to undo it, and (b) it may not be a
820	 * good idea to continue anyway, once we're pushing into swap.  So
821	 * reactivate the page, and let shmem_fallocate() quit when too many.
822	 */
823	if (!PageUptodate(page)) {
824		if (inode->i_private) {
825			struct shmem_falloc *shmem_falloc;
826			spin_lock(&inode->i_lock);
827			shmem_falloc = inode->i_private;
828			if (shmem_falloc &&
829			    index >= shmem_falloc->start &&
830			    index < shmem_falloc->next)
831				shmem_falloc->nr_unswapped++;
832			else
833				shmem_falloc = NULL;
834			spin_unlock(&inode->i_lock);
835			if (shmem_falloc)
836				goto redirty;
837		}
838		clear_highpage(page);
839		flush_dcache_page(page);
840		SetPageUptodate(page);
841	}
842
843	swap = get_swap_page();
844	if (!swap.val)
845		goto redirty;
846
847	/*
848	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
849	 * if it's not already there.  Do it now before the page is
850	 * moved to swap cache, when its pagelock no longer protects
851	 * the inode from eviction.  But don't unlock the mutex until
852	 * we've incremented swapped, because shmem_unuse_inode() will
853	 * prune a !swapped inode from the swaplist under this mutex.
854	 */
855	mutex_lock(&shmem_swaplist_mutex);
856	if (list_empty(&info->swaplist))
857		list_add_tail(&info->swaplist, &shmem_swaplist);
858
859	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
860		swap_shmem_alloc(swap);
861		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
862
863		spin_lock(&info->lock);
864		info->swapped++;
865		shmem_recalc_inode(inode);
866		spin_unlock(&info->lock);
867
868		mutex_unlock(&shmem_swaplist_mutex);
869		BUG_ON(page_mapped(page));
870		swap_writepage(page, wbc);
871		return 0;
872	}
873
874	mutex_unlock(&shmem_swaplist_mutex);
875	swapcache_free(swap, NULL);
876redirty:
877	set_page_dirty(page);
878	if (wbc->for_reclaim)
879		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
880	unlock_page(page);
881	return 0;
882}
883
884#ifdef CONFIG_NUMA
885#ifdef CONFIG_TMPFS
886static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
887{
888	char buffer[64];
889
890	if (!mpol || mpol->mode == MPOL_DEFAULT)
891		return;		/* show nothing */
892
893	mpol_to_str(buffer, sizeof(buffer), mpol);
894
895	seq_printf(seq, ",mpol=%s", buffer);
896}
897
898static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
899{
900	struct mempolicy *mpol = NULL;
901	if (sbinfo->mpol) {
902		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
903		mpol = sbinfo->mpol;
904		mpol_get(mpol);
905		spin_unlock(&sbinfo->stat_lock);
906	}
907	return mpol;
908}
909#endif /* CONFIG_TMPFS */
910
911static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
912			struct shmem_inode_info *info, pgoff_t index)
913{
914	struct vm_area_struct pvma;
915	struct page *page;
916
917	/* Create a pseudo vma that just contains the policy */
918	pvma.vm_start = 0;
919	/* Bias interleave by inode number to distribute better across nodes */
920	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
921	pvma.vm_ops = NULL;
922	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
923
924	page = swapin_readahead(swap, gfp, &pvma, 0);
925
926	/* Drop reference taken by mpol_shared_policy_lookup() */
927	mpol_cond_put(pvma.vm_policy);
928
929	return page;
930}
931
932static struct page *shmem_alloc_page(gfp_t gfp,
933			struct shmem_inode_info *info, pgoff_t index)
934{
935	struct vm_area_struct pvma;
936	struct page *page;
937
938	/* Create a pseudo vma that just contains the policy */
939	pvma.vm_start = 0;
940	/* Bias interleave by inode number to distribute better across nodes */
941	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
942	pvma.vm_ops = NULL;
943	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
944
945	page = alloc_page_vma(gfp, &pvma, 0);
946
947	/* Drop reference taken by mpol_shared_policy_lookup() */
948	mpol_cond_put(pvma.vm_policy);
949
950	return page;
951}
952#else /* !CONFIG_NUMA */
953#ifdef CONFIG_TMPFS
954static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
955{
956}
957#endif /* CONFIG_TMPFS */
958
959static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
960			struct shmem_inode_info *info, pgoff_t index)
961{
962	return swapin_readahead(swap, gfp, NULL, 0);
963}
964
965static inline struct page *shmem_alloc_page(gfp_t gfp,
966			struct shmem_inode_info *info, pgoff_t index)
967{
968	return alloc_page(gfp);
969}
970#endif /* CONFIG_NUMA */
971
972#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
973static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
974{
975	return NULL;
976}
977#endif
978
979/*
980 * When a page is moved from swapcache to shmem filecache (either by the
981 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
982 * shmem_unuse_inode()), it may have been read in earlier from swap, in
983 * ignorance of the mapping it belongs to.  If that mapping has special
984 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
985 * we may need to copy to a suitable page before moving to filecache.
986 *
987 * In a future release, this may well be extended to respect cpuset and
988 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
989 * but for now it is a simple matter of zone.
990 */
991static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
992{
993	return page_zonenum(page) > gfp_zone(gfp);
994}
995
996static int shmem_replace_page(struct page **pagep, gfp_t gfp,
997				struct shmem_inode_info *info, pgoff_t index)
998{
999	struct page *oldpage, *newpage;
1000	struct address_space *swap_mapping;
1001	pgoff_t swap_index;
1002	int error;
1003
1004	oldpage = *pagep;
1005	swap_index = page_private(oldpage);
1006	swap_mapping = page_mapping(oldpage);
1007
1008	/*
1009	 * We have arrived here because our zones are constrained, so don't
1010	 * limit chance of success by further cpuset and node constraints.
1011	 */
1012	gfp &= ~GFP_CONSTRAINT_MASK;
1013	newpage = shmem_alloc_page(gfp, info, index);
1014	if (!newpage)
1015		return -ENOMEM;
1016
1017	page_cache_get(newpage);
1018	copy_highpage(newpage, oldpage);
1019	flush_dcache_page(newpage);
1020
1021	__set_page_locked(newpage);
1022	SetPageUptodate(newpage);
1023	SetPageSwapBacked(newpage);
1024	set_page_private(newpage, swap_index);
1025	SetPageSwapCache(newpage);
1026
1027	/*
1028	 * Our caller will very soon move newpage out of swapcache, but it's
1029	 * a nice clean interface for us to replace oldpage by newpage there.
1030	 */
1031	spin_lock_irq(&swap_mapping->tree_lock);
1032	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1033								   newpage);
1034	if (!error) {
1035		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1036		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1037	}
1038	spin_unlock_irq(&swap_mapping->tree_lock);
1039
1040	if (unlikely(error)) {
1041		/*
1042		 * Is this possible?  I think not, now that our callers check
1043		 * both PageSwapCache and page_private after getting page lock;
1044		 * but be defensive.  Reverse old to newpage for clear and free.
1045		 */
1046		oldpage = newpage;
1047	} else {
1048		mem_cgroup_replace_page_cache(oldpage, newpage);
1049		lru_cache_add_anon(newpage);
1050		*pagep = newpage;
1051	}
1052
1053	ClearPageSwapCache(oldpage);
1054	set_page_private(oldpage, 0);
1055
1056	unlock_page(oldpage);
1057	page_cache_release(oldpage);
1058	page_cache_release(oldpage);
1059	return error;
1060}
1061
1062/*
1063 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1064 *
1065 * If we allocate a new one we do not mark it dirty. That's up to the
1066 * vm. If we swap it in we mark it dirty since we also free the swap
1067 * entry since a page cannot live in both the swap and page cache
1068 */
1069static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1070	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1071{
1072	struct address_space *mapping = inode->i_mapping;
1073	struct shmem_inode_info *info;
1074	struct shmem_sb_info *sbinfo;
1075	struct page *page;
1076	swp_entry_t swap;
1077	int error;
1078	int once = 0;
1079	int alloced = 0;
1080
1081	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1082		return -EFBIG;
1083repeat:
1084	swap.val = 0;
1085	page = find_lock_page(mapping, index);
1086	if (radix_tree_exceptional_entry(page)) {
1087		swap = radix_to_swp_entry(page);
1088		page = NULL;
1089	}
1090
1091	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1092	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1093		error = -EINVAL;
1094		goto failed;
1095	}
1096
1097	/* fallocated page? */
1098	if (page && !PageUptodate(page)) {
1099		if (sgp != SGP_READ)
1100			goto clear;
1101		unlock_page(page);
1102		page_cache_release(page);
1103		page = NULL;
1104	}
1105	if (page || (sgp == SGP_READ && !swap.val)) {
1106		*pagep = page;
1107		return 0;
1108	}
1109
1110	/*
1111	 * Fast cache lookup did not find it:
1112	 * bring it back from swap or allocate.
1113	 */
1114	info = SHMEM_I(inode);
1115	sbinfo = SHMEM_SB(inode->i_sb);
1116
1117	if (swap.val) {
1118		/* Look it up and read it in.. */
1119		page = lookup_swap_cache(swap);
1120		if (!page) {
1121			/* here we actually do the io */
1122			if (fault_type)
1123				*fault_type |= VM_FAULT_MAJOR;
1124			page = shmem_swapin(swap, gfp, info, index);
1125			if (!page) {
1126				error = -ENOMEM;
1127				goto failed;
1128			}
1129		}
1130
1131		/* We have to do this with page locked to prevent races */
1132		lock_page(page);
1133		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1134		    !shmem_confirm_swap(mapping, index, swap)) {
1135			error = -EEXIST;	/* try again */
1136			goto unlock;
1137		}
1138		if (!PageUptodate(page)) {
1139			error = -EIO;
1140			goto failed;
1141		}
1142		wait_on_page_writeback(page);
1143
1144		if (shmem_should_replace_page(page, gfp)) {
1145			error = shmem_replace_page(&page, gfp, info, index);
1146			if (error)
1147				goto failed;
1148		}
1149
1150		error = mem_cgroup_cache_charge(page, current->mm,
1151						gfp & GFP_RECLAIM_MASK);
1152		if (!error) {
1153			error = shmem_add_to_page_cache(page, mapping, index,
1154						gfp, swp_to_radix_entry(swap));
1155			/*
1156			 * We already confirmed swap under page lock, and make
1157			 * no memory allocation here, so usually no possibility
1158			 * of error; but free_swap_and_cache() only trylocks a
1159			 * page, so it is just possible that the entry has been
1160			 * truncated or holepunched since swap was confirmed.
1161			 * shmem_undo_range() will have done some of the
1162			 * unaccounting, now delete_from_swap_cache() will do
1163			 * the rest (including mem_cgroup_uncharge_swapcache).
1164			 * Reset swap.val? No, leave it so "failed" goes back to
1165			 * "repeat": reading a hole and writing should succeed.
1166			 */
1167			if (error)
1168				delete_from_swap_cache(page);
1169		}
1170		if (error)
1171			goto failed;
1172
1173		spin_lock(&info->lock);
1174		info->swapped--;
1175		shmem_recalc_inode(inode);
1176		spin_unlock(&info->lock);
1177
1178		delete_from_swap_cache(page);
1179		set_page_dirty(page);
1180		swap_free(swap);
1181
1182	} else {
1183		if (shmem_acct_block(info->flags)) {
1184			error = -ENOSPC;
1185			goto failed;
1186		}
1187		if (sbinfo->max_blocks) {
1188			if (percpu_counter_compare(&sbinfo->used_blocks,
1189						sbinfo->max_blocks) >= 0) {
1190				error = -ENOSPC;
1191				goto unacct;
1192			}
1193			percpu_counter_inc(&sbinfo->used_blocks);
1194		}
1195
1196		page = shmem_alloc_page(gfp, info, index);
1197		if (!page) {
1198			error = -ENOMEM;
1199			goto decused;
1200		}
1201
1202		SetPageSwapBacked(page);
1203		__set_page_locked(page);
1204		error = mem_cgroup_cache_charge(page, current->mm,
1205						gfp & GFP_RECLAIM_MASK);
1206		if (error)
1207			goto decused;
1208		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1209		if (!error) {
1210			error = shmem_add_to_page_cache(page, mapping, index,
1211							gfp, NULL);
1212			radix_tree_preload_end();
1213		}
1214		if (error) {
1215			mem_cgroup_uncharge_cache_page(page);
1216			goto decused;
1217		}
1218		lru_cache_add_anon(page);
1219
1220		spin_lock(&info->lock);
1221		info->alloced++;
1222		inode->i_blocks += BLOCKS_PER_PAGE;
1223		shmem_recalc_inode(inode);
1224		spin_unlock(&info->lock);
1225		alloced = true;
1226
1227		/*
1228		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1229		 */
1230		if (sgp == SGP_FALLOC)
1231			sgp = SGP_WRITE;
1232clear:
1233		/*
1234		 * Let SGP_WRITE caller clear ends if write does not fill page;
1235		 * but SGP_FALLOC on a page fallocated earlier must initialize
1236		 * it now, lest undo on failure cancel our earlier guarantee.
1237		 */
1238		if (sgp != SGP_WRITE) {
1239			clear_highpage(page);
1240			flush_dcache_page(page);
1241			SetPageUptodate(page);
1242		}
1243		if (sgp == SGP_DIRTY)
1244			set_page_dirty(page);
1245	}
1246
1247	/* Perhaps the file has been truncated since we checked */
1248	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1249	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1250		error = -EINVAL;
1251		if (alloced)
1252			goto trunc;
1253		else
1254			goto failed;
1255	}
1256	*pagep = page;
1257	return 0;
1258
1259	/*
1260	 * Error recovery.
1261	 */
1262trunc:
1263	info = SHMEM_I(inode);
1264	ClearPageDirty(page);
1265	delete_from_page_cache(page);
1266	spin_lock(&info->lock);
1267	info->alloced--;
1268	inode->i_blocks -= BLOCKS_PER_PAGE;
1269	spin_unlock(&info->lock);
1270decused:
1271	sbinfo = SHMEM_SB(inode->i_sb);
1272	if (sbinfo->max_blocks)
1273		percpu_counter_add(&sbinfo->used_blocks, -1);
1274unacct:
1275	shmem_unacct_blocks(info->flags, 1);
1276failed:
1277	if (swap.val && error != -EINVAL &&
1278	    !shmem_confirm_swap(mapping, index, swap))
1279		error = -EEXIST;
1280unlock:
1281	if (page) {
1282		unlock_page(page);
1283		page_cache_release(page);
1284	}
1285	if (error == -ENOSPC && !once++) {
1286		info = SHMEM_I(inode);
1287		spin_lock(&info->lock);
1288		shmem_recalc_inode(inode);
1289		spin_unlock(&info->lock);
1290		goto repeat;
1291	}
1292	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1293		goto repeat;
1294	return error;
1295}
1296
1297static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1298{
1299	struct inode *inode = file_inode(vma->vm_file);
1300	int error;
1301	int ret = VM_FAULT_LOCKED;
1302
1303	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1304	if (error)
1305		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1306
1307	if (ret & VM_FAULT_MAJOR) {
1308		count_vm_event(PGMAJFAULT);
1309		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1310	}
1311	return ret;
1312}
1313
1314#ifdef CONFIG_NUMA
1315static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1316{
1317	struct inode *inode = file_inode(vma->vm_file);
1318	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1319}
1320
1321static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1322					  unsigned long addr)
1323{
1324	struct inode *inode = file_inode(vma->vm_file);
1325	pgoff_t index;
1326
1327	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1328	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1329}
1330#endif
1331
1332int shmem_lock(struct file *file, int lock, struct user_struct *user)
1333{
1334	struct inode *inode = file_inode(file);
1335	struct shmem_inode_info *info = SHMEM_I(inode);
1336	int retval = -ENOMEM;
1337
1338	spin_lock(&info->lock);
1339	if (lock && !(info->flags & VM_LOCKED)) {
1340		if (!user_shm_lock(inode->i_size, user))
1341			goto out_nomem;
1342		info->flags |= VM_LOCKED;
1343		mapping_set_unevictable(file->f_mapping);
1344	}
1345	if (!lock && (info->flags & VM_LOCKED) && user) {
1346		user_shm_unlock(inode->i_size, user);
1347		info->flags &= ~VM_LOCKED;
1348		mapping_clear_unevictable(file->f_mapping);
1349	}
1350	retval = 0;
1351
1352out_nomem:
1353	spin_unlock(&info->lock);
1354	return retval;
1355}
1356
1357static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1358{
1359	file_accessed(file);
1360	vma->vm_ops = &shmem_vm_ops;
1361	return 0;
1362}
1363
1364static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1365				     umode_t mode, dev_t dev, unsigned long flags)
1366{
1367	struct inode *inode;
1368	struct shmem_inode_info *info;
1369	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1370
1371	if (shmem_reserve_inode(sb))
1372		return NULL;
1373
1374	inode = new_inode(sb);
1375	if (inode) {
1376		inode->i_ino = get_next_ino();
1377		inode_init_owner(inode, dir, mode);
1378		inode->i_blocks = 0;
1379		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1380		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1381		inode->i_generation = get_seconds();
1382		info = SHMEM_I(inode);
1383		memset(info, 0, (char *)inode - (char *)info);
1384		spin_lock_init(&info->lock);
1385		info->flags = flags & VM_NORESERVE;
1386		INIT_LIST_HEAD(&info->swaplist);
1387		simple_xattrs_init(&info->xattrs);
1388		cache_no_acl(inode);
1389
1390		switch (mode & S_IFMT) {
1391		default:
1392			inode->i_op = &shmem_special_inode_operations;
1393			init_special_inode(inode, mode, dev);
1394			break;
1395		case S_IFREG:
1396			inode->i_mapping->a_ops = &shmem_aops;
1397			inode->i_op = &shmem_inode_operations;
1398			inode->i_fop = &shmem_file_operations;
1399			mpol_shared_policy_init(&info->policy,
1400						 shmem_get_sbmpol(sbinfo));
1401			break;
1402		case S_IFDIR:
1403			inc_nlink(inode);
1404			/* Some things misbehave if size == 0 on a directory */
1405			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1406			inode->i_op = &shmem_dir_inode_operations;
1407			inode->i_fop = &simple_dir_operations;
1408			break;
1409		case S_IFLNK:
1410			/*
1411			 * Must not load anything in the rbtree,
1412			 * mpol_free_shared_policy will not be called.
1413			 */
1414			mpol_shared_policy_init(&info->policy, NULL);
1415			break;
1416		}
1417	} else
1418		shmem_free_inode(sb);
1419	return inode;
1420}
1421
1422#ifdef CONFIG_TMPFS
1423static const struct inode_operations shmem_symlink_inode_operations;
1424static const struct inode_operations shmem_short_symlink_operations;
1425
1426#ifdef CONFIG_TMPFS_XATTR
1427static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1428#else
1429#define shmem_initxattrs NULL
1430#endif
1431
1432static int
1433shmem_write_begin(struct file *file, struct address_space *mapping,
1434			loff_t pos, unsigned len, unsigned flags,
1435			struct page **pagep, void **fsdata)
1436{
1437	struct inode *inode = mapping->host;
1438	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1439	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1440}
1441
1442static int
1443shmem_write_end(struct file *file, struct address_space *mapping,
1444			loff_t pos, unsigned len, unsigned copied,
1445			struct page *page, void *fsdata)
1446{
1447	struct inode *inode = mapping->host;
1448
1449	if (pos + copied > inode->i_size)
1450		i_size_write(inode, pos + copied);
1451
1452	if (!PageUptodate(page)) {
1453		if (copied < PAGE_CACHE_SIZE) {
1454			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1455			zero_user_segments(page, 0, from,
1456					from + copied, PAGE_CACHE_SIZE);
1457		}
1458		SetPageUptodate(page);
1459	}
1460	set_page_dirty(page);
1461	unlock_page(page);
1462	page_cache_release(page);
1463
1464	return copied;
1465}
1466
1467static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1468{
1469	struct inode *inode = file_inode(filp);
1470	struct address_space *mapping = inode->i_mapping;
1471	pgoff_t index;
1472	unsigned long offset;
1473	enum sgp_type sgp = SGP_READ;
1474
1475	/*
1476	 * Might this read be for a stacking filesystem?  Then when reading
1477	 * holes of a sparse file, we actually need to allocate those pages,
1478	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1479	 */
1480	if (segment_eq(get_fs(), KERNEL_DS))
1481		sgp = SGP_DIRTY;
1482
1483	index = *ppos >> PAGE_CACHE_SHIFT;
1484	offset = *ppos & ~PAGE_CACHE_MASK;
1485
1486	for (;;) {
1487		struct page *page = NULL;
1488		pgoff_t end_index;
1489		unsigned long nr, ret;
1490		loff_t i_size = i_size_read(inode);
1491
1492		end_index = i_size >> PAGE_CACHE_SHIFT;
1493		if (index > end_index)
1494			break;
1495		if (index == end_index) {
1496			nr = i_size & ~PAGE_CACHE_MASK;
1497			if (nr <= offset)
1498				break;
1499		}
1500
1501		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1502		if (desc->error) {
1503			if (desc->error == -EINVAL)
1504				desc->error = 0;
1505			break;
1506		}
1507		if (page)
1508			unlock_page(page);
1509
1510		/*
1511		 * We must evaluate after, since reads (unlike writes)
1512		 * are called without i_mutex protection against truncate
1513		 */
1514		nr = PAGE_CACHE_SIZE;
1515		i_size = i_size_read(inode);
1516		end_index = i_size >> PAGE_CACHE_SHIFT;
1517		if (index == end_index) {
1518			nr = i_size & ~PAGE_CACHE_MASK;
1519			if (nr <= offset) {
1520				if (page)
1521					page_cache_release(page);
1522				break;
1523			}
1524		}
1525		nr -= offset;
1526
1527		if (page) {
1528			/*
1529			 * If users can be writing to this page using arbitrary
1530			 * virtual addresses, take care about potential aliasing
1531			 * before reading the page on the kernel side.
1532			 */
1533			if (mapping_writably_mapped(mapping))
1534				flush_dcache_page(page);
1535			/*
1536			 * Mark the page accessed if we read the beginning.
1537			 */
1538			if (!offset)
1539				mark_page_accessed(page);
1540		} else {
1541			page = ZERO_PAGE(0);
1542			page_cache_get(page);
1543		}
1544
1545		/*
1546		 * Ok, we have the page, and it's up-to-date, so
1547		 * now we can copy it to user space...
1548		 *
1549		 * The actor routine returns how many bytes were actually used..
1550		 * NOTE! This may not be the same as how much of a user buffer
1551		 * we filled up (we may be padding etc), so we can only update
1552		 * "pos" here (the actor routine has to update the user buffer
1553		 * pointers and the remaining count).
1554		 */
1555		ret = actor(desc, page, offset, nr);
1556		offset += ret;
1557		index += offset >> PAGE_CACHE_SHIFT;
1558		offset &= ~PAGE_CACHE_MASK;
1559
1560		page_cache_release(page);
1561		if (ret != nr || !desc->count)
1562			break;
1563
1564		cond_resched();
1565	}
1566
1567	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1568	file_accessed(filp);
1569}
1570
1571static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1572		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1573{
1574	struct file *filp = iocb->ki_filp;
1575	ssize_t retval;
1576	unsigned long seg;
1577	size_t count;
1578	loff_t *ppos = &iocb->ki_pos;
1579
1580	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1581	if (retval)
1582		return retval;
1583
1584	for (seg = 0; seg < nr_segs; seg++) {
1585		read_descriptor_t desc;
1586
1587		desc.written = 0;
1588		desc.arg.buf = iov[seg].iov_base;
1589		desc.count = iov[seg].iov_len;
1590		if (desc.count == 0)
1591			continue;
1592		desc.error = 0;
1593		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1594		retval += desc.written;
1595		if (desc.error) {
1596			retval = retval ?: desc.error;
1597			break;
1598		}
1599		if (desc.count > 0)
1600			break;
1601	}
1602	return retval;
1603}
1604
1605static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1606				struct pipe_inode_info *pipe, size_t len,
1607				unsigned int flags)
1608{
1609	struct address_space *mapping = in->f_mapping;
1610	struct inode *inode = mapping->host;
1611	unsigned int loff, nr_pages, req_pages;
1612	struct page *pages[PIPE_DEF_BUFFERS];
1613	struct partial_page partial[PIPE_DEF_BUFFERS];
1614	struct page *page;
1615	pgoff_t index, end_index;
1616	loff_t isize, left;
1617	int error, page_nr;
1618	struct splice_pipe_desc spd = {
1619		.pages = pages,
1620		.partial = partial,
1621		.nr_pages_max = PIPE_DEF_BUFFERS,
1622		.flags = flags,
1623		.ops = &page_cache_pipe_buf_ops,
1624		.spd_release = spd_release_page,
1625	};
1626
1627	isize = i_size_read(inode);
1628	if (unlikely(*ppos >= isize))
1629		return 0;
1630
1631	left = isize - *ppos;
1632	if (unlikely(left < len))
1633		len = left;
1634
1635	if (splice_grow_spd(pipe, &spd))
1636		return -ENOMEM;
1637
1638	index = *ppos >> PAGE_CACHE_SHIFT;
1639	loff = *ppos & ~PAGE_CACHE_MASK;
1640	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1641	nr_pages = min(req_pages, pipe->buffers);
1642
1643	spd.nr_pages = find_get_pages_contig(mapping, index,
1644						nr_pages, spd.pages);
1645	index += spd.nr_pages;
1646	error = 0;
1647
1648	while (spd.nr_pages < nr_pages) {
1649		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1650		if (error)
1651			break;
1652		unlock_page(page);
1653		spd.pages[spd.nr_pages++] = page;
1654		index++;
1655	}
1656
1657	index = *ppos >> PAGE_CACHE_SHIFT;
1658	nr_pages = spd.nr_pages;
1659	spd.nr_pages = 0;
1660
1661	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1662		unsigned int this_len;
1663
1664		if (!len)
1665			break;
1666
1667		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1668		page = spd.pages[page_nr];
1669
1670		if (!PageUptodate(page) || page->mapping != mapping) {
1671			error = shmem_getpage(inode, index, &page,
1672							SGP_CACHE, NULL);
1673			if (error)
1674				break;
1675			unlock_page(page);
1676			page_cache_release(spd.pages[page_nr]);
1677			spd.pages[page_nr] = page;
1678		}
1679
1680		isize = i_size_read(inode);
1681		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1682		if (unlikely(!isize || index > end_index))
1683			break;
1684
1685		if (end_index == index) {
1686			unsigned int plen;
1687
1688			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1689			if (plen <= loff)
1690				break;
1691
1692			this_len = min(this_len, plen - loff);
1693			len = this_len;
1694		}
1695
1696		spd.partial[page_nr].offset = loff;
1697		spd.partial[page_nr].len = this_len;
1698		len -= this_len;
1699		loff = 0;
1700		spd.nr_pages++;
1701		index++;
1702	}
1703
1704	while (page_nr < nr_pages)
1705		page_cache_release(spd.pages[page_nr++]);
1706
1707	if (spd.nr_pages)
1708		error = splice_to_pipe(pipe, &spd);
1709
1710	splice_shrink_spd(&spd);
1711
1712	if (error > 0) {
1713		*ppos += error;
1714		file_accessed(in);
1715	}
1716	return error;
1717}
1718
1719/*
1720 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1721 */
1722static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1723				    pgoff_t index, pgoff_t end, int whence)
1724{
1725	struct page *page;
1726	struct pagevec pvec;
1727	pgoff_t indices[PAGEVEC_SIZE];
1728	bool done = false;
1729	int i;
1730
1731	pagevec_init(&pvec, 0);
1732	pvec.nr = 1;		/* start small: we may be there already */
1733	while (!done) {
1734		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1735					pvec.nr, pvec.pages, indices);
1736		if (!pvec.nr) {
1737			if (whence == SEEK_DATA)
1738				index = end;
1739			break;
1740		}
1741		for (i = 0; i < pvec.nr; i++, index++) {
1742			if (index < indices[i]) {
1743				if (whence == SEEK_HOLE) {
1744					done = true;
1745					break;
1746				}
1747				index = indices[i];
1748			}
1749			page = pvec.pages[i];
1750			if (page && !radix_tree_exceptional_entry(page)) {
1751				if (!PageUptodate(page))
1752					page = NULL;
1753			}
1754			if (index >= end ||
1755			    (page && whence == SEEK_DATA) ||
1756			    (!page && whence == SEEK_HOLE)) {
1757				done = true;
1758				break;
1759			}
1760		}
1761		shmem_deswap_pagevec(&pvec);
1762		pagevec_release(&pvec);
1763		pvec.nr = PAGEVEC_SIZE;
1764		cond_resched();
1765	}
1766	return index;
1767}
1768
1769static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1770{
1771	struct address_space *mapping = file->f_mapping;
1772	struct inode *inode = mapping->host;
1773	pgoff_t start, end;
1774	loff_t new_offset;
1775
1776	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1777		return generic_file_llseek_size(file, offset, whence,
1778					MAX_LFS_FILESIZE, i_size_read(inode));
1779	mutex_lock(&inode->i_mutex);
1780	/* We're holding i_mutex so we can access i_size directly */
1781
1782	if (offset < 0)
1783		offset = -EINVAL;
1784	else if (offset >= inode->i_size)
1785		offset = -ENXIO;
1786	else {
1787		start = offset >> PAGE_CACHE_SHIFT;
1788		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1789		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1790		new_offset <<= PAGE_CACHE_SHIFT;
1791		if (new_offset > offset) {
1792			if (new_offset < inode->i_size)
1793				offset = new_offset;
1794			else if (whence == SEEK_DATA)
1795				offset = -ENXIO;
1796			else
1797				offset = inode->i_size;
1798		}
1799	}
1800
1801	if (offset >= 0 && offset != file->f_pos) {
1802		file->f_pos = offset;
1803		file->f_version = 0;
1804	}
1805	mutex_unlock(&inode->i_mutex);
1806	return offset;
1807}
1808
1809static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1810							 loff_t len)
1811{
1812	struct inode *inode = file_inode(file);
1813	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1814	struct shmem_falloc shmem_falloc;
1815	pgoff_t start, index, end;
1816	int error;
1817
1818	mutex_lock(&inode->i_mutex);
1819
1820	if (mode & FALLOC_FL_PUNCH_HOLE) {
1821		struct address_space *mapping = file->f_mapping;
1822		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1823		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1824
1825		if ((u64)unmap_end > (u64)unmap_start)
1826			unmap_mapping_range(mapping, unmap_start,
1827					    1 + unmap_end - unmap_start, 0);
1828		shmem_truncate_range(inode, offset, offset + len - 1);
1829		/* No need to unmap again: hole-punching leaves COWed pages */
1830		error = 0;
1831		goto out;
1832	}
1833
1834	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1835	error = inode_newsize_ok(inode, offset + len);
1836	if (error)
1837		goto out;
1838
1839	start = offset >> PAGE_CACHE_SHIFT;
1840	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1841	/* Try to avoid a swapstorm if len is impossible to satisfy */
1842	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1843		error = -ENOSPC;
1844		goto out;
1845	}
1846
1847	shmem_falloc.start = start;
1848	shmem_falloc.next  = start;
1849	shmem_falloc.nr_falloced = 0;
1850	shmem_falloc.nr_unswapped = 0;
1851	spin_lock(&inode->i_lock);
1852	inode->i_private = &shmem_falloc;
1853	spin_unlock(&inode->i_lock);
1854
1855	for (index = start; index < end; index++) {
1856		struct page *page;
1857
1858		/*
1859		 * Good, the fallocate(2) manpage permits EINTR: we may have
1860		 * been interrupted because we are using up too much memory.
1861		 */
1862		if (signal_pending(current))
1863			error = -EINTR;
1864		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1865			error = -ENOMEM;
1866		else
1867			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1868									NULL);
1869		if (error) {
1870			/* Remove the !PageUptodate pages we added */
1871			shmem_undo_range(inode,
1872				(loff_t)start << PAGE_CACHE_SHIFT,
1873				(loff_t)index << PAGE_CACHE_SHIFT, true);
1874			goto undone;
1875		}
1876
1877		/*
1878		 * Inform shmem_writepage() how far we have reached.
1879		 * No need for lock or barrier: we have the page lock.
1880		 */
1881		shmem_falloc.next++;
1882		if (!PageUptodate(page))
1883			shmem_falloc.nr_falloced++;
1884
1885		/*
1886		 * If !PageUptodate, leave it that way so that freeable pages
1887		 * can be recognized if we need to rollback on error later.
1888		 * But set_page_dirty so that memory pressure will swap rather
1889		 * than free the pages we are allocating (and SGP_CACHE pages
1890		 * might still be clean: we now need to mark those dirty too).
1891		 */
1892		set_page_dirty(page);
1893		unlock_page(page);
1894		page_cache_release(page);
1895		cond_resched();
1896	}
1897
1898	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1899		i_size_write(inode, offset + len);
1900	inode->i_ctime = CURRENT_TIME;
1901undone:
1902	spin_lock(&inode->i_lock);
1903	inode->i_private = NULL;
1904	spin_unlock(&inode->i_lock);
1905out:
1906	mutex_unlock(&inode->i_mutex);
1907	return error;
1908}
1909
1910static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1911{
1912	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1913
1914	buf->f_type = TMPFS_MAGIC;
1915	buf->f_bsize = PAGE_CACHE_SIZE;
1916	buf->f_namelen = NAME_MAX;
1917	if (sbinfo->max_blocks) {
1918		buf->f_blocks = sbinfo->max_blocks;
1919		buf->f_bavail =
1920		buf->f_bfree  = sbinfo->max_blocks -
1921				percpu_counter_sum(&sbinfo->used_blocks);
1922	}
1923	if (sbinfo->max_inodes) {
1924		buf->f_files = sbinfo->max_inodes;
1925		buf->f_ffree = sbinfo->free_inodes;
1926	}
1927	/* else leave those fields 0 like simple_statfs */
1928	return 0;
1929}
1930
1931/*
1932 * File creation. Allocate an inode, and we're done..
1933 */
1934static int
1935shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1936{
1937	struct inode *inode;
1938	int error = -ENOSPC;
1939
1940	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1941	if (inode) {
1942		error = security_inode_init_security(inode, dir,
1943						     &dentry->d_name,
1944						     shmem_initxattrs, NULL);
1945		if (error) {
1946			if (error != -EOPNOTSUPP) {
1947				iput(inode);
1948				return error;
1949			}
1950		}
1951#ifdef CONFIG_TMPFS_POSIX_ACL
1952		error = generic_acl_init(inode, dir);
1953		if (error) {
1954			iput(inode);
1955			return error;
1956		}
1957#else
1958		error = 0;
1959#endif
1960		dir->i_size += BOGO_DIRENT_SIZE;
1961		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1962		d_instantiate(dentry, inode);
1963		dget(dentry); /* Extra count - pin the dentry in core */
1964	}
1965	return error;
1966}
1967
1968static int
1969shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1970{
1971	struct inode *inode;
1972	int error = -ENOSPC;
1973
1974	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1975	if (inode) {
1976		error = security_inode_init_security(inode, dir,
1977						     NULL,
1978						     shmem_initxattrs, NULL);
1979		if (error) {
1980			if (error != -EOPNOTSUPP) {
1981				iput(inode);
1982				return error;
1983			}
1984		}
1985#ifdef CONFIG_TMPFS_POSIX_ACL
1986		error = generic_acl_init(inode, dir);
1987		if (error) {
1988			iput(inode);
1989			return error;
1990		}
1991#else
1992		error = 0;
1993#endif
1994		d_tmpfile(dentry, inode);
1995	}
1996	return error;
1997}
1998
1999static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2000{
2001	int error;
2002
2003	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2004		return error;
2005	inc_nlink(dir);
2006	return 0;
2007}
2008
2009static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2010		bool excl)
2011{
2012	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2013}
2014
2015/*
2016 * Link a file..
2017 */
2018static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2019{
2020	struct inode *inode = old_dentry->d_inode;
2021	int ret;
2022
2023	/*
2024	 * No ordinary (disk based) filesystem counts links as inodes;
2025	 * but each new link needs a new dentry, pinning lowmem, and
2026	 * tmpfs dentries cannot be pruned until they are unlinked.
2027	 */
2028	ret = shmem_reserve_inode(inode->i_sb);
2029	if (ret)
2030		goto out;
2031
2032	dir->i_size += BOGO_DIRENT_SIZE;
2033	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2034	inc_nlink(inode);
2035	ihold(inode);	/* New dentry reference */
2036	dget(dentry);		/* Extra pinning count for the created dentry */
2037	d_instantiate(dentry, inode);
2038out:
2039	return ret;
2040}
2041
2042static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2043{
2044	struct inode *inode = dentry->d_inode;
2045
2046	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2047		shmem_free_inode(inode->i_sb);
2048
2049	dir->i_size -= BOGO_DIRENT_SIZE;
2050	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2051	drop_nlink(inode);
2052	dput(dentry);	/* Undo the count from "create" - this does all the work */
2053	return 0;
2054}
2055
2056static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2057{
2058	if (!simple_empty(dentry))
2059		return -ENOTEMPTY;
2060
2061	drop_nlink(dentry->d_inode);
2062	drop_nlink(dir);
2063	return shmem_unlink(dir, dentry);
2064}
2065
2066/*
2067 * The VFS layer already does all the dentry stuff for rename,
2068 * we just have to decrement the usage count for the target if
2069 * it exists so that the VFS layer correctly free's it when it
2070 * gets overwritten.
2071 */
2072static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2073{
2074	struct inode *inode = old_dentry->d_inode;
2075	int they_are_dirs = S_ISDIR(inode->i_mode);
2076
2077	if (!simple_empty(new_dentry))
2078		return -ENOTEMPTY;
2079
2080	if (new_dentry->d_inode) {
2081		(void) shmem_unlink(new_dir, new_dentry);
2082		if (they_are_dirs)
2083			drop_nlink(old_dir);
2084	} else if (they_are_dirs) {
2085		drop_nlink(old_dir);
2086		inc_nlink(new_dir);
2087	}
2088
2089	old_dir->i_size -= BOGO_DIRENT_SIZE;
2090	new_dir->i_size += BOGO_DIRENT_SIZE;
2091	old_dir->i_ctime = old_dir->i_mtime =
2092	new_dir->i_ctime = new_dir->i_mtime =
2093	inode->i_ctime = CURRENT_TIME;
2094	return 0;
2095}
2096
2097static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2098{
2099	int error;
2100	int len;
2101	struct inode *inode;
2102	struct page *page;
2103	char *kaddr;
2104	struct shmem_inode_info *info;
2105
2106	len = strlen(symname) + 1;
2107	if (len > PAGE_CACHE_SIZE)
2108		return -ENAMETOOLONG;
2109
2110	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2111	if (!inode)
2112		return -ENOSPC;
2113
2114	error = security_inode_init_security(inode, dir, &dentry->d_name,
2115					     shmem_initxattrs, NULL);
2116	if (error) {
2117		if (error != -EOPNOTSUPP) {
2118			iput(inode);
2119			return error;
2120		}
2121		error = 0;
2122	}
2123
2124	info = SHMEM_I(inode);
2125	inode->i_size = len-1;
2126	if (len <= SHORT_SYMLINK_LEN) {
2127		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2128		if (!info->symlink) {
2129			iput(inode);
2130			return -ENOMEM;
2131		}
2132		inode->i_op = &shmem_short_symlink_operations;
2133	} else {
2134		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2135		if (error) {
2136			iput(inode);
2137			return error;
2138		}
2139		inode->i_mapping->a_ops = &shmem_aops;
2140		inode->i_op = &shmem_symlink_inode_operations;
2141		kaddr = kmap_atomic(page);
2142		memcpy(kaddr, symname, len);
2143		kunmap_atomic(kaddr);
2144		SetPageUptodate(page);
2145		set_page_dirty(page);
2146		unlock_page(page);
2147		page_cache_release(page);
2148	}
2149	dir->i_size += BOGO_DIRENT_SIZE;
2150	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2151	d_instantiate(dentry, inode);
2152	dget(dentry);
2153	return 0;
2154}
2155
2156static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2157{
2158	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2159	return NULL;
2160}
2161
2162static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2163{
2164	struct page *page = NULL;
2165	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2166	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2167	if (page)
2168		unlock_page(page);
2169	return page;
2170}
2171
2172static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2173{
2174	if (!IS_ERR(nd_get_link(nd))) {
2175		struct page *page = cookie;
2176		kunmap(page);
2177		mark_page_accessed(page);
2178		page_cache_release(page);
2179	}
2180}
2181
2182#ifdef CONFIG_TMPFS_XATTR
2183/*
2184 * Superblocks without xattr inode operations may get some security.* xattr
2185 * support from the LSM "for free". As soon as we have any other xattrs
2186 * like ACLs, we also need to implement the security.* handlers at
2187 * filesystem level, though.
2188 */
2189
2190/*
2191 * Callback for security_inode_init_security() for acquiring xattrs.
2192 */
2193static int shmem_initxattrs(struct inode *inode,
2194			    const struct xattr *xattr_array,
2195			    void *fs_info)
2196{
2197	struct shmem_inode_info *info = SHMEM_I(inode);
2198	const struct xattr *xattr;
2199	struct simple_xattr *new_xattr;
2200	size_t len;
2201
2202	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2203		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2204		if (!new_xattr)
2205			return -ENOMEM;
2206
2207		len = strlen(xattr->name) + 1;
2208		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2209					  GFP_KERNEL);
2210		if (!new_xattr->name) {
2211			kfree(new_xattr);
2212			return -ENOMEM;
2213		}
2214
2215		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2216		       XATTR_SECURITY_PREFIX_LEN);
2217		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2218		       xattr->name, len);
2219
2220		simple_xattr_list_add(&info->xattrs, new_xattr);
2221	}
2222
2223	return 0;
2224}
2225
2226static const struct xattr_handler *shmem_xattr_handlers[] = {
2227#ifdef CONFIG_TMPFS_POSIX_ACL
2228	&generic_acl_access_handler,
2229	&generic_acl_default_handler,
2230#endif
2231	NULL
2232};
2233
2234static int shmem_xattr_validate(const char *name)
2235{
2236	struct { const char *prefix; size_t len; } arr[] = {
2237		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2238		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2239	};
2240	int i;
2241
2242	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2243		size_t preflen = arr[i].len;
2244		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2245			if (!name[preflen])
2246				return -EINVAL;
2247			return 0;
2248		}
2249	}
2250	return -EOPNOTSUPP;
2251}
2252
2253static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2254			      void *buffer, size_t size)
2255{
2256	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2257	int err;
2258
2259	/*
2260	 * If this is a request for a synthetic attribute in the system.*
2261	 * namespace use the generic infrastructure to resolve a handler
2262	 * for it via sb->s_xattr.
2263	 */
2264	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2265		return generic_getxattr(dentry, name, buffer, size);
2266
2267	err = shmem_xattr_validate(name);
2268	if (err)
2269		return err;
2270
2271	return simple_xattr_get(&info->xattrs, name, buffer, size);
2272}
2273
2274static int shmem_setxattr(struct dentry *dentry, const char *name,
2275			  const void *value, size_t size, int flags)
2276{
2277	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2278	int err;
2279
2280	/*
2281	 * If this is a request for a synthetic attribute in the system.*
2282	 * namespace use the generic infrastructure to resolve a handler
2283	 * for it via sb->s_xattr.
2284	 */
2285	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2286		return generic_setxattr(dentry, name, value, size, flags);
2287
2288	err = shmem_xattr_validate(name);
2289	if (err)
2290		return err;
2291
2292	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2293}
2294
2295static int shmem_removexattr(struct dentry *dentry, const char *name)
2296{
2297	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2298	int err;
2299
2300	/*
2301	 * If this is a request for a synthetic attribute in the system.*
2302	 * namespace use the generic infrastructure to resolve a handler
2303	 * for it via sb->s_xattr.
2304	 */
2305	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2306		return generic_removexattr(dentry, name);
2307
2308	err = shmem_xattr_validate(name);
2309	if (err)
2310		return err;
2311
2312	return simple_xattr_remove(&info->xattrs, name);
2313}
2314
2315static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2316{
2317	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2318	return simple_xattr_list(&info->xattrs, buffer, size);
2319}
2320#endif /* CONFIG_TMPFS_XATTR */
2321
2322static const struct inode_operations shmem_short_symlink_operations = {
2323	.readlink	= generic_readlink,
2324	.follow_link	= shmem_follow_short_symlink,
2325#ifdef CONFIG_TMPFS_XATTR
2326	.setxattr	= shmem_setxattr,
2327	.getxattr	= shmem_getxattr,
2328	.listxattr	= shmem_listxattr,
2329	.removexattr	= shmem_removexattr,
2330#endif
2331};
2332
2333static const struct inode_operations shmem_symlink_inode_operations = {
2334	.readlink	= generic_readlink,
2335	.follow_link	= shmem_follow_link,
2336	.put_link	= shmem_put_link,
2337#ifdef CONFIG_TMPFS_XATTR
2338	.setxattr	= shmem_setxattr,
2339	.getxattr	= shmem_getxattr,
2340	.listxattr	= shmem_listxattr,
2341	.removexattr	= shmem_removexattr,
2342#endif
2343};
2344
2345static struct dentry *shmem_get_parent(struct dentry *child)
2346{
2347	return ERR_PTR(-ESTALE);
2348}
2349
2350static int shmem_match(struct inode *ino, void *vfh)
2351{
2352	__u32 *fh = vfh;
2353	__u64 inum = fh[2];
2354	inum = (inum << 32) | fh[1];
2355	return ino->i_ino == inum && fh[0] == ino->i_generation;
2356}
2357
2358static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2359		struct fid *fid, int fh_len, int fh_type)
2360{
2361	struct inode *inode;
2362	struct dentry *dentry = NULL;
2363	u64 inum;
2364
2365	if (fh_len < 3)
2366		return NULL;
2367
2368	inum = fid->raw[2];
2369	inum = (inum << 32) | fid->raw[1];
2370
2371	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2372			shmem_match, fid->raw);
2373	if (inode) {
2374		dentry = d_find_alias(inode);
2375		iput(inode);
2376	}
2377
2378	return dentry;
2379}
2380
2381static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2382				struct inode *parent)
2383{
2384	if (*len < 3) {
2385		*len = 3;
2386		return FILEID_INVALID;
2387	}
2388
2389	if (inode_unhashed(inode)) {
2390		/* Unfortunately insert_inode_hash is not idempotent,
2391		 * so as we hash inodes here rather than at creation
2392		 * time, we need a lock to ensure we only try
2393		 * to do it once
2394		 */
2395		static DEFINE_SPINLOCK(lock);
2396		spin_lock(&lock);
2397		if (inode_unhashed(inode))
2398			__insert_inode_hash(inode,
2399					    inode->i_ino + inode->i_generation);
2400		spin_unlock(&lock);
2401	}
2402
2403	fh[0] = inode->i_generation;
2404	fh[1] = inode->i_ino;
2405	fh[2] = ((__u64)inode->i_ino) >> 32;
2406
2407	*len = 3;
2408	return 1;
2409}
2410
2411static const struct export_operations shmem_export_ops = {
2412	.get_parent     = shmem_get_parent,
2413	.encode_fh      = shmem_encode_fh,
2414	.fh_to_dentry	= shmem_fh_to_dentry,
2415};
2416
2417static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2418			       bool remount)
2419{
2420	char *this_char, *value, *rest;
2421	struct mempolicy *mpol = NULL;
2422	uid_t uid;
2423	gid_t gid;
2424
2425	while (options != NULL) {
2426		this_char = options;
2427		for (;;) {
2428			/*
2429			 * NUL-terminate this option: unfortunately,
2430			 * mount options form a comma-separated list,
2431			 * but mpol's nodelist may also contain commas.
2432			 */
2433			options = strchr(options, ',');
2434			if (options == NULL)
2435				break;
2436			options++;
2437			if (!isdigit(*options)) {
2438				options[-1] = '\0';
2439				break;
2440			}
2441		}
2442		if (!*this_char)
2443			continue;
2444		if ((value = strchr(this_char,'=')) != NULL) {
2445			*value++ = 0;
2446		} else {
2447			printk(KERN_ERR
2448			    "tmpfs: No value for mount option '%s'\n",
2449			    this_char);
2450			goto error;
2451		}
2452
2453		if (!strcmp(this_char,"size")) {
2454			unsigned long long size;
2455			size = memparse(value,&rest);
2456			if (*rest == '%') {
2457				size <<= PAGE_SHIFT;
2458				size *= totalram_pages;
2459				do_div(size, 100);
2460				rest++;
2461			}
2462			if (*rest)
2463				goto bad_val;
2464			sbinfo->max_blocks =
2465				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2466		} else if (!strcmp(this_char,"nr_blocks")) {
2467			sbinfo->max_blocks = memparse(value, &rest);
2468			if (*rest)
2469				goto bad_val;
2470		} else if (!strcmp(this_char,"nr_inodes")) {
2471			sbinfo->max_inodes = memparse(value, &rest);
2472			if (*rest)
2473				goto bad_val;
2474		} else if (!strcmp(this_char,"mode")) {
2475			if (remount)
2476				continue;
2477			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2478			if (*rest)
2479				goto bad_val;
2480		} else if (!strcmp(this_char,"uid")) {
2481			if (remount)
2482				continue;
2483			uid = simple_strtoul(value, &rest, 0);
2484			if (*rest)
2485				goto bad_val;
2486			sbinfo->uid = make_kuid(current_user_ns(), uid);
2487			if (!uid_valid(sbinfo->uid))
2488				goto bad_val;
2489		} else if (!strcmp(this_char,"gid")) {
2490			if (remount)
2491				continue;
2492			gid = simple_strtoul(value, &rest, 0);
2493			if (*rest)
2494				goto bad_val;
2495			sbinfo->gid = make_kgid(current_user_ns(), gid);
2496			if (!gid_valid(sbinfo->gid))
2497				goto bad_val;
2498		} else if (!strcmp(this_char,"mpol")) {
2499			mpol_put(mpol);
2500			mpol = NULL;
2501			if (mpol_parse_str(value, &mpol))
2502				goto bad_val;
2503		} else {
2504			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2505			       this_char);
2506			goto error;
2507		}
2508	}
2509	sbinfo->mpol = mpol;
2510	return 0;
2511
2512bad_val:
2513	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2514	       value, this_char);
2515error:
2516	mpol_put(mpol);
2517	return 1;
2518
2519}
2520
2521static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2522{
2523	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2524	struct shmem_sb_info config = *sbinfo;
2525	unsigned long inodes;
2526	int error = -EINVAL;
2527
2528	config.mpol = NULL;
2529	if (shmem_parse_options(data, &config, true))
2530		return error;
2531
2532	spin_lock(&sbinfo->stat_lock);
2533	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2534	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2535		goto out;
2536	if (config.max_inodes < inodes)
2537		goto out;
2538	/*
2539	 * Those tests disallow limited->unlimited while any are in use;
2540	 * but we must separately disallow unlimited->limited, because
2541	 * in that case we have no record of how much is already in use.
2542	 */
2543	if (config.max_blocks && !sbinfo->max_blocks)
2544		goto out;
2545	if (config.max_inodes && !sbinfo->max_inodes)
2546		goto out;
2547
2548	error = 0;
2549	sbinfo->max_blocks  = config.max_blocks;
2550	sbinfo->max_inodes  = config.max_inodes;
2551	sbinfo->free_inodes = config.max_inodes - inodes;
2552
2553	/*
2554	 * Preserve previous mempolicy unless mpol remount option was specified.
2555	 */
2556	if (config.mpol) {
2557		mpol_put(sbinfo->mpol);
2558		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2559	}
2560out:
2561	spin_unlock(&sbinfo->stat_lock);
2562	return error;
2563}
2564
2565static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2566{
2567	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2568
2569	if (sbinfo->max_blocks != shmem_default_max_blocks())
2570		seq_printf(seq, ",size=%luk",
2571			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2572	if (sbinfo->max_inodes != shmem_default_max_inodes())
2573		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2574	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2575		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2576	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2577		seq_printf(seq, ",uid=%u",
2578				from_kuid_munged(&init_user_ns, sbinfo->uid));
2579	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2580		seq_printf(seq, ",gid=%u",
2581				from_kgid_munged(&init_user_ns, sbinfo->gid));
2582	shmem_show_mpol(seq, sbinfo->mpol);
2583	return 0;
2584}
2585#endif /* CONFIG_TMPFS */
2586
2587static void shmem_put_super(struct super_block *sb)
2588{
2589	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2590
2591	percpu_counter_destroy(&sbinfo->used_blocks);
2592	mpol_put(sbinfo->mpol);
2593	kfree(sbinfo);
2594	sb->s_fs_info = NULL;
2595}
2596
2597int shmem_fill_super(struct super_block *sb, void *data, int silent)
2598{
2599	struct inode *inode;
2600	struct shmem_sb_info *sbinfo;
2601	int err = -ENOMEM;
2602
2603	/* Round up to L1_CACHE_BYTES to resist false sharing */
2604	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2605				L1_CACHE_BYTES), GFP_KERNEL);
2606	if (!sbinfo)
2607		return -ENOMEM;
2608
2609	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2610	sbinfo->uid = current_fsuid();
2611	sbinfo->gid = current_fsgid();
2612	sb->s_fs_info = sbinfo;
2613
2614#ifdef CONFIG_TMPFS
2615	/*
2616	 * Per default we only allow half of the physical ram per
2617	 * tmpfs instance, limiting inodes to one per page of lowmem;
2618	 * but the internal instance is left unlimited.
2619	 */
2620	if (!(sb->s_flags & MS_NOUSER)) {
2621		sbinfo->max_blocks = shmem_default_max_blocks();
2622		sbinfo->max_inodes = shmem_default_max_inodes();
2623		if (shmem_parse_options(data, sbinfo, false)) {
2624			err = -EINVAL;
2625			goto failed;
2626		}
2627	}
2628	sb->s_export_op = &shmem_export_ops;
2629	sb->s_flags |= MS_NOSEC;
2630#else
2631	sb->s_flags |= MS_NOUSER;
2632#endif
2633
2634	spin_lock_init(&sbinfo->stat_lock);
2635	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2636		goto failed;
2637	sbinfo->free_inodes = sbinfo->max_inodes;
2638
2639	sb->s_maxbytes = MAX_LFS_FILESIZE;
2640	sb->s_blocksize = PAGE_CACHE_SIZE;
2641	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2642	sb->s_magic = TMPFS_MAGIC;
2643	sb->s_op = &shmem_ops;
2644	sb->s_time_gran = 1;
2645#ifdef CONFIG_TMPFS_XATTR
2646	sb->s_xattr = shmem_xattr_handlers;
2647#endif
2648#ifdef CONFIG_TMPFS_POSIX_ACL
2649	sb->s_flags |= MS_POSIXACL;
2650#endif
2651
2652	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2653	if (!inode)
2654		goto failed;
2655	inode->i_uid = sbinfo->uid;
2656	inode->i_gid = sbinfo->gid;
2657	sb->s_root = d_make_root(inode);
2658	if (!sb->s_root)
2659		goto failed;
2660	return 0;
2661
2662failed:
2663	shmem_put_super(sb);
2664	return err;
2665}
2666
2667static struct kmem_cache *shmem_inode_cachep;
2668
2669static struct inode *shmem_alloc_inode(struct super_block *sb)
2670{
2671	struct shmem_inode_info *info;
2672	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2673	if (!info)
2674		return NULL;
2675	return &info->vfs_inode;
2676}
2677
2678static void shmem_destroy_callback(struct rcu_head *head)
2679{
2680	struct inode *inode = container_of(head, struct inode, i_rcu);
2681	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2682}
2683
2684static void shmem_destroy_inode(struct inode *inode)
2685{
2686	if (S_ISREG(inode->i_mode))
2687		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2688	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2689}
2690
2691static void shmem_init_inode(void *foo)
2692{
2693	struct shmem_inode_info *info = foo;
2694	inode_init_once(&info->vfs_inode);
2695}
2696
2697static int shmem_init_inodecache(void)
2698{
2699	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2700				sizeof(struct shmem_inode_info),
2701				0, SLAB_PANIC, shmem_init_inode);
2702	return 0;
2703}
2704
2705static void shmem_destroy_inodecache(void)
2706{
2707	kmem_cache_destroy(shmem_inode_cachep);
2708}
2709
2710static const struct address_space_operations shmem_aops = {
2711	.writepage	= shmem_writepage,
2712	.set_page_dirty	= __set_page_dirty_no_writeback,
2713#ifdef CONFIG_TMPFS
2714	.write_begin	= shmem_write_begin,
2715	.write_end	= shmem_write_end,
2716#endif
2717	.migratepage	= migrate_page,
2718	.error_remove_page = generic_error_remove_page,
2719};
2720
2721static const struct file_operations shmem_file_operations = {
2722	.mmap		= shmem_mmap,
2723#ifdef CONFIG_TMPFS
2724	.llseek		= shmem_file_llseek,
2725	.read		= do_sync_read,
2726	.write		= do_sync_write,
2727	.aio_read	= shmem_file_aio_read,
2728	.aio_write	= generic_file_aio_write,
2729	.fsync		= noop_fsync,
2730	.splice_read	= shmem_file_splice_read,
2731	.splice_write	= generic_file_splice_write,
2732	.fallocate	= shmem_fallocate,
2733#endif
2734};
2735
2736static const struct inode_operations shmem_inode_operations = {
2737	.setattr	= shmem_setattr,
2738#ifdef CONFIG_TMPFS_XATTR
2739	.setxattr	= shmem_setxattr,
2740	.getxattr	= shmem_getxattr,
2741	.listxattr	= shmem_listxattr,
2742	.removexattr	= shmem_removexattr,
2743#endif
2744};
2745
2746static const struct inode_operations shmem_dir_inode_operations = {
2747#ifdef CONFIG_TMPFS
2748	.create		= shmem_create,
2749	.lookup		= simple_lookup,
2750	.link		= shmem_link,
2751	.unlink		= shmem_unlink,
2752	.symlink	= shmem_symlink,
2753	.mkdir		= shmem_mkdir,
2754	.rmdir		= shmem_rmdir,
2755	.mknod		= shmem_mknod,
2756	.rename		= shmem_rename,
2757	.tmpfile	= shmem_tmpfile,
2758#endif
2759#ifdef CONFIG_TMPFS_XATTR
2760	.setxattr	= shmem_setxattr,
2761	.getxattr	= shmem_getxattr,
2762	.listxattr	= shmem_listxattr,
2763	.removexattr	= shmem_removexattr,
2764#endif
2765#ifdef CONFIG_TMPFS_POSIX_ACL
2766	.setattr	= shmem_setattr,
2767#endif
2768};
2769
2770static const struct inode_operations shmem_special_inode_operations = {
2771#ifdef CONFIG_TMPFS_XATTR
2772	.setxattr	= shmem_setxattr,
2773	.getxattr	= shmem_getxattr,
2774	.listxattr	= shmem_listxattr,
2775	.removexattr	= shmem_removexattr,
2776#endif
2777#ifdef CONFIG_TMPFS_POSIX_ACL
2778	.setattr	= shmem_setattr,
2779#endif
2780};
2781
2782static const struct super_operations shmem_ops = {
2783	.alloc_inode	= shmem_alloc_inode,
2784	.destroy_inode	= shmem_destroy_inode,
2785#ifdef CONFIG_TMPFS
2786	.statfs		= shmem_statfs,
2787	.remount_fs	= shmem_remount_fs,
2788	.show_options	= shmem_show_options,
2789#endif
2790	.evict_inode	= shmem_evict_inode,
2791	.drop_inode	= generic_delete_inode,
2792	.put_super	= shmem_put_super,
2793};
2794
2795static const struct vm_operations_struct shmem_vm_ops = {
2796	.fault		= shmem_fault,
2797#ifdef CONFIG_NUMA
2798	.set_policy     = shmem_set_policy,
2799	.get_policy     = shmem_get_policy,
2800#endif
2801	.remap_pages	= generic_file_remap_pages,
2802};
2803
2804static struct dentry *shmem_mount(struct file_system_type *fs_type,
2805	int flags, const char *dev_name, void *data)
2806{
2807	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2808}
2809
2810static struct file_system_type shmem_fs_type = {
2811	.owner		= THIS_MODULE,
2812	.name		= "tmpfs",
2813	.mount		= shmem_mount,
2814	.kill_sb	= kill_litter_super,
2815	.fs_flags	= FS_USERNS_MOUNT,
2816};
2817
2818int __init shmem_init(void)
2819{
2820	int error;
2821
2822	error = bdi_init(&shmem_backing_dev_info);
2823	if (error)
2824		goto out4;
2825
2826	error = shmem_init_inodecache();
2827	if (error)
2828		goto out3;
2829
2830	error = register_filesystem(&shmem_fs_type);
2831	if (error) {
2832		printk(KERN_ERR "Could not register tmpfs\n");
2833		goto out2;
2834	}
2835
2836	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2837				 shmem_fs_type.name, NULL);
2838	if (IS_ERR(shm_mnt)) {
2839		error = PTR_ERR(shm_mnt);
2840		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2841		goto out1;
2842	}
2843	return 0;
2844
2845out1:
2846	unregister_filesystem(&shmem_fs_type);
2847out2:
2848	shmem_destroy_inodecache();
2849out3:
2850	bdi_destroy(&shmem_backing_dev_info);
2851out4:
2852	shm_mnt = ERR_PTR(error);
2853	return error;
2854}
2855
2856#else /* !CONFIG_SHMEM */
2857
2858/*
2859 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2860 *
2861 * This is intended for small system where the benefits of the full
2862 * shmem code (swap-backed and resource-limited) are outweighed by
2863 * their complexity. On systems without swap this code should be
2864 * effectively equivalent, but much lighter weight.
2865 */
2866
2867static struct file_system_type shmem_fs_type = {
2868	.name		= "tmpfs",
2869	.mount		= ramfs_mount,
2870	.kill_sb	= kill_litter_super,
2871	.fs_flags	= FS_USERNS_MOUNT,
2872};
2873
2874int __init shmem_init(void)
2875{
2876	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2877
2878	shm_mnt = kern_mount(&shmem_fs_type);
2879	BUG_ON(IS_ERR(shm_mnt));
2880
2881	return 0;
2882}
2883
2884int shmem_unuse(swp_entry_t swap, struct page *page)
2885{
2886	return 0;
2887}
2888
2889int shmem_lock(struct file *file, int lock, struct user_struct *user)
2890{
2891	return 0;
2892}
2893
2894void shmem_unlock_mapping(struct address_space *mapping)
2895{
2896}
2897
2898void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2899{
2900	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2901}
2902EXPORT_SYMBOL_GPL(shmem_truncate_range);
2903
2904#define shmem_vm_ops				generic_file_vm_ops
2905#define shmem_file_operations			ramfs_file_operations
2906#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2907#define shmem_acct_size(flags, size)		0
2908#define shmem_unacct_size(flags, size)		do {} while (0)
2909
2910#endif /* CONFIG_SHMEM */
2911
2912/* common code */
2913
2914static char *shmem_dname(struct dentry *dentry, char *buffer, int buflen)
2915{
2916	return dynamic_dname(dentry, buffer, buflen, "/%s (deleted)",
2917				dentry->d_name.name);
2918}
2919
2920static struct dentry_operations anon_ops = {
2921	.d_dname = shmem_dname
2922};
2923
2924/**
2925 * shmem_file_setup - get an unlinked file living in tmpfs
2926 * @name: name for dentry (to be seen in /proc/<pid>/maps
2927 * @size: size to be set for the file
2928 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2929 */
2930struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2931{
2932	struct file *res;
2933	struct inode *inode;
2934	struct path path;
2935	struct super_block *sb;
2936	struct qstr this;
2937
2938	if (IS_ERR(shm_mnt))
2939		return ERR_CAST(shm_mnt);
2940
2941	if (size < 0 || size > MAX_LFS_FILESIZE)
2942		return ERR_PTR(-EINVAL);
2943
2944	if (shmem_acct_size(flags, size))
2945		return ERR_PTR(-ENOMEM);
2946
2947	res = ERR_PTR(-ENOMEM);
2948	this.name = name;
2949	this.len = strlen(name);
2950	this.hash = 0; /* will go */
2951	sb = shm_mnt->mnt_sb;
2952	path.dentry = d_alloc_pseudo(sb, &this);
2953	if (!path.dentry)
2954		goto put_memory;
2955	d_set_d_op(path.dentry, &anon_ops);
2956	path.mnt = mntget(shm_mnt);
2957
2958	res = ERR_PTR(-ENOSPC);
2959	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2960	if (!inode)
2961		goto put_dentry;
2962
2963	d_instantiate(path.dentry, inode);
2964	inode->i_size = size;
2965	clear_nlink(inode);	/* It is unlinked */
2966	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2967	if (IS_ERR(res))
2968		goto put_dentry;
2969
2970	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2971		  &shmem_file_operations);
2972	if (IS_ERR(res))
2973		goto put_dentry;
2974
2975	return res;
2976
2977put_dentry:
2978	path_put(&path);
2979put_memory:
2980	shmem_unacct_size(flags, size);
2981	return res;
2982}
2983EXPORT_SYMBOL_GPL(shmem_file_setup);
2984
2985/**
2986 * shmem_zero_setup - setup a shared anonymous mapping
2987 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2988 */
2989int shmem_zero_setup(struct vm_area_struct *vma)
2990{
2991	struct file *file;
2992	loff_t size = vma->vm_end - vma->vm_start;
2993
2994	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2995	if (IS_ERR(file))
2996		return PTR_ERR(file);
2997
2998	if (vma->vm_file)
2999		fput(vma->vm_file);
3000	vma->vm_file = file;
3001	vma->vm_ops = &shmem_vm_ops;
3002	return 0;
3003}
3004
3005/**
3006 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3007 * @mapping:	the page's address_space
3008 * @index:	the page index
3009 * @gfp:	the page allocator flags to use if allocating
3010 *
3011 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3012 * with any new page allocations done using the specified allocation flags.
3013 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3014 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3015 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3016 *
3017 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3018 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3019 */
3020struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3021					 pgoff_t index, gfp_t gfp)
3022{
3023#ifdef CONFIG_SHMEM
3024	struct inode *inode = mapping->host;
3025	struct page *page;
3026	int error;
3027
3028	BUG_ON(mapping->a_ops != &shmem_aops);
3029	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3030	if (error)
3031		page = ERR_PTR(error);
3032	else
3033		unlock_page(page);
3034	return page;
3035#else
3036	/*
3037	 * The tiny !SHMEM case uses ramfs without swap
3038	 */
3039	return read_cache_page_gfp(mapping, index, gfp);
3040#endif
3041}
3042EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3043