shmem.c revision 680d794babebc74484c141448baa9b95b211cf5e
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52#include <linux/seq_file.h>
53
54#include <asm/uaccess.h>
55#include <asm/div64.h>
56#include <asm/pgtable.h>
57
58/* This magic number is used in glibc for posix shared memory */
59#define TMPFS_MAGIC	0x01021994
60
61#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
64
65#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67
68#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69
70/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71#define SHMEM_PAGEIN	 VM_READ
72#define SHMEM_TRUNCATE	 VM_WRITE
73
74/* Definition to limit shmem_truncate's steps between cond_rescheds */
75#define LATENCY_LIMIT	 64
76
77/* Pretend that each entry is of this size in directory's i_size */
78#define BOGO_DIRENT_SIZE 20
79
80/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81enum sgp_type {
82	SGP_READ,	/* don't exceed i_size, don't allocate page */
83	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
85	SGP_WRITE,	/* may exceed i_size, may allocate page */
86};
87
88static unsigned long shmem_default_max_blocks(void)
89{
90	return totalram_pages / 2;
91}
92
93static unsigned long shmem_default_max_inodes(void)
94{
95	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
96}
97
98static int shmem_getpage(struct inode *inode, unsigned long idx,
99			 struct page **pagep, enum sgp_type sgp, int *type);
100
101static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
102{
103	/*
104	 * The above definition of ENTRIES_PER_PAGE, and the use of
105	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
106	 * might be reconsidered if it ever diverges from PAGE_SIZE.
107	 *
108	 * Mobility flags are masked out as swap vectors cannot move
109	 */
110	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
111				PAGE_CACHE_SHIFT-PAGE_SHIFT);
112}
113
114static inline void shmem_dir_free(struct page *page)
115{
116	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
117}
118
119static struct page **shmem_dir_map(struct page *page)
120{
121	return (struct page **)kmap_atomic(page, KM_USER0);
122}
123
124static inline void shmem_dir_unmap(struct page **dir)
125{
126	kunmap_atomic(dir, KM_USER0);
127}
128
129static swp_entry_t *shmem_swp_map(struct page *page)
130{
131	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
132}
133
134static inline void shmem_swp_balance_unmap(void)
135{
136	/*
137	 * When passing a pointer to an i_direct entry, to code which
138	 * also handles indirect entries and so will shmem_swp_unmap,
139	 * we must arrange for the preempt count to remain in balance.
140	 * What kmap_atomic of a lowmem page does depends on config
141	 * and architecture, so pretend to kmap_atomic some lowmem page.
142	 */
143	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
144}
145
146static inline void shmem_swp_unmap(swp_entry_t *entry)
147{
148	kunmap_atomic(entry, KM_USER1);
149}
150
151static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
152{
153	return sb->s_fs_info;
154}
155
156/*
157 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
158 * for shared memory and for shared anonymous (/dev/zero) mappings
159 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
160 * consistent with the pre-accounting of private mappings ...
161 */
162static inline int shmem_acct_size(unsigned long flags, loff_t size)
163{
164	return (flags & VM_ACCOUNT)?
165		security_vm_enough_memory(VM_ACCT(size)): 0;
166}
167
168static inline void shmem_unacct_size(unsigned long flags, loff_t size)
169{
170	if (flags & VM_ACCOUNT)
171		vm_unacct_memory(VM_ACCT(size));
172}
173
174/*
175 * ... whereas tmpfs objects are accounted incrementally as
176 * pages are allocated, in order to allow huge sparse files.
177 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
178 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
179 */
180static inline int shmem_acct_block(unsigned long flags)
181{
182	return (flags & VM_ACCOUNT)?
183		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
188	if (!(flags & VM_ACCOUNT))
189		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
190}
191
192static const struct super_operations shmem_ops;
193static const struct address_space_operations shmem_aops;
194static const struct file_operations shmem_file_operations;
195static const struct inode_operations shmem_inode_operations;
196static const struct inode_operations shmem_dir_inode_operations;
197static const struct inode_operations shmem_special_inode_operations;
198static struct vm_operations_struct shmem_vm_ops;
199
200static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
201	.ra_pages	= 0,	/* No readahead */
202	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
203	.unplug_io_fn	= default_unplug_io_fn,
204};
205
206static LIST_HEAD(shmem_swaplist);
207static DEFINE_MUTEX(shmem_swaplist_mutex);
208
209static void shmem_free_blocks(struct inode *inode, long pages)
210{
211	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
212	if (sbinfo->max_blocks) {
213		spin_lock(&sbinfo->stat_lock);
214		sbinfo->free_blocks += pages;
215		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
216		spin_unlock(&sbinfo->stat_lock);
217	}
218}
219
220static int shmem_reserve_inode(struct super_block *sb)
221{
222	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
223	if (sbinfo->max_inodes) {
224		spin_lock(&sbinfo->stat_lock);
225		if (!sbinfo->free_inodes) {
226			spin_unlock(&sbinfo->stat_lock);
227			return -ENOSPC;
228		}
229		sbinfo->free_inodes--;
230		spin_unlock(&sbinfo->stat_lock);
231	}
232	return 0;
233}
234
235static void shmem_free_inode(struct super_block *sb)
236{
237	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
238	if (sbinfo->max_inodes) {
239		spin_lock(&sbinfo->stat_lock);
240		sbinfo->free_inodes++;
241		spin_unlock(&sbinfo->stat_lock);
242	}
243}
244
245/*
246 * shmem_recalc_inode - recalculate the size of an inode
247 *
248 * @inode: inode to recalc
249 *
250 * We have to calculate the free blocks since the mm can drop
251 * undirtied hole pages behind our back.
252 *
253 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
254 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
255 *
256 * It has to be called with the spinlock held.
257 */
258static void shmem_recalc_inode(struct inode *inode)
259{
260	struct shmem_inode_info *info = SHMEM_I(inode);
261	long freed;
262
263	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
264	if (freed > 0) {
265		info->alloced -= freed;
266		shmem_unacct_blocks(info->flags, freed);
267		shmem_free_blocks(inode, freed);
268	}
269}
270
271/*
272 * shmem_swp_entry - find the swap vector position in the info structure
273 *
274 * @info:  info structure for the inode
275 * @index: index of the page to find
276 * @page:  optional page to add to the structure. Has to be preset to
277 *         all zeros
278 *
279 * If there is no space allocated yet it will return NULL when
280 * page is NULL, else it will use the page for the needed block,
281 * setting it to NULL on return to indicate that it has been used.
282 *
283 * The swap vector is organized the following way:
284 *
285 * There are SHMEM_NR_DIRECT entries directly stored in the
286 * shmem_inode_info structure. So small files do not need an addional
287 * allocation.
288 *
289 * For pages with index > SHMEM_NR_DIRECT there is the pointer
290 * i_indirect which points to a page which holds in the first half
291 * doubly indirect blocks, in the second half triple indirect blocks:
292 *
293 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
294 * following layout (for SHMEM_NR_DIRECT == 16):
295 *
296 * i_indirect -> dir --> 16-19
297 * 	      |	     +-> 20-23
298 * 	      |
299 * 	      +-->dir2 --> 24-27
300 * 	      |	       +-> 28-31
301 * 	      |	       +-> 32-35
302 * 	      |	       +-> 36-39
303 * 	      |
304 * 	      +-->dir3 --> 40-43
305 * 	       	       +-> 44-47
306 * 	      	       +-> 48-51
307 * 	      	       +-> 52-55
308 */
309static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
310{
311	unsigned long offset;
312	struct page **dir;
313	struct page *subdir;
314
315	if (index < SHMEM_NR_DIRECT) {
316		shmem_swp_balance_unmap();
317		return info->i_direct+index;
318	}
319	if (!info->i_indirect) {
320		if (page) {
321			info->i_indirect = *page;
322			*page = NULL;
323		}
324		return NULL;			/* need another page */
325	}
326
327	index -= SHMEM_NR_DIRECT;
328	offset = index % ENTRIES_PER_PAGE;
329	index /= ENTRIES_PER_PAGE;
330	dir = shmem_dir_map(info->i_indirect);
331
332	if (index >= ENTRIES_PER_PAGE/2) {
333		index -= ENTRIES_PER_PAGE/2;
334		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
335		index %= ENTRIES_PER_PAGE;
336		subdir = *dir;
337		if (!subdir) {
338			if (page) {
339				*dir = *page;
340				*page = NULL;
341			}
342			shmem_dir_unmap(dir);
343			return NULL;		/* need another page */
344		}
345		shmem_dir_unmap(dir);
346		dir = shmem_dir_map(subdir);
347	}
348
349	dir += index;
350	subdir = *dir;
351	if (!subdir) {
352		if (!page || !(subdir = *page)) {
353			shmem_dir_unmap(dir);
354			return NULL;		/* need a page */
355		}
356		*dir = subdir;
357		*page = NULL;
358	}
359	shmem_dir_unmap(dir);
360	return shmem_swp_map(subdir) + offset;
361}
362
363static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
364{
365	long incdec = value? 1: -1;
366
367	entry->val = value;
368	info->swapped += incdec;
369	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
370		struct page *page = kmap_atomic_to_page(entry);
371		set_page_private(page, page_private(page) + incdec);
372	}
373}
374
375/*
376 * shmem_swp_alloc - get the position of the swap entry for the page.
377 *                   If it does not exist allocate the entry.
378 *
379 * @info:	info structure for the inode
380 * @index:	index of the page to find
381 * @sgp:	check and recheck i_size? skip allocation?
382 */
383static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
384{
385	struct inode *inode = &info->vfs_inode;
386	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
387	struct page *page = NULL;
388	swp_entry_t *entry;
389
390	if (sgp != SGP_WRITE &&
391	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
392		return ERR_PTR(-EINVAL);
393
394	while (!(entry = shmem_swp_entry(info, index, &page))) {
395		if (sgp == SGP_READ)
396			return shmem_swp_map(ZERO_PAGE(0));
397		/*
398		 * Test free_blocks against 1 not 0, since we have 1 data
399		 * page (and perhaps indirect index pages) yet to allocate:
400		 * a waste to allocate index if we cannot allocate data.
401		 */
402		if (sbinfo->max_blocks) {
403			spin_lock(&sbinfo->stat_lock);
404			if (sbinfo->free_blocks <= 1) {
405				spin_unlock(&sbinfo->stat_lock);
406				return ERR_PTR(-ENOSPC);
407			}
408			sbinfo->free_blocks--;
409			inode->i_blocks += BLOCKS_PER_PAGE;
410			spin_unlock(&sbinfo->stat_lock);
411		}
412
413		spin_unlock(&info->lock);
414		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
415		if (page)
416			set_page_private(page, 0);
417		spin_lock(&info->lock);
418
419		if (!page) {
420			shmem_free_blocks(inode, 1);
421			return ERR_PTR(-ENOMEM);
422		}
423		if (sgp != SGP_WRITE &&
424		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
425			entry = ERR_PTR(-EINVAL);
426			break;
427		}
428		if (info->next_index <= index)
429			info->next_index = index + 1;
430	}
431	if (page) {
432		/* another task gave its page, or truncated the file */
433		shmem_free_blocks(inode, 1);
434		shmem_dir_free(page);
435	}
436	if (info->next_index <= index && !IS_ERR(entry))
437		info->next_index = index + 1;
438	return entry;
439}
440
441/*
442 * shmem_free_swp - free some swap entries in a directory
443 *
444 * @dir:        pointer to the directory
445 * @edir:       pointer after last entry of the directory
446 * @punch_lock: pointer to spinlock when needed for the holepunch case
447 */
448static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
449						spinlock_t *punch_lock)
450{
451	spinlock_t *punch_unlock = NULL;
452	swp_entry_t *ptr;
453	int freed = 0;
454
455	for (ptr = dir; ptr < edir; ptr++) {
456		if (ptr->val) {
457			if (unlikely(punch_lock)) {
458				punch_unlock = punch_lock;
459				punch_lock = NULL;
460				spin_lock(punch_unlock);
461				if (!ptr->val)
462					continue;
463			}
464			free_swap_and_cache(*ptr);
465			*ptr = (swp_entry_t){0};
466			freed++;
467		}
468	}
469	if (punch_unlock)
470		spin_unlock(punch_unlock);
471	return freed;
472}
473
474static int shmem_map_and_free_swp(struct page *subdir, int offset,
475		int limit, struct page ***dir, spinlock_t *punch_lock)
476{
477	swp_entry_t *ptr;
478	int freed = 0;
479
480	ptr = shmem_swp_map(subdir);
481	for (; offset < limit; offset += LATENCY_LIMIT) {
482		int size = limit - offset;
483		if (size > LATENCY_LIMIT)
484			size = LATENCY_LIMIT;
485		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
486							punch_lock);
487		if (need_resched()) {
488			shmem_swp_unmap(ptr);
489			if (*dir) {
490				shmem_dir_unmap(*dir);
491				*dir = NULL;
492			}
493			cond_resched();
494			ptr = shmem_swp_map(subdir);
495		}
496	}
497	shmem_swp_unmap(ptr);
498	return freed;
499}
500
501static void shmem_free_pages(struct list_head *next)
502{
503	struct page *page;
504	int freed = 0;
505
506	do {
507		page = container_of(next, struct page, lru);
508		next = next->next;
509		shmem_dir_free(page);
510		freed++;
511		if (freed >= LATENCY_LIMIT) {
512			cond_resched();
513			freed = 0;
514		}
515	} while (next);
516}
517
518static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
519{
520	struct shmem_inode_info *info = SHMEM_I(inode);
521	unsigned long idx;
522	unsigned long size;
523	unsigned long limit;
524	unsigned long stage;
525	unsigned long diroff;
526	struct page **dir;
527	struct page *topdir;
528	struct page *middir;
529	struct page *subdir;
530	swp_entry_t *ptr;
531	LIST_HEAD(pages_to_free);
532	long nr_pages_to_free = 0;
533	long nr_swaps_freed = 0;
534	int offset;
535	int freed;
536	int punch_hole;
537	spinlock_t *needs_lock;
538	spinlock_t *punch_lock;
539	unsigned long upper_limit;
540
541	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
542	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
543	if (idx >= info->next_index)
544		return;
545
546	spin_lock(&info->lock);
547	info->flags |= SHMEM_TRUNCATE;
548	if (likely(end == (loff_t) -1)) {
549		limit = info->next_index;
550		upper_limit = SHMEM_MAX_INDEX;
551		info->next_index = idx;
552		needs_lock = NULL;
553		punch_hole = 0;
554	} else {
555		if (end + 1 >= inode->i_size) {	/* we may free a little more */
556			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
557							PAGE_CACHE_SHIFT;
558			upper_limit = SHMEM_MAX_INDEX;
559		} else {
560			limit = (end + 1) >> PAGE_CACHE_SHIFT;
561			upper_limit = limit;
562		}
563		needs_lock = &info->lock;
564		punch_hole = 1;
565	}
566
567	topdir = info->i_indirect;
568	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
569		info->i_indirect = NULL;
570		nr_pages_to_free++;
571		list_add(&topdir->lru, &pages_to_free);
572	}
573	spin_unlock(&info->lock);
574
575	if (info->swapped && idx < SHMEM_NR_DIRECT) {
576		ptr = info->i_direct;
577		size = limit;
578		if (size > SHMEM_NR_DIRECT)
579			size = SHMEM_NR_DIRECT;
580		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
581	}
582
583	/*
584	 * If there are no indirect blocks or we are punching a hole
585	 * below indirect blocks, nothing to be done.
586	 */
587	if (!topdir || limit <= SHMEM_NR_DIRECT)
588		goto done2;
589
590	/*
591	 * The truncation case has already dropped info->lock, and we're safe
592	 * because i_size and next_index have already been lowered, preventing
593	 * access beyond.  But in the punch_hole case, we still need to take
594	 * the lock when updating the swap directory, because there might be
595	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
596	 * shmem_writepage.  However, whenever we find we can remove a whole
597	 * directory page (not at the misaligned start or end of the range),
598	 * we first NULLify its pointer in the level above, and then have no
599	 * need to take the lock when updating its contents: needs_lock and
600	 * punch_lock (either pointing to info->lock or NULL) manage this.
601	 */
602
603	upper_limit -= SHMEM_NR_DIRECT;
604	limit -= SHMEM_NR_DIRECT;
605	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
606	offset = idx % ENTRIES_PER_PAGE;
607	idx -= offset;
608
609	dir = shmem_dir_map(topdir);
610	stage = ENTRIES_PER_PAGEPAGE/2;
611	if (idx < ENTRIES_PER_PAGEPAGE/2) {
612		middir = topdir;
613		diroff = idx/ENTRIES_PER_PAGE;
614	} else {
615		dir += ENTRIES_PER_PAGE/2;
616		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
617		while (stage <= idx)
618			stage += ENTRIES_PER_PAGEPAGE;
619		middir = *dir;
620		if (*dir) {
621			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
622				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
623			if (!diroff && !offset && upper_limit >= stage) {
624				if (needs_lock) {
625					spin_lock(needs_lock);
626					*dir = NULL;
627					spin_unlock(needs_lock);
628					needs_lock = NULL;
629				} else
630					*dir = NULL;
631				nr_pages_to_free++;
632				list_add(&middir->lru, &pages_to_free);
633			}
634			shmem_dir_unmap(dir);
635			dir = shmem_dir_map(middir);
636		} else {
637			diroff = 0;
638			offset = 0;
639			idx = stage;
640		}
641	}
642
643	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
644		if (unlikely(idx == stage)) {
645			shmem_dir_unmap(dir);
646			dir = shmem_dir_map(topdir) +
647			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
648			while (!*dir) {
649				dir++;
650				idx += ENTRIES_PER_PAGEPAGE;
651				if (idx >= limit)
652					goto done1;
653			}
654			stage = idx + ENTRIES_PER_PAGEPAGE;
655			middir = *dir;
656			if (punch_hole)
657				needs_lock = &info->lock;
658			if (upper_limit >= stage) {
659				if (needs_lock) {
660					spin_lock(needs_lock);
661					*dir = NULL;
662					spin_unlock(needs_lock);
663					needs_lock = NULL;
664				} else
665					*dir = NULL;
666				nr_pages_to_free++;
667				list_add(&middir->lru, &pages_to_free);
668			}
669			shmem_dir_unmap(dir);
670			cond_resched();
671			dir = shmem_dir_map(middir);
672			diroff = 0;
673		}
674		punch_lock = needs_lock;
675		subdir = dir[diroff];
676		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
677			if (needs_lock) {
678				spin_lock(needs_lock);
679				dir[diroff] = NULL;
680				spin_unlock(needs_lock);
681				punch_lock = NULL;
682			} else
683				dir[diroff] = NULL;
684			nr_pages_to_free++;
685			list_add(&subdir->lru, &pages_to_free);
686		}
687		if (subdir && page_private(subdir) /* has swap entries */) {
688			size = limit - idx;
689			if (size > ENTRIES_PER_PAGE)
690				size = ENTRIES_PER_PAGE;
691			freed = shmem_map_and_free_swp(subdir,
692					offset, size, &dir, punch_lock);
693			if (!dir)
694				dir = shmem_dir_map(middir);
695			nr_swaps_freed += freed;
696			if (offset || punch_lock) {
697				spin_lock(&info->lock);
698				set_page_private(subdir,
699					page_private(subdir) - freed);
700				spin_unlock(&info->lock);
701			} else
702				BUG_ON(page_private(subdir) != freed);
703		}
704		offset = 0;
705	}
706done1:
707	shmem_dir_unmap(dir);
708done2:
709	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
710		/*
711		 * Call truncate_inode_pages again: racing shmem_unuse_inode
712		 * may have swizzled a page in from swap since vmtruncate or
713		 * generic_delete_inode did it, before we lowered next_index.
714		 * Also, though shmem_getpage checks i_size before adding to
715		 * cache, no recheck after: so fix the narrow window there too.
716		 *
717		 * Recalling truncate_inode_pages_range and unmap_mapping_range
718		 * every time for punch_hole (which never got a chance to clear
719		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
720		 * yet hardly ever necessary: try to optimize them out later.
721		 */
722		truncate_inode_pages_range(inode->i_mapping, start, end);
723		if (punch_hole)
724			unmap_mapping_range(inode->i_mapping, start,
725							end - start, 1);
726	}
727
728	spin_lock(&info->lock);
729	info->flags &= ~SHMEM_TRUNCATE;
730	info->swapped -= nr_swaps_freed;
731	if (nr_pages_to_free)
732		shmem_free_blocks(inode, nr_pages_to_free);
733	shmem_recalc_inode(inode);
734	spin_unlock(&info->lock);
735
736	/*
737	 * Empty swap vector directory pages to be freed?
738	 */
739	if (!list_empty(&pages_to_free)) {
740		pages_to_free.prev->next = NULL;
741		shmem_free_pages(pages_to_free.next);
742	}
743}
744
745static void shmem_truncate(struct inode *inode)
746{
747	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
748}
749
750static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
751{
752	struct inode *inode = dentry->d_inode;
753	struct page *page = NULL;
754	int error;
755
756	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
757		if (attr->ia_size < inode->i_size) {
758			/*
759			 * If truncating down to a partial page, then
760			 * if that page is already allocated, hold it
761			 * in memory until the truncation is over, so
762			 * truncate_partial_page cannnot miss it were
763			 * it assigned to swap.
764			 */
765			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
766				(void) shmem_getpage(inode,
767					attr->ia_size>>PAGE_CACHE_SHIFT,
768						&page, SGP_READ, NULL);
769				if (page)
770					unlock_page(page);
771			}
772			/*
773			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
774			 * detect if any pages might have been added to cache
775			 * after truncate_inode_pages.  But we needn't bother
776			 * if it's being fully truncated to zero-length: the
777			 * nrpages check is efficient enough in that case.
778			 */
779			if (attr->ia_size) {
780				struct shmem_inode_info *info = SHMEM_I(inode);
781				spin_lock(&info->lock);
782				info->flags &= ~SHMEM_PAGEIN;
783				spin_unlock(&info->lock);
784			}
785		}
786	}
787
788	error = inode_change_ok(inode, attr);
789	if (!error)
790		error = inode_setattr(inode, attr);
791#ifdef CONFIG_TMPFS_POSIX_ACL
792	if (!error && (attr->ia_valid & ATTR_MODE))
793		error = generic_acl_chmod(inode, &shmem_acl_ops);
794#endif
795	if (page)
796		page_cache_release(page);
797	return error;
798}
799
800static void shmem_delete_inode(struct inode *inode)
801{
802	struct shmem_inode_info *info = SHMEM_I(inode);
803
804	if (inode->i_op->truncate == shmem_truncate) {
805		truncate_inode_pages(inode->i_mapping, 0);
806		shmem_unacct_size(info->flags, inode->i_size);
807		inode->i_size = 0;
808		shmem_truncate(inode);
809		if (!list_empty(&info->swaplist)) {
810			mutex_lock(&shmem_swaplist_mutex);
811			list_del_init(&info->swaplist);
812			mutex_unlock(&shmem_swaplist_mutex);
813		}
814	}
815	BUG_ON(inode->i_blocks);
816	shmem_free_inode(inode->i_sb);
817	clear_inode(inode);
818}
819
820static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
821{
822	swp_entry_t *ptr;
823
824	for (ptr = dir; ptr < edir; ptr++) {
825		if (ptr->val == entry.val)
826			return ptr - dir;
827	}
828	return -1;
829}
830
831static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
832{
833	struct inode *inode;
834	unsigned long idx;
835	unsigned long size;
836	unsigned long limit;
837	unsigned long stage;
838	struct page **dir;
839	struct page *subdir;
840	swp_entry_t *ptr;
841	int offset;
842	int error;
843
844	idx = 0;
845	ptr = info->i_direct;
846	spin_lock(&info->lock);
847	if (!info->swapped) {
848		list_del_init(&info->swaplist);
849		goto lost2;
850	}
851	limit = info->next_index;
852	size = limit;
853	if (size > SHMEM_NR_DIRECT)
854		size = SHMEM_NR_DIRECT;
855	offset = shmem_find_swp(entry, ptr, ptr+size);
856	if (offset >= 0)
857		goto found;
858	if (!info->i_indirect)
859		goto lost2;
860
861	dir = shmem_dir_map(info->i_indirect);
862	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
863
864	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
865		if (unlikely(idx == stage)) {
866			shmem_dir_unmap(dir-1);
867			if (cond_resched_lock(&info->lock)) {
868				/* check it has not been truncated */
869				if (limit > info->next_index) {
870					limit = info->next_index;
871					if (idx >= limit)
872						goto lost2;
873				}
874			}
875			dir = shmem_dir_map(info->i_indirect) +
876			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
877			while (!*dir) {
878				dir++;
879				idx += ENTRIES_PER_PAGEPAGE;
880				if (idx >= limit)
881					goto lost1;
882			}
883			stage = idx + ENTRIES_PER_PAGEPAGE;
884			subdir = *dir;
885			shmem_dir_unmap(dir);
886			dir = shmem_dir_map(subdir);
887		}
888		subdir = *dir;
889		if (subdir && page_private(subdir)) {
890			ptr = shmem_swp_map(subdir);
891			size = limit - idx;
892			if (size > ENTRIES_PER_PAGE)
893				size = ENTRIES_PER_PAGE;
894			offset = shmem_find_swp(entry, ptr, ptr+size);
895			shmem_swp_unmap(ptr);
896			if (offset >= 0) {
897				shmem_dir_unmap(dir);
898				goto found;
899			}
900		}
901	}
902lost1:
903	shmem_dir_unmap(dir-1);
904lost2:
905	spin_unlock(&info->lock);
906	return 0;
907found:
908	idx += offset;
909	inode = igrab(&info->vfs_inode);
910	spin_unlock(&info->lock);
911
912	/*
913	 * Move _head_ to start search for next from here.
914	 * But be careful: shmem_delete_inode checks list_empty without taking
915	 * mutex, and there's an instant in list_move_tail when info->swaplist
916	 * would appear empty, if it were the only one on shmem_swaplist.  We
917	 * could avoid doing it if inode NULL; or use this minor optimization.
918	 */
919	if (shmem_swaplist.next != &info->swaplist)
920		list_move_tail(&shmem_swaplist, &info->swaplist);
921	mutex_unlock(&shmem_swaplist_mutex);
922
923	error = 1;
924	if (!inode)
925		goto out;
926	/* Precharge page while we can wait, compensate afterwards */
927	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
928	if (error)
929		goto out;
930	error = radix_tree_preload(GFP_KERNEL);
931	if (error)
932		goto uncharge;
933	error = 1;
934
935	spin_lock(&info->lock);
936	ptr = shmem_swp_entry(info, idx, NULL);
937	if (ptr && ptr->val == entry.val)
938		error = add_to_page_cache(page, inode->i_mapping,
939						idx, GFP_NOWAIT);
940	if (error == -EEXIST) {
941		struct page *filepage = find_get_page(inode->i_mapping, idx);
942		error = 1;
943		if (filepage) {
944			/*
945			 * There might be a more uptodate page coming down
946			 * from a stacked writepage: forget our swappage if so.
947			 */
948			if (PageUptodate(filepage))
949				error = 0;
950			page_cache_release(filepage);
951		}
952	}
953	if (!error) {
954		delete_from_swap_cache(page);
955		set_page_dirty(page);
956		info->flags |= SHMEM_PAGEIN;
957		shmem_swp_set(info, ptr, 0);
958		swap_free(entry);
959		error = 1;	/* not an error, but entry was found */
960	}
961	if (ptr)
962		shmem_swp_unmap(ptr);
963	spin_unlock(&info->lock);
964	radix_tree_preload_end();
965uncharge:
966	mem_cgroup_uncharge_page(page);
967out:
968	unlock_page(page);
969	page_cache_release(page);
970	iput(inode);		/* allows for NULL */
971	return error;
972}
973
974/*
975 * shmem_unuse() search for an eventually swapped out shmem page.
976 */
977int shmem_unuse(swp_entry_t entry, struct page *page)
978{
979	struct list_head *p, *next;
980	struct shmem_inode_info *info;
981	int found = 0;
982
983	mutex_lock(&shmem_swaplist_mutex);
984	list_for_each_safe(p, next, &shmem_swaplist) {
985		info = list_entry(p, struct shmem_inode_info, swaplist);
986		found = shmem_unuse_inode(info, entry, page);
987		cond_resched();
988		if (found)
989			goto out;
990	}
991	mutex_unlock(&shmem_swaplist_mutex);
992out:	return found;	/* 0 or 1 or -ENOMEM */
993}
994
995/*
996 * Move the page from the page cache to the swap cache.
997 */
998static int shmem_writepage(struct page *page, struct writeback_control *wbc)
999{
1000	struct shmem_inode_info *info;
1001	swp_entry_t *entry, swap;
1002	struct address_space *mapping;
1003	unsigned long index;
1004	struct inode *inode;
1005
1006	BUG_ON(!PageLocked(page));
1007	mapping = page->mapping;
1008	index = page->index;
1009	inode = mapping->host;
1010	info = SHMEM_I(inode);
1011	if (info->flags & VM_LOCKED)
1012		goto redirty;
1013	if (!total_swap_pages)
1014		goto redirty;
1015
1016	/*
1017	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1018	 * sync from ever calling shmem_writepage; but a stacking filesystem
1019	 * may use the ->writepage of its underlying filesystem, in which case
1020	 * tmpfs should write out to swap only in response to memory pressure,
1021	 * and not for pdflush or sync.  However, in those cases, we do still
1022	 * want to check if there's a redundant swappage to be discarded.
1023	 */
1024	if (wbc->for_reclaim)
1025		swap = get_swap_page();
1026	else
1027		swap.val = 0;
1028
1029	spin_lock(&info->lock);
1030	if (index >= info->next_index) {
1031		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1032		goto unlock;
1033	}
1034	entry = shmem_swp_entry(info, index, NULL);
1035	if (entry->val) {
1036		/*
1037		 * The more uptodate page coming down from a stacked
1038		 * writepage should replace our old swappage.
1039		 */
1040		free_swap_and_cache(*entry);
1041		shmem_swp_set(info, entry, 0);
1042	}
1043	shmem_recalc_inode(inode);
1044
1045	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1046		remove_from_page_cache(page);
1047		shmem_swp_set(info, entry, swap.val);
1048		shmem_swp_unmap(entry);
1049		if (list_empty(&info->swaplist))
1050			inode = igrab(inode);
1051		else
1052			inode = NULL;
1053		spin_unlock(&info->lock);
1054		swap_duplicate(swap);
1055		BUG_ON(page_mapped(page));
1056		page_cache_release(page);	/* pagecache ref */
1057		set_page_dirty(page);
1058		unlock_page(page);
1059		if (inode) {
1060			mutex_lock(&shmem_swaplist_mutex);
1061			/* move instead of add in case we're racing */
1062			list_move_tail(&info->swaplist, &shmem_swaplist);
1063			mutex_unlock(&shmem_swaplist_mutex);
1064			iput(inode);
1065		}
1066		return 0;
1067	}
1068
1069	shmem_swp_unmap(entry);
1070unlock:
1071	spin_unlock(&info->lock);
1072	swap_free(swap);
1073redirty:
1074	set_page_dirty(page);
1075	if (wbc->for_reclaim)
1076		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1077	unlock_page(page);
1078	return 0;
1079}
1080
1081#ifdef CONFIG_NUMA
1082#ifdef CONFIG_TMPFS
1083static int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1084{
1085	char *nodelist = strchr(value, ':');
1086	int err = 1;
1087
1088	if (nodelist) {
1089		/* NUL-terminate policy string */
1090		*nodelist++ = '\0';
1091		if (nodelist_parse(nodelist, *policy_nodes))
1092			goto out;
1093		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1094			goto out;
1095	}
1096	if (!strcmp(value, "default")) {
1097		*policy = MPOL_DEFAULT;
1098		/* Don't allow a nodelist */
1099		if (!nodelist)
1100			err = 0;
1101	} else if (!strcmp(value, "prefer")) {
1102		*policy = MPOL_PREFERRED;
1103		/* Insist on a nodelist of one node only */
1104		if (nodelist) {
1105			char *rest = nodelist;
1106			while (isdigit(*rest))
1107				rest++;
1108			if (!*rest)
1109				err = 0;
1110		}
1111	} else if (!strcmp(value, "bind")) {
1112		*policy = MPOL_BIND;
1113		/* Insist on a nodelist */
1114		if (nodelist)
1115			err = 0;
1116	} else if (!strcmp(value, "interleave")) {
1117		*policy = MPOL_INTERLEAVE;
1118		/*
1119		 * Default to online nodes with memory if no nodelist
1120		 */
1121		if (!nodelist)
1122			*policy_nodes = node_states[N_HIGH_MEMORY];
1123		err = 0;
1124	}
1125out:
1126	/* Restore string for error message */
1127	if (nodelist)
1128		*--nodelist = ':';
1129	return err;
1130}
1131
1132static void shmem_show_mpol(struct seq_file *seq, int policy,
1133			    const nodemask_t policy_nodes)
1134{
1135	char *policy_string;
1136
1137	switch (policy) {
1138	case MPOL_PREFERRED:
1139		policy_string = "prefer";
1140		break;
1141	case MPOL_BIND:
1142		policy_string = "bind";
1143		break;
1144	case MPOL_INTERLEAVE:
1145		policy_string = "interleave";
1146		break;
1147	default:
1148		/* MPOL_DEFAULT */
1149		return;
1150	}
1151
1152	seq_printf(seq, ",mpol=%s", policy_string);
1153
1154	if (policy != MPOL_INTERLEAVE ||
1155	    !nodes_equal(policy_nodes, node_states[N_HIGH_MEMORY])) {
1156		char buffer[64];
1157		int len;
1158
1159		len = nodelist_scnprintf(buffer, sizeof(buffer), policy_nodes);
1160		if (len < sizeof(buffer))
1161			seq_printf(seq, ":%s", buffer);
1162		else
1163			seq_printf(seq, ":?");
1164	}
1165}
1166#endif /* CONFIG_TMPFS */
1167
1168static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1169			struct shmem_inode_info *info, unsigned long idx)
1170{
1171	struct vm_area_struct pvma;
1172	struct page *page;
1173
1174	/* Create a pseudo vma that just contains the policy */
1175	pvma.vm_start = 0;
1176	pvma.vm_pgoff = idx;
1177	pvma.vm_ops = NULL;
1178	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1179	page = swapin_readahead(entry, gfp, &pvma, 0);
1180	mpol_free(pvma.vm_policy);
1181	return page;
1182}
1183
1184static struct page *shmem_alloc_page(gfp_t gfp,
1185			struct shmem_inode_info *info, unsigned long idx)
1186{
1187	struct vm_area_struct pvma;
1188	struct page *page;
1189
1190	/* Create a pseudo vma that just contains the policy */
1191	pvma.vm_start = 0;
1192	pvma.vm_pgoff = idx;
1193	pvma.vm_ops = NULL;
1194	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1195	page = alloc_page_vma(gfp, &pvma, 0);
1196	mpol_free(pvma.vm_policy);
1197	return page;
1198}
1199#else /* !CONFIG_NUMA */
1200#ifdef CONFIG_TMPFS
1201static inline int shmem_parse_mpol(char *value, int *policy,
1202						nodemask_t *policy_nodes)
1203{
1204	return 1;
1205}
1206
1207static inline void shmem_show_mpol(struct seq_file *seq, int policy,
1208			    const nodemask_t policy_nodes)
1209{
1210}
1211#endif /* CONFIG_TMPFS */
1212
1213static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1214			struct shmem_inode_info *info, unsigned long idx)
1215{
1216	return swapin_readahead(entry, gfp, NULL, 0);
1217}
1218
1219static inline struct page *shmem_alloc_page(gfp_t gfp,
1220			struct shmem_inode_info *info, unsigned long idx)
1221{
1222	return alloc_page(gfp);
1223}
1224#endif /* CONFIG_NUMA */
1225
1226/*
1227 * shmem_getpage - either get the page from swap or allocate a new one
1228 *
1229 * If we allocate a new one we do not mark it dirty. That's up to the
1230 * vm. If we swap it in we mark it dirty since we also free the swap
1231 * entry since a page cannot live in both the swap and page cache
1232 */
1233static int shmem_getpage(struct inode *inode, unsigned long idx,
1234			struct page **pagep, enum sgp_type sgp, int *type)
1235{
1236	struct address_space *mapping = inode->i_mapping;
1237	struct shmem_inode_info *info = SHMEM_I(inode);
1238	struct shmem_sb_info *sbinfo;
1239	struct page *filepage = *pagep;
1240	struct page *swappage;
1241	swp_entry_t *entry;
1242	swp_entry_t swap;
1243	gfp_t gfp;
1244	int error;
1245
1246	if (idx >= SHMEM_MAX_INDEX)
1247		return -EFBIG;
1248
1249	if (type)
1250		*type = 0;
1251
1252	/*
1253	 * Normally, filepage is NULL on entry, and either found
1254	 * uptodate immediately, or allocated and zeroed, or read
1255	 * in under swappage, which is then assigned to filepage.
1256	 * But shmem_readpage (required for splice) passes in a locked
1257	 * filepage, which may be found not uptodate by other callers
1258	 * too, and may need to be copied from the swappage read in.
1259	 */
1260repeat:
1261	if (!filepage)
1262		filepage = find_lock_page(mapping, idx);
1263	if (filepage && PageUptodate(filepage))
1264		goto done;
1265	error = 0;
1266	gfp = mapping_gfp_mask(mapping);
1267	if (!filepage) {
1268		/*
1269		 * Try to preload while we can wait, to not make a habit of
1270		 * draining atomic reserves; but don't latch on to this cpu.
1271		 */
1272		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1273		if (error)
1274			goto failed;
1275		radix_tree_preload_end();
1276	}
1277
1278	spin_lock(&info->lock);
1279	shmem_recalc_inode(inode);
1280	entry = shmem_swp_alloc(info, idx, sgp);
1281	if (IS_ERR(entry)) {
1282		spin_unlock(&info->lock);
1283		error = PTR_ERR(entry);
1284		goto failed;
1285	}
1286	swap = *entry;
1287
1288	if (swap.val) {
1289		/* Look it up and read it in.. */
1290		swappage = lookup_swap_cache(swap);
1291		if (!swappage) {
1292			shmem_swp_unmap(entry);
1293			/* here we actually do the io */
1294			if (type && !(*type & VM_FAULT_MAJOR)) {
1295				__count_vm_event(PGMAJFAULT);
1296				*type |= VM_FAULT_MAJOR;
1297			}
1298			spin_unlock(&info->lock);
1299			swappage = shmem_swapin(swap, gfp, info, idx);
1300			if (!swappage) {
1301				spin_lock(&info->lock);
1302				entry = shmem_swp_alloc(info, idx, sgp);
1303				if (IS_ERR(entry))
1304					error = PTR_ERR(entry);
1305				else {
1306					if (entry->val == swap.val)
1307						error = -ENOMEM;
1308					shmem_swp_unmap(entry);
1309				}
1310				spin_unlock(&info->lock);
1311				if (error)
1312					goto failed;
1313				goto repeat;
1314			}
1315			wait_on_page_locked(swappage);
1316			page_cache_release(swappage);
1317			goto repeat;
1318		}
1319
1320		/* We have to do this with page locked to prevent races */
1321		if (TestSetPageLocked(swappage)) {
1322			shmem_swp_unmap(entry);
1323			spin_unlock(&info->lock);
1324			wait_on_page_locked(swappage);
1325			page_cache_release(swappage);
1326			goto repeat;
1327		}
1328		if (PageWriteback(swappage)) {
1329			shmem_swp_unmap(entry);
1330			spin_unlock(&info->lock);
1331			wait_on_page_writeback(swappage);
1332			unlock_page(swappage);
1333			page_cache_release(swappage);
1334			goto repeat;
1335		}
1336		if (!PageUptodate(swappage)) {
1337			shmem_swp_unmap(entry);
1338			spin_unlock(&info->lock);
1339			unlock_page(swappage);
1340			page_cache_release(swappage);
1341			error = -EIO;
1342			goto failed;
1343		}
1344
1345		if (filepage) {
1346			shmem_swp_set(info, entry, 0);
1347			shmem_swp_unmap(entry);
1348			delete_from_swap_cache(swappage);
1349			spin_unlock(&info->lock);
1350			copy_highpage(filepage, swappage);
1351			unlock_page(swappage);
1352			page_cache_release(swappage);
1353			flush_dcache_page(filepage);
1354			SetPageUptodate(filepage);
1355			set_page_dirty(filepage);
1356			swap_free(swap);
1357		} else if (!(error = add_to_page_cache(
1358				swappage, mapping, idx, GFP_NOWAIT))) {
1359			info->flags |= SHMEM_PAGEIN;
1360			shmem_swp_set(info, entry, 0);
1361			shmem_swp_unmap(entry);
1362			delete_from_swap_cache(swappage);
1363			spin_unlock(&info->lock);
1364			filepage = swappage;
1365			set_page_dirty(filepage);
1366			swap_free(swap);
1367		} else {
1368			shmem_swp_unmap(entry);
1369			spin_unlock(&info->lock);
1370			unlock_page(swappage);
1371			page_cache_release(swappage);
1372			if (error == -ENOMEM) {
1373				/* allow reclaim from this memory cgroup */
1374				error = mem_cgroup_cache_charge(NULL,
1375					current->mm, gfp & ~__GFP_HIGHMEM);
1376				if (error)
1377					goto failed;
1378			}
1379			goto repeat;
1380		}
1381	} else if (sgp == SGP_READ && !filepage) {
1382		shmem_swp_unmap(entry);
1383		filepage = find_get_page(mapping, idx);
1384		if (filepage &&
1385		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1386			spin_unlock(&info->lock);
1387			wait_on_page_locked(filepage);
1388			page_cache_release(filepage);
1389			filepage = NULL;
1390			goto repeat;
1391		}
1392		spin_unlock(&info->lock);
1393	} else {
1394		shmem_swp_unmap(entry);
1395		sbinfo = SHMEM_SB(inode->i_sb);
1396		if (sbinfo->max_blocks) {
1397			spin_lock(&sbinfo->stat_lock);
1398			if (sbinfo->free_blocks == 0 ||
1399			    shmem_acct_block(info->flags)) {
1400				spin_unlock(&sbinfo->stat_lock);
1401				spin_unlock(&info->lock);
1402				error = -ENOSPC;
1403				goto failed;
1404			}
1405			sbinfo->free_blocks--;
1406			inode->i_blocks += BLOCKS_PER_PAGE;
1407			spin_unlock(&sbinfo->stat_lock);
1408		} else if (shmem_acct_block(info->flags)) {
1409			spin_unlock(&info->lock);
1410			error = -ENOSPC;
1411			goto failed;
1412		}
1413
1414		if (!filepage) {
1415			spin_unlock(&info->lock);
1416			filepage = shmem_alloc_page(gfp, info, idx);
1417			if (!filepage) {
1418				shmem_unacct_blocks(info->flags, 1);
1419				shmem_free_blocks(inode, 1);
1420				error = -ENOMEM;
1421				goto failed;
1422			}
1423
1424			/* Precharge page while we can wait, compensate after */
1425			error = mem_cgroup_cache_charge(filepage, current->mm,
1426							gfp & ~__GFP_HIGHMEM);
1427			if (error) {
1428				page_cache_release(filepage);
1429				shmem_unacct_blocks(info->flags, 1);
1430				shmem_free_blocks(inode, 1);
1431				filepage = NULL;
1432				goto failed;
1433			}
1434
1435			spin_lock(&info->lock);
1436			entry = shmem_swp_alloc(info, idx, sgp);
1437			if (IS_ERR(entry))
1438				error = PTR_ERR(entry);
1439			else {
1440				swap = *entry;
1441				shmem_swp_unmap(entry);
1442			}
1443			if (error || swap.val || 0 != add_to_page_cache_lru(
1444					filepage, mapping, idx, GFP_NOWAIT)) {
1445				spin_unlock(&info->lock);
1446				mem_cgroup_uncharge_page(filepage);
1447				page_cache_release(filepage);
1448				shmem_unacct_blocks(info->flags, 1);
1449				shmem_free_blocks(inode, 1);
1450				filepage = NULL;
1451				if (error)
1452					goto failed;
1453				goto repeat;
1454			}
1455			mem_cgroup_uncharge_page(filepage);
1456			info->flags |= SHMEM_PAGEIN;
1457		}
1458
1459		info->alloced++;
1460		spin_unlock(&info->lock);
1461		clear_highpage(filepage);
1462		flush_dcache_page(filepage);
1463		SetPageUptodate(filepage);
1464		if (sgp == SGP_DIRTY)
1465			set_page_dirty(filepage);
1466	}
1467done:
1468	*pagep = filepage;
1469	return 0;
1470
1471failed:
1472	if (*pagep != filepage) {
1473		unlock_page(filepage);
1474		page_cache_release(filepage);
1475	}
1476	return error;
1477}
1478
1479static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1480{
1481	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1482	int error;
1483	int ret;
1484
1485	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1486		return VM_FAULT_SIGBUS;
1487
1488	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1489	if (error)
1490		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1491
1492	mark_page_accessed(vmf->page);
1493	return ret | VM_FAULT_LOCKED;
1494}
1495
1496#ifdef CONFIG_NUMA
1497static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1498{
1499	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1500	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1501}
1502
1503static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1504					  unsigned long addr)
1505{
1506	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1507	unsigned long idx;
1508
1509	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1510	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1511}
1512#endif
1513
1514int shmem_lock(struct file *file, int lock, struct user_struct *user)
1515{
1516	struct inode *inode = file->f_path.dentry->d_inode;
1517	struct shmem_inode_info *info = SHMEM_I(inode);
1518	int retval = -ENOMEM;
1519
1520	spin_lock(&info->lock);
1521	if (lock && !(info->flags & VM_LOCKED)) {
1522		if (!user_shm_lock(inode->i_size, user))
1523			goto out_nomem;
1524		info->flags |= VM_LOCKED;
1525	}
1526	if (!lock && (info->flags & VM_LOCKED) && user) {
1527		user_shm_unlock(inode->i_size, user);
1528		info->flags &= ~VM_LOCKED;
1529	}
1530	retval = 0;
1531out_nomem:
1532	spin_unlock(&info->lock);
1533	return retval;
1534}
1535
1536static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1537{
1538	file_accessed(file);
1539	vma->vm_ops = &shmem_vm_ops;
1540	vma->vm_flags |= VM_CAN_NONLINEAR;
1541	return 0;
1542}
1543
1544static struct inode *
1545shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1546{
1547	struct inode *inode;
1548	struct shmem_inode_info *info;
1549	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1550
1551	if (shmem_reserve_inode(sb))
1552		return NULL;
1553
1554	inode = new_inode(sb);
1555	if (inode) {
1556		inode->i_mode = mode;
1557		inode->i_uid = current->fsuid;
1558		inode->i_gid = current->fsgid;
1559		inode->i_blocks = 0;
1560		inode->i_mapping->a_ops = &shmem_aops;
1561		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1562		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1563		inode->i_generation = get_seconds();
1564		info = SHMEM_I(inode);
1565		memset(info, 0, (char *)inode - (char *)info);
1566		spin_lock_init(&info->lock);
1567		INIT_LIST_HEAD(&info->swaplist);
1568
1569		switch (mode & S_IFMT) {
1570		default:
1571			inode->i_op = &shmem_special_inode_operations;
1572			init_special_inode(inode, mode, dev);
1573			break;
1574		case S_IFREG:
1575			inode->i_op = &shmem_inode_operations;
1576			inode->i_fop = &shmem_file_operations;
1577			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1578							&sbinfo->policy_nodes);
1579			break;
1580		case S_IFDIR:
1581			inc_nlink(inode);
1582			/* Some things misbehave if size == 0 on a directory */
1583			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1584			inode->i_op = &shmem_dir_inode_operations;
1585			inode->i_fop = &simple_dir_operations;
1586			break;
1587		case S_IFLNK:
1588			/*
1589			 * Must not load anything in the rbtree,
1590			 * mpol_free_shared_policy will not be called.
1591			 */
1592			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1593						NULL);
1594			break;
1595		}
1596	} else
1597		shmem_free_inode(sb);
1598	return inode;
1599}
1600
1601#ifdef CONFIG_TMPFS
1602static const struct inode_operations shmem_symlink_inode_operations;
1603static const struct inode_operations shmem_symlink_inline_operations;
1604
1605/*
1606 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1607 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1608 * below the loop driver, in the generic fashion that many filesystems support.
1609 */
1610static int shmem_readpage(struct file *file, struct page *page)
1611{
1612	struct inode *inode = page->mapping->host;
1613	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1614	unlock_page(page);
1615	return error;
1616}
1617
1618static int
1619shmem_write_begin(struct file *file, struct address_space *mapping,
1620			loff_t pos, unsigned len, unsigned flags,
1621			struct page **pagep, void **fsdata)
1622{
1623	struct inode *inode = mapping->host;
1624	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1625	*pagep = NULL;
1626	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1627}
1628
1629static int
1630shmem_write_end(struct file *file, struct address_space *mapping,
1631			loff_t pos, unsigned len, unsigned copied,
1632			struct page *page, void *fsdata)
1633{
1634	struct inode *inode = mapping->host;
1635
1636	if (pos + copied > inode->i_size)
1637		i_size_write(inode, pos + copied);
1638
1639	unlock_page(page);
1640	set_page_dirty(page);
1641	page_cache_release(page);
1642
1643	return copied;
1644}
1645
1646static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1647{
1648	struct inode *inode = filp->f_path.dentry->d_inode;
1649	struct address_space *mapping = inode->i_mapping;
1650	unsigned long index, offset;
1651	enum sgp_type sgp = SGP_READ;
1652
1653	/*
1654	 * Might this read be for a stacking filesystem?  Then when reading
1655	 * holes of a sparse file, we actually need to allocate those pages,
1656	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1657	 */
1658	if (segment_eq(get_fs(), KERNEL_DS))
1659		sgp = SGP_DIRTY;
1660
1661	index = *ppos >> PAGE_CACHE_SHIFT;
1662	offset = *ppos & ~PAGE_CACHE_MASK;
1663
1664	for (;;) {
1665		struct page *page = NULL;
1666		unsigned long end_index, nr, ret;
1667		loff_t i_size = i_size_read(inode);
1668
1669		end_index = i_size >> PAGE_CACHE_SHIFT;
1670		if (index > end_index)
1671			break;
1672		if (index == end_index) {
1673			nr = i_size & ~PAGE_CACHE_MASK;
1674			if (nr <= offset)
1675				break;
1676		}
1677
1678		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1679		if (desc->error) {
1680			if (desc->error == -EINVAL)
1681				desc->error = 0;
1682			break;
1683		}
1684		if (page)
1685			unlock_page(page);
1686
1687		/*
1688		 * We must evaluate after, since reads (unlike writes)
1689		 * are called without i_mutex protection against truncate
1690		 */
1691		nr = PAGE_CACHE_SIZE;
1692		i_size = i_size_read(inode);
1693		end_index = i_size >> PAGE_CACHE_SHIFT;
1694		if (index == end_index) {
1695			nr = i_size & ~PAGE_CACHE_MASK;
1696			if (nr <= offset) {
1697				if (page)
1698					page_cache_release(page);
1699				break;
1700			}
1701		}
1702		nr -= offset;
1703
1704		if (page) {
1705			/*
1706			 * If users can be writing to this page using arbitrary
1707			 * virtual addresses, take care about potential aliasing
1708			 * before reading the page on the kernel side.
1709			 */
1710			if (mapping_writably_mapped(mapping))
1711				flush_dcache_page(page);
1712			/*
1713			 * Mark the page accessed if we read the beginning.
1714			 */
1715			if (!offset)
1716				mark_page_accessed(page);
1717		} else {
1718			page = ZERO_PAGE(0);
1719			page_cache_get(page);
1720		}
1721
1722		/*
1723		 * Ok, we have the page, and it's up-to-date, so
1724		 * now we can copy it to user space...
1725		 *
1726		 * The actor routine returns how many bytes were actually used..
1727		 * NOTE! This may not be the same as how much of a user buffer
1728		 * we filled up (we may be padding etc), so we can only update
1729		 * "pos" here (the actor routine has to update the user buffer
1730		 * pointers and the remaining count).
1731		 */
1732		ret = actor(desc, page, offset, nr);
1733		offset += ret;
1734		index += offset >> PAGE_CACHE_SHIFT;
1735		offset &= ~PAGE_CACHE_MASK;
1736
1737		page_cache_release(page);
1738		if (ret != nr || !desc->count)
1739			break;
1740
1741		cond_resched();
1742	}
1743
1744	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1745	file_accessed(filp);
1746}
1747
1748static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1749{
1750	read_descriptor_t desc;
1751
1752	if ((ssize_t) count < 0)
1753		return -EINVAL;
1754	if (!access_ok(VERIFY_WRITE, buf, count))
1755		return -EFAULT;
1756	if (!count)
1757		return 0;
1758
1759	desc.written = 0;
1760	desc.count = count;
1761	desc.arg.buf = buf;
1762	desc.error = 0;
1763
1764	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1765	if (desc.written)
1766		return desc.written;
1767	return desc.error;
1768}
1769
1770static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1771{
1772	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1773
1774	buf->f_type = TMPFS_MAGIC;
1775	buf->f_bsize = PAGE_CACHE_SIZE;
1776	buf->f_namelen = NAME_MAX;
1777	spin_lock(&sbinfo->stat_lock);
1778	if (sbinfo->max_blocks) {
1779		buf->f_blocks = sbinfo->max_blocks;
1780		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1781	}
1782	if (sbinfo->max_inodes) {
1783		buf->f_files = sbinfo->max_inodes;
1784		buf->f_ffree = sbinfo->free_inodes;
1785	}
1786	/* else leave those fields 0 like simple_statfs */
1787	spin_unlock(&sbinfo->stat_lock);
1788	return 0;
1789}
1790
1791/*
1792 * File creation. Allocate an inode, and we're done..
1793 */
1794static int
1795shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1796{
1797	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1798	int error = -ENOSPC;
1799
1800	if (inode) {
1801		error = security_inode_init_security(inode, dir, NULL, NULL,
1802						     NULL);
1803		if (error) {
1804			if (error != -EOPNOTSUPP) {
1805				iput(inode);
1806				return error;
1807			}
1808		}
1809		error = shmem_acl_init(inode, dir);
1810		if (error) {
1811			iput(inode);
1812			return error;
1813		}
1814		if (dir->i_mode & S_ISGID) {
1815			inode->i_gid = dir->i_gid;
1816			if (S_ISDIR(mode))
1817				inode->i_mode |= S_ISGID;
1818		}
1819		dir->i_size += BOGO_DIRENT_SIZE;
1820		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1821		d_instantiate(dentry, inode);
1822		dget(dentry); /* Extra count - pin the dentry in core */
1823	}
1824	return error;
1825}
1826
1827static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1828{
1829	int error;
1830
1831	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1832		return error;
1833	inc_nlink(dir);
1834	return 0;
1835}
1836
1837static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1838		struct nameidata *nd)
1839{
1840	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1841}
1842
1843/*
1844 * Link a file..
1845 */
1846static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1847{
1848	struct inode *inode = old_dentry->d_inode;
1849	int ret;
1850
1851	/*
1852	 * No ordinary (disk based) filesystem counts links as inodes;
1853	 * but each new link needs a new dentry, pinning lowmem, and
1854	 * tmpfs dentries cannot be pruned until they are unlinked.
1855	 */
1856	ret = shmem_reserve_inode(inode->i_sb);
1857	if (ret)
1858		goto out;
1859
1860	dir->i_size += BOGO_DIRENT_SIZE;
1861	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1862	inc_nlink(inode);
1863	atomic_inc(&inode->i_count);	/* New dentry reference */
1864	dget(dentry);		/* Extra pinning count for the created dentry */
1865	d_instantiate(dentry, inode);
1866out:
1867	return ret;
1868}
1869
1870static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1871{
1872	struct inode *inode = dentry->d_inode;
1873
1874	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1875		shmem_free_inode(inode->i_sb);
1876
1877	dir->i_size -= BOGO_DIRENT_SIZE;
1878	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1879	drop_nlink(inode);
1880	dput(dentry);	/* Undo the count from "create" - this does all the work */
1881	return 0;
1882}
1883
1884static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1885{
1886	if (!simple_empty(dentry))
1887		return -ENOTEMPTY;
1888
1889	drop_nlink(dentry->d_inode);
1890	drop_nlink(dir);
1891	return shmem_unlink(dir, dentry);
1892}
1893
1894/*
1895 * The VFS layer already does all the dentry stuff for rename,
1896 * we just have to decrement the usage count for the target if
1897 * it exists so that the VFS layer correctly free's it when it
1898 * gets overwritten.
1899 */
1900static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1901{
1902	struct inode *inode = old_dentry->d_inode;
1903	int they_are_dirs = S_ISDIR(inode->i_mode);
1904
1905	if (!simple_empty(new_dentry))
1906		return -ENOTEMPTY;
1907
1908	if (new_dentry->d_inode) {
1909		(void) shmem_unlink(new_dir, new_dentry);
1910		if (they_are_dirs)
1911			drop_nlink(old_dir);
1912	} else if (they_are_dirs) {
1913		drop_nlink(old_dir);
1914		inc_nlink(new_dir);
1915	}
1916
1917	old_dir->i_size -= BOGO_DIRENT_SIZE;
1918	new_dir->i_size += BOGO_DIRENT_SIZE;
1919	old_dir->i_ctime = old_dir->i_mtime =
1920	new_dir->i_ctime = new_dir->i_mtime =
1921	inode->i_ctime = CURRENT_TIME;
1922	return 0;
1923}
1924
1925static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1926{
1927	int error;
1928	int len;
1929	struct inode *inode;
1930	struct page *page = NULL;
1931	char *kaddr;
1932	struct shmem_inode_info *info;
1933
1934	len = strlen(symname) + 1;
1935	if (len > PAGE_CACHE_SIZE)
1936		return -ENAMETOOLONG;
1937
1938	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1939	if (!inode)
1940		return -ENOSPC;
1941
1942	error = security_inode_init_security(inode, dir, NULL, NULL,
1943					     NULL);
1944	if (error) {
1945		if (error != -EOPNOTSUPP) {
1946			iput(inode);
1947			return error;
1948		}
1949		error = 0;
1950	}
1951
1952	info = SHMEM_I(inode);
1953	inode->i_size = len-1;
1954	if (len <= (char *)inode - (char *)info) {
1955		/* do it inline */
1956		memcpy(info, symname, len);
1957		inode->i_op = &shmem_symlink_inline_operations;
1958	} else {
1959		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1960		if (error) {
1961			iput(inode);
1962			return error;
1963		}
1964		unlock_page(page);
1965		inode->i_op = &shmem_symlink_inode_operations;
1966		kaddr = kmap_atomic(page, KM_USER0);
1967		memcpy(kaddr, symname, len);
1968		kunmap_atomic(kaddr, KM_USER0);
1969		set_page_dirty(page);
1970		page_cache_release(page);
1971	}
1972	if (dir->i_mode & S_ISGID)
1973		inode->i_gid = dir->i_gid;
1974	dir->i_size += BOGO_DIRENT_SIZE;
1975	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1976	d_instantiate(dentry, inode);
1977	dget(dentry);
1978	return 0;
1979}
1980
1981static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1982{
1983	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1984	return NULL;
1985}
1986
1987static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1988{
1989	struct page *page = NULL;
1990	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1991	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1992	if (page)
1993		unlock_page(page);
1994	return page;
1995}
1996
1997static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1998{
1999	if (!IS_ERR(nd_get_link(nd))) {
2000		struct page *page = cookie;
2001		kunmap(page);
2002		mark_page_accessed(page);
2003		page_cache_release(page);
2004	}
2005}
2006
2007static const struct inode_operations shmem_symlink_inline_operations = {
2008	.readlink	= generic_readlink,
2009	.follow_link	= shmem_follow_link_inline,
2010};
2011
2012static const struct inode_operations shmem_symlink_inode_operations = {
2013	.truncate	= shmem_truncate,
2014	.readlink	= generic_readlink,
2015	.follow_link	= shmem_follow_link,
2016	.put_link	= shmem_put_link,
2017};
2018
2019#ifdef CONFIG_TMPFS_POSIX_ACL
2020/**
2021 * Superblocks without xattr inode operations will get security.* xattr
2022 * support from the VFS "for free". As soon as we have any other xattrs
2023 * like ACLs, we also need to implement the security.* handlers at
2024 * filesystem level, though.
2025 */
2026
2027static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2028					size_t list_len, const char *name,
2029					size_t name_len)
2030{
2031	return security_inode_listsecurity(inode, list, list_len);
2032}
2033
2034static int shmem_xattr_security_get(struct inode *inode, const char *name,
2035				    void *buffer, size_t size)
2036{
2037	if (strcmp(name, "") == 0)
2038		return -EINVAL;
2039	return xattr_getsecurity(inode, name, buffer, size);
2040}
2041
2042static int shmem_xattr_security_set(struct inode *inode, const char *name,
2043				    const void *value, size_t size, int flags)
2044{
2045	if (strcmp(name, "") == 0)
2046		return -EINVAL;
2047	return security_inode_setsecurity(inode, name, value, size, flags);
2048}
2049
2050static struct xattr_handler shmem_xattr_security_handler = {
2051	.prefix = XATTR_SECURITY_PREFIX,
2052	.list   = shmem_xattr_security_list,
2053	.get    = shmem_xattr_security_get,
2054	.set    = shmem_xattr_security_set,
2055};
2056
2057static struct xattr_handler *shmem_xattr_handlers[] = {
2058	&shmem_xattr_acl_access_handler,
2059	&shmem_xattr_acl_default_handler,
2060	&shmem_xattr_security_handler,
2061	NULL
2062};
2063#endif
2064
2065static struct dentry *shmem_get_parent(struct dentry *child)
2066{
2067	return ERR_PTR(-ESTALE);
2068}
2069
2070static int shmem_match(struct inode *ino, void *vfh)
2071{
2072	__u32 *fh = vfh;
2073	__u64 inum = fh[2];
2074	inum = (inum << 32) | fh[1];
2075	return ino->i_ino == inum && fh[0] == ino->i_generation;
2076}
2077
2078static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2079		struct fid *fid, int fh_len, int fh_type)
2080{
2081	struct inode *inode;
2082	struct dentry *dentry = NULL;
2083	u64 inum = fid->raw[2];
2084	inum = (inum << 32) | fid->raw[1];
2085
2086	if (fh_len < 3)
2087		return NULL;
2088
2089	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2090			shmem_match, fid->raw);
2091	if (inode) {
2092		dentry = d_find_alias(inode);
2093		iput(inode);
2094	}
2095
2096	return dentry;
2097}
2098
2099static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2100				int connectable)
2101{
2102	struct inode *inode = dentry->d_inode;
2103
2104	if (*len < 3)
2105		return 255;
2106
2107	if (hlist_unhashed(&inode->i_hash)) {
2108		/* Unfortunately insert_inode_hash is not idempotent,
2109		 * so as we hash inodes here rather than at creation
2110		 * time, we need a lock to ensure we only try
2111		 * to do it once
2112		 */
2113		static DEFINE_SPINLOCK(lock);
2114		spin_lock(&lock);
2115		if (hlist_unhashed(&inode->i_hash))
2116			__insert_inode_hash(inode,
2117					    inode->i_ino + inode->i_generation);
2118		spin_unlock(&lock);
2119	}
2120
2121	fh[0] = inode->i_generation;
2122	fh[1] = inode->i_ino;
2123	fh[2] = ((__u64)inode->i_ino) >> 32;
2124
2125	*len = 3;
2126	return 1;
2127}
2128
2129static const struct export_operations shmem_export_ops = {
2130	.get_parent     = shmem_get_parent,
2131	.encode_fh      = shmem_encode_fh,
2132	.fh_to_dentry	= shmem_fh_to_dentry,
2133};
2134
2135static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2136			       bool remount)
2137{
2138	char *this_char, *value, *rest;
2139
2140	while (options != NULL) {
2141		this_char = options;
2142		for (;;) {
2143			/*
2144			 * NUL-terminate this option: unfortunately,
2145			 * mount options form a comma-separated list,
2146			 * but mpol's nodelist may also contain commas.
2147			 */
2148			options = strchr(options, ',');
2149			if (options == NULL)
2150				break;
2151			options++;
2152			if (!isdigit(*options)) {
2153				options[-1] = '\0';
2154				break;
2155			}
2156		}
2157		if (!*this_char)
2158			continue;
2159		if ((value = strchr(this_char,'=')) != NULL) {
2160			*value++ = 0;
2161		} else {
2162			printk(KERN_ERR
2163			    "tmpfs: No value for mount option '%s'\n",
2164			    this_char);
2165			return 1;
2166		}
2167
2168		if (!strcmp(this_char,"size")) {
2169			unsigned long long size;
2170			size = memparse(value,&rest);
2171			if (*rest == '%') {
2172				size <<= PAGE_SHIFT;
2173				size *= totalram_pages;
2174				do_div(size, 100);
2175				rest++;
2176			}
2177			if (*rest)
2178				goto bad_val;
2179			sbinfo->max_blocks =
2180				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2181		} else if (!strcmp(this_char,"nr_blocks")) {
2182			sbinfo->max_blocks = memparse(value, &rest);
2183			if (*rest)
2184				goto bad_val;
2185		} else if (!strcmp(this_char,"nr_inodes")) {
2186			sbinfo->max_inodes = memparse(value, &rest);
2187			if (*rest)
2188				goto bad_val;
2189		} else if (!strcmp(this_char,"mode")) {
2190			if (remount)
2191				continue;
2192			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2193			if (*rest)
2194				goto bad_val;
2195		} else if (!strcmp(this_char,"uid")) {
2196			if (remount)
2197				continue;
2198			sbinfo->uid = simple_strtoul(value, &rest, 0);
2199			if (*rest)
2200				goto bad_val;
2201		} else if (!strcmp(this_char,"gid")) {
2202			if (remount)
2203				continue;
2204			sbinfo->gid = simple_strtoul(value, &rest, 0);
2205			if (*rest)
2206				goto bad_val;
2207		} else if (!strcmp(this_char,"mpol")) {
2208			if (shmem_parse_mpol(value, &sbinfo->policy,
2209					     &sbinfo->policy_nodes))
2210				goto bad_val;
2211		} else {
2212			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2213			       this_char);
2214			return 1;
2215		}
2216	}
2217	return 0;
2218
2219bad_val:
2220	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2221	       value, this_char);
2222	return 1;
2223
2224}
2225
2226static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2227{
2228	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2229	struct shmem_sb_info config = *sbinfo;
2230	unsigned long blocks;
2231	unsigned long inodes;
2232	int error = -EINVAL;
2233
2234	if (shmem_parse_options(data, &config, true))
2235		return error;
2236
2237	spin_lock(&sbinfo->stat_lock);
2238	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2239	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2240	if (config.max_blocks < blocks)
2241		goto out;
2242	if (config.max_inodes < inodes)
2243		goto out;
2244	/*
2245	 * Those tests also disallow limited->unlimited while any are in
2246	 * use, so i_blocks will always be zero when max_blocks is zero;
2247	 * but we must separately disallow unlimited->limited, because
2248	 * in that case we have no record of how much is already in use.
2249	 */
2250	if (config.max_blocks && !sbinfo->max_blocks)
2251		goto out;
2252	if (config.max_inodes && !sbinfo->max_inodes)
2253		goto out;
2254
2255	error = 0;
2256	sbinfo->max_blocks  = config.max_blocks;
2257	sbinfo->free_blocks = config.max_blocks - blocks;
2258	sbinfo->max_inodes  = config.max_inodes;
2259	sbinfo->free_inodes = config.max_inodes - inodes;
2260	sbinfo->policy      = config.policy;
2261	sbinfo->policy_nodes = config.policy_nodes;
2262out:
2263	spin_unlock(&sbinfo->stat_lock);
2264	return error;
2265}
2266
2267static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2268{
2269	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2270
2271	if (sbinfo->max_blocks != shmem_default_max_blocks())
2272		seq_printf(seq, ",size=%luk",
2273			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2274	if (sbinfo->max_inodes != shmem_default_max_inodes())
2275		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2276	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2277		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2278	if (sbinfo->uid != 0)
2279		seq_printf(seq, ",uid=%u", sbinfo->uid);
2280	if (sbinfo->gid != 0)
2281		seq_printf(seq, ",gid=%u", sbinfo->gid);
2282	shmem_show_mpol(seq, sbinfo->policy, sbinfo->policy_nodes);
2283	return 0;
2284}
2285#endif /* CONFIG_TMPFS */
2286
2287static void shmem_put_super(struct super_block *sb)
2288{
2289	kfree(sb->s_fs_info);
2290	sb->s_fs_info = NULL;
2291}
2292
2293static int shmem_fill_super(struct super_block *sb,
2294			    void *data, int silent)
2295{
2296	struct inode *inode;
2297	struct dentry *root;
2298	struct shmem_sb_info *sbinfo;
2299	int err = -ENOMEM;
2300
2301	/* Round up to L1_CACHE_BYTES to resist false sharing */
2302	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2303				L1_CACHE_BYTES), GFP_KERNEL);
2304	if (!sbinfo)
2305		return -ENOMEM;
2306
2307	sbinfo->max_blocks = 0;
2308	sbinfo->max_inodes = 0;
2309	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2310	sbinfo->uid = current->fsuid;
2311	sbinfo->gid = current->fsgid;
2312	sbinfo->policy = MPOL_DEFAULT;
2313	sbinfo->policy_nodes = node_states[N_HIGH_MEMORY];
2314	sb->s_fs_info = sbinfo;
2315
2316#ifdef CONFIG_TMPFS
2317	/*
2318	 * Per default we only allow half of the physical ram per
2319	 * tmpfs instance, limiting inodes to one per page of lowmem;
2320	 * but the internal instance is left unlimited.
2321	 */
2322	if (!(sb->s_flags & MS_NOUSER)) {
2323		sbinfo->max_blocks = shmem_default_max_blocks();
2324		sbinfo->max_inodes = shmem_default_max_inodes();
2325		if (shmem_parse_options(data, sbinfo, false)) {
2326			err = -EINVAL;
2327			goto failed;
2328		}
2329	}
2330	sb->s_export_op = &shmem_export_ops;
2331#else
2332	sb->s_flags |= MS_NOUSER;
2333#endif
2334
2335	spin_lock_init(&sbinfo->stat_lock);
2336	sbinfo->free_blocks = sbinfo->max_blocks;
2337	sbinfo->free_inodes = sbinfo->max_inodes;
2338
2339	sb->s_maxbytes = SHMEM_MAX_BYTES;
2340	sb->s_blocksize = PAGE_CACHE_SIZE;
2341	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2342	sb->s_magic = TMPFS_MAGIC;
2343	sb->s_op = &shmem_ops;
2344	sb->s_time_gran = 1;
2345#ifdef CONFIG_TMPFS_POSIX_ACL
2346	sb->s_xattr = shmem_xattr_handlers;
2347	sb->s_flags |= MS_POSIXACL;
2348#endif
2349
2350	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2351	if (!inode)
2352		goto failed;
2353	inode->i_uid = sbinfo->uid;
2354	inode->i_gid = sbinfo->gid;
2355	root = d_alloc_root(inode);
2356	if (!root)
2357		goto failed_iput;
2358	sb->s_root = root;
2359	return 0;
2360
2361failed_iput:
2362	iput(inode);
2363failed:
2364	shmem_put_super(sb);
2365	return err;
2366}
2367
2368static struct kmem_cache *shmem_inode_cachep;
2369
2370static struct inode *shmem_alloc_inode(struct super_block *sb)
2371{
2372	struct shmem_inode_info *p;
2373	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2374	if (!p)
2375		return NULL;
2376	return &p->vfs_inode;
2377}
2378
2379static void shmem_destroy_inode(struct inode *inode)
2380{
2381	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2382		/* only struct inode is valid if it's an inline symlink */
2383		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2384	}
2385	shmem_acl_destroy_inode(inode);
2386	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2387}
2388
2389static void init_once(struct kmem_cache *cachep, void *foo)
2390{
2391	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2392
2393	inode_init_once(&p->vfs_inode);
2394#ifdef CONFIG_TMPFS_POSIX_ACL
2395	p->i_acl = NULL;
2396	p->i_default_acl = NULL;
2397#endif
2398}
2399
2400static int init_inodecache(void)
2401{
2402	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2403				sizeof(struct shmem_inode_info),
2404				0, SLAB_PANIC, init_once);
2405	return 0;
2406}
2407
2408static void destroy_inodecache(void)
2409{
2410	kmem_cache_destroy(shmem_inode_cachep);
2411}
2412
2413static const struct address_space_operations shmem_aops = {
2414	.writepage	= shmem_writepage,
2415	.set_page_dirty	= __set_page_dirty_no_writeback,
2416#ifdef CONFIG_TMPFS
2417	.readpage	= shmem_readpage,
2418	.write_begin	= shmem_write_begin,
2419	.write_end	= shmem_write_end,
2420#endif
2421	.migratepage	= migrate_page,
2422};
2423
2424static const struct file_operations shmem_file_operations = {
2425	.mmap		= shmem_mmap,
2426#ifdef CONFIG_TMPFS
2427	.llseek		= generic_file_llseek,
2428	.read		= shmem_file_read,
2429	.write		= do_sync_write,
2430	.aio_write	= generic_file_aio_write,
2431	.fsync		= simple_sync_file,
2432	.splice_read	= generic_file_splice_read,
2433	.splice_write	= generic_file_splice_write,
2434#endif
2435};
2436
2437static const struct inode_operations shmem_inode_operations = {
2438	.truncate	= shmem_truncate,
2439	.setattr	= shmem_notify_change,
2440	.truncate_range	= shmem_truncate_range,
2441#ifdef CONFIG_TMPFS_POSIX_ACL
2442	.setxattr	= generic_setxattr,
2443	.getxattr	= generic_getxattr,
2444	.listxattr	= generic_listxattr,
2445	.removexattr	= generic_removexattr,
2446	.permission	= shmem_permission,
2447#endif
2448
2449};
2450
2451static const struct inode_operations shmem_dir_inode_operations = {
2452#ifdef CONFIG_TMPFS
2453	.create		= shmem_create,
2454	.lookup		= simple_lookup,
2455	.link		= shmem_link,
2456	.unlink		= shmem_unlink,
2457	.symlink	= shmem_symlink,
2458	.mkdir		= shmem_mkdir,
2459	.rmdir		= shmem_rmdir,
2460	.mknod		= shmem_mknod,
2461	.rename		= shmem_rename,
2462#endif
2463#ifdef CONFIG_TMPFS_POSIX_ACL
2464	.setattr	= shmem_notify_change,
2465	.setxattr	= generic_setxattr,
2466	.getxattr	= generic_getxattr,
2467	.listxattr	= generic_listxattr,
2468	.removexattr	= generic_removexattr,
2469	.permission	= shmem_permission,
2470#endif
2471};
2472
2473static const struct inode_operations shmem_special_inode_operations = {
2474#ifdef CONFIG_TMPFS_POSIX_ACL
2475	.setattr	= shmem_notify_change,
2476	.setxattr	= generic_setxattr,
2477	.getxattr	= generic_getxattr,
2478	.listxattr	= generic_listxattr,
2479	.removexattr	= generic_removexattr,
2480	.permission	= shmem_permission,
2481#endif
2482};
2483
2484static const struct super_operations shmem_ops = {
2485	.alloc_inode	= shmem_alloc_inode,
2486	.destroy_inode	= shmem_destroy_inode,
2487#ifdef CONFIG_TMPFS
2488	.statfs		= shmem_statfs,
2489	.remount_fs	= shmem_remount_fs,
2490	.show_options	= shmem_show_options,
2491#endif
2492	.delete_inode	= shmem_delete_inode,
2493	.drop_inode	= generic_delete_inode,
2494	.put_super	= shmem_put_super,
2495};
2496
2497static struct vm_operations_struct shmem_vm_ops = {
2498	.fault		= shmem_fault,
2499#ifdef CONFIG_NUMA
2500	.set_policy     = shmem_set_policy,
2501	.get_policy     = shmem_get_policy,
2502#endif
2503};
2504
2505
2506static int shmem_get_sb(struct file_system_type *fs_type,
2507	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2508{
2509	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2510}
2511
2512static struct file_system_type tmpfs_fs_type = {
2513	.owner		= THIS_MODULE,
2514	.name		= "tmpfs",
2515	.get_sb		= shmem_get_sb,
2516	.kill_sb	= kill_litter_super,
2517};
2518static struct vfsmount *shm_mnt;
2519
2520static int __init init_tmpfs(void)
2521{
2522	int error;
2523
2524	error = bdi_init(&shmem_backing_dev_info);
2525	if (error)
2526		goto out4;
2527
2528	error = init_inodecache();
2529	if (error)
2530		goto out3;
2531
2532	error = register_filesystem(&tmpfs_fs_type);
2533	if (error) {
2534		printk(KERN_ERR "Could not register tmpfs\n");
2535		goto out2;
2536	}
2537
2538	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2539				tmpfs_fs_type.name, NULL);
2540	if (IS_ERR(shm_mnt)) {
2541		error = PTR_ERR(shm_mnt);
2542		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2543		goto out1;
2544	}
2545	return 0;
2546
2547out1:
2548	unregister_filesystem(&tmpfs_fs_type);
2549out2:
2550	destroy_inodecache();
2551out3:
2552	bdi_destroy(&shmem_backing_dev_info);
2553out4:
2554	shm_mnt = ERR_PTR(error);
2555	return error;
2556}
2557module_init(init_tmpfs)
2558
2559/*
2560 * shmem_file_setup - get an unlinked file living in tmpfs
2561 *
2562 * @name: name for dentry (to be seen in /proc/<pid>/maps
2563 * @size: size to be set for the file
2564 *
2565 */
2566struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2567{
2568	int error;
2569	struct file *file;
2570	struct inode *inode;
2571	struct dentry *dentry, *root;
2572	struct qstr this;
2573
2574	if (IS_ERR(shm_mnt))
2575		return (void *)shm_mnt;
2576
2577	if (size < 0 || size > SHMEM_MAX_BYTES)
2578		return ERR_PTR(-EINVAL);
2579
2580	if (shmem_acct_size(flags, size))
2581		return ERR_PTR(-ENOMEM);
2582
2583	error = -ENOMEM;
2584	this.name = name;
2585	this.len = strlen(name);
2586	this.hash = 0; /* will go */
2587	root = shm_mnt->mnt_root;
2588	dentry = d_alloc(root, &this);
2589	if (!dentry)
2590		goto put_memory;
2591
2592	error = -ENFILE;
2593	file = get_empty_filp();
2594	if (!file)
2595		goto put_dentry;
2596
2597	error = -ENOSPC;
2598	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2599	if (!inode)
2600		goto close_file;
2601
2602	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2603	d_instantiate(dentry, inode);
2604	inode->i_size = size;
2605	inode->i_nlink = 0;	/* It is unlinked */
2606	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2607			&shmem_file_operations);
2608	return file;
2609
2610close_file:
2611	put_filp(file);
2612put_dentry:
2613	dput(dentry);
2614put_memory:
2615	shmem_unacct_size(flags, size);
2616	return ERR_PTR(error);
2617}
2618
2619/*
2620 * shmem_zero_setup - setup a shared anonymous mapping
2621 *
2622 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2623 */
2624int shmem_zero_setup(struct vm_area_struct *vma)
2625{
2626	struct file *file;
2627	loff_t size = vma->vm_end - vma->vm_start;
2628
2629	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2630	if (IS_ERR(file))
2631		return PTR_ERR(file);
2632
2633	if (vma->vm_file)
2634		fput(vma->vm_file);
2635	vma->vm_file = file;
2636	vma->vm_ops = &shmem_vm_ops;
2637	return 0;
2638}
2639