shmem.c revision 69f07ec938712b58755add82dd3d0b35f01317cc
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/file.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/pagevec.h>
55#include <linux/percpu_counter.h>
56#include <linux/splice.h>
57#include <linux/security.h>
58#include <linux/swapops.h>
59#include <linux/mempolicy.h>
60#include <linux/namei.h>
61#include <linux/ctype.h>
62#include <linux/migrate.h>
63#include <linux/highmem.h>
64#include <linux/seq_file.h>
65#include <linux/magic.h>
66
67#include <asm/uaccess.h>
68#include <asm/pgtable.h>
69
70#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72
73/* Pretend that each entry is of this size in directory's i_size */
74#define BOGO_DIRENT_SIZE 20
75
76/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77#define SHORT_SYMLINK_LEN 128
78
79struct shmem_xattr {
80	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
81	char *name;		/* xattr name */
82	size_t size;
83	char value[0];
84};
85
86/* Flag allocation requirements to shmem_getpage */
87enum sgp_type {
88	SGP_READ,	/* don't exceed i_size, don't allocate page */
89	SGP_CACHE,	/* don't exceed i_size, may allocate page */
90	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
91	SGP_WRITE,	/* may exceed i_size, may allocate page */
92};
93
94#ifdef CONFIG_TMPFS
95static unsigned long shmem_default_max_blocks(void)
96{
97	return totalram_pages / 2;
98}
99
100static unsigned long shmem_default_max_inodes(void)
101{
102	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103}
104#endif
105
106static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
108
109static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110	struct page **pagep, enum sgp_type sgp, int *fault_type)
111{
112	return shmem_getpage_gfp(inode, index, pagep, sgp,
113			mapping_gfp_mask(inode->i_mapping), fault_type);
114}
115
116static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
117{
118	return sb->s_fs_info;
119}
120
121/*
122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123 * for shared memory and for shared anonymous (/dev/zero) mappings
124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125 * consistent with the pre-accounting of private mappings ...
126 */
127static inline int shmem_acct_size(unsigned long flags, loff_t size)
128{
129	return (flags & VM_NORESERVE) ?
130		0 : security_vm_enough_memory_kern(VM_ACCT(size));
131}
132
133static inline void shmem_unacct_size(unsigned long flags, loff_t size)
134{
135	if (!(flags & VM_NORESERVE))
136		vm_unacct_memory(VM_ACCT(size));
137}
138
139/*
140 * ... whereas tmpfs objects are accounted incrementally as
141 * pages are allocated, in order to allow huge sparse files.
142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
144 */
145static inline int shmem_acct_block(unsigned long flags)
146{
147	return (flags & VM_NORESERVE) ?
148		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
149}
150
151static inline void shmem_unacct_blocks(unsigned long flags, long pages)
152{
153	if (flags & VM_NORESERVE)
154		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
155}
156
157static const struct super_operations shmem_ops;
158static const struct address_space_operations shmem_aops;
159static const struct file_operations shmem_file_operations;
160static const struct inode_operations shmem_inode_operations;
161static const struct inode_operations shmem_dir_inode_operations;
162static const struct inode_operations shmem_special_inode_operations;
163static const struct vm_operations_struct shmem_vm_ops;
164
165static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
166	.ra_pages	= 0,	/* No readahead */
167	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
168};
169
170static LIST_HEAD(shmem_swaplist);
171static DEFINE_MUTEX(shmem_swaplist_mutex);
172
173static int shmem_reserve_inode(struct super_block *sb)
174{
175	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176	if (sbinfo->max_inodes) {
177		spin_lock(&sbinfo->stat_lock);
178		if (!sbinfo->free_inodes) {
179			spin_unlock(&sbinfo->stat_lock);
180			return -ENOSPC;
181		}
182		sbinfo->free_inodes--;
183		spin_unlock(&sbinfo->stat_lock);
184	}
185	return 0;
186}
187
188static void shmem_free_inode(struct super_block *sb)
189{
190	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191	if (sbinfo->max_inodes) {
192		spin_lock(&sbinfo->stat_lock);
193		sbinfo->free_inodes++;
194		spin_unlock(&sbinfo->stat_lock);
195	}
196}
197
198/**
199 * shmem_recalc_inode - recalculate the block usage of an inode
200 * @inode: inode to recalc
201 *
202 * We have to calculate the free blocks since the mm can drop
203 * undirtied hole pages behind our back.
204 *
205 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
207 *
208 * It has to be called with the spinlock held.
209 */
210static void shmem_recalc_inode(struct inode *inode)
211{
212	struct shmem_inode_info *info = SHMEM_I(inode);
213	long freed;
214
215	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216	if (freed > 0) {
217		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218		if (sbinfo->max_blocks)
219			percpu_counter_add(&sbinfo->used_blocks, -freed);
220		info->alloced -= freed;
221		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222		shmem_unacct_blocks(info->flags, freed);
223	}
224}
225
226/*
227 * Replace item expected in radix tree by a new item, while holding tree lock.
228 */
229static int shmem_radix_tree_replace(struct address_space *mapping,
230			pgoff_t index, void *expected, void *replacement)
231{
232	void **pslot;
233	void *item = NULL;
234
235	VM_BUG_ON(!expected);
236	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237	if (pslot)
238		item = radix_tree_deref_slot_protected(pslot,
239							&mapping->tree_lock);
240	if (item != expected)
241		return -ENOENT;
242	if (replacement)
243		radix_tree_replace_slot(pslot, replacement);
244	else
245		radix_tree_delete(&mapping->page_tree, index);
246	return 0;
247}
248
249/*
250 * Like add_to_page_cache_locked, but error if expected item has gone.
251 */
252static int shmem_add_to_page_cache(struct page *page,
253				   struct address_space *mapping,
254				   pgoff_t index, gfp_t gfp, void *expected)
255{
256	int error = 0;
257
258	VM_BUG_ON(!PageLocked(page));
259	VM_BUG_ON(!PageSwapBacked(page));
260
261	if (!expected)
262		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263	if (!error) {
264		page_cache_get(page);
265		page->mapping = mapping;
266		page->index = index;
267
268		spin_lock_irq(&mapping->tree_lock);
269		if (!expected)
270			error = radix_tree_insert(&mapping->page_tree,
271							index, page);
272		else
273			error = shmem_radix_tree_replace(mapping, index,
274							expected, page);
275		if (!error) {
276			mapping->nrpages++;
277			__inc_zone_page_state(page, NR_FILE_PAGES);
278			__inc_zone_page_state(page, NR_SHMEM);
279			spin_unlock_irq(&mapping->tree_lock);
280		} else {
281			page->mapping = NULL;
282			spin_unlock_irq(&mapping->tree_lock);
283			page_cache_release(page);
284		}
285		if (!expected)
286			radix_tree_preload_end();
287	}
288	if (error)
289		mem_cgroup_uncharge_cache_page(page);
290	return error;
291}
292
293/*
294 * Like delete_from_page_cache, but substitutes swap for page.
295 */
296static void shmem_delete_from_page_cache(struct page *page, void *radswap)
297{
298	struct address_space *mapping = page->mapping;
299	int error;
300
301	spin_lock_irq(&mapping->tree_lock);
302	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303	page->mapping = NULL;
304	mapping->nrpages--;
305	__dec_zone_page_state(page, NR_FILE_PAGES);
306	__dec_zone_page_state(page, NR_SHMEM);
307	spin_unlock_irq(&mapping->tree_lock);
308	page_cache_release(page);
309	BUG_ON(error);
310}
311
312/*
313 * Like find_get_pages, but collecting swap entries as well as pages.
314 */
315static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316					pgoff_t start, unsigned int nr_pages,
317					struct page **pages, pgoff_t *indices)
318{
319	unsigned int i;
320	unsigned int ret;
321	unsigned int nr_found;
322
323	rcu_read_lock();
324restart:
325	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326				(void ***)pages, indices, start, nr_pages);
327	ret = 0;
328	for (i = 0; i < nr_found; i++) {
329		struct page *page;
330repeat:
331		page = radix_tree_deref_slot((void **)pages[i]);
332		if (unlikely(!page))
333			continue;
334		if (radix_tree_exception(page)) {
335			if (radix_tree_exceptional_entry(page))
336				goto export;
337			/* radix_tree_deref_retry(page) */
338			goto restart;
339		}
340		if (!page_cache_get_speculative(page))
341			goto repeat;
342
343		/* Has the page moved? */
344		if (unlikely(page != *((void **)pages[i]))) {
345			page_cache_release(page);
346			goto repeat;
347		}
348export:
349		indices[ret] = indices[i];
350		pages[ret] = page;
351		ret++;
352	}
353	if (unlikely(!ret && nr_found))
354		goto restart;
355	rcu_read_unlock();
356	return ret;
357}
358
359/*
360 * Lockless lookup of swap entry in radix tree, avoiding refcount on pages.
361 */
362static pgoff_t shmem_find_swap(struct address_space *mapping, void *radswap)
363{
364	void  **slots[PAGEVEC_SIZE];
365	pgoff_t indices[PAGEVEC_SIZE];
366	unsigned int nr_found;
367
368restart:
369	nr_found = 1;
370	indices[0] = -1;
371	while (nr_found) {
372		pgoff_t index = indices[nr_found - 1] + 1;
373		unsigned int i;
374
375		rcu_read_lock();
376		nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
377					slots, indices, index, PAGEVEC_SIZE);
378		for (i = 0; i < nr_found; i++) {
379			void *item = radix_tree_deref_slot(slots[i]);
380			if (radix_tree_deref_retry(item)) {
381				rcu_read_unlock();
382				goto restart;
383			}
384			if (item == radswap) {
385				rcu_read_unlock();
386				return indices[i];
387			}
388		}
389		rcu_read_unlock();
390		cond_resched();
391	}
392	return -1;
393}
394
395/*
396 * Remove swap entry from radix tree, free the swap and its page cache.
397 */
398static int shmem_free_swap(struct address_space *mapping,
399			   pgoff_t index, void *radswap)
400{
401	int error;
402
403	spin_lock_irq(&mapping->tree_lock);
404	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
405	spin_unlock_irq(&mapping->tree_lock);
406	if (!error)
407		free_swap_and_cache(radix_to_swp_entry(radswap));
408	return error;
409}
410
411/*
412 * Pagevec may contain swap entries, so shuffle up pages before releasing.
413 */
414static void shmem_pagevec_release(struct pagevec *pvec)
415{
416	int i, j;
417
418	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
419		struct page *page = pvec->pages[i];
420		if (!radix_tree_exceptional_entry(page))
421			pvec->pages[j++] = page;
422	}
423	pvec->nr = j;
424	pagevec_release(pvec);
425}
426
427/*
428 * Remove range of pages and swap entries from radix tree, and free them.
429 */
430void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
431{
432	struct address_space *mapping = inode->i_mapping;
433	struct shmem_inode_info *info = SHMEM_I(inode);
434	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
435	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
436	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
437	struct pagevec pvec;
438	pgoff_t indices[PAGEVEC_SIZE];
439	long nr_swaps_freed = 0;
440	pgoff_t index;
441	int i;
442
443	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
444
445	pagevec_init(&pvec, 0);
446	index = start;
447	while (index <= end) {
448		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
449			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
450							pvec.pages, indices);
451		if (!pvec.nr)
452			break;
453		mem_cgroup_uncharge_start();
454		for (i = 0; i < pagevec_count(&pvec); i++) {
455			struct page *page = pvec.pages[i];
456
457			index = indices[i];
458			if (index > end)
459				break;
460
461			if (radix_tree_exceptional_entry(page)) {
462				nr_swaps_freed += !shmem_free_swap(mapping,
463								index, page);
464				continue;
465			}
466
467			if (!trylock_page(page))
468				continue;
469			if (page->mapping == mapping) {
470				VM_BUG_ON(PageWriteback(page));
471				truncate_inode_page(mapping, page);
472			}
473			unlock_page(page);
474		}
475		shmem_pagevec_release(&pvec);
476		mem_cgroup_uncharge_end();
477		cond_resched();
478		index++;
479	}
480
481	if (partial) {
482		struct page *page = NULL;
483		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
484		if (page) {
485			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
486			set_page_dirty(page);
487			unlock_page(page);
488			page_cache_release(page);
489		}
490	}
491
492	index = start;
493	for ( ; ; ) {
494		cond_resched();
495		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
496			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
497							pvec.pages, indices);
498		if (!pvec.nr) {
499			if (index == start)
500				break;
501			index = start;
502			continue;
503		}
504		if (index == start && indices[0] > end) {
505			shmem_pagevec_release(&pvec);
506			break;
507		}
508		mem_cgroup_uncharge_start();
509		for (i = 0; i < pagevec_count(&pvec); i++) {
510			struct page *page = pvec.pages[i];
511
512			index = indices[i];
513			if (index > end)
514				break;
515
516			if (radix_tree_exceptional_entry(page)) {
517				nr_swaps_freed += !shmem_free_swap(mapping,
518								index, page);
519				continue;
520			}
521
522			lock_page(page);
523			if (page->mapping == mapping) {
524				VM_BUG_ON(PageWriteback(page));
525				truncate_inode_page(mapping, page);
526			}
527			unlock_page(page);
528		}
529		shmem_pagevec_release(&pvec);
530		mem_cgroup_uncharge_end();
531		index++;
532	}
533
534	spin_lock(&info->lock);
535	info->swapped -= nr_swaps_freed;
536	shmem_recalc_inode(inode);
537	spin_unlock(&info->lock);
538
539	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
540}
541EXPORT_SYMBOL_GPL(shmem_truncate_range);
542
543static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
544{
545	struct inode *inode = dentry->d_inode;
546	int error;
547
548	error = inode_change_ok(inode, attr);
549	if (error)
550		return error;
551
552	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
553		loff_t oldsize = inode->i_size;
554		loff_t newsize = attr->ia_size;
555
556		if (newsize != oldsize) {
557			i_size_write(inode, newsize);
558			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559		}
560		if (newsize < oldsize) {
561			loff_t holebegin = round_up(newsize, PAGE_SIZE);
562			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
563			shmem_truncate_range(inode, newsize, (loff_t)-1);
564			/* unmap again to remove racily COWed private pages */
565			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
566		}
567	}
568
569	setattr_copy(inode, attr);
570#ifdef CONFIG_TMPFS_POSIX_ACL
571	if (attr->ia_valid & ATTR_MODE)
572		error = generic_acl_chmod(inode);
573#endif
574	return error;
575}
576
577static void shmem_evict_inode(struct inode *inode)
578{
579	struct shmem_inode_info *info = SHMEM_I(inode);
580	struct shmem_xattr *xattr, *nxattr;
581
582	if (inode->i_mapping->a_ops == &shmem_aops) {
583		shmem_unacct_size(info->flags, inode->i_size);
584		inode->i_size = 0;
585		shmem_truncate_range(inode, 0, (loff_t)-1);
586		if (!list_empty(&info->swaplist)) {
587			mutex_lock(&shmem_swaplist_mutex);
588			list_del_init(&info->swaplist);
589			mutex_unlock(&shmem_swaplist_mutex);
590		}
591	} else
592		kfree(info->symlink);
593
594	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
595		kfree(xattr->name);
596		kfree(xattr);
597	}
598	BUG_ON(inode->i_blocks);
599	shmem_free_inode(inode->i_sb);
600	end_writeback(inode);
601}
602
603/*
604 * If swap found in inode, free it and move page from swapcache to filecache.
605 */
606static int shmem_unuse_inode(struct shmem_inode_info *info,
607			     swp_entry_t swap, struct page *page)
608{
609	struct address_space *mapping = info->vfs_inode.i_mapping;
610	void *radswap;
611	pgoff_t index;
612	int error;
613
614	radswap = swp_to_radix_entry(swap);
615	index = shmem_find_swap(mapping, radswap);
616	if (index == -1)
617		return 0;
618
619	/*
620	 * Move _head_ to start search for next from here.
621	 * But be careful: shmem_evict_inode checks list_empty without taking
622	 * mutex, and there's an instant in list_move_tail when info->swaplist
623	 * would appear empty, if it were the only one on shmem_swaplist.
624	 */
625	if (shmem_swaplist.next != &info->swaplist)
626		list_move_tail(&shmem_swaplist, &info->swaplist);
627
628	/*
629	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
630	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
631	 * beneath us (pagelock doesn't help until the page is in pagecache).
632	 */
633	error = shmem_add_to_page_cache(page, mapping, index,
634						GFP_NOWAIT, radswap);
635	/* which does mem_cgroup_uncharge_cache_page on error */
636
637	if (error != -ENOMEM) {
638		/*
639		 * Truncation and eviction use free_swap_and_cache(), which
640		 * only does trylock page: if we raced, best clean up here.
641		 */
642		delete_from_swap_cache(page);
643		set_page_dirty(page);
644		if (!error) {
645			spin_lock(&info->lock);
646			info->swapped--;
647			spin_unlock(&info->lock);
648			swap_free(swap);
649		}
650		error = 1;	/* not an error, but entry was found */
651	}
652	return error;
653}
654
655/*
656 * Search through swapped inodes to find and replace swap by page.
657 */
658int shmem_unuse(swp_entry_t swap, struct page *page)
659{
660	struct list_head *this, *next;
661	struct shmem_inode_info *info;
662	int found = 0;
663	int error;
664
665	/*
666	 * Charge page using GFP_KERNEL while we can wait, before taking
667	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
668	 * Charged back to the user (not to caller) when swap account is used.
669	 */
670	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
671	if (error)
672		goto out;
673	/* No radix_tree_preload: swap entry keeps a place for page in tree */
674
675	mutex_lock(&shmem_swaplist_mutex);
676	list_for_each_safe(this, next, &shmem_swaplist) {
677		info = list_entry(this, struct shmem_inode_info, swaplist);
678		if (info->swapped)
679			found = shmem_unuse_inode(info, swap, page);
680		else
681			list_del_init(&info->swaplist);
682		cond_resched();
683		if (found)
684			break;
685	}
686	mutex_unlock(&shmem_swaplist_mutex);
687
688	if (!found)
689		mem_cgroup_uncharge_cache_page(page);
690	if (found < 0)
691		error = found;
692out:
693	unlock_page(page);
694	page_cache_release(page);
695	return error;
696}
697
698/*
699 * Move the page from the page cache to the swap cache.
700 */
701static int shmem_writepage(struct page *page, struct writeback_control *wbc)
702{
703	struct shmem_inode_info *info;
704	struct address_space *mapping;
705	struct inode *inode;
706	swp_entry_t swap;
707	pgoff_t index;
708
709	BUG_ON(!PageLocked(page));
710	mapping = page->mapping;
711	index = page->index;
712	inode = mapping->host;
713	info = SHMEM_I(inode);
714	if (info->flags & VM_LOCKED)
715		goto redirty;
716	if (!total_swap_pages)
717		goto redirty;
718
719	/*
720	 * shmem_backing_dev_info's capabilities prevent regular writeback or
721	 * sync from ever calling shmem_writepage; but a stacking filesystem
722	 * might use ->writepage of its underlying filesystem, in which case
723	 * tmpfs should write out to swap only in response to memory pressure,
724	 * and not for the writeback threads or sync.
725	 */
726	if (!wbc->for_reclaim) {
727		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
728		goto redirty;
729	}
730	swap = get_swap_page();
731	if (!swap.val)
732		goto redirty;
733
734	/*
735	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
736	 * if it's not already there.  Do it now before the page is
737	 * moved to swap cache, when its pagelock no longer protects
738	 * the inode from eviction.  But don't unlock the mutex until
739	 * we've incremented swapped, because shmem_unuse_inode() will
740	 * prune a !swapped inode from the swaplist under this mutex.
741	 */
742	mutex_lock(&shmem_swaplist_mutex);
743	if (list_empty(&info->swaplist))
744		list_add_tail(&info->swaplist, &shmem_swaplist);
745
746	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
747		swap_shmem_alloc(swap);
748		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
749
750		spin_lock(&info->lock);
751		info->swapped++;
752		shmem_recalc_inode(inode);
753		spin_unlock(&info->lock);
754
755		mutex_unlock(&shmem_swaplist_mutex);
756		BUG_ON(page_mapped(page));
757		swap_writepage(page, wbc);
758		return 0;
759	}
760
761	mutex_unlock(&shmem_swaplist_mutex);
762	swapcache_free(swap, NULL);
763redirty:
764	set_page_dirty(page);
765	if (wbc->for_reclaim)
766		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
767	unlock_page(page);
768	return 0;
769}
770
771#ifdef CONFIG_NUMA
772#ifdef CONFIG_TMPFS
773static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
774{
775	char buffer[64];
776
777	if (!mpol || mpol->mode == MPOL_DEFAULT)
778		return;		/* show nothing */
779
780	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
781
782	seq_printf(seq, ",mpol=%s", buffer);
783}
784
785static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
786{
787	struct mempolicy *mpol = NULL;
788	if (sbinfo->mpol) {
789		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
790		mpol = sbinfo->mpol;
791		mpol_get(mpol);
792		spin_unlock(&sbinfo->stat_lock);
793	}
794	return mpol;
795}
796#endif /* CONFIG_TMPFS */
797
798static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
799			struct shmem_inode_info *info, pgoff_t index)
800{
801	struct mempolicy mpol, *spol;
802	struct vm_area_struct pvma;
803
804	spol = mpol_cond_copy(&mpol,
805			mpol_shared_policy_lookup(&info->policy, index));
806
807	/* Create a pseudo vma that just contains the policy */
808	pvma.vm_start = 0;
809	pvma.vm_pgoff = index;
810	pvma.vm_ops = NULL;
811	pvma.vm_policy = spol;
812	return swapin_readahead(swap, gfp, &pvma, 0);
813}
814
815static struct page *shmem_alloc_page(gfp_t gfp,
816			struct shmem_inode_info *info, pgoff_t index)
817{
818	struct vm_area_struct pvma;
819
820	/* Create a pseudo vma that just contains the policy */
821	pvma.vm_start = 0;
822	pvma.vm_pgoff = index;
823	pvma.vm_ops = NULL;
824	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
825
826	/*
827	 * alloc_page_vma() will drop the shared policy reference
828	 */
829	return alloc_page_vma(gfp, &pvma, 0);
830}
831#else /* !CONFIG_NUMA */
832#ifdef CONFIG_TMPFS
833static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
834{
835}
836#endif /* CONFIG_TMPFS */
837
838static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
839			struct shmem_inode_info *info, pgoff_t index)
840{
841	return swapin_readahead(swap, gfp, NULL, 0);
842}
843
844static inline struct page *shmem_alloc_page(gfp_t gfp,
845			struct shmem_inode_info *info, pgoff_t index)
846{
847	return alloc_page(gfp);
848}
849#endif /* CONFIG_NUMA */
850
851#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
852static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
853{
854	return NULL;
855}
856#endif
857
858/*
859 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
860 *
861 * If we allocate a new one we do not mark it dirty. That's up to the
862 * vm. If we swap it in we mark it dirty since we also free the swap
863 * entry since a page cannot live in both the swap and page cache
864 */
865static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
866	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
867{
868	struct address_space *mapping = inode->i_mapping;
869	struct shmem_inode_info *info;
870	struct shmem_sb_info *sbinfo;
871	struct page *page;
872	swp_entry_t swap;
873	int error;
874	int once = 0;
875
876	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
877		return -EFBIG;
878repeat:
879	swap.val = 0;
880	page = find_lock_page(mapping, index);
881	if (radix_tree_exceptional_entry(page)) {
882		swap = radix_to_swp_entry(page);
883		page = NULL;
884	}
885
886	if (sgp != SGP_WRITE &&
887	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
888		error = -EINVAL;
889		goto failed;
890	}
891
892	if (page || (sgp == SGP_READ && !swap.val)) {
893		/*
894		 * Once we can get the page lock, it must be uptodate:
895		 * if there were an error in reading back from swap,
896		 * the page would not be inserted into the filecache.
897		 */
898		BUG_ON(page && !PageUptodate(page));
899		*pagep = page;
900		return 0;
901	}
902
903	/*
904	 * Fast cache lookup did not find it:
905	 * bring it back from swap or allocate.
906	 */
907	info = SHMEM_I(inode);
908	sbinfo = SHMEM_SB(inode->i_sb);
909
910	if (swap.val) {
911		/* Look it up and read it in.. */
912		page = lookup_swap_cache(swap);
913		if (!page) {
914			/* here we actually do the io */
915			if (fault_type)
916				*fault_type |= VM_FAULT_MAJOR;
917			page = shmem_swapin(swap, gfp, info, index);
918			if (!page) {
919				error = -ENOMEM;
920				goto failed;
921			}
922		}
923
924		/* We have to do this with page locked to prevent races */
925		lock_page(page);
926		if (!PageUptodate(page)) {
927			error = -EIO;
928			goto failed;
929		}
930		wait_on_page_writeback(page);
931
932		/* Someone may have already done it for us */
933		if (page->mapping) {
934			if (page->mapping == mapping &&
935			    page->index == index)
936				goto done;
937			error = -EEXIST;
938			goto failed;
939		}
940
941		error = mem_cgroup_cache_charge(page, current->mm,
942						gfp & GFP_RECLAIM_MASK);
943		if (!error)
944			error = shmem_add_to_page_cache(page, mapping, index,
945						gfp, swp_to_radix_entry(swap));
946		if (error)
947			goto failed;
948
949		spin_lock(&info->lock);
950		info->swapped--;
951		shmem_recalc_inode(inode);
952		spin_unlock(&info->lock);
953
954		delete_from_swap_cache(page);
955		set_page_dirty(page);
956		swap_free(swap);
957
958	} else {
959		if (shmem_acct_block(info->flags)) {
960			error = -ENOSPC;
961			goto failed;
962		}
963		if (sbinfo->max_blocks) {
964			if (percpu_counter_compare(&sbinfo->used_blocks,
965						sbinfo->max_blocks) >= 0) {
966				error = -ENOSPC;
967				goto unacct;
968			}
969			percpu_counter_inc(&sbinfo->used_blocks);
970		}
971
972		page = shmem_alloc_page(gfp, info, index);
973		if (!page) {
974			error = -ENOMEM;
975			goto decused;
976		}
977
978		SetPageSwapBacked(page);
979		__set_page_locked(page);
980		error = mem_cgroup_cache_charge(page, current->mm,
981						gfp & GFP_RECLAIM_MASK);
982		if (!error)
983			error = shmem_add_to_page_cache(page, mapping, index,
984						gfp, NULL);
985		if (error)
986			goto decused;
987		lru_cache_add_anon(page);
988
989		spin_lock(&info->lock);
990		info->alloced++;
991		inode->i_blocks += BLOCKS_PER_PAGE;
992		shmem_recalc_inode(inode);
993		spin_unlock(&info->lock);
994
995		clear_highpage(page);
996		flush_dcache_page(page);
997		SetPageUptodate(page);
998		if (sgp == SGP_DIRTY)
999			set_page_dirty(page);
1000	}
1001done:
1002	/* Perhaps the file has been truncated since we checked */
1003	if (sgp != SGP_WRITE &&
1004	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1005		error = -EINVAL;
1006		goto trunc;
1007	}
1008	*pagep = page;
1009	return 0;
1010
1011	/*
1012	 * Error recovery.
1013	 */
1014trunc:
1015	ClearPageDirty(page);
1016	delete_from_page_cache(page);
1017	spin_lock(&info->lock);
1018	info->alloced--;
1019	inode->i_blocks -= BLOCKS_PER_PAGE;
1020	spin_unlock(&info->lock);
1021decused:
1022	if (sbinfo->max_blocks)
1023		percpu_counter_add(&sbinfo->used_blocks, -1);
1024unacct:
1025	shmem_unacct_blocks(info->flags, 1);
1026failed:
1027	if (swap.val && error != -EINVAL) {
1028		struct page *test = find_get_page(mapping, index);
1029		if (test && !radix_tree_exceptional_entry(test))
1030			page_cache_release(test);
1031		/* Have another try if the entry has changed */
1032		if (test != swp_to_radix_entry(swap))
1033			error = -EEXIST;
1034	}
1035	if (page) {
1036		unlock_page(page);
1037		page_cache_release(page);
1038	}
1039	if (error == -ENOSPC && !once++) {
1040		info = SHMEM_I(inode);
1041		spin_lock(&info->lock);
1042		shmem_recalc_inode(inode);
1043		spin_unlock(&info->lock);
1044		goto repeat;
1045	}
1046	if (error == -EEXIST)
1047		goto repeat;
1048	return error;
1049}
1050
1051static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1052{
1053	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1054	int error;
1055	int ret = VM_FAULT_LOCKED;
1056
1057	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1058	if (error)
1059		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1060
1061	if (ret & VM_FAULT_MAJOR) {
1062		count_vm_event(PGMAJFAULT);
1063		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1064	}
1065	return ret;
1066}
1067
1068#ifdef CONFIG_NUMA
1069static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1070{
1071	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1072	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1073}
1074
1075static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1076					  unsigned long addr)
1077{
1078	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1079	pgoff_t index;
1080
1081	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1082	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1083}
1084#endif
1085
1086int shmem_lock(struct file *file, int lock, struct user_struct *user)
1087{
1088	struct inode *inode = file->f_path.dentry->d_inode;
1089	struct shmem_inode_info *info = SHMEM_I(inode);
1090	int retval = -ENOMEM;
1091
1092	spin_lock(&info->lock);
1093	if (lock && !(info->flags & VM_LOCKED)) {
1094		if (!user_shm_lock(inode->i_size, user))
1095			goto out_nomem;
1096		info->flags |= VM_LOCKED;
1097		mapping_set_unevictable(file->f_mapping);
1098	}
1099	if (!lock && (info->flags & VM_LOCKED) && user) {
1100		user_shm_unlock(inode->i_size, user);
1101		info->flags &= ~VM_LOCKED;
1102		mapping_clear_unevictable(file->f_mapping);
1103		scan_mapping_unevictable_pages(file->f_mapping);
1104	}
1105	retval = 0;
1106
1107out_nomem:
1108	spin_unlock(&info->lock);
1109	return retval;
1110}
1111
1112static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1113{
1114	file_accessed(file);
1115	vma->vm_ops = &shmem_vm_ops;
1116	vma->vm_flags |= VM_CAN_NONLINEAR;
1117	return 0;
1118}
1119
1120static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1121				     int mode, dev_t dev, unsigned long flags)
1122{
1123	struct inode *inode;
1124	struct shmem_inode_info *info;
1125	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1126
1127	if (shmem_reserve_inode(sb))
1128		return NULL;
1129
1130	inode = new_inode(sb);
1131	if (inode) {
1132		inode->i_ino = get_next_ino();
1133		inode_init_owner(inode, dir, mode);
1134		inode->i_blocks = 0;
1135		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1136		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1137		inode->i_generation = get_seconds();
1138		info = SHMEM_I(inode);
1139		memset(info, 0, (char *)inode - (char *)info);
1140		spin_lock_init(&info->lock);
1141		info->flags = flags & VM_NORESERVE;
1142		INIT_LIST_HEAD(&info->swaplist);
1143		INIT_LIST_HEAD(&info->xattr_list);
1144		cache_no_acl(inode);
1145
1146		switch (mode & S_IFMT) {
1147		default:
1148			inode->i_op = &shmem_special_inode_operations;
1149			init_special_inode(inode, mode, dev);
1150			break;
1151		case S_IFREG:
1152			inode->i_mapping->a_ops = &shmem_aops;
1153			inode->i_op = &shmem_inode_operations;
1154			inode->i_fop = &shmem_file_operations;
1155			mpol_shared_policy_init(&info->policy,
1156						 shmem_get_sbmpol(sbinfo));
1157			break;
1158		case S_IFDIR:
1159			inc_nlink(inode);
1160			/* Some things misbehave if size == 0 on a directory */
1161			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1162			inode->i_op = &shmem_dir_inode_operations;
1163			inode->i_fop = &simple_dir_operations;
1164			break;
1165		case S_IFLNK:
1166			/*
1167			 * Must not load anything in the rbtree,
1168			 * mpol_free_shared_policy will not be called.
1169			 */
1170			mpol_shared_policy_init(&info->policy, NULL);
1171			break;
1172		}
1173	} else
1174		shmem_free_inode(sb);
1175	return inode;
1176}
1177
1178#ifdef CONFIG_TMPFS
1179static const struct inode_operations shmem_symlink_inode_operations;
1180static const struct inode_operations shmem_short_symlink_operations;
1181
1182static int
1183shmem_write_begin(struct file *file, struct address_space *mapping,
1184			loff_t pos, unsigned len, unsigned flags,
1185			struct page **pagep, void **fsdata)
1186{
1187	struct inode *inode = mapping->host;
1188	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1189	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1190}
1191
1192static int
1193shmem_write_end(struct file *file, struct address_space *mapping,
1194			loff_t pos, unsigned len, unsigned copied,
1195			struct page *page, void *fsdata)
1196{
1197	struct inode *inode = mapping->host;
1198
1199	if (pos + copied > inode->i_size)
1200		i_size_write(inode, pos + copied);
1201
1202	set_page_dirty(page);
1203	unlock_page(page);
1204	page_cache_release(page);
1205
1206	return copied;
1207}
1208
1209static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1210{
1211	struct inode *inode = filp->f_path.dentry->d_inode;
1212	struct address_space *mapping = inode->i_mapping;
1213	pgoff_t index;
1214	unsigned long offset;
1215	enum sgp_type sgp = SGP_READ;
1216
1217	/*
1218	 * Might this read be for a stacking filesystem?  Then when reading
1219	 * holes of a sparse file, we actually need to allocate those pages,
1220	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1221	 */
1222	if (segment_eq(get_fs(), KERNEL_DS))
1223		sgp = SGP_DIRTY;
1224
1225	index = *ppos >> PAGE_CACHE_SHIFT;
1226	offset = *ppos & ~PAGE_CACHE_MASK;
1227
1228	for (;;) {
1229		struct page *page = NULL;
1230		pgoff_t end_index;
1231		unsigned long nr, ret;
1232		loff_t i_size = i_size_read(inode);
1233
1234		end_index = i_size >> PAGE_CACHE_SHIFT;
1235		if (index > end_index)
1236			break;
1237		if (index == end_index) {
1238			nr = i_size & ~PAGE_CACHE_MASK;
1239			if (nr <= offset)
1240				break;
1241		}
1242
1243		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1244		if (desc->error) {
1245			if (desc->error == -EINVAL)
1246				desc->error = 0;
1247			break;
1248		}
1249		if (page)
1250			unlock_page(page);
1251
1252		/*
1253		 * We must evaluate after, since reads (unlike writes)
1254		 * are called without i_mutex protection against truncate
1255		 */
1256		nr = PAGE_CACHE_SIZE;
1257		i_size = i_size_read(inode);
1258		end_index = i_size >> PAGE_CACHE_SHIFT;
1259		if (index == end_index) {
1260			nr = i_size & ~PAGE_CACHE_MASK;
1261			if (nr <= offset) {
1262				if (page)
1263					page_cache_release(page);
1264				break;
1265			}
1266		}
1267		nr -= offset;
1268
1269		if (page) {
1270			/*
1271			 * If users can be writing to this page using arbitrary
1272			 * virtual addresses, take care about potential aliasing
1273			 * before reading the page on the kernel side.
1274			 */
1275			if (mapping_writably_mapped(mapping))
1276				flush_dcache_page(page);
1277			/*
1278			 * Mark the page accessed if we read the beginning.
1279			 */
1280			if (!offset)
1281				mark_page_accessed(page);
1282		} else {
1283			page = ZERO_PAGE(0);
1284			page_cache_get(page);
1285		}
1286
1287		/*
1288		 * Ok, we have the page, and it's up-to-date, so
1289		 * now we can copy it to user space...
1290		 *
1291		 * The actor routine returns how many bytes were actually used..
1292		 * NOTE! This may not be the same as how much of a user buffer
1293		 * we filled up (we may be padding etc), so we can only update
1294		 * "pos" here (the actor routine has to update the user buffer
1295		 * pointers and the remaining count).
1296		 */
1297		ret = actor(desc, page, offset, nr);
1298		offset += ret;
1299		index += offset >> PAGE_CACHE_SHIFT;
1300		offset &= ~PAGE_CACHE_MASK;
1301
1302		page_cache_release(page);
1303		if (ret != nr || !desc->count)
1304			break;
1305
1306		cond_resched();
1307	}
1308
1309	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1310	file_accessed(filp);
1311}
1312
1313static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1314		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1315{
1316	struct file *filp = iocb->ki_filp;
1317	ssize_t retval;
1318	unsigned long seg;
1319	size_t count;
1320	loff_t *ppos = &iocb->ki_pos;
1321
1322	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1323	if (retval)
1324		return retval;
1325
1326	for (seg = 0; seg < nr_segs; seg++) {
1327		read_descriptor_t desc;
1328
1329		desc.written = 0;
1330		desc.arg.buf = iov[seg].iov_base;
1331		desc.count = iov[seg].iov_len;
1332		if (desc.count == 0)
1333			continue;
1334		desc.error = 0;
1335		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1336		retval += desc.written;
1337		if (desc.error) {
1338			retval = retval ?: desc.error;
1339			break;
1340		}
1341		if (desc.count > 0)
1342			break;
1343	}
1344	return retval;
1345}
1346
1347static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1348				struct pipe_inode_info *pipe, size_t len,
1349				unsigned int flags)
1350{
1351	struct address_space *mapping = in->f_mapping;
1352	struct inode *inode = mapping->host;
1353	unsigned int loff, nr_pages, req_pages;
1354	struct page *pages[PIPE_DEF_BUFFERS];
1355	struct partial_page partial[PIPE_DEF_BUFFERS];
1356	struct page *page;
1357	pgoff_t index, end_index;
1358	loff_t isize, left;
1359	int error, page_nr;
1360	struct splice_pipe_desc spd = {
1361		.pages = pages,
1362		.partial = partial,
1363		.flags = flags,
1364		.ops = &page_cache_pipe_buf_ops,
1365		.spd_release = spd_release_page,
1366	};
1367
1368	isize = i_size_read(inode);
1369	if (unlikely(*ppos >= isize))
1370		return 0;
1371
1372	left = isize - *ppos;
1373	if (unlikely(left < len))
1374		len = left;
1375
1376	if (splice_grow_spd(pipe, &spd))
1377		return -ENOMEM;
1378
1379	index = *ppos >> PAGE_CACHE_SHIFT;
1380	loff = *ppos & ~PAGE_CACHE_MASK;
1381	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1382	nr_pages = min(req_pages, pipe->buffers);
1383
1384	spd.nr_pages = find_get_pages_contig(mapping, index,
1385						nr_pages, spd.pages);
1386	index += spd.nr_pages;
1387	error = 0;
1388
1389	while (spd.nr_pages < nr_pages) {
1390		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1391		if (error)
1392			break;
1393		unlock_page(page);
1394		spd.pages[spd.nr_pages++] = page;
1395		index++;
1396	}
1397
1398	index = *ppos >> PAGE_CACHE_SHIFT;
1399	nr_pages = spd.nr_pages;
1400	spd.nr_pages = 0;
1401
1402	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1403		unsigned int this_len;
1404
1405		if (!len)
1406			break;
1407
1408		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1409		page = spd.pages[page_nr];
1410
1411		if (!PageUptodate(page) || page->mapping != mapping) {
1412			error = shmem_getpage(inode, index, &page,
1413							SGP_CACHE, NULL);
1414			if (error)
1415				break;
1416			unlock_page(page);
1417			page_cache_release(spd.pages[page_nr]);
1418			spd.pages[page_nr] = page;
1419		}
1420
1421		isize = i_size_read(inode);
1422		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1423		if (unlikely(!isize || index > end_index))
1424			break;
1425
1426		if (end_index == index) {
1427			unsigned int plen;
1428
1429			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1430			if (plen <= loff)
1431				break;
1432
1433			this_len = min(this_len, plen - loff);
1434			len = this_len;
1435		}
1436
1437		spd.partial[page_nr].offset = loff;
1438		spd.partial[page_nr].len = this_len;
1439		len -= this_len;
1440		loff = 0;
1441		spd.nr_pages++;
1442		index++;
1443	}
1444
1445	while (page_nr < nr_pages)
1446		page_cache_release(spd.pages[page_nr++]);
1447
1448	if (spd.nr_pages)
1449		error = splice_to_pipe(pipe, &spd);
1450
1451	splice_shrink_spd(pipe, &spd);
1452
1453	if (error > 0) {
1454		*ppos += error;
1455		file_accessed(in);
1456	}
1457	return error;
1458}
1459
1460static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1461{
1462	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1463
1464	buf->f_type = TMPFS_MAGIC;
1465	buf->f_bsize = PAGE_CACHE_SIZE;
1466	buf->f_namelen = NAME_MAX;
1467	if (sbinfo->max_blocks) {
1468		buf->f_blocks = sbinfo->max_blocks;
1469		buf->f_bavail =
1470		buf->f_bfree  = sbinfo->max_blocks -
1471				percpu_counter_sum(&sbinfo->used_blocks);
1472	}
1473	if (sbinfo->max_inodes) {
1474		buf->f_files = sbinfo->max_inodes;
1475		buf->f_ffree = sbinfo->free_inodes;
1476	}
1477	/* else leave those fields 0 like simple_statfs */
1478	return 0;
1479}
1480
1481/*
1482 * File creation. Allocate an inode, and we're done..
1483 */
1484static int
1485shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1486{
1487	struct inode *inode;
1488	int error = -ENOSPC;
1489
1490	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1491	if (inode) {
1492		error = security_inode_init_security(inode, dir,
1493						     &dentry->d_name, NULL,
1494						     NULL, NULL);
1495		if (error) {
1496			if (error != -EOPNOTSUPP) {
1497				iput(inode);
1498				return error;
1499			}
1500		}
1501#ifdef CONFIG_TMPFS_POSIX_ACL
1502		error = generic_acl_init(inode, dir);
1503		if (error) {
1504			iput(inode);
1505			return error;
1506		}
1507#else
1508		error = 0;
1509#endif
1510		dir->i_size += BOGO_DIRENT_SIZE;
1511		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1512		d_instantiate(dentry, inode);
1513		dget(dentry); /* Extra count - pin the dentry in core */
1514	}
1515	return error;
1516}
1517
1518static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1519{
1520	int error;
1521
1522	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1523		return error;
1524	inc_nlink(dir);
1525	return 0;
1526}
1527
1528static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1529		struct nameidata *nd)
1530{
1531	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1532}
1533
1534/*
1535 * Link a file..
1536 */
1537static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1538{
1539	struct inode *inode = old_dentry->d_inode;
1540	int ret;
1541
1542	/*
1543	 * No ordinary (disk based) filesystem counts links as inodes;
1544	 * but each new link needs a new dentry, pinning lowmem, and
1545	 * tmpfs dentries cannot be pruned until they are unlinked.
1546	 */
1547	ret = shmem_reserve_inode(inode->i_sb);
1548	if (ret)
1549		goto out;
1550
1551	dir->i_size += BOGO_DIRENT_SIZE;
1552	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1553	inc_nlink(inode);
1554	ihold(inode);	/* New dentry reference */
1555	dget(dentry);		/* Extra pinning count for the created dentry */
1556	d_instantiate(dentry, inode);
1557out:
1558	return ret;
1559}
1560
1561static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1562{
1563	struct inode *inode = dentry->d_inode;
1564
1565	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1566		shmem_free_inode(inode->i_sb);
1567
1568	dir->i_size -= BOGO_DIRENT_SIZE;
1569	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1570	drop_nlink(inode);
1571	dput(dentry);	/* Undo the count from "create" - this does all the work */
1572	return 0;
1573}
1574
1575static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1576{
1577	if (!simple_empty(dentry))
1578		return -ENOTEMPTY;
1579
1580	drop_nlink(dentry->d_inode);
1581	drop_nlink(dir);
1582	return shmem_unlink(dir, dentry);
1583}
1584
1585/*
1586 * The VFS layer already does all the dentry stuff for rename,
1587 * we just have to decrement the usage count for the target if
1588 * it exists so that the VFS layer correctly free's it when it
1589 * gets overwritten.
1590 */
1591static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1592{
1593	struct inode *inode = old_dentry->d_inode;
1594	int they_are_dirs = S_ISDIR(inode->i_mode);
1595
1596	if (!simple_empty(new_dentry))
1597		return -ENOTEMPTY;
1598
1599	if (new_dentry->d_inode) {
1600		(void) shmem_unlink(new_dir, new_dentry);
1601		if (they_are_dirs)
1602			drop_nlink(old_dir);
1603	} else if (they_are_dirs) {
1604		drop_nlink(old_dir);
1605		inc_nlink(new_dir);
1606	}
1607
1608	old_dir->i_size -= BOGO_DIRENT_SIZE;
1609	new_dir->i_size += BOGO_DIRENT_SIZE;
1610	old_dir->i_ctime = old_dir->i_mtime =
1611	new_dir->i_ctime = new_dir->i_mtime =
1612	inode->i_ctime = CURRENT_TIME;
1613	return 0;
1614}
1615
1616static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1617{
1618	int error;
1619	int len;
1620	struct inode *inode;
1621	struct page *page;
1622	char *kaddr;
1623	struct shmem_inode_info *info;
1624
1625	len = strlen(symname) + 1;
1626	if (len > PAGE_CACHE_SIZE)
1627		return -ENAMETOOLONG;
1628
1629	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1630	if (!inode)
1631		return -ENOSPC;
1632
1633	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1634					     NULL, NULL);
1635	if (error) {
1636		if (error != -EOPNOTSUPP) {
1637			iput(inode);
1638			return error;
1639		}
1640		error = 0;
1641	}
1642
1643	info = SHMEM_I(inode);
1644	inode->i_size = len-1;
1645	if (len <= SHORT_SYMLINK_LEN) {
1646		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1647		if (!info->symlink) {
1648			iput(inode);
1649			return -ENOMEM;
1650		}
1651		inode->i_op = &shmem_short_symlink_operations;
1652	} else {
1653		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1654		if (error) {
1655			iput(inode);
1656			return error;
1657		}
1658		inode->i_mapping->a_ops = &shmem_aops;
1659		inode->i_op = &shmem_symlink_inode_operations;
1660		kaddr = kmap_atomic(page, KM_USER0);
1661		memcpy(kaddr, symname, len);
1662		kunmap_atomic(kaddr, KM_USER0);
1663		set_page_dirty(page);
1664		unlock_page(page);
1665		page_cache_release(page);
1666	}
1667	dir->i_size += BOGO_DIRENT_SIZE;
1668	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1669	d_instantiate(dentry, inode);
1670	dget(dentry);
1671	return 0;
1672}
1673
1674static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1675{
1676	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1677	return NULL;
1678}
1679
1680static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1681{
1682	struct page *page = NULL;
1683	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1684	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1685	if (page)
1686		unlock_page(page);
1687	return page;
1688}
1689
1690static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1691{
1692	if (!IS_ERR(nd_get_link(nd))) {
1693		struct page *page = cookie;
1694		kunmap(page);
1695		mark_page_accessed(page);
1696		page_cache_release(page);
1697	}
1698}
1699
1700#ifdef CONFIG_TMPFS_XATTR
1701/*
1702 * Superblocks without xattr inode operations may get some security.* xattr
1703 * support from the LSM "for free". As soon as we have any other xattrs
1704 * like ACLs, we also need to implement the security.* handlers at
1705 * filesystem level, though.
1706 */
1707
1708static int shmem_xattr_get(struct dentry *dentry, const char *name,
1709			   void *buffer, size_t size)
1710{
1711	struct shmem_inode_info *info;
1712	struct shmem_xattr *xattr;
1713	int ret = -ENODATA;
1714
1715	info = SHMEM_I(dentry->d_inode);
1716
1717	spin_lock(&info->lock);
1718	list_for_each_entry(xattr, &info->xattr_list, list) {
1719		if (strcmp(name, xattr->name))
1720			continue;
1721
1722		ret = xattr->size;
1723		if (buffer) {
1724			if (size < xattr->size)
1725				ret = -ERANGE;
1726			else
1727				memcpy(buffer, xattr->value, xattr->size);
1728		}
1729		break;
1730	}
1731	spin_unlock(&info->lock);
1732	return ret;
1733}
1734
1735static int shmem_xattr_set(struct dentry *dentry, const char *name,
1736			   const void *value, size_t size, int flags)
1737{
1738	struct inode *inode = dentry->d_inode;
1739	struct shmem_inode_info *info = SHMEM_I(inode);
1740	struct shmem_xattr *xattr;
1741	struct shmem_xattr *new_xattr = NULL;
1742	size_t len;
1743	int err = 0;
1744
1745	/* value == NULL means remove */
1746	if (value) {
1747		/* wrap around? */
1748		len = sizeof(*new_xattr) + size;
1749		if (len <= sizeof(*new_xattr))
1750			return -ENOMEM;
1751
1752		new_xattr = kmalloc(len, GFP_KERNEL);
1753		if (!new_xattr)
1754			return -ENOMEM;
1755
1756		new_xattr->name = kstrdup(name, GFP_KERNEL);
1757		if (!new_xattr->name) {
1758			kfree(new_xattr);
1759			return -ENOMEM;
1760		}
1761
1762		new_xattr->size = size;
1763		memcpy(new_xattr->value, value, size);
1764	}
1765
1766	spin_lock(&info->lock);
1767	list_for_each_entry(xattr, &info->xattr_list, list) {
1768		if (!strcmp(name, xattr->name)) {
1769			if (flags & XATTR_CREATE) {
1770				xattr = new_xattr;
1771				err = -EEXIST;
1772			} else if (new_xattr) {
1773				list_replace(&xattr->list, &new_xattr->list);
1774			} else {
1775				list_del(&xattr->list);
1776			}
1777			goto out;
1778		}
1779	}
1780	if (flags & XATTR_REPLACE) {
1781		xattr = new_xattr;
1782		err = -ENODATA;
1783	} else {
1784		list_add(&new_xattr->list, &info->xattr_list);
1785		xattr = NULL;
1786	}
1787out:
1788	spin_unlock(&info->lock);
1789	if (xattr)
1790		kfree(xattr->name);
1791	kfree(xattr);
1792	return err;
1793}
1794
1795static const struct xattr_handler *shmem_xattr_handlers[] = {
1796#ifdef CONFIG_TMPFS_POSIX_ACL
1797	&generic_acl_access_handler,
1798	&generic_acl_default_handler,
1799#endif
1800	NULL
1801};
1802
1803static int shmem_xattr_validate(const char *name)
1804{
1805	struct { const char *prefix; size_t len; } arr[] = {
1806		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1807		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1808	};
1809	int i;
1810
1811	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1812		size_t preflen = arr[i].len;
1813		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1814			if (!name[preflen])
1815				return -EINVAL;
1816			return 0;
1817		}
1818	}
1819	return -EOPNOTSUPP;
1820}
1821
1822static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1823			      void *buffer, size_t size)
1824{
1825	int err;
1826
1827	/*
1828	 * If this is a request for a synthetic attribute in the system.*
1829	 * namespace use the generic infrastructure to resolve a handler
1830	 * for it via sb->s_xattr.
1831	 */
1832	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1833		return generic_getxattr(dentry, name, buffer, size);
1834
1835	err = shmem_xattr_validate(name);
1836	if (err)
1837		return err;
1838
1839	return shmem_xattr_get(dentry, name, buffer, size);
1840}
1841
1842static int shmem_setxattr(struct dentry *dentry, const char *name,
1843			  const void *value, size_t size, int flags)
1844{
1845	int err;
1846
1847	/*
1848	 * If this is a request for a synthetic attribute in the system.*
1849	 * namespace use the generic infrastructure to resolve a handler
1850	 * for it via sb->s_xattr.
1851	 */
1852	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1853		return generic_setxattr(dentry, name, value, size, flags);
1854
1855	err = shmem_xattr_validate(name);
1856	if (err)
1857		return err;
1858
1859	if (size == 0)
1860		value = "";  /* empty EA, do not remove */
1861
1862	return shmem_xattr_set(dentry, name, value, size, flags);
1863
1864}
1865
1866static int shmem_removexattr(struct dentry *dentry, const char *name)
1867{
1868	int err;
1869
1870	/*
1871	 * If this is a request for a synthetic attribute in the system.*
1872	 * namespace use the generic infrastructure to resolve a handler
1873	 * for it via sb->s_xattr.
1874	 */
1875	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1876		return generic_removexattr(dentry, name);
1877
1878	err = shmem_xattr_validate(name);
1879	if (err)
1880		return err;
1881
1882	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1883}
1884
1885static bool xattr_is_trusted(const char *name)
1886{
1887	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1888}
1889
1890static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1891{
1892	bool trusted = capable(CAP_SYS_ADMIN);
1893	struct shmem_xattr *xattr;
1894	struct shmem_inode_info *info;
1895	size_t used = 0;
1896
1897	info = SHMEM_I(dentry->d_inode);
1898
1899	spin_lock(&info->lock);
1900	list_for_each_entry(xattr, &info->xattr_list, list) {
1901		size_t len;
1902
1903		/* skip "trusted." attributes for unprivileged callers */
1904		if (!trusted && xattr_is_trusted(xattr->name))
1905			continue;
1906
1907		len = strlen(xattr->name) + 1;
1908		used += len;
1909		if (buffer) {
1910			if (size < used) {
1911				used = -ERANGE;
1912				break;
1913			}
1914			memcpy(buffer, xattr->name, len);
1915			buffer += len;
1916		}
1917	}
1918	spin_unlock(&info->lock);
1919
1920	return used;
1921}
1922#endif /* CONFIG_TMPFS_XATTR */
1923
1924static const struct inode_operations shmem_short_symlink_operations = {
1925	.readlink	= generic_readlink,
1926	.follow_link	= shmem_follow_short_symlink,
1927#ifdef CONFIG_TMPFS_XATTR
1928	.setxattr	= shmem_setxattr,
1929	.getxattr	= shmem_getxattr,
1930	.listxattr	= shmem_listxattr,
1931	.removexattr	= shmem_removexattr,
1932#endif
1933};
1934
1935static const struct inode_operations shmem_symlink_inode_operations = {
1936	.readlink	= generic_readlink,
1937	.follow_link	= shmem_follow_link,
1938	.put_link	= shmem_put_link,
1939#ifdef CONFIG_TMPFS_XATTR
1940	.setxattr	= shmem_setxattr,
1941	.getxattr	= shmem_getxattr,
1942	.listxattr	= shmem_listxattr,
1943	.removexattr	= shmem_removexattr,
1944#endif
1945};
1946
1947static struct dentry *shmem_get_parent(struct dentry *child)
1948{
1949	return ERR_PTR(-ESTALE);
1950}
1951
1952static int shmem_match(struct inode *ino, void *vfh)
1953{
1954	__u32 *fh = vfh;
1955	__u64 inum = fh[2];
1956	inum = (inum << 32) | fh[1];
1957	return ino->i_ino == inum && fh[0] == ino->i_generation;
1958}
1959
1960static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1961		struct fid *fid, int fh_len, int fh_type)
1962{
1963	struct inode *inode;
1964	struct dentry *dentry = NULL;
1965	u64 inum = fid->raw[2];
1966	inum = (inum << 32) | fid->raw[1];
1967
1968	if (fh_len < 3)
1969		return NULL;
1970
1971	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1972			shmem_match, fid->raw);
1973	if (inode) {
1974		dentry = d_find_alias(inode);
1975		iput(inode);
1976	}
1977
1978	return dentry;
1979}
1980
1981static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1982				int connectable)
1983{
1984	struct inode *inode = dentry->d_inode;
1985
1986	if (*len < 3) {
1987		*len = 3;
1988		return 255;
1989	}
1990
1991	if (inode_unhashed(inode)) {
1992		/* Unfortunately insert_inode_hash is not idempotent,
1993		 * so as we hash inodes here rather than at creation
1994		 * time, we need a lock to ensure we only try
1995		 * to do it once
1996		 */
1997		static DEFINE_SPINLOCK(lock);
1998		spin_lock(&lock);
1999		if (inode_unhashed(inode))
2000			__insert_inode_hash(inode,
2001					    inode->i_ino + inode->i_generation);
2002		spin_unlock(&lock);
2003	}
2004
2005	fh[0] = inode->i_generation;
2006	fh[1] = inode->i_ino;
2007	fh[2] = ((__u64)inode->i_ino) >> 32;
2008
2009	*len = 3;
2010	return 1;
2011}
2012
2013static const struct export_operations shmem_export_ops = {
2014	.get_parent     = shmem_get_parent,
2015	.encode_fh      = shmem_encode_fh,
2016	.fh_to_dentry	= shmem_fh_to_dentry,
2017};
2018
2019static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2020			       bool remount)
2021{
2022	char *this_char, *value, *rest;
2023
2024	while (options != NULL) {
2025		this_char = options;
2026		for (;;) {
2027			/*
2028			 * NUL-terminate this option: unfortunately,
2029			 * mount options form a comma-separated list,
2030			 * but mpol's nodelist may also contain commas.
2031			 */
2032			options = strchr(options, ',');
2033			if (options == NULL)
2034				break;
2035			options++;
2036			if (!isdigit(*options)) {
2037				options[-1] = '\0';
2038				break;
2039			}
2040		}
2041		if (!*this_char)
2042			continue;
2043		if ((value = strchr(this_char,'=')) != NULL) {
2044			*value++ = 0;
2045		} else {
2046			printk(KERN_ERR
2047			    "tmpfs: No value for mount option '%s'\n",
2048			    this_char);
2049			return 1;
2050		}
2051
2052		if (!strcmp(this_char,"size")) {
2053			unsigned long long size;
2054			size = memparse(value,&rest);
2055			if (*rest == '%') {
2056				size <<= PAGE_SHIFT;
2057				size *= totalram_pages;
2058				do_div(size, 100);
2059				rest++;
2060			}
2061			if (*rest)
2062				goto bad_val;
2063			sbinfo->max_blocks =
2064				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2065		} else if (!strcmp(this_char,"nr_blocks")) {
2066			sbinfo->max_blocks = memparse(value, &rest);
2067			if (*rest)
2068				goto bad_val;
2069		} else if (!strcmp(this_char,"nr_inodes")) {
2070			sbinfo->max_inodes = memparse(value, &rest);
2071			if (*rest)
2072				goto bad_val;
2073		} else if (!strcmp(this_char,"mode")) {
2074			if (remount)
2075				continue;
2076			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2077			if (*rest)
2078				goto bad_val;
2079		} else if (!strcmp(this_char,"uid")) {
2080			if (remount)
2081				continue;
2082			sbinfo->uid = simple_strtoul(value, &rest, 0);
2083			if (*rest)
2084				goto bad_val;
2085		} else if (!strcmp(this_char,"gid")) {
2086			if (remount)
2087				continue;
2088			sbinfo->gid = simple_strtoul(value, &rest, 0);
2089			if (*rest)
2090				goto bad_val;
2091		} else if (!strcmp(this_char,"mpol")) {
2092			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2093				goto bad_val;
2094		} else {
2095			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2096			       this_char);
2097			return 1;
2098		}
2099	}
2100	return 0;
2101
2102bad_val:
2103	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2104	       value, this_char);
2105	return 1;
2106
2107}
2108
2109static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2110{
2111	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2112	struct shmem_sb_info config = *sbinfo;
2113	unsigned long inodes;
2114	int error = -EINVAL;
2115
2116	if (shmem_parse_options(data, &config, true))
2117		return error;
2118
2119	spin_lock(&sbinfo->stat_lock);
2120	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2121	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2122		goto out;
2123	if (config.max_inodes < inodes)
2124		goto out;
2125	/*
2126	 * Those tests disallow limited->unlimited while any are in use;
2127	 * but we must separately disallow unlimited->limited, because
2128	 * in that case we have no record of how much is already in use.
2129	 */
2130	if (config.max_blocks && !sbinfo->max_blocks)
2131		goto out;
2132	if (config.max_inodes && !sbinfo->max_inodes)
2133		goto out;
2134
2135	error = 0;
2136	sbinfo->max_blocks  = config.max_blocks;
2137	sbinfo->max_inodes  = config.max_inodes;
2138	sbinfo->free_inodes = config.max_inodes - inodes;
2139
2140	mpol_put(sbinfo->mpol);
2141	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2142out:
2143	spin_unlock(&sbinfo->stat_lock);
2144	return error;
2145}
2146
2147static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2148{
2149	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2150
2151	if (sbinfo->max_blocks != shmem_default_max_blocks())
2152		seq_printf(seq, ",size=%luk",
2153			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2154	if (sbinfo->max_inodes != shmem_default_max_inodes())
2155		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2156	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2157		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2158	if (sbinfo->uid != 0)
2159		seq_printf(seq, ",uid=%u", sbinfo->uid);
2160	if (sbinfo->gid != 0)
2161		seq_printf(seq, ",gid=%u", sbinfo->gid);
2162	shmem_show_mpol(seq, sbinfo->mpol);
2163	return 0;
2164}
2165#endif /* CONFIG_TMPFS */
2166
2167static void shmem_put_super(struct super_block *sb)
2168{
2169	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2170
2171	percpu_counter_destroy(&sbinfo->used_blocks);
2172	kfree(sbinfo);
2173	sb->s_fs_info = NULL;
2174}
2175
2176int shmem_fill_super(struct super_block *sb, void *data, int silent)
2177{
2178	struct inode *inode;
2179	struct dentry *root;
2180	struct shmem_sb_info *sbinfo;
2181	int err = -ENOMEM;
2182
2183	/* Round up to L1_CACHE_BYTES to resist false sharing */
2184	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2185				L1_CACHE_BYTES), GFP_KERNEL);
2186	if (!sbinfo)
2187		return -ENOMEM;
2188
2189	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2190	sbinfo->uid = current_fsuid();
2191	sbinfo->gid = current_fsgid();
2192	sb->s_fs_info = sbinfo;
2193
2194#ifdef CONFIG_TMPFS
2195	/*
2196	 * Per default we only allow half of the physical ram per
2197	 * tmpfs instance, limiting inodes to one per page of lowmem;
2198	 * but the internal instance is left unlimited.
2199	 */
2200	if (!(sb->s_flags & MS_NOUSER)) {
2201		sbinfo->max_blocks = shmem_default_max_blocks();
2202		sbinfo->max_inodes = shmem_default_max_inodes();
2203		if (shmem_parse_options(data, sbinfo, false)) {
2204			err = -EINVAL;
2205			goto failed;
2206		}
2207	}
2208	sb->s_export_op = &shmem_export_ops;
2209#else
2210	sb->s_flags |= MS_NOUSER;
2211#endif
2212
2213	spin_lock_init(&sbinfo->stat_lock);
2214	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2215		goto failed;
2216	sbinfo->free_inodes = sbinfo->max_inodes;
2217
2218	sb->s_maxbytes = MAX_LFS_FILESIZE;
2219	sb->s_blocksize = PAGE_CACHE_SIZE;
2220	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2221	sb->s_magic = TMPFS_MAGIC;
2222	sb->s_op = &shmem_ops;
2223	sb->s_time_gran = 1;
2224#ifdef CONFIG_TMPFS_XATTR
2225	sb->s_xattr = shmem_xattr_handlers;
2226#endif
2227#ifdef CONFIG_TMPFS_POSIX_ACL
2228	sb->s_flags |= MS_POSIXACL;
2229#endif
2230
2231	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2232	if (!inode)
2233		goto failed;
2234	inode->i_uid = sbinfo->uid;
2235	inode->i_gid = sbinfo->gid;
2236	root = d_alloc_root(inode);
2237	if (!root)
2238		goto failed_iput;
2239	sb->s_root = root;
2240	return 0;
2241
2242failed_iput:
2243	iput(inode);
2244failed:
2245	shmem_put_super(sb);
2246	return err;
2247}
2248
2249static struct kmem_cache *shmem_inode_cachep;
2250
2251static struct inode *shmem_alloc_inode(struct super_block *sb)
2252{
2253	struct shmem_inode_info *info;
2254	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2255	if (!info)
2256		return NULL;
2257	return &info->vfs_inode;
2258}
2259
2260static void shmem_destroy_callback(struct rcu_head *head)
2261{
2262	struct inode *inode = container_of(head, struct inode, i_rcu);
2263	INIT_LIST_HEAD(&inode->i_dentry);
2264	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2265}
2266
2267static void shmem_destroy_inode(struct inode *inode)
2268{
2269	if ((inode->i_mode & S_IFMT) == S_IFREG)
2270		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2271	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2272}
2273
2274static void shmem_init_inode(void *foo)
2275{
2276	struct shmem_inode_info *info = foo;
2277	inode_init_once(&info->vfs_inode);
2278}
2279
2280static int shmem_init_inodecache(void)
2281{
2282	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2283				sizeof(struct shmem_inode_info),
2284				0, SLAB_PANIC, shmem_init_inode);
2285	return 0;
2286}
2287
2288static void shmem_destroy_inodecache(void)
2289{
2290	kmem_cache_destroy(shmem_inode_cachep);
2291}
2292
2293static const struct address_space_operations shmem_aops = {
2294	.writepage	= shmem_writepage,
2295	.set_page_dirty	= __set_page_dirty_no_writeback,
2296#ifdef CONFIG_TMPFS
2297	.write_begin	= shmem_write_begin,
2298	.write_end	= shmem_write_end,
2299#endif
2300	.migratepage	= migrate_page,
2301	.error_remove_page = generic_error_remove_page,
2302};
2303
2304static const struct file_operations shmem_file_operations = {
2305	.mmap		= shmem_mmap,
2306#ifdef CONFIG_TMPFS
2307	.llseek		= generic_file_llseek,
2308	.read		= do_sync_read,
2309	.write		= do_sync_write,
2310	.aio_read	= shmem_file_aio_read,
2311	.aio_write	= generic_file_aio_write,
2312	.fsync		= noop_fsync,
2313	.splice_read	= shmem_file_splice_read,
2314	.splice_write	= generic_file_splice_write,
2315#endif
2316};
2317
2318static const struct inode_operations shmem_inode_operations = {
2319	.setattr	= shmem_setattr,
2320	.truncate_range	= shmem_truncate_range,
2321#ifdef CONFIG_TMPFS_XATTR
2322	.setxattr	= shmem_setxattr,
2323	.getxattr	= shmem_getxattr,
2324	.listxattr	= shmem_listxattr,
2325	.removexattr	= shmem_removexattr,
2326#endif
2327};
2328
2329static const struct inode_operations shmem_dir_inode_operations = {
2330#ifdef CONFIG_TMPFS
2331	.create		= shmem_create,
2332	.lookup		= simple_lookup,
2333	.link		= shmem_link,
2334	.unlink		= shmem_unlink,
2335	.symlink	= shmem_symlink,
2336	.mkdir		= shmem_mkdir,
2337	.rmdir		= shmem_rmdir,
2338	.mknod		= shmem_mknod,
2339	.rename		= shmem_rename,
2340#endif
2341#ifdef CONFIG_TMPFS_XATTR
2342	.setxattr	= shmem_setxattr,
2343	.getxattr	= shmem_getxattr,
2344	.listxattr	= shmem_listxattr,
2345	.removexattr	= shmem_removexattr,
2346#endif
2347#ifdef CONFIG_TMPFS_POSIX_ACL
2348	.setattr	= shmem_setattr,
2349#endif
2350};
2351
2352static const struct inode_operations shmem_special_inode_operations = {
2353#ifdef CONFIG_TMPFS_XATTR
2354	.setxattr	= shmem_setxattr,
2355	.getxattr	= shmem_getxattr,
2356	.listxattr	= shmem_listxattr,
2357	.removexattr	= shmem_removexattr,
2358#endif
2359#ifdef CONFIG_TMPFS_POSIX_ACL
2360	.setattr	= shmem_setattr,
2361#endif
2362};
2363
2364static const struct super_operations shmem_ops = {
2365	.alloc_inode	= shmem_alloc_inode,
2366	.destroy_inode	= shmem_destroy_inode,
2367#ifdef CONFIG_TMPFS
2368	.statfs		= shmem_statfs,
2369	.remount_fs	= shmem_remount_fs,
2370	.show_options	= shmem_show_options,
2371#endif
2372	.evict_inode	= shmem_evict_inode,
2373	.drop_inode	= generic_delete_inode,
2374	.put_super	= shmem_put_super,
2375};
2376
2377static const struct vm_operations_struct shmem_vm_ops = {
2378	.fault		= shmem_fault,
2379#ifdef CONFIG_NUMA
2380	.set_policy     = shmem_set_policy,
2381	.get_policy     = shmem_get_policy,
2382#endif
2383};
2384
2385static struct dentry *shmem_mount(struct file_system_type *fs_type,
2386	int flags, const char *dev_name, void *data)
2387{
2388	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2389}
2390
2391static struct file_system_type shmem_fs_type = {
2392	.owner		= THIS_MODULE,
2393	.name		= "tmpfs",
2394	.mount		= shmem_mount,
2395	.kill_sb	= kill_litter_super,
2396};
2397
2398int __init shmem_init(void)
2399{
2400	int error;
2401
2402	error = bdi_init(&shmem_backing_dev_info);
2403	if (error)
2404		goto out4;
2405
2406	error = shmem_init_inodecache();
2407	if (error)
2408		goto out3;
2409
2410	error = register_filesystem(&shmem_fs_type);
2411	if (error) {
2412		printk(KERN_ERR "Could not register tmpfs\n");
2413		goto out2;
2414	}
2415
2416	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2417				 shmem_fs_type.name, NULL);
2418	if (IS_ERR(shm_mnt)) {
2419		error = PTR_ERR(shm_mnt);
2420		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2421		goto out1;
2422	}
2423	return 0;
2424
2425out1:
2426	unregister_filesystem(&shmem_fs_type);
2427out2:
2428	shmem_destroy_inodecache();
2429out3:
2430	bdi_destroy(&shmem_backing_dev_info);
2431out4:
2432	shm_mnt = ERR_PTR(error);
2433	return error;
2434}
2435
2436#else /* !CONFIG_SHMEM */
2437
2438/*
2439 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2440 *
2441 * This is intended for small system where the benefits of the full
2442 * shmem code (swap-backed and resource-limited) are outweighed by
2443 * their complexity. On systems without swap this code should be
2444 * effectively equivalent, but much lighter weight.
2445 */
2446
2447#include <linux/ramfs.h>
2448
2449static struct file_system_type shmem_fs_type = {
2450	.name		= "tmpfs",
2451	.mount		= ramfs_mount,
2452	.kill_sb	= kill_litter_super,
2453};
2454
2455int __init shmem_init(void)
2456{
2457	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2458
2459	shm_mnt = kern_mount(&shmem_fs_type);
2460	BUG_ON(IS_ERR(shm_mnt));
2461
2462	return 0;
2463}
2464
2465int shmem_unuse(swp_entry_t swap, struct page *page)
2466{
2467	return 0;
2468}
2469
2470int shmem_lock(struct file *file, int lock, struct user_struct *user)
2471{
2472	return 0;
2473}
2474
2475void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2476{
2477	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2478}
2479EXPORT_SYMBOL_GPL(shmem_truncate_range);
2480
2481#define shmem_vm_ops				generic_file_vm_ops
2482#define shmem_file_operations			ramfs_file_operations
2483#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2484#define shmem_acct_size(flags, size)		0
2485#define shmem_unacct_size(flags, size)		do {} while (0)
2486
2487#endif /* CONFIG_SHMEM */
2488
2489/* common code */
2490
2491/**
2492 * shmem_file_setup - get an unlinked file living in tmpfs
2493 * @name: name for dentry (to be seen in /proc/<pid>/maps
2494 * @size: size to be set for the file
2495 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2496 */
2497struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2498{
2499	int error;
2500	struct file *file;
2501	struct inode *inode;
2502	struct path path;
2503	struct dentry *root;
2504	struct qstr this;
2505
2506	if (IS_ERR(shm_mnt))
2507		return (void *)shm_mnt;
2508
2509	if (size < 0 || size > MAX_LFS_FILESIZE)
2510		return ERR_PTR(-EINVAL);
2511
2512	if (shmem_acct_size(flags, size))
2513		return ERR_PTR(-ENOMEM);
2514
2515	error = -ENOMEM;
2516	this.name = name;
2517	this.len = strlen(name);
2518	this.hash = 0; /* will go */
2519	root = shm_mnt->mnt_root;
2520	path.dentry = d_alloc(root, &this);
2521	if (!path.dentry)
2522		goto put_memory;
2523	path.mnt = mntget(shm_mnt);
2524
2525	error = -ENOSPC;
2526	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2527	if (!inode)
2528		goto put_dentry;
2529
2530	d_instantiate(path.dentry, inode);
2531	inode->i_size = size;
2532	inode->i_nlink = 0;	/* It is unlinked */
2533#ifndef CONFIG_MMU
2534	error = ramfs_nommu_expand_for_mapping(inode, size);
2535	if (error)
2536		goto put_dentry;
2537#endif
2538
2539	error = -ENFILE;
2540	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2541		  &shmem_file_operations);
2542	if (!file)
2543		goto put_dentry;
2544
2545	return file;
2546
2547put_dentry:
2548	path_put(&path);
2549put_memory:
2550	shmem_unacct_size(flags, size);
2551	return ERR_PTR(error);
2552}
2553EXPORT_SYMBOL_GPL(shmem_file_setup);
2554
2555/**
2556 * shmem_zero_setup - setup a shared anonymous mapping
2557 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2558 */
2559int shmem_zero_setup(struct vm_area_struct *vma)
2560{
2561	struct file *file;
2562	loff_t size = vma->vm_end - vma->vm_start;
2563
2564	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2565	if (IS_ERR(file))
2566		return PTR_ERR(file);
2567
2568	if (vma->vm_file)
2569		fput(vma->vm_file);
2570	vma->vm_file = file;
2571	vma->vm_ops = &shmem_vm_ops;
2572	vma->vm_flags |= VM_CAN_NONLINEAR;
2573	return 0;
2574}
2575
2576/**
2577 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2578 * @mapping:	the page's address_space
2579 * @index:	the page index
2580 * @gfp:	the page allocator flags to use if allocating
2581 *
2582 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2583 * with any new page allocations done using the specified allocation flags.
2584 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2585 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2586 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2587 *
2588 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2589 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2590 */
2591struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2592					 pgoff_t index, gfp_t gfp)
2593{
2594#ifdef CONFIG_SHMEM
2595	struct inode *inode = mapping->host;
2596	struct page *page;
2597	int error;
2598
2599	BUG_ON(mapping->a_ops != &shmem_aops);
2600	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2601	if (error)
2602		page = ERR_PTR(error);
2603	else
2604		unlock_page(page);
2605	return page;
2606#else
2607	/*
2608	 * The tiny !SHMEM case uses ramfs without swap
2609	 */
2610	return read_cache_page_gfp(mapping, index, gfp);
2611#endif
2612}
2613EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2614