shmem.c revision 6a1a90ad1b0edb556a7550a6ef8a8756f0304dd5
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/swap.h>
32
33static struct vfsmount *shm_mnt;
34
35#ifdef CONFIG_SHMEM
36/*
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
40 */
41
42#include <linux/xattr.h>
43#include <linux/exportfs.h>
44#include <linux/posix_acl.h>
45#include <linux/generic_acl.h>
46#include <linux/mman.h>
47#include <linux/string.h>
48#include <linux/slab.h>
49#include <linux/backing-dev.h>
50#include <linux/shmem_fs.h>
51#include <linux/writeback.h>
52#include <linux/blkdev.h>
53#include <linux/security.h>
54#include <linux/swapops.h>
55#include <linux/mempolicy.h>
56#include <linux/namei.h>
57#include <linux/ctype.h>
58#include <linux/migrate.h>
59#include <linux/highmem.h>
60#include <linux/seq_file.h>
61#include <linux/magic.h>
62
63#include <asm/uaccess.h>
64#include <asm/div64.h>
65#include <asm/pgtable.h>
66
67/*
68 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
69 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
70 *
71 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
72 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
73 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
74 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
75 *
76 * We use / and * instead of shifts in the definitions below, so that the swap
77 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
78 */
79#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
80#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
81
82#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
83#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
84
85#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
86#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
87
88#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
89#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
90
91/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
92#define SHMEM_PAGEIN	 VM_READ
93#define SHMEM_TRUNCATE	 VM_WRITE
94
95/* Definition to limit shmem_truncate's steps between cond_rescheds */
96#define LATENCY_LIMIT	 64
97
98/* Pretend that each entry is of this size in directory's i_size */
99#define BOGO_DIRENT_SIZE 20
100
101/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
102enum sgp_type {
103	SGP_READ,	/* don't exceed i_size, don't allocate page */
104	SGP_CACHE,	/* don't exceed i_size, may allocate page */
105	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
106	SGP_WRITE,	/* may exceed i_size, may allocate page */
107};
108
109#ifdef CONFIG_TMPFS
110static unsigned long shmem_default_max_blocks(void)
111{
112	return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
119#endif
120
121static int shmem_getpage(struct inode *inode, unsigned long idx,
122			 struct page **pagep, enum sgp_type sgp, int *type);
123
124static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
125{
126	/*
127	 * The above definition of ENTRIES_PER_PAGE, and the use of
128	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
129	 * might be reconsidered if it ever diverges from PAGE_SIZE.
130	 *
131	 * Mobility flags are masked out as swap vectors cannot move
132	 */
133	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
134				PAGE_CACHE_SHIFT-PAGE_SHIFT);
135}
136
137static inline void shmem_dir_free(struct page *page)
138{
139	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
140}
141
142static struct page **shmem_dir_map(struct page *page)
143{
144	return (struct page **)kmap_atomic(page, KM_USER0);
145}
146
147static inline void shmem_dir_unmap(struct page **dir)
148{
149	kunmap_atomic(dir, KM_USER0);
150}
151
152static swp_entry_t *shmem_swp_map(struct page *page)
153{
154	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
155}
156
157static inline void shmem_swp_balance_unmap(void)
158{
159	/*
160	 * When passing a pointer to an i_direct entry, to code which
161	 * also handles indirect entries and so will shmem_swp_unmap,
162	 * we must arrange for the preempt count to remain in balance.
163	 * What kmap_atomic of a lowmem page does depends on config
164	 * and architecture, so pretend to kmap_atomic some lowmem page.
165	 */
166	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
167}
168
169static inline void shmem_swp_unmap(swp_entry_t *entry)
170{
171	kunmap_atomic(entry, KM_USER1);
172}
173
174static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
175{
176	return sb->s_fs_info;
177}
178
179/*
180 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
181 * for shared memory and for shared anonymous (/dev/zero) mappings
182 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
183 * consistent with the pre-accounting of private mappings ...
184 */
185static inline int shmem_acct_size(unsigned long flags, loff_t size)
186{
187	return (flags & VM_NORESERVE) ?
188		0 : security_vm_enough_memory_kern(VM_ACCT(size));
189}
190
191static inline void shmem_unacct_size(unsigned long flags, loff_t size)
192{
193	if (!(flags & VM_NORESERVE))
194		vm_unacct_memory(VM_ACCT(size));
195}
196
197/*
198 * ... whereas tmpfs objects are accounted incrementally as
199 * pages are allocated, in order to allow huge sparse files.
200 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
201 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
202 */
203static inline int shmem_acct_block(unsigned long flags)
204{
205	return (flags & VM_NORESERVE) ?
206		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
211	if (flags & VM_NORESERVE)
212		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
213}
214
215static const struct super_operations shmem_ops;
216static const struct address_space_operations shmem_aops;
217static const struct file_operations shmem_file_operations;
218static const struct inode_operations shmem_inode_operations;
219static const struct inode_operations shmem_dir_inode_operations;
220static const struct inode_operations shmem_special_inode_operations;
221static const struct vm_operations_struct shmem_vm_ops;
222
223static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
224	.ra_pages	= 0,	/* No readahead */
225	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
226	.unplug_io_fn	= default_unplug_io_fn,
227};
228
229static LIST_HEAD(shmem_swaplist);
230static DEFINE_MUTEX(shmem_swaplist_mutex);
231
232static void shmem_free_blocks(struct inode *inode, long pages)
233{
234	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235	if (sbinfo->max_blocks) {
236		spin_lock(&sbinfo->stat_lock);
237		sbinfo->free_blocks += pages;
238		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239		spin_unlock(&sbinfo->stat_lock);
240	}
241}
242
243static int shmem_reserve_inode(struct super_block *sb)
244{
245	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246	if (sbinfo->max_inodes) {
247		spin_lock(&sbinfo->stat_lock);
248		if (!sbinfo->free_inodes) {
249			spin_unlock(&sbinfo->stat_lock);
250			return -ENOSPC;
251		}
252		sbinfo->free_inodes--;
253		spin_unlock(&sbinfo->stat_lock);
254	}
255	return 0;
256}
257
258static void shmem_free_inode(struct super_block *sb)
259{
260	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261	if (sbinfo->max_inodes) {
262		spin_lock(&sbinfo->stat_lock);
263		sbinfo->free_inodes++;
264		spin_unlock(&sbinfo->stat_lock);
265	}
266}
267
268/**
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
271 *
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
274 *
275 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 *
278 * It has to be called with the spinlock held.
279 */
280static void shmem_recalc_inode(struct inode *inode)
281{
282	struct shmem_inode_info *info = SHMEM_I(inode);
283	long freed;
284
285	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286	if (freed > 0) {
287		info->alloced -= freed;
288		shmem_unacct_blocks(info->flags, freed);
289		shmem_free_blocks(inode, freed);
290	}
291}
292
293/**
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info:  info structure for the inode
296 * @index: index of the page to find
297 * @page:  optional page to add to the structure. Has to be preset to
298 *         all zeros
299 *
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
303 *
304 * The swap vector is organized the following way:
305 *
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
309 *
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
313 *
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
316 *
317 * i_indirect -> dir --> 16-19
318 * 	      |	     +-> 20-23
319 * 	      |
320 * 	      +-->dir2 --> 24-27
321 * 	      |	       +-> 28-31
322 * 	      |	       +-> 32-35
323 * 	      |	       +-> 36-39
324 * 	      |
325 * 	      +-->dir3 --> 40-43
326 * 	       	       +-> 44-47
327 * 	      	       +-> 48-51
328 * 	      	       +-> 52-55
329 */
330static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331{
332	unsigned long offset;
333	struct page **dir;
334	struct page *subdir;
335
336	if (index < SHMEM_NR_DIRECT) {
337		shmem_swp_balance_unmap();
338		return info->i_direct+index;
339	}
340	if (!info->i_indirect) {
341		if (page) {
342			info->i_indirect = *page;
343			*page = NULL;
344		}
345		return NULL;			/* need another page */
346	}
347
348	index -= SHMEM_NR_DIRECT;
349	offset = index % ENTRIES_PER_PAGE;
350	index /= ENTRIES_PER_PAGE;
351	dir = shmem_dir_map(info->i_indirect);
352
353	if (index >= ENTRIES_PER_PAGE/2) {
354		index -= ENTRIES_PER_PAGE/2;
355		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356		index %= ENTRIES_PER_PAGE;
357		subdir = *dir;
358		if (!subdir) {
359			if (page) {
360				*dir = *page;
361				*page = NULL;
362			}
363			shmem_dir_unmap(dir);
364			return NULL;		/* need another page */
365		}
366		shmem_dir_unmap(dir);
367		dir = shmem_dir_map(subdir);
368	}
369
370	dir += index;
371	subdir = *dir;
372	if (!subdir) {
373		if (!page || !(subdir = *page)) {
374			shmem_dir_unmap(dir);
375			return NULL;		/* need a page */
376		}
377		*dir = subdir;
378		*page = NULL;
379	}
380	shmem_dir_unmap(dir);
381	return shmem_swp_map(subdir) + offset;
382}
383
384static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385{
386	long incdec = value? 1: -1;
387
388	entry->val = value;
389	info->swapped += incdec;
390	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391		struct page *page = kmap_atomic_to_page(entry);
392		set_page_private(page, page_private(page) + incdec);
393	}
394}
395
396/**
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info:	info structure for the inode
399 * @index:	index of the page to find
400 * @sgp:	check and recheck i_size? skip allocation?
401 *
402 * If the entry does not exist, allocate it.
403 */
404static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405{
406	struct inode *inode = &info->vfs_inode;
407	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408	struct page *page = NULL;
409	swp_entry_t *entry;
410
411	if (sgp != SGP_WRITE &&
412	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413		return ERR_PTR(-EINVAL);
414
415	while (!(entry = shmem_swp_entry(info, index, &page))) {
416		if (sgp == SGP_READ)
417			return shmem_swp_map(ZERO_PAGE(0));
418		/*
419		 * Test free_blocks against 1 not 0, since we have 1 data
420		 * page (and perhaps indirect index pages) yet to allocate:
421		 * a waste to allocate index if we cannot allocate data.
422		 */
423		if (sbinfo->max_blocks) {
424			spin_lock(&sbinfo->stat_lock);
425			if (sbinfo->free_blocks <= 1) {
426				spin_unlock(&sbinfo->stat_lock);
427				return ERR_PTR(-ENOSPC);
428			}
429			sbinfo->free_blocks--;
430			inode->i_blocks += BLOCKS_PER_PAGE;
431			spin_unlock(&sbinfo->stat_lock);
432		}
433
434		spin_unlock(&info->lock);
435		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
436		spin_lock(&info->lock);
437
438		if (!page) {
439			shmem_free_blocks(inode, 1);
440			return ERR_PTR(-ENOMEM);
441		}
442		if (sgp != SGP_WRITE &&
443		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
444			entry = ERR_PTR(-EINVAL);
445			break;
446		}
447		if (info->next_index <= index)
448			info->next_index = index + 1;
449	}
450	if (page) {
451		/* another task gave its page, or truncated the file */
452		shmem_free_blocks(inode, 1);
453		shmem_dir_free(page);
454	}
455	if (info->next_index <= index && !IS_ERR(entry))
456		info->next_index = index + 1;
457	return entry;
458}
459
460/**
461 * shmem_free_swp - free some swap entries in a directory
462 * @dir:        pointer to the directory
463 * @edir:       pointer after last entry of the directory
464 * @punch_lock: pointer to spinlock when needed for the holepunch case
465 */
466static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
467						spinlock_t *punch_lock)
468{
469	spinlock_t *punch_unlock = NULL;
470	swp_entry_t *ptr;
471	int freed = 0;
472
473	for (ptr = dir; ptr < edir; ptr++) {
474		if (ptr->val) {
475			if (unlikely(punch_lock)) {
476				punch_unlock = punch_lock;
477				punch_lock = NULL;
478				spin_lock(punch_unlock);
479				if (!ptr->val)
480					continue;
481			}
482			free_swap_and_cache(*ptr);
483			*ptr = (swp_entry_t){0};
484			freed++;
485		}
486	}
487	if (punch_unlock)
488		spin_unlock(punch_unlock);
489	return freed;
490}
491
492static int shmem_map_and_free_swp(struct page *subdir, int offset,
493		int limit, struct page ***dir, spinlock_t *punch_lock)
494{
495	swp_entry_t *ptr;
496	int freed = 0;
497
498	ptr = shmem_swp_map(subdir);
499	for (; offset < limit; offset += LATENCY_LIMIT) {
500		int size = limit - offset;
501		if (size > LATENCY_LIMIT)
502			size = LATENCY_LIMIT;
503		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
504							punch_lock);
505		if (need_resched()) {
506			shmem_swp_unmap(ptr);
507			if (*dir) {
508				shmem_dir_unmap(*dir);
509				*dir = NULL;
510			}
511			cond_resched();
512			ptr = shmem_swp_map(subdir);
513		}
514	}
515	shmem_swp_unmap(ptr);
516	return freed;
517}
518
519static void shmem_free_pages(struct list_head *next)
520{
521	struct page *page;
522	int freed = 0;
523
524	do {
525		page = container_of(next, struct page, lru);
526		next = next->next;
527		shmem_dir_free(page);
528		freed++;
529		if (freed >= LATENCY_LIMIT) {
530			cond_resched();
531			freed = 0;
532		}
533	} while (next);
534}
535
536static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
537{
538	struct shmem_inode_info *info = SHMEM_I(inode);
539	unsigned long idx;
540	unsigned long size;
541	unsigned long limit;
542	unsigned long stage;
543	unsigned long diroff;
544	struct page **dir;
545	struct page *topdir;
546	struct page *middir;
547	struct page *subdir;
548	swp_entry_t *ptr;
549	LIST_HEAD(pages_to_free);
550	long nr_pages_to_free = 0;
551	long nr_swaps_freed = 0;
552	int offset;
553	int freed;
554	int punch_hole;
555	spinlock_t *needs_lock;
556	spinlock_t *punch_lock;
557	unsigned long upper_limit;
558
559	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
560	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
561	if (idx >= info->next_index)
562		return;
563
564	spin_lock(&info->lock);
565	info->flags |= SHMEM_TRUNCATE;
566	if (likely(end == (loff_t) -1)) {
567		limit = info->next_index;
568		upper_limit = SHMEM_MAX_INDEX;
569		info->next_index = idx;
570		needs_lock = NULL;
571		punch_hole = 0;
572	} else {
573		if (end + 1 >= inode->i_size) {	/* we may free a little more */
574			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
575							PAGE_CACHE_SHIFT;
576			upper_limit = SHMEM_MAX_INDEX;
577		} else {
578			limit = (end + 1) >> PAGE_CACHE_SHIFT;
579			upper_limit = limit;
580		}
581		needs_lock = &info->lock;
582		punch_hole = 1;
583	}
584
585	topdir = info->i_indirect;
586	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
587		info->i_indirect = NULL;
588		nr_pages_to_free++;
589		list_add(&topdir->lru, &pages_to_free);
590	}
591	spin_unlock(&info->lock);
592
593	if (info->swapped && idx < SHMEM_NR_DIRECT) {
594		ptr = info->i_direct;
595		size = limit;
596		if (size > SHMEM_NR_DIRECT)
597			size = SHMEM_NR_DIRECT;
598		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
599	}
600
601	/*
602	 * If there are no indirect blocks or we are punching a hole
603	 * below indirect blocks, nothing to be done.
604	 */
605	if (!topdir || limit <= SHMEM_NR_DIRECT)
606		goto done2;
607
608	/*
609	 * The truncation case has already dropped info->lock, and we're safe
610	 * because i_size and next_index have already been lowered, preventing
611	 * access beyond.  But in the punch_hole case, we still need to take
612	 * the lock when updating the swap directory, because there might be
613	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
614	 * shmem_writepage.  However, whenever we find we can remove a whole
615	 * directory page (not at the misaligned start or end of the range),
616	 * we first NULLify its pointer in the level above, and then have no
617	 * need to take the lock when updating its contents: needs_lock and
618	 * punch_lock (either pointing to info->lock or NULL) manage this.
619	 */
620
621	upper_limit -= SHMEM_NR_DIRECT;
622	limit -= SHMEM_NR_DIRECT;
623	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
624	offset = idx % ENTRIES_PER_PAGE;
625	idx -= offset;
626
627	dir = shmem_dir_map(topdir);
628	stage = ENTRIES_PER_PAGEPAGE/2;
629	if (idx < ENTRIES_PER_PAGEPAGE/2) {
630		middir = topdir;
631		diroff = idx/ENTRIES_PER_PAGE;
632	} else {
633		dir += ENTRIES_PER_PAGE/2;
634		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
635		while (stage <= idx)
636			stage += ENTRIES_PER_PAGEPAGE;
637		middir = *dir;
638		if (*dir) {
639			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
640				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
641			if (!diroff && !offset && upper_limit >= stage) {
642				if (needs_lock) {
643					spin_lock(needs_lock);
644					*dir = NULL;
645					spin_unlock(needs_lock);
646					needs_lock = NULL;
647				} else
648					*dir = NULL;
649				nr_pages_to_free++;
650				list_add(&middir->lru, &pages_to_free);
651			}
652			shmem_dir_unmap(dir);
653			dir = shmem_dir_map(middir);
654		} else {
655			diroff = 0;
656			offset = 0;
657			idx = stage;
658		}
659	}
660
661	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
662		if (unlikely(idx == stage)) {
663			shmem_dir_unmap(dir);
664			dir = shmem_dir_map(topdir) +
665			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
666			while (!*dir) {
667				dir++;
668				idx += ENTRIES_PER_PAGEPAGE;
669				if (idx >= limit)
670					goto done1;
671			}
672			stage = idx + ENTRIES_PER_PAGEPAGE;
673			middir = *dir;
674			if (punch_hole)
675				needs_lock = &info->lock;
676			if (upper_limit >= stage) {
677				if (needs_lock) {
678					spin_lock(needs_lock);
679					*dir = NULL;
680					spin_unlock(needs_lock);
681					needs_lock = NULL;
682				} else
683					*dir = NULL;
684				nr_pages_to_free++;
685				list_add(&middir->lru, &pages_to_free);
686			}
687			shmem_dir_unmap(dir);
688			cond_resched();
689			dir = shmem_dir_map(middir);
690			diroff = 0;
691		}
692		punch_lock = needs_lock;
693		subdir = dir[diroff];
694		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
695			if (needs_lock) {
696				spin_lock(needs_lock);
697				dir[diroff] = NULL;
698				spin_unlock(needs_lock);
699				punch_lock = NULL;
700			} else
701				dir[diroff] = NULL;
702			nr_pages_to_free++;
703			list_add(&subdir->lru, &pages_to_free);
704		}
705		if (subdir && page_private(subdir) /* has swap entries */) {
706			size = limit - idx;
707			if (size > ENTRIES_PER_PAGE)
708				size = ENTRIES_PER_PAGE;
709			freed = shmem_map_and_free_swp(subdir,
710					offset, size, &dir, punch_lock);
711			if (!dir)
712				dir = shmem_dir_map(middir);
713			nr_swaps_freed += freed;
714			if (offset || punch_lock) {
715				spin_lock(&info->lock);
716				set_page_private(subdir,
717					page_private(subdir) - freed);
718				spin_unlock(&info->lock);
719			} else
720				BUG_ON(page_private(subdir) != freed);
721		}
722		offset = 0;
723	}
724done1:
725	shmem_dir_unmap(dir);
726done2:
727	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
728		/*
729		 * Call truncate_inode_pages again: racing shmem_unuse_inode
730		 * may have swizzled a page in from swap since
731		 * truncate_pagecache or generic_delete_inode did it, before we
732		 * lowered next_index.  Also, though shmem_getpage checks
733		 * i_size before adding to cache, no recheck after: so fix the
734		 * narrow window there too.
735		 *
736		 * Recalling truncate_inode_pages_range and unmap_mapping_range
737		 * every time for punch_hole (which never got a chance to clear
738		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
739		 * yet hardly ever necessary: try to optimize them out later.
740		 */
741		truncate_inode_pages_range(inode->i_mapping, start, end);
742		if (punch_hole)
743			unmap_mapping_range(inode->i_mapping, start,
744							end - start, 1);
745	}
746
747	spin_lock(&info->lock);
748	info->flags &= ~SHMEM_TRUNCATE;
749	info->swapped -= nr_swaps_freed;
750	if (nr_pages_to_free)
751		shmem_free_blocks(inode, nr_pages_to_free);
752	shmem_recalc_inode(inode);
753	spin_unlock(&info->lock);
754
755	/*
756	 * Empty swap vector directory pages to be freed?
757	 */
758	if (!list_empty(&pages_to_free)) {
759		pages_to_free.prev->next = NULL;
760		shmem_free_pages(pages_to_free.next);
761	}
762}
763
764static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
765{
766	struct inode *inode = dentry->d_inode;
767	loff_t newsize = attr->ia_size;
768	int error;
769
770	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
771					&& newsize != inode->i_size) {
772		struct page *page = NULL;
773
774		if (newsize < inode->i_size) {
775			/*
776			 * If truncating down to a partial page, then
777			 * if that page is already allocated, hold it
778			 * in memory until the truncation is over, so
779			 * truncate_partial_page cannnot miss it were
780			 * it assigned to swap.
781			 */
782			if (newsize & (PAGE_CACHE_SIZE-1)) {
783				(void) shmem_getpage(inode,
784					newsize >> PAGE_CACHE_SHIFT,
785						&page, SGP_READ, NULL);
786				if (page)
787					unlock_page(page);
788			}
789			/*
790			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
791			 * detect if any pages might have been added to cache
792			 * after truncate_inode_pages.  But we needn't bother
793			 * if it's being fully truncated to zero-length: the
794			 * nrpages check is efficient enough in that case.
795			 */
796			if (newsize) {
797				struct shmem_inode_info *info = SHMEM_I(inode);
798				spin_lock(&info->lock);
799				info->flags &= ~SHMEM_PAGEIN;
800				spin_unlock(&info->lock);
801			}
802		}
803
804		error = simple_setsize(inode, newsize);
805		if (page)
806			page_cache_release(page);
807		if (error)
808			return error;
809		shmem_truncate_range(inode, newsize, (loff_t)-1);
810	}
811
812	error = inode_change_ok(inode, attr);
813	if (!error)
814		setattr_copy(inode, attr);
815#ifdef CONFIG_TMPFS_POSIX_ACL
816	if (!error && (attr->ia_valid & ATTR_MODE))
817		error = generic_acl_chmod(inode);
818#endif
819	return error;
820}
821
822static void shmem_delete_inode(struct inode *inode)
823{
824	struct shmem_inode_info *info = SHMEM_I(inode);
825
826	if (inode->i_mapping->a_ops == &shmem_aops) {
827		truncate_inode_pages(inode->i_mapping, 0);
828		shmem_unacct_size(info->flags, inode->i_size);
829		inode->i_size = 0;
830		shmem_truncate_range(inode, 0, (loff_t)-1);
831		if (!list_empty(&info->swaplist)) {
832			mutex_lock(&shmem_swaplist_mutex);
833			list_del_init(&info->swaplist);
834			mutex_unlock(&shmem_swaplist_mutex);
835		}
836	}
837	BUG_ON(inode->i_blocks);
838	shmem_free_inode(inode->i_sb);
839	clear_inode(inode);
840}
841
842static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
843{
844	swp_entry_t *ptr;
845
846	for (ptr = dir; ptr < edir; ptr++) {
847		if (ptr->val == entry.val)
848			return ptr - dir;
849	}
850	return -1;
851}
852
853static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
854{
855	struct inode *inode;
856	unsigned long idx;
857	unsigned long size;
858	unsigned long limit;
859	unsigned long stage;
860	struct page **dir;
861	struct page *subdir;
862	swp_entry_t *ptr;
863	int offset;
864	int error;
865
866	idx = 0;
867	ptr = info->i_direct;
868	spin_lock(&info->lock);
869	if (!info->swapped) {
870		list_del_init(&info->swaplist);
871		goto lost2;
872	}
873	limit = info->next_index;
874	size = limit;
875	if (size > SHMEM_NR_DIRECT)
876		size = SHMEM_NR_DIRECT;
877	offset = shmem_find_swp(entry, ptr, ptr+size);
878	if (offset >= 0)
879		goto found;
880	if (!info->i_indirect)
881		goto lost2;
882
883	dir = shmem_dir_map(info->i_indirect);
884	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
885
886	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
887		if (unlikely(idx == stage)) {
888			shmem_dir_unmap(dir-1);
889			if (cond_resched_lock(&info->lock)) {
890				/* check it has not been truncated */
891				if (limit > info->next_index) {
892					limit = info->next_index;
893					if (idx >= limit)
894						goto lost2;
895				}
896			}
897			dir = shmem_dir_map(info->i_indirect) +
898			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
899			while (!*dir) {
900				dir++;
901				idx += ENTRIES_PER_PAGEPAGE;
902				if (idx >= limit)
903					goto lost1;
904			}
905			stage = idx + ENTRIES_PER_PAGEPAGE;
906			subdir = *dir;
907			shmem_dir_unmap(dir);
908			dir = shmem_dir_map(subdir);
909		}
910		subdir = *dir;
911		if (subdir && page_private(subdir)) {
912			ptr = shmem_swp_map(subdir);
913			size = limit - idx;
914			if (size > ENTRIES_PER_PAGE)
915				size = ENTRIES_PER_PAGE;
916			offset = shmem_find_swp(entry, ptr, ptr+size);
917			shmem_swp_unmap(ptr);
918			if (offset >= 0) {
919				shmem_dir_unmap(dir);
920				goto found;
921			}
922		}
923	}
924lost1:
925	shmem_dir_unmap(dir-1);
926lost2:
927	spin_unlock(&info->lock);
928	return 0;
929found:
930	idx += offset;
931	inode = igrab(&info->vfs_inode);
932	spin_unlock(&info->lock);
933
934	/*
935	 * Move _head_ to start search for next from here.
936	 * But be careful: shmem_delete_inode checks list_empty without taking
937	 * mutex, and there's an instant in list_move_tail when info->swaplist
938	 * would appear empty, if it were the only one on shmem_swaplist.  We
939	 * could avoid doing it if inode NULL; or use this minor optimization.
940	 */
941	if (shmem_swaplist.next != &info->swaplist)
942		list_move_tail(&shmem_swaplist, &info->swaplist);
943	mutex_unlock(&shmem_swaplist_mutex);
944
945	error = 1;
946	if (!inode)
947		goto out;
948	/*
949	 * Charge page using GFP_KERNEL while we can wait.
950	 * Charged back to the user(not to caller) when swap account is used.
951	 * add_to_page_cache() will be called with GFP_NOWAIT.
952	 */
953	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
954	if (error)
955		goto out;
956	error = radix_tree_preload(GFP_KERNEL);
957	if (error) {
958		mem_cgroup_uncharge_cache_page(page);
959		goto out;
960	}
961	error = 1;
962
963	spin_lock(&info->lock);
964	ptr = shmem_swp_entry(info, idx, NULL);
965	if (ptr && ptr->val == entry.val) {
966		error = add_to_page_cache_locked(page, inode->i_mapping,
967						idx, GFP_NOWAIT);
968		/* does mem_cgroup_uncharge_cache_page on error */
969	} else	/* we must compensate for our precharge above */
970		mem_cgroup_uncharge_cache_page(page);
971
972	if (error == -EEXIST) {
973		struct page *filepage = find_get_page(inode->i_mapping, idx);
974		error = 1;
975		if (filepage) {
976			/*
977			 * There might be a more uptodate page coming down
978			 * from a stacked writepage: forget our swappage if so.
979			 */
980			if (PageUptodate(filepage))
981				error = 0;
982			page_cache_release(filepage);
983		}
984	}
985	if (!error) {
986		delete_from_swap_cache(page);
987		set_page_dirty(page);
988		info->flags |= SHMEM_PAGEIN;
989		shmem_swp_set(info, ptr, 0);
990		swap_free(entry);
991		error = 1;	/* not an error, but entry was found */
992	}
993	if (ptr)
994		shmem_swp_unmap(ptr);
995	spin_unlock(&info->lock);
996	radix_tree_preload_end();
997out:
998	unlock_page(page);
999	page_cache_release(page);
1000	iput(inode);		/* allows for NULL */
1001	return error;
1002}
1003
1004/*
1005 * shmem_unuse() search for an eventually swapped out shmem page.
1006 */
1007int shmem_unuse(swp_entry_t entry, struct page *page)
1008{
1009	struct list_head *p, *next;
1010	struct shmem_inode_info *info;
1011	int found = 0;
1012
1013	mutex_lock(&shmem_swaplist_mutex);
1014	list_for_each_safe(p, next, &shmem_swaplist) {
1015		info = list_entry(p, struct shmem_inode_info, swaplist);
1016		found = shmem_unuse_inode(info, entry, page);
1017		cond_resched();
1018		if (found)
1019			goto out;
1020	}
1021	mutex_unlock(&shmem_swaplist_mutex);
1022	/*
1023	 * Can some race bring us here?  We've been holding page lock,
1024	 * so I think not; but would rather try again later than BUG()
1025	 */
1026	unlock_page(page);
1027	page_cache_release(page);
1028out:
1029	return (found < 0) ? found : 0;
1030}
1031
1032/*
1033 * Move the page from the page cache to the swap cache.
1034 */
1035static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1036{
1037	struct shmem_inode_info *info;
1038	swp_entry_t *entry, swap;
1039	struct address_space *mapping;
1040	unsigned long index;
1041	struct inode *inode;
1042
1043	BUG_ON(!PageLocked(page));
1044	mapping = page->mapping;
1045	index = page->index;
1046	inode = mapping->host;
1047	info = SHMEM_I(inode);
1048	if (info->flags & VM_LOCKED)
1049		goto redirty;
1050	if (!total_swap_pages)
1051		goto redirty;
1052
1053	/*
1054	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1055	 * sync from ever calling shmem_writepage; but a stacking filesystem
1056	 * may use the ->writepage of its underlying filesystem, in which case
1057	 * tmpfs should write out to swap only in response to memory pressure,
1058	 * and not for the writeback threads or sync.  However, in those cases,
1059	 * we do still want to check if there's a redundant swappage to be
1060	 * discarded.
1061	 */
1062	if (wbc->for_reclaim)
1063		swap = get_swap_page();
1064	else
1065		swap.val = 0;
1066
1067	spin_lock(&info->lock);
1068	if (index >= info->next_index) {
1069		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1070		goto unlock;
1071	}
1072	entry = shmem_swp_entry(info, index, NULL);
1073	if (entry->val) {
1074		/*
1075		 * The more uptodate page coming down from a stacked
1076		 * writepage should replace our old swappage.
1077		 */
1078		free_swap_and_cache(*entry);
1079		shmem_swp_set(info, entry, 0);
1080	}
1081	shmem_recalc_inode(inode);
1082
1083	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1084		remove_from_page_cache(page);
1085		shmem_swp_set(info, entry, swap.val);
1086		shmem_swp_unmap(entry);
1087		if (list_empty(&info->swaplist))
1088			inode = igrab(inode);
1089		else
1090			inode = NULL;
1091		spin_unlock(&info->lock);
1092		swap_shmem_alloc(swap);
1093		BUG_ON(page_mapped(page));
1094		page_cache_release(page);	/* pagecache ref */
1095		swap_writepage(page, wbc);
1096		if (inode) {
1097			mutex_lock(&shmem_swaplist_mutex);
1098			/* move instead of add in case we're racing */
1099			list_move_tail(&info->swaplist, &shmem_swaplist);
1100			mutex_unlock(&shmem_swaplist_mutex);
1101			iput(inode);
1102		}
1103		return 0;
1104	}
1105
1106	shmem_swp_unmap(entry);
1107unlock:
1108	spin_unlock(&info->lock);
1109	/*
1110	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1111	 * clear SWAP_HAS_CACHE flag.
1112	 */
1113	swapcache_free(swap, NULL);
1114redirty:
1115	set_page_dirty(page);
1116	if (wbc->for_reclaim)
1117		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1118	unlock_page(page);
1119	return 0;
1120}
1121
1122#ifdef CONFIG_NUMA
1123#ifdef CONFIG_TMPFS
1124static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1125{
1126	char buffer[64];
1127
1128	if (!mpol || mpol->mode == MPOL_DEFAULT)
1129		return;		/* show nothing */
1130
1131	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1132
1133	seq_printf(seq, ",mpol=%s", buffer);
1134}
1135
1136static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1137{
1138	struct mempolicy *mpol = NULL;
1139	if (sbinfo->mpol) {
1140		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1141		mpol = sbinfo->mpol;
1142		mpol_get(mpol);
1143		spin_unlock(&sbinfo->stat_lock);
1144	}
1145	return mpol;
1146}
1147#endif /* CONFIG_TMPFS */
1148
1149static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1150			struct shmem_inode_info *info, unsigned long idx)
1151{
1152	struct mempolicy mpol, *spol;
1153	struct vm_area_struct pvma;
1154	struct page *page;
1155
1156	spol = mpol_cond_copy(&mpol,
1157				mpol_shared_policy_lookup(&info->policy, idx));
1158
1159	/* Create a pseudo vma that just contains the policy */
1160	pvma.vm_start = 0;
1161	pvma.vm_pgoff = idx;
1162	pvma.vm_ops = NULL;
1163	pvma.vm_policy = spol;
1164	page = swapin_readahead(entry, gfp, &pvma, 0);
1165	return page;
1166}
1167
1168static struct page *shmem_alloc_page(gfp_t gfp,
1169			struct shmem_inode_info *info, unsigned long idx)
1170{
1171	struct vm_area_struct pvma;
1172
1173	/* Create a pseudo vma that just contains the policy */
1174	pvma.vm_start = 0;
1175	pvma.vm_pgoff = idx;
1176	pvma.vm_ops = NULL;
1177	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1178
1179	/*
1180	 * alloc_page_vma() will drop the shared policy reference
1181	 */
1182	return alloc_page_vma(gfp, &pvma, 0);
1183}
1184#else /* !CONFIG_NUMA */
1185#ifdef CONFIG_TMPFS
1186static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1187{
1188}
1189#endif /* CONFIG_TMPFS */
1190
1191static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1192			struct shmem_inode_info *info, unsigned long idx)
1193{
1194	return swapin_readahead(entry, gfp, NULL, 0);
1195}
1196
1197static inline struct page *shmem_alloc_page(gfp_t gfp,
1198			struct shmem_inode_info *info, unsigned long idx)
1199{
1200	return alloc_page(gfp);
1201}
1202#endif /* CONFIG_NUMA */
1203
1204#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1205static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1206{
1207	return NULL;
1208}
1209#endif
1210
1211/*
1212 * shmem_getpage - either get the page from swap or allocate a new one
1213 *
1214 * If we allocate a new one we do not mark it dirty. That's up to the
1215 * vm. If we swap it in we mark it dirty since we also free the swap
1216 * entry since a page cannot live in both the swap and page cache
1217 */
1218static int shmem_getpage(struct inode *inode, unsigned long idx,
1219			struct page **pagep, enum sgp_type sgp, int *type)
1220{
1221	struct address_space *mapping = inode->i_mapping;
1222	struct shmem_inode_info *info = SHMEM_I(inode);
1223	struct shmem_sb_info *sbinfo;
1224	struct page *filepage = *pagep;
1225	struct page *swappage;
1226	swp_entry_t *entry;
1227	swp_entry_t swap;
1228	gfp_t gfp;
1229	int error;
1230
1231	if (idx >= SHMEM_MAX_INDEX)
1232		return -EFBIG;
1233
1234	if (type)
1235		*type = 0;
1236
1237	/*
1238	 * Normally, filepage is NULL on entry, and either found
1239	 * uptodate immediately, or allocated and zeroed, or read
1240	 * in under swappage, which is then assigned to filepage.
1241	 * But shmem_readpage (required for splice) passes in a locked
1242	 * filepage, which may be found not uptodate by other callers
1243	 * too, and may need to be copied from the swappage read in.
1244	 */
1245repeat:
1246	if (!filepage)
1247		filepage = find_lock_page(mapping, idx);
1248	if (filepage && PageUptodate(filepage))
1249		goto done;
1250	error = 0;
1251	gfp = mapping_gfp_mask(mapping);
1252	if (!filepage) {
1253		/*
1254		 * Try to preload while we can wait, to not make a habit of
1255		 * draining atomic reserves; but don't latch on to this cpu.
1256		 */
1257		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1258		if (error)
1259			goto failed;
1260		radix_tree_preload_end();
1261	}
1262
1263	spin_lock(&info->lock);
1264	shmem_recalc_inode(inode);
1265	entry = shmem_swp_alloc(info, idx, sgp);
1266	if (IS_ERR(entry)) {
1267		spin_unlock(&info->lock);
1268		error = PTR_ERR(entry);
1269		goto failed;
1270	}
1271	swap = *entry;
1272
1273	if (swap.val) {
1274		/* Look it up and read it in.. */
1275		swappage = lookup_swap_cache(swap);
1276		if (!swappage) {
1277			shmem_swp_unmap(entry);
1278			/* here we actually do the io */
1279			if (type && !(*type & VM_FAULT_MAJOR)) {
1280				__count_vm_event(PGMAJFAULT);
1281				*type |= VM_FAULT_MAJOR;
1282			}
1283			spin_unlock(&info->lock);
1284			swappage = shmem_swapin(swap, gfp, info, idx);
1285			if (!swappage) {
1286				spin_lock(&info->lock);
1287				entry = shmem_swp_alloc(info, idx, sgp);
1288				if (IS_ERR(entry))
1289					error = PTR_ERR(entry);
1290				else {
1291					if (entry->val == swap.val)
1292						error = -ENOMEM;
1293					shmem_swp_unmap(entry);
1294				}
1295				spin_unlock(&info->lock);
1296				if (error)
1297					goto failed;
1298				goto repeat;
1299			}
1300			wait_on_page_locked(swappage);
1301			page_cache_release(swappage);
1302			goto repeat;
1303		}
1304
1305		/* We have to do this with page locked to prevent races */
1306		if (!trylock_page(swappage)) {
1307			shmem_swp_unmap(entry);
1308			spin_unlock(&info->lock);
1309			wait_on_page_locked(swappage);
1310			page_cache_release(swappage);
1311			goto repeat;
1312		}
1313		if (PageWriteback(swappage)) {
1314			shmem_swp_unmap(entry);
1315			spin_unlock(&info->lock);
1316			wait_on_page_writeback(swappage);
1317			unlock_page(swappage);
1318			page_cache_release(swappage);
1319			goto repeat;
1320		}
1321		if (!PageUptodate(swappage)) {
1322			shmem_swp_unmap(entry);
1323			spin_unlock(&info->lock);
1324			unlock_page(swappage);
1325			page_cache_release(swappage);
1326			error = -EIO;
1327			goto failed;
1328		}
1329
1330		if (filepage) {
1331			shmem_swp_set(info, entry, 0);
1332			shmem_swp_unmap(entry);
1333			delete_from_swap_cache(swappage);
1334			spin_unlock(&info->lock);
1335			copy_highpage(filepage, swappage);
1336			unlock_page(swappage);
1337			page_cache_release(swappage);
1338			flush_dcache_page(filepage);
1339			SetPageUptodate(filepage);
1340			set_page_dirty(filepage);
1341			swap_free(swap);
1342		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1343					idx, GFP_NOWAIT))) {
1344			info->flags |= SHMEM_PAGEIN;
1345			shmem_swp_set(info, entry, 0);
1346			shmem_swp_unmap(entry);
1347			delete_from_swap_cache(swappage);
1348			spin_unlock(&info->lock);
1349			filepage = swappage;
1350			set_page_dirty(filepage);
1351			swap_free(swap);
1352		} else {
1353			shmem_swp_unmap(entry);
1354			spin_unlock(&info->lock);
1355			if (error == -ENOMEM) {
1356				/*
1357				 * reclaim from proper memory cgroup and
1358				 * call memcg's OOM if needed.
1359				 */
1360				error = mem_cgroup_shmem_charge_fallback(
1361								swappage,
1362								current->mm,
1363								gfp);
1364				if (error) {
1365					unlock_page(swappage);
1366					page_cache_release(swappage);
1367					goto failed;
1368				}
1369			}
1370			unlock_page(swappage);
1371			page_cache_release(swappage);
1372			goto repeat;
1373		}
1374	} else if (sgp == SGP_READ && !filepage) {
1375		shmem_swp_unmap(entry);
1376		filepage = find_get_page(mapping, idx);
1377		if (filepage &&
1378		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1379			spin_unlock(&info->lock);
1380			wait_on_page_locked(filepage);
1381			page_cache_release(filepage);
1382			filepage = NULL;
1383			goto repeat;
1384		}
1385		spin_unlock(&info->lock);
1386	} else {
1387		shmem_swp_unmap(entry);
1388		sbinfo = SHMEM_SB(inode->i_sb);
1389		if (sbinfo->max_blocks) {
1390			spin_lock(&sbinfo->stat_lock);
1391			if (sbinfo->free_blocks == 0 ||
1392			    shmem_acct_block(info->flags)) {
1393				spin_unlock(&sbinfo->stat_lock);
1394				spin_unlock(&info->lock);
1395				error = -ENOSPC;
1396				goto failed;
1397			}
1398			sbinfo->free_blocks--;
1399			inode->i_blocks += BLOCKS_PER_PAGE;
1400			spin_unlock(&sbinfo->stat_lock);
1401		} else if (shmem_acct_block(info->flags)) {
1402			spin_unlock(&info->lock);
1403			error = -ENOSPC;
1404			goto failed;
1405		}
1406
1407		if (!filepage) {
1408			int ret;
1409
1410			spin_unlock(&info->lock);
1411			filepage = shmem_alloc_page(gfp, info, idx);
1412			if (!filepage) {
1413				shmem_unacct_blocks(info->flags, 1);
1414				shmem_free_blocks(inode, 1);
1415				error = -ENOMEM;
1416				goto failed;
1417			}
1418			SetPageSwapBacked(filepage);
1419
1420			/* Precharge page while we can wait, compensate after */
1421			error = mem_cgroup_cache_charge(filepage, current->mm,
1422					GFP_KERNEL);
1423			if (error) {
1424				page_cache_release(filepage);
1425				shmem_unacct_blocks(info->flags, 1);
1426				shmem_free_blocks(inode, 1);
1427				filepage = NULL;
1428				goto failed;
1429			}
1430
1431			spin_lock(&info->lock);
1432			entry = shmem_swp_alloc(info, idx, sgp);
1433			if (IS_ERR(entry))
1434				error = PTR_ERR(entry);
1435			else {
1436				swap = *entry;
1437				shmem_swp_unmap(entry);
1438			}
1439			ret = error || swap.val;
1440			if (ret)
1441				mem_cgroup_uncharge_cache_page(filepage);
1442			else
1443				ret = add_to_page_cache_lru(filepage, mapping,
1444						idx, GFP_NOWAIT);
1445			/*
1446			 * At add_to_page_cache_lru() failure, uncharge will
1447			 * be done automatically.
1448			 */
1449			if (ret) {
1450				spin_unlock(&info->lock);
1451				page_cache_release(filepage);
1452				shmem_unacct_blocks(info->flags, 1);
1453				shmem_free_blocks(inode, 1);
1454				filepage = NULL;
1455				if (error)
1456					goto failed;
1457				goto repeat;
1458			}
1459			info->flags |= SHMEM_PAGEIN;
1460		}
1461
1462		info->alloced++;
1463		spin_unlock(&info->lock);
1464		clear_highpage(filepage);
1465		flush_dcache_page(filepage);
1466		SetPageUptodate(filepage);
1467		if (sgp == SGP_DIRTY)
1468			set_page_dirty(filepage);
1469	}
1470done:
1471	*pagep = filepage;
1472	return 0;
1473
1474failed:
1475	if (*pagep != filepage) {
1476		unlock_page(filepage);
1477		page_cache_release(filepage);
1478	}
1479	return error;
1480}
1481
1482static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1483{
1484	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1485	int error;
1486	int ret;
1487
1488	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1489		return VM_FAULT_SIGBUS;
1490
1491	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1492	if (error)
1493		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1494
1495	return ret | VM_FAULT_LOCKED;
1496}
1497
1498#ifdef CONFIG_NUMA
1499static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1500{
1501	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1502	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1503}
1504
1505static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1506					  unsigned long addr)
1507{
1508	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1509	unsigned long idx;
1510
1511	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1512	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1513}
1514#endif
1515
1516int shmem_lock(struct file *file, int lock, struct user_struct *user)
1517{
1518	struct inode *inode = file->f_path.dentry->d_inode;
1519	struct shmem_inode_info *info = SHMEM_I(inode);
1520	int retval = -ENOMEM;
1521
1522	spin_lock(&info->lock);
1523	if (lock && !(info->flags & VM_LOCKED)) {
1524		if (!user_shm_lock(inode->i_size, user))
1525			goto out_nomem;
1526		info->flags |= VM_LOCKED;
1527		mapping_set_unevictable(file->f_mapping);
1528	}
1529	if (!lock && (info->flags & VM_LOCKED) && user) {
1530		user_shm_unlock(inode->i_size, user);
1531		info->flags &= ~VM_LOCKED;
1532		mapping_clear_unevictable(file->f_mapping);
1533		scan_mapping_unevictable_pages(file->f_mapping);
1534	}
1535	retval = 0;
1536
1537out_nomem:
1538	spin_unlock(&info->lock);
1539	return retval;
1540}
1541
1542static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1543{
1544	file_accessed(file);
1545	vma->vm_ops = &shmem_vm_ops;
1546	vma->vm_flags |= VM_CAN_NONLINEAR;
1547	return 0;
1548}
1549
1550static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1551				     int mode, dev_t dev, unsigned long flags)
1552{
1553	struct inode *inode;
1554	struct shmem_inode_info *info;
1555	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1556
1557	if (shmem_reserve_inode(sb))
1558		return NULL;
1559
1560	inode = new_inode(sb);
1561	if (inode) {
1562		inode_init_owner(inode, dir, mode);
1563		inode->i_blocks = 0;
1564		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1565		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1566		inode->i_generation = get_seconds();
1567		info = SHMEM_I(inode);
1568		memset(info, 0, (char *)inode - (char *)info);
1569		spin_lock_init(&info->lock);
1570		info->flags = flags & VM_NORESERVE;
1571		INIT_LIST_HEAD(&info->swaplist);
1572		cache_no_acl(inode);
1573
1574		switch (mode & S_IFMT) {
1575		default:
1576			inode->i_op = &shmem_special_inode_operations;
1577			init_special_inode(inode, mode, dev);
1578			break;
1579		case S_IFREG:
1580			inode->i_mapping->a_ops = &shmem_aops;
1581			inode->i_op = &shmem_inode_operations;
1582			inode->i_fop = &shmem_file_operations;
1583			mpol_shared_policy_init(&info->policy,
1584						 shmem_get_sbmpol(sbinfo));
1585			break;
1586		case S_IFDIR:
1587			inc_nlink(inode);
1588			/* Some things misbehave if size == 0 on a directory */
1589			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1590			inode->i_op = &shmem_dir_inode_operations;
1591			inode->i_fop = &simple_dir_operations;
1592			break;
1593		case S_IFLNK:
1594			/*
1595			 * Must not load anything in the rbtree,
1596			 * mpol_free_shared_policy will not be called.
1597			 */
1598			mpol_shared_policy_init(&info->policy, NULL);
1599			break;
1600		}
1601	} else
1602		shmem_free_inode(sb);
1603	return inode;
1604}
1605
1606#ifdef CONFIG_TMPFS
1607static const struct inode_operations shmem_symlink_inode_operations;
1608static const struct inode_operations shmem_symlink_inline_operations;
1609
1610/*
1611 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1612 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1613 * below the loop driver, in the generic fashion that many filesystems support.
1614 */
1615static int shmem_readpage(struct file *file, struct page *page)
1616{
1617	struct inode *inode = page->mapping->host;
1618	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1619	unlock_page(page);
1620	return error;
1621}
1622
1623static int
1624shmem_write_begin(struct file *file, struct address_space *mapping,
1625			loff_t pos, unsigned len, unsigned flags,
1626			struct page **pagep, void **fsdata)
1627{
1628	struct inode *inode = mapping->host;
1629	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1630	*pagep = NULL;
1631	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1632}
1633
1634static int
1635shmem_write_end(struct file *file, struct address_space *mapping,
1636			loff_t pos, unsigned len, unsigned copied,
1637			struct page *page, void *fsdata)
1638{
1639	struct inode *inode = mapping->host;
1640
1641	if (pos + copied > inode->i_size)
1642		i_size_write(inode, pos + copied);
1643
1644	set_page_dirty(page);
1645	unlock_page(page);
1646	page_cache_release(page);
1647
1648	return copied;
1649}
1650
1651static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1652{
1653	struct inode *inode = filp->f_path.dentry->d_inode;
1654	struct address_space *mapping = inode->i_mapping;
1655	unsigned long index, offset;
1656	enum sgp_type sgp = SGP_READ;
1657
1658	/*
1659	 * Might this read be for a stacking filesystem?  Then when reading
1660	 * holes of a sparse file, we actually need to allocate those pages,
1661	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1662	 */
1663	if (segment_eq(get_fs(), KERNEL_DS))
1664		sgp = SGP_DIRTY;
1665
1666	index = *ppos >> PAGE_CACHE_SHIFT;
1667	offset = *ppos & ~PAGE_CACHE_MASK;
1668
1669	for (;;) {
1670		struct page *page = NULL;
1671		unsigned long end_index, nr, ret;
1672		loff_t i_size = i_size_read(inode);
1673
1674		end_index = i_size >> PAGE_CACHE_SHIFT;
1675		if (index > end_index)
1676			break;
1677		if (index == end_index) {
1678			nr = i_size & ~PAGE_CACHE_MASK;
1679			if (nr <= offset)
1680				break;
1681		}
1682
1683		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1684		if (desc->error) {
1685			if (desc->error == -EINVAL)
1686				desc->error = 0;
1687			break;
1688		}
1689		if (page)
1690			unlock_page(page);
1691
1692		/*
1693		 * We must evaluate after, since reads (unlike writes)
1694		 * are called without i_mutex protection against truncate
1695		 */
1696		nr = PAGE_CACHE_SIZE;
1697		i_size = i_size_read(inode);
1698		end_index = i_size >> PAGE_CACHE_SHIFT;
1699		if (index == end_index) {
1700			nr = i_size & ~PAGE_CACHE_MASK;
1701			if (nr <= offset) {
1702				if (page)
1703					page_cache_release(page);
1704				break;
1705			}
1706		}
1707		nr -= offset;
1708
1709		if (page) {
1710			/*
1711			 * If users can be writing to this page using arbitrary
1712			 * virtual addresses, take care about potential aliasing
1713			 * before reading the page on the kernel side.
1714			 */
1715			if (mapping_writably_mapped(mapping))
1716				flush_dcache_page(page);
1717			/*
1718			 * Mark the page accessed if we read the beginning.
1719			 */
1720			if (!offset)
1721				mark_page_accessed(page);
1722		} else {
1723			page = ZERO_PAGE(0);
1724			page_cache_get(page);
1725		}
1726
1727		/*
1728		 * Ok, we have the page, and it's up-to-date, so
1729		 * now we can copy it to user space...
1730		 *
1731		 * The actor routine returns how many bytes were actually used..
1732		 * NOTE! This may not be the same as how much of a user buffer
1733		 * we filled up (we may be padding etc), so we can only update
1734		 * "pos" here (the actor routine has to update the user buffer
1735		 * pointers and the remaining count).
1736		 */
1737		ret = actor(desc, page, offset, nr);
1738		offset += ret;
1739		index += offset >> PAGE_CACHE_SHIFT;
1740		offset &= ~PAGE_CACHE_MASK;
1741
1742		page_cache_release(page);
1743		if (ret != nr || !desc->count)
1744			break;
1745
1746		cond_resched();
1747	}
1748
1749	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1750	file_accessed(filp);
1751}
1752
1753static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1754		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1755{
1756	struct file *filp = iocb->ki_filp;
1757	ssize_t retval;
1758	unsigned long seg;
1759	size_t count;
1760	loff_t *ppos = &iocb->ki_pos;
1761
1762	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1763	if (retval)
1764		return retval;
1765
1766	for (seg = 0; seg < nr_segs; seg++) {
1767		read_descriptor_t desc;
1768
1769		desc.written = 0;
1770		desc.arg.buf = iov[seg].iov_base;
1771		desc.count = iov[seg].iov_len;
1772		if (desc.count == 0)
1773			continue;
1774		desc.error = 0;
1775		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1776		retval += desc.written;
1777		if (desc.error) {
1778			retval = retval ?: desc.error;
1779			break;
1780		}
1781		if (desc.count > 0)
1782			break;
1783	}
1784	return retval;
1785}
1786
1787static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1788{
1789	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1790
1791	buf->f_type = TMPFS_MAGIC;
1792	buf->f_bsize = PAGE_CACHE_SIZE;
1793	buf->f_namelen = NAME_MAX;
1794	spin_lock(&sbinfo->stat_lock);
1795	if (sbinfo->max_blocks) {
1796		buf->f_blocks = sbinfo->max_blocks;
1797		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1798	}
1799	if (sbinfo->max_inodes) {
1800		buf->f_files = sbinfo->max_inodes;
1801		buf->f_ffree = sbinfo->free_inodes;
1802	}
1803	/* else leave those fields 0 like simple_statfs */
1804	spin_unlock(&sbinfo->stat_lock);
1805	return 0;
1806}
1807
1808/*
1809 * File creation. Allocate an inode, and we're done..
1810 */
1811static int
1812shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1813{
1814	struct inode *inode;
1815	int error = -ENOSPC;
1816
1817	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1818	if (inode) {
1819		error = security_inode_init_security(inode, dir, NULL, NULL,
1820						     NULL);
1821		if (error) {
1822			if (error != -EOPNOTSUPP) {
1823				iput(inode);
1824				return error;
1825			}
1826		}
1827#ifdef CONFIG_TMPFS_POSIX_ACL
1828		error = generic_acl_init(inode, dir);
1829		if (error) {
1830			iput(inode);
1831			return error;
1832		}
1833#else
1834		error = 0;
1835#endif
1836		dir->i_size += BOGO_DIRENT_SIZE;
1837		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1838		d_instantiate(dentry, inode);
1839		dget(dentry); /* Extra count - pin the dentry in core */
1840	}
1841	return error;
1842}
1843
1844static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1845{
1846	int error;
1847
1848	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1849		return error;
1850	inc_nlink(dir);
1851	return 0;
1852}
1853
1854static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1855		struct nameidata *nd)
1856{
1857	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1858}
1859
1860/*
1861 * Link a file..
1862 */
1863static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1864{
1865	struct inode *inode = old_dentry->d_inode;
1866	int ret;
1867
1868	/*
1869	 * No ordinary (disk based) filesystem counts links as inodes;
1870	 * but each new link needs a new dentry, pinning lowmem, and
1871	 * tmpfs dentries cannot be pruned until they are unlinked.
1872	 */
1873	ret = shmem_reserve_inode(inode->i_sb);
1874	if (ret)
1875		goto out;
1876
1877	dir->i_size += BOGO_DIRENT_SIZE;
1878	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1879	inc_nlink(inode);
1880	atomic_inc(&inode->i_count);	/* New dentry reference */
1881	dget(dentry);		/* Extra pinning count for the created dentry */
1882	d_instantiate(dentry, inode);
1883out:
1884	return ret;
1885}
1886
1887static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1888{
1889	struct inode *inode = dentry->d_inode;
1890
1891	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1892		shmem_free_inode(inode->i_sb);
1893
1894	dir->i_size -= BOGO_DIRENT_SIZE;
1895	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1896	drop_nlink(inode);
1897	dput(dentry);	/* Undo the count from "create" - this does all the work */
1898	return 0;
1899}
1900
1901static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1902{
1903	if (!simple_empty(dentry))
1904		return -ENOTEMPTY;
1905
1906	drop_nlink(dentry->d_inode);
1907	drop_nlink(dir);
1908	return shmem_unlink(dir, dentry);
1909}
1910
1911/*
1912 * The VFS layer already does all the dentry stuff for rename,
1913 * we just have to decrement the usage count for the target if
1914 * it exists so that the VFS layer correctly free's it when it
1915 * gets overwritten.
1916 */
1917static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1918{
1919	struct inode *inode = old_dentry->d_inode;
1920	int they_are_dirs = S_ISDIR(inode->i_mode);
1921
1922	if (!simple_empty(new_dentry))
1923		return -ENOTEMPTY;
1924
1925	if (new_dentry->d_inode) {
1926		(void) shmem_unlink(new_dir, new_dentry);
1927		if (they_are_dirs)
1928			drop_nlink(old_dir);
1929	} else if (they_are_dirs) {
1930		drop_nlink(old_dir);
1931		inc_nlink(new_dir);
1932	}
1933
1934	old_dir->i_size -= BOGO_DIRENT_SIZE;
1935	new_dir->i_size += BOGO_DIRENT_SIZE;
1936	old_dir->i_ctime = old_dir->i_mtime =
1937	new_dir->i_ctime = new_dir->i_mtime =
1938	inode->i_ctime = CURRENT_TIME;
1939	return 0;
1940}
1941
1942static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1943{
1944	int error;
1945	int len;
1946	struct inode *inode;
1947	struct page *page = NULL;
1948	char *kaddr;
1949	struct shmem_inode_info *info;
1950
1951	len = strlen(symname) + 1;
1952	if (len > PAGE_CACHE_SIZE)
1953		return -ENAMETOOLONG;
1954
1955	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1956	if (!inode)
1957		return -ENOSPC;
1958
1959	error = security_inode_init_security(inode, dir, NULL, NULL,
1960					     NULL);
1961	if (error) {
1962		if (error != -EOPNOTSUPP) {
1963			iput(inode);
1964			return error;
1965		}
1966		error = 0;
1967	}
1968
1969	info = SHMEM_I(inode);
1970	inode->i_size = len-1;
1971	if (len <= (char *)inode - (char *)info) {
1972		/* do it inline */
1973		memcpy(info, symname, len);
1974		inode->i_op = &shmem_symlink_inline_operations;
1975	} else {
1976		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1977		if (error) {
1978			iput(inode);
1979			return error;
1980		}
1981		inode->i_mapping->a_ops = &shmem_aops;
1982		inode->i_op = &shmem_symlink_inode_operations;
1983		kaddr = kmap_atomic(page, KM_USER0);
1984		memcpy(kaddr, symname, len);
1985		kunmap_atomic(kaddr, KM_USER0);
1986		set_page_dirty(page);
1987		unlock_page(page);
1988		page_cache_release(page);
1989	}
1990	dir->i_size += BOGO_DIRENT_SIZE;
1991	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1992	d_instantiate(dentry, inode);
1993	dget(dentry);
1994	return 0;
1995}
1996
1997static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1998{
1999	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2000	return NULL;
2001}
2002
2003static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2004{
2005	struct page *page = NULL;
2006	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2007	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2008	if (page)
2009		unlock_page(page);
2010	return page;
2011}
2012
2013static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2014{
2015	if (!IS_ERR(nd_get_link(nd))) {
2016		struct page *page = cookie;
2017		kunmap(page);
2018		mark_page_accessed(page);
2019		page_cache_release(page);
2020	}
2021}
2022
2023static const struct inode_operations shmem_symlink_inline_operations = {
2024	.readlink	= generic_readlink,
2025	.follow_link	= shmem_follow_link_inline,
2026};
2027
2028static const struct inode_operations shmem_symlink_inode_operations = {
2029	.readlink	= generic_readlink,
2030	.follow_link	= shmem_follow_link,
2031	.put_link	= shmem_put_link,
2032};
2033
2034#ifdef CONFIG_TMPFS_POSIX_ACL
2035/*
2036 * Superblocks without xattr inode operations will get security.* xattr
2037 * support from the VFS "for free". As soon as we have any other xattrs
2038 * like ACLs, we also need to implement the security.* handlers at
2039 * filesystem level, though.
2040 */
2041
2042static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2043					size_t list_len, const char *name,
2044					size_t name_len, int handler_flags)
2045{
2046	return security_inode_listsecurity(dentry->d_inode, list, list_len);
2047}
2048
2049static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2050		void *buffer, size_t size, int handler_flags)
2051{
2052	if (strcmp(name, "") == 0)
2053		return -EINVAL;
2054	return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2055}
2056
2057static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2058		const void *value, size_t size, int flags, int handler_flags)
2059{
2060	if (strcmp(name, "") == 0)
2061		return -EINVAL;
2062	return security_inode_setsecurity(dentry->d_inode, name, value,
2063					  size, flags);
2064}
2065
2066static const struct xattr_handler shmem_xattr_security_handler = {
2067	.prefix = XATTR_SECURITY_PREFIX,
2068	.list   = shmem_xattr_security_list,
2069	.get    = shmem_xattr_security_get,
2070	.set    = shmem_xattr_security_set,
2071};
2072
2073static const struct xattr_handler *shmem_xattr_handlers[] = {
2074	&generic_acl_access_handler,
2075	&generic_acl_default_handler,
2076	&shmem_xattr_security_handler,
2077	NULL
2078};
2079#endif
2080
2081static struct dentry *shmem_get_parent(struct dentry *child)
2082{
2083	return ERR_PTR(-ESTALE);
2084}
2085
2086static int shmem_match(struct inode *ino, void *vfh)
2087{
2088	__u32 *fh = vfh;
2089	__u64 inum = fh[2];
2090	inum = (inum << 32) | fh[1];
2091	return ino->i_ino == inum && fh[0] == ino->i_generation;
2092}
2093
2094static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2095		struct fid *fid, int fh_len, int fh_type)
2096{
2097	struct inode *inode;
2098	struct dentry *dentry = NULL;
2099	u64 inum = fid->raw[2];
2100	inum = (inum << 32) | fid->raw[1];
2101
2102	if (fh_len < 3)
2103		return NULL;
2104
2105	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2106			shmem_match, fid->raw);
2107	if (inode) {
2108		dentry = d_find_alias(inode);
2109		iput(inode);
2110	}
2111
2112	return dentry;
2113}
2114
2115static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2116				int connectable)
2117{
2118	struct inode *inode = dentry->d_inode;
2119
2120	if (*len < 3)
2121		return 255;
2122
2123	if (hlist_unhashed(&inode->i_hash)) {
2124		/* Unfortunately insert_inode_hash is not idempotent,
2125		 * so as we hash inodes here rather than at creation
2126		 * time, we need a lock to ensure we only try
2127		 * to do it once
2128		 */
2129		static DEFINE_SPINLOCK(lock);
2130		spin_lock(&lock);
2131		if (hlist_unhashed(&inode->i_hash))
2132			__insert_inode_hash(inode,
2133					    inode->i_ino + inode->i_generation);
2134		spin_unlock(&lock);
2135	}
2136
2137	fh[0] = inode->i_generation;
2138	fh[1] = inode->i_ino;
2139	fh[2] = ((__u64)inode->i_ino) >> 32;
2140
2141	*len = 3;
2142	return 1;
2143}
2144
2145static const struct export_operations shmem_export_ops = {
2146	.get_parent     = shmem_get_parent,
2147	.encode_fh      = shmem_encode_fh,
2148	.fh_to_dentry	= shmem_fh_to_dentry,
2149};
2150
2151static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2152			       bool remount)
2153{
2154	char *this_char, *value, *rest;
2155
2156	while (options != NULL) {
2157		this_char = options;
2158		for (;;) {
2159			/*
2160			 * NUL-terminate this option: unfortunately,
2161			 * mount options form a comma-separated list,
2162			 * but mpol's nodelist may also contain commas.
2163			 */
2164			options = strchr(options, ',');
2165			if (options == NULL)
2166				break;
2167			options++;
2168			if (!isdigit(*options)) {
2169				options[-1] = '\0';
2170				break;
2171			}
2172		}
2173		if (!*this_char)
2174			continue;
2175		if ((value = strchr(this_char,'=')) != NULL) {
2176			*value++ = 0;
2177		} else {
2178			printk(KERN_ERR
2179			    "tmpfs: No value for mount option '%s'\n",
2180			    this_char);
2181			return 1;
2182		}
2183
2184		if (!strcmp(this_char,"size")) {
2185			unsigned long long size;
2186			size = memparse(value,&rest);
2187			if (*rest == '%') {
2188				size <<= PAGE_SHIFT;
2189				size *= totalram_pages;
2190				do_div(size, 100);
2191				rest++;
2192			}
2193			if (*rest)
2194				goto bad_val;
2195			sbinfo->max_blocks =
2196				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2197		} else if (!strcmp(this_char,"nr_blocks")) {
2198			sbinfo->max_blocks = memparse(value, &rest);
2199			if (*rest)
2200				goto bad_val;
2201		} else if (!strcmp(this_char,"nr_inodes")) {
2202			sbinfo->max_inodes = memparse(value, &rest);
2203			if (*rest)
2204				goto bad_val;
2205		} else if (!strcmp(this_char,"mode")) {
2206			if (remount)
2207				continue;
2208			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2209			if (*rest)
2210				goto bad_val;
2211		} else if (!strcmp(this_char,"uid")) {
2212			if (remount)
2213				continue;
2214			sbinfo->uid = simple_strtoul(value, &rest, 0);
2215			if (*rest)
2216				goto bad_val;
2217		} else if (!strcmp(this_char,"gid")) {
2218			if (remount)
2219				continue;
2220			sbinfo->gid = simple_strtoul(value, &rest, 0);
2221			if (*rest)
2222				goto bad_val;
2223		} else if (!strcmp(this_char,"mpol")) {
2224			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2225				goto bad_val;
2226		} else {
2227			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2228			       this_char);
2229			return 1;
2230		}
2231	}
2232	return 0;
2233
2234bad_val:
2235	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2236	       value, this_char);
2237	return 1;
2238
2239}
2240
2241static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2242{
2243	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2244	struct shmem_sb_info config = *sbinfo;
2245	unsigned long blocks;
2246	unsigned long inodes;
2247	int error = -EINVAL;
2248
2249	if (shmem_parse_options(data, &config, true))
2250		return error;
2251
2252	spin_lock(&sbinfo->stat_lock);
2253	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2254	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2255	if (config.max_blocks < blocks)
2256		goto out;
2257	if (config.max_inodes < inodes)
2258		goto out;
2259	/*
2260	 * Those tests also disallow limited->unlimited while any are in
2261	 * use, so i_blocks will always be zero when max_blocks is zero;
2262	 * but we must separately disallow unlimited->limited, because
2263	 * in that case we have no record of how much is already in use.
2264	 */
2265	if (config.max_blocks && !sbinfo->max_blocks)
2266		goto out;
2267	if (config.max_inodes && !sbinfo->max_inodes)
2268		goto out;
2269
2270	error = 0;
2271	sbinfo->max_blocks  = config.max_blocks;
2272	sbinfo->free_blocks = config.max_blocks - blocks;
2273	sbinfo->max_inodes  = config.max_inodes;
2274	sbinfo->free_inodes = config.max_inodes - inodes;
2275
2276	mpol_put(sbinfo->mpol);
2277	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2278out:
2279	spin_unlock(&sbinfo->stat_lock);
2280	return error;
2281}
2282
2283static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2284{
2285	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2286
2287	if (sbinfo->max_blocks != shmem_default_max_blocks())
2288		seq_printf(seq, ",size=%luk",
2289			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2290	if (sbinfo->max_inodes != shmem_default_max_inodes())
2291		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2292	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2293		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2294	if (sbinfo->uid != 0)
2295		seq_printf(seq, ",uid=%u", sbinfo->uid);
2296	if (sbinfo->gid != 0)
2297		seq_printf(seq, ",gid=%u", sbinfo->gid);
2298	shmem_show_mpol(seq, sbinfo->mpol);
2299	return 0;
2300}
2301#endif /* CONFIG_TMPFS */
2302
2303static void shmem_put_super(struct super_block *sb)
2304{
2305	kfree(sb->s_fs_info);
2306	sb->s_fs_info = NULL;
2307}
2308
2309int shmem_fill_super(struct super_block *sb, void *data, int silent)
2310{
2311	struct inode *inode;
2312	struct dentry *root;
2313	struct shmem_sb_info *sbinfo;
2314	int err = -ENOMEM;
2315
2316	/* Round up to L1_CACHE_BYTES to resist false sharing */
2317	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2318				L1_CACHE_BYTES), GFP_KERNEL);
2319	if (!sbinfo)
2320		return -ENOMEM;
2321
2322	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2323	sbinfo->uid = current_fsuid();
2324	sbinfo->gid = current_fsgid();
2325	sb->s_fs_info = sbinfo;
2326
2327#ifdef CONFIG_TMPFS
2328	/*
2329	 * Per default we only allow half of the physical ram per
2330	 * tmpfs instance, limiting inodes to one per page of lowmem;
2331	 * but the internal instance is left unlimited.
2332	 */
2333	if (!(sb->s_flags & MS_NOUSER)) {
2334		sbinfo->max_blocks = shmem_default_max_blocks();
2335		sbinfo->max_inodes = shmem_default_max_inodes();
2336		if (shmem_parse_options(data, sbinfo, false)) {
2337			err = -EINVAL;
2338			goto failed;
2339		}
2340	}
2341	sb->s_export_op = &shmem_export_ops;
2342#else
2343	sb->s_flags |= MS_NOUSER;
2344#endif
2345
2346	spin_lock_init(&sbinfo->stat_lock);
2347	sbinfo->free_blocks = sbinfo->max_blocks;
2348	sbinfo->free_inodes = sbinfo->max_inodes;
2349
2350	sb->s_maxbytes = SHMEM_MAX_BYTES;
2351	sb->s_blocksize = PAGE_CACHE_SIZE;
2352	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2353	sb->s_magic = TMPFS_MAGIC;
2354	sb->s_op = &shmem_ops;
2355	sb->s_time_gran = 1;
2356#ifdef CONFIG_TMPFS_POSIX_ACL
2357	sb->s_xattr = shmem_xattr_handlers;
2358	sb->s_flags |= MS_POSIXACL;
2359#endif
2360
2361	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2362	if (!inode)
2363		goto failed;
2364	inode->i_uid = sbinfo->uid;
2365	inode->i_gid = sbinfo->gid;
2366	root = d_alloc_root(inode);
2367	if (!root)
2368		goto failed_iput;
2369	sb->s_root = root;
2370	return 0;
2371
2372failed_iput:
2373	iput(inode);
2374failed:
2375	shmem_put_super(sb);
2376	return err;
2377}
2378
2379static struct kmem_cache *shmem_inode_cachep;
2380
2381static struct inode *shmem_alloc_inode(struct super_block *sb)
2382{
2383	struct shmem_inode_info *p;
2384	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2385	if (!p)
2386		return NULL;
2387	return &p->vfs_inode;
2388}
2389
2390static void shmem_destroy_inode(struct inode *inode)
2391{
2392	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2393		/* only struct inode is valid if it's an inline symlink */
2394		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2395	}
2396	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2397}
2398
2399static void init_once(void *foo)
2400{
2401	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2402
2403	inode_init_once(&p->vfs_inode);
2404}
2405
2406static int init_inodecache(void)
2407{
2408	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2409				sizeof(struct shmem_inode_info),
2410				0, SLAB_PANIC, init_once);
2411	return 0;
2412}
2413
2414static void destroy_inodecache(void)
2415{
2416	kmem_cache_destroy(shmem_inode_cachep);
2417}
2418
2419static const struct address_space_operations shmem_aops = {
2420	.writepage	= shmem_writepage,
2421	.set_page_dirty	= __set_page_dirty_no_writeback,
2422#ifdef CONFIG_TMPFS
2423	.readpage	= shmem_readpage,
2424	.write_begin	= shmem_write_begin,
2425	.write_end	= shmem_write_end,
2426#endif
2427	.migratepage	= migrate_page,
2428	.error_remove_page = generic_error_remove_page,
2429};
2430
2431static const struct file_operations shmem_file_operations = {
2432	.mmap		= shmem_mmap,
2433#ifdef CONFIG_TMPFS
2434	.llseek		= generic_file_llseek,
2435	.read		= do_sync_read,
2436	.write		= do_sync_write,
2437	.aio_read	= shmem_file_aio_read,
2438	.aio_write	= generic_file_aio_write,
2439	.fsync		= noop_fsync,
2440	.splice_read	= generic_file_splice_read,
2441	.splice_write	= generic_file_splice_write,
2442#endif
2443};
2444
2445static const struct inode_operations shmem_inode_operations = {
2446	.setattr	= shmem_notify_change,
2447	.truncate_range	= shmem_truncate_range,
2448#ifdef CONFIG_TMPFS_POSIX_ACL
2449	.setxattr	= generic_setxattr,
2450	.getxattr	= generic_getxattr,
2451	.listxattr	= generic_listxattr,
2452	.removexattr	= generic_removexattr,
2453	.check_acl	= generic_check_acl,
2454#endif
2455
2456};
2457
2458static const struct inode_operations shmem_dir_inode_operations = {
2459#ifdef CONFIG_TMPFS
2460	.create		= shmem_create,
2461	.lookup		= simple_lookup,
2462	.link		= shmem_link,
2463	.unlink		= shmem_unlink,
2464	.symlink	= shmem_symlink,
2465	.mkdir		= shmem_mkdir,
2466	.rmdir		= shmem_rmdir,
2467	.mknod		= shmem_mknod,
2468	.rename		= shmem_rename,
2469#endif
2470#ifdef CONFIG_TMPFS_POSIX_ACL
2471	.setattr	= shmem_notify_change,
2472	.setxattr	= generic_setxattr,
2473	.getxattr	= generic_getxattr,
2474	.listxattr	= generic_listxattr,
2475	.removexattr	= generic_removexattr,
2476	.check_acl	= generic_check_acl,
2477#endif
2478};
2479
2480static const struct inode_operations shmem_special_inode_operations = {
2481#ifdef CONFIG_TMPFS_POSIX_ACL
2482	.setattr	= shmem_notify_change,
2483	.setxattr	= generic_setxattr,
2484	.getxattr	= generic_getxattr,
2485	.listxattr	= generic_listxattr,
2486	.removexattr	= generic_removexattr,
2487	.check_acl	= generic_check_acl,
2488#endif
2489};
2490
2491static const struct super_operations shmem_ops = {
2492	.alloc_inode	= shmem_alloc_inode,
2493	.destroy_inode	= shmem_destroy_inode,
2494#ifdef CONFIG_TMPFS
2495	.statfs		= shmem_statfs,
2496	.remount_fs	= shmem_remount_fs,
2497	.show_options	= shmem_show_options,
2498#endif
2499	.delete_inode	= shmem_delete_inode,
2500	.drop_inode	= generic_delete_inode,
2501	.put_super	= shmem_put_super,
2502};
2503
2504static const struct vm_operations_struct shmem_vm_ops = {
2505	.fault		= shmem_fault,
2506#ifdef CONFIG_NUMA
2507	.set_policy     = shmem_set_policy,
2508	.get_policy     = shmem_get_policy,
2509#endif
2510};
2511
2512
2513static int shmem_get_sb(struct file_system_type *fs_type,
2514	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2515{
2516	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2517}
2518
2519static struct file_system_type tmpfs_fs_type = {
2520	.owner		= THIS_MODULE,
2521	.name		= "tmpfs",
2522	.get_sb		= shmem_get_sb,
2523	.kill_sb	= kill_litter_super,
2524};
2525
2526int __init init_tmpfs(void)
2527{
2528	int error;
2529
2530	error = bdi_init(&shmem_backing_dev_info);
2531	if (error)
2532		goto out4;
2533
2534	error = init_inodecache();
2535	if (error)
2536		goto out3;
2537
2538	error = register_filesystem(&tmpfs_fs_type);
2539	if (error) {
2540		printk(KERN_ERR "Could not register tmpfs\n");
2541		goto out2;
2542	}
2543
2544	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2545				tmpfs_fs_type.name, NULL);
2546	if (IS_ERR(shm_mnt)) {
2547		error = PTR_ERR(shm_mnt);
2548		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2549		goto out1;
2550	}
2551	return 0;
2552
2553out1:
2554	unregister_filesystem(&tmpfs_fs_type);
2555out2:
2556	destroy_inodecache();
2557out3:
2558	bdi_destroy(&shmem_backing_dev_info);
2559out4:
2560	shm_mnt = ERR_PTR(error);
2561	return error;
2562}
2563
2564#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2565/**
2566 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2567 * @inode: the inode to be searched
2568 * @pgoff: the offset to be searched
2569 * @pagep: the pointer for the found page to be stored
2570 * @ent: the pointer for the found swap entry to be stored
2571 *
2572 * If a page is found, refcount of it is incremented. Callers should handle
2573 * these refcount.
2574 */
2575void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2576					struct page **pagep, swp_entry_t *ent)
2577{
2578	swp_entry_t entry = { .val = 0 }, *ptr;
2579	struct page *page = NULL;
2580	struct shmem_inode_info *info = SHMEM_I(inode);
2581
2582	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2583		goto out;
2584
2585	spin_lock(&info->lock);
2586	ptr = shmem_swp_entry(info, pgoff, NULL);
2587#ifdef CONFIG_SWAP
2588	if (ptr && ptr->val) {
2589		entry.val = ptr->val;
2590		page = find_get_page(&swapper_space, entry.val);
2591	} else
2592#endif
2593		page = find_get_page(inode->i_mapping, pgoff);
2594	if (ptr)
2595		shmem_swp_unmap(ptr);
2596	spin_unlock(&info->lock);
2597out:
2598	*pagep = page;
2599	*ent = entry;
2600}
2601#endif
2602
2603#else /* !CONFIG_SHMEM */
2604
2605/*
2606 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2607 *
2608 * This is intended for small system where the benefits of the full
2609 * shmem code (swap-backed and resource-limited) are outweighed by
2610 * their complexity. On systems without swap this code should be
2611 * effectively equivalent, but much lighter weight.
2612 */
2613
2614#include <linux/ramfs.h>
2615
2616static struct file_system_type tmpfs_fs_type = {
2617	.name		= "tmpfs",
2618	.get_sb		= ramfs_get_sb,
2619	.kill_sb	= kill_litter_super,
2620};
2621
2622int __init init_tmpfs(void)
2623{
2624	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2625
2626	shm_mnt = kern_mount(&tmpfs_fs_type);
2627	BUG_ON(IS_ERR(shm_mnt));
2628
2629	return 0;
2630}
2631
2632int shmem_unuse(swp_entry_t entry, struct page *page)
2633{
2634	return 0;
2635}
2636
2637int shmem_lock(struct file *file, int lock, struct user_struct *user)
2638{
2639	return 0;
2640}
2641
2642#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2643/**
2644 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2645 * @inode: the inode to be searched
2646 * @pgoff: the offset to be searched
2647 * @pagep: the pointer for the found page to be stored
2648 * @ent: the pointer for the found swap entry to be stored
2649 *
2650 * If a page is found, refcount of it is incremented. Callers should handle
2651 * these refcount.
2652 */
2653void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2654					struct page **pagep, swp_entry_t *ent)
2655{
2656	struct page *page = NULL;
2657
2658	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2659		goto out;
2660	page = find_get_page(inode->i_mapping, pgoff);
2661out:
2662	*pagep = page;
2663	*ent = (swp_entry_t){ .val = 0 };
2664}
2665#endif
2666
2667#define shmem_vm_ops				generic_file_vm_ops
2668#define shmem_file_operations			ramfs_file_operations
2669#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2670#define shmem_acct_size(flags, size)		0
2671#define shmem_unacct_size(flags, size)		do {} while (0)
2672#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2673
2674#endif /* CONFIG_SHMEM */
2675
2676/* common code */
2677
2678/**
2679 * shmem_file_setup - get an unlinked file living in tmpfs
2680 * @name: name for dentry (to be seen in /proc/<pid>/maps
2681 * @size: size to be set for the file
2682 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2683 */
2684struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2685{
2686	int error;
2687	struct file *file;
2688	struct inode *inode;
2689	struct path path;
2690	struct dentry *root;
2691	struct qstr this;
2692
2693	if (IS_ERR(shm_mnt))
2694		return (void *)shm_mnt;
2695
2696	if (size < 0 || size > SHMEM_MAX_BYTES)
2697		return ERR_PTR(-EINVAL);
2698
2699	if (shmem_acct_size(flags, size))
2700		return ERR_PTR(-ENOMEM);
2701
2702	error = -ENOMEM;
2703	this.name = name;
2704	this.len = strlen(name);
2705	this.hash = 0; /* will go */
2706	root = shm_mnt->mnt_root;
2707	path.dentry = d_alloc(root, &this);
2708	if (!path.dentry)
2709		goto put_memory;
2710	path.mnt = mntget(shm_mnt);
2711
2712	error = -ENOSPC;
2713	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2714	if (!inode)
2715		goto put_dentry;
2716
2717	d_instantiate(path.dentry, inode);
2718	inode->i_size = size;
2719	inode->i_nlink = 0;	/* It is unlinked */
2720#ifndef CONFIG_MMU
2721	error = ramfs_nommu_expand_for_mapping(inode, size);
2722	if (error)
2723		goto put_dentry;
2724#endif
2725
2726	error = -ENFILE;
2727	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2728		  &shmem_file_operations);
2729	if (!file)
2730		goto put_dentry;
2731
2732	return file;
2733
2734put_dentry:
2735	path_put(&path);
2736put_memory:
2737	shmem_unacct_size(flags, size);
2738	return ERR_PTR(error);
2739}
2740EXPORT_SYMBOL_GPL(shmem_file_setup);
2741
2742/**
2743 * shmem_zero_setup - setup a shared anonymous mapping
2744 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2745 */
2746int shmem_zero_setup(struct vm_area_struct *vma)
2747{
2748	struct file *file;
2749	loff_t size = vma->vm_end - vma->vm_start;
2750
2751	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2752	if (IS_ERR(file))
2753		return PTR_ERR(file);
2754
2755	if (vma->vm_file)
2756		fput(vma->vm_file);
2757	vma->vm_file = file;
2758	vma->vm_ops = &shmem_vm_ops;
2759	return 0;
2760}
2761