shmem.c revision 708e3508c2a2204cc276dcdb543009a441bfe91b
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/percpu_counter.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/splice.h>
55#include <linux/security.h>
56#include <linux/swapops.h>
57#include <linux/mempolicy.h>
58#include <linux/namei.h>
59#include <linux/ctype.h>
60#include <linux/migrate.h>
61#include <linux/highmem.h>
62#include <linux/seq_file.h>
63#include <linux/magic.h>
64
65#include <asm/uaccess.h>
66#include <asm/div64.h>
67#include <asm/pgtable.h>
68
69/*
70 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
71 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 *
73 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
74 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
75 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
76 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 *
78 * We use / and * instead of shifts in the definitions below, so that the swap
79 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 */
81#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
82#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83
84#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
85#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86
87#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
88#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89
90#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
91#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92
93/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
94#define SHMEM_PAGEIN	 VM_READ
95#define SHMEM_TRUNCATE	 VM_WRITE
96
97/* Definition to limit shmem_truncate's steps between cond_rescheds */
98#define LATENCY_LIMIT	 64
99
100/* Pretend that each entry is of this size in directory's i_size */
101#define BOGO_DIRENT_SIZE 20
102
103struct shmem_xattr {
104	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
105	char *name;		/* xattr name */
106	size_t size;
107	char value[0];
108};
109
110/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
111enum sgp_type {
112	SGP_READ,	/* don't exceed i_size, don't allocate page */
113	SGP_CACHE,	/* don't exceed i_size, may allocate page */
114	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
115	SGP_WRITE,	/* may exceed i_size, may allocate page */
116};
117
118#ifdef CONFIG_TMPFS
119static unsigned long shmem_default_max_blocks(void)
120{
121	return totalram_pages / 2;
122}
123
124static unsigned long shmem_default_max_inodes(void)
125{
126	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
127}
128#endif
129
130static int shmem_getpage(struct inode *inode, unsigned long idx,
131			 struct page **pagep, enum sgp_type sgp, int *type);
132
133static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
134{
135	/*
136	 * The above definition of ENTRIES_PER_PAGE, and the use of
137	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
138	 * might be reconsidered if it ever diverges from PAGE_SIZE.
139	 *
140	 * Mobility flags are masked out as swap vectors cannot move
141	 */
142	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
143				PAGE_CACHE_SHIFT-PAGE_SHIFT);
144}
145
146static inline void shmem_dir_free(struct page *page)
147{
148	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
149}
150
151static struct page **shmem_dir_map(struct page *page)
152{
153	return (struct page **)kmap_atomic(page, KM_USER0);
154}
155
156static inline void shmem_dir_unmap(struct page **dir)
157{
158	kunmap_atomic(dir, KM_USER0);
159}
160
161static swp_entry_t *shmem_swp_map(struct page *page)
162{
163	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
164}
165
166static inline void shmem_swp_balance_unmap(void)
167{
168	/*
169	 * When passing a pointer to an i_direct entry, to code which
170	 * also handles indirect entries and so will shmem_swp_unmap,
171	 * we must arrange for the preempt count to remain in balance.
172	 * What kmap_atomic of a lowmem page does depends on config
173	 * and architecture, so pretend to kmap_atomic some lowmem page.
174	 */
175	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
176}
177
178static inline void shmem_swp_unmap(swp_entry_t *entry)
179{
180	kunmap_atomic(entry, KM_USER1);
181}
182
183static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
184{
185	return sb->s_fs_info;
186}
187
188/*
189 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
190 * for shared memory and for shared anonymous (/dev/zero) mappings
191 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
192 * consistent with the pre-accounting of private mappings ...
193 */
194static inline int shmem_acct_size(unsigned long flags, loff_t size)
195{
196	return (flags & VM_NORESERVE) ?
197		0 : security_vm_enough_memory_kern(VM_ACCT(size));
198}
199
200static inline void shmem_unacct_size(unsigned long flags, loff_t size)
201{
202	if (!(flags & VM_NORESERVE))
203		vm_unacct_memory(VM_ACCT(size));
204}
205
206/*
207 * ... whereas tmpfs objects are accounted incrementally as
208 * pages are allocated, in order to allow huge sparse files.
209 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
210 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
211 */
212static inline int shmem_acct_block(unsigned long flags)
213{
214	return (flags & VM_NORESERVE) ?
215		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
216}
217
218static inline void shmem_unacct_blocks(unsigned long flags, long pages)
219{
220	if (flags & VM_NORESERVE)
221		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
222}
223
224static const struct super_operations shmem_ops;
225static const struct address_space_operations shmem_aops;
226static const struct file_operations shmem_file_operations;
227static const struct inode_operations shmem_inode_operations;
228static const struct inode_operations shmem_dir_inode_operations;
229static const struct inode_operations shmem_special_inode_operations;
230static const struct vm_operations_struct shmem_vm_ops;
231
232static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
233	.ra_pages	= 0,	/* No readahead */
234	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
235};
236
237static LIST_HEAD(shmem_swaplist);
238static DEFINE_MUTEX(shmem_swaplist_mutex);
239
240static void shmem_free_blocks(struct inode *inode, long pages)
241{
242	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
243	if (sbinfo->max_blocks) {
244		percpu_counter_add(&sbinfo->used_blocks, -pages);
245		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
246	}
247}
248
249static int shmem_reserve_inode(struct super_block *sb)
250{
251	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
252	if (sbinfo->max_inodes) {
253		spin_lock(&sbinfo->stat_lock);
254		if (!sbinfo->free_inodes) {
255			spin_unlock(&sbinfo->stat_lock);
256			return -ENOSPC;
257		}
258		sbinfo->free_inodes--;
259		spin_unlock(&sbinfo->stat_lock);
260	}
261	return 0;
262}
263
264static void shmem_free_inode(struct super_block *sb)
265{
266	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267	if (sbinfo->max_inodes) {
268		spin_lock(&sbinfo->stat_lock);
269		sbinfo->free_inodes++;
270		spin_unlock(&sbinfo->stat_lock);
271	}
272}
273
274/**
275 * shmem_recalc_inode - recalculate the size of an inode
276 * @inode: inode to recalc
277 *
278 * We have to calculate the free blocks since the mm can drop
279 * undirtied hole pages behind our back.
280 *
281 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
282 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
283 *
284 * It has to be called with the spinlock held.
285 */
286static void shmem_recalc_inode(struct inode *inode)
287{
288	struct shmem_inode_info *info = SHMEM_I(inode);
289	long freed;
290
291	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
292	if (freed > 0) {
293		info->alloced -= freed;
294		shmem_unacct_blocks(info->flags, freed);
295		shmem_free_blocks(inode, freed);
296	}
297}
298
299/**
300 * shmem_swp_entry - find the swap vector position in the info structure
301 * @info:  info structure for the inode
302 * @index: index of the page to find
303 * @page:  optional page to add to the structure. Has to be preset to
304 *         all zeros
305 *
306 * If there is no space allocated yet it will return NULL when
307 * page is NULL, else it will use the page for the needed block,
308 * setting it to NULL on return to indicate that it has been used.
309 *
310 * The swap vector is organized the following way:
311 *
312 * There are SHMEM_NR_DIRECT entries directly stored in the
313 * shmem_inode_info structure. So small files do not need an addional
314 * allocation.
315 *
316 * For pages with index > SHMEM_NR_DIRECT there is the pointer
317 * i_indirect which points to a page which holds in the first half
318 * doubly indirect blocks, in the second half triple indirect blocks:
319 *
320 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
321 * following layout (for SHMEM_NR_DIRECT == 16):
322 *
323 * i_indirect -> dir --> 16-19
324 * 	      |	     +-> 20-23
325 * 	      |
326 * 	      +-->dir2 --> 24-27
327 * 	      |	       +-> 28-31
328 * 	      |	       +-> 32-35
329 * 	      |	       +-> 36-39
330 * 	      |
331 * 	      +-->dir3 --> 40-43
332 * 	       	       +-> 44-47
333 * 	      	       +-> 48-51
334 * 	      	       +-> 52-55
335 */
336static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
337{
338	unsigned long offset;
339	struct page **dir;
340	struct page *subdir;
341
342	if (index < SHMEM_NR_DIRECT) {
343		shmem_swp_balance_unmap();
344		return info->i_direct+index;
345	}
346	if (!info->i_indirect) {
347		if (page) {
348			info->i_indirect = *page;
349			*page = NULL;
350		}
351		return NULL;			/* need another page */
352	}
353
354	index -= SHMEM_NR_DIRECT;
355	offset = index % ENTRIES_PER_PAGE;
356	index /= ENTRIES_PER_PAGE;
357	dir = shmem_dir_map(info->i_indirect);
358
359	if (index >= ENTRIES_PER_PAGE/2) {
360		index -= ENTRIES_PER_PAGE/2;
361		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
362		index %= ENTRIES_PER_PAGE;
363		subdir = *dir;
364		if (!subdir) {
365			if (page) {
366				*dir = *page;
367				*page = NULL;
368			}
369			shmem_dir_unmap(dir);
370			return NULL;		/* need another page */
371		}
372		shmem_dir_unmap(dir);
373		dir = shmem_dir_map(subdir);
374	}
375
376	dir += index;
377	subdir = *dir;
378	if (!subdir) {
379		if (!page || !(subdir = *page)) {
380			shmem_dir_unmap(dir);
381			return NULL;		/* need a page */
382		}
383		*dir = subdir;
384		*page = NULL;
385	}
386	shmem_dir_unmap(dir);
387	return shmem_swp_map(subdir) + offset;
388}
389
390static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
391{
392	long incdec = value? 1: -1;
393
394	entry->val = value;
395	info->swapped += incdec;
396	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
397		struct page *page = kmap_atomic_to_page(entry);
398		set_page_private(page, page_private(page) + incdec);
399	}
400}
401
402/**
403 * shmem_swp_alloc - get the position of the swap entry for the page.
404 * @info:	info structure for the inode
405 * @index:	index of the page to find
406 * @sgp:	check and recheck i_size? skip allocation?
407 *
408 * If the entry does not exist, allocate it.
409 */
410static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
411{
412	struct inode *inode = &info->vfs_inode;
413	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
414	struct page *page = NULL;
415	swp_entry_t *entry;
416
417	if (sgp != SGP_WRITE &&
418	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
419		return ERR_PTR(-EINVAL);
420
421	while (!(entry = shmem_swp_entry(info, index, &page))) {
422		if (sgp == SGP_READ)
423			return shmem_swp_map(ZERO_PAGE(0));
424		/*
425		 * Test used_blocks against 1 less max_blocks, since we have 1 data
426		 * page (and perhaps indirect index pages) yet to allocate:
427		 * a waste to allocate index if we cannot allocate data.
428		 */
429		if (sbinfo->max_blocks) {
430			if (percpu_counter_compare(&sbinfo->used_blocks,
431						sbinfo->max_blocks - 1) >= 0)
432				return ERR_PTR(-ENOSPC);
433			percpu_counter_inc(&sbinfo->used_blocks);
434			inode->i_blocks += BLOCKS_PER_PAGE;
435		}
436
437		spin_unlock(&info->lock);
438		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
439		spin_lock(&info->lock);
440
441		if (!page) {
442			shmem_free_blocks(inode, 1);
443			return ERR_PTR(-ENOMEM);
444		}
445		if (sgp != SGP_WRITE &&
446		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
447			entry = ERR_PTR(-EINVAL);
448			break;
449		}
450		if (info->next_index <= index)
451			info->next_index = index + 1;
452	}
453	if (page) {
454		/* another task gave its page, or truncated the file */
455		shmem_free_blocks(inode, 1);
456		shmem_dir_free(page);
457	}
458	if (info->next_index <= index && !IS_ERR(entry))
459		info->next_index = index + 1;
460	return entry;
461}
462
463/**
464 * shmem_free_swp - free some swap entries in a directory
465 * @dir:        pointer to the directory
466 * @edir:       pointer after last entry of the directory
467 * @punch_lock: pointer to spinlock when needed for the holepunch case
468 */
469static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
470						spinlock_t *punch_lock)
471{
472	spinlock_t *punch_unlock = NULL;
473	swp_entry_t *ptr;
474	int freed = 0;
475
476	for (ptr = dir; ptr < edir; ptr++) {
477		if (ptr->val) {
478			if (unlikely(punch_lock)) {
479				punch_unlock = punch_lock;
480				punch_lock = NULL;
481				spin_lock(punch_unlock);
482				if (!ptr->val)
483					continue;
484			}
485			free_swap_and_cache(*ptr);
486			*ptr = (swp_entry_t){0};
487			freed++;
488		}
489	}
490	if (punch_unlock)
491		spin_unlock(punch_unlock);
492	return freed;
493}
494
495static int shmem_map_and_free_swp(struct page *subdir, int offset,
496		int limit, struct page ***dir, spinlock_t *punch_lock)
497{
498	swp_entry_t *ptr;
499	int freed = 0;
500
501	ptr = shmem_swp_map(subdir);
502	for (; offset < limit; offset += LATENCY_LIMIT) {
503		int size = limit - offset;
504		if (size > LATENCY_LIMIT)
505			size = LATENCY_LIMIT;
506		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
507							punch_lock);
508		if (need_resched()) {
509			shmem_swp_unmap(ptr);
510			if (*dir) {
511				shmem_dir_unmap(*dir);
512				*dir = NULL;
513			}
514			cond_resched();
515			ptr = shmem_swp_map(subdir);
516		}
517	}
518	shmem_swp_unmap(ptr);
519	return freed;
520}
521
522static void shmem_free_pages(struct list_head *next)
523{
524	struct page *page;
525	int freed = 0;
526
527	do {
528		page = container_of(next, struct page, lru);
529		next = next->next;
530		shmem_dir_free(page);
531		freed++;
532		if (freed >= LATENCY_LIMIT) {
533			cond_resched();
534			freed = 0;
535		}
536	} while (next);
537}
538
539void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
540{
541	struct shmem_inode_info *info = SHMEM_I(inode);
542	unsigned long idx;
543	unsigned long size;
544	unsigned long limit;
545	unsigned long stage;
546	unsigned long diroff;
547	struct page **dir;
548	struct page *topdir;
549	struct page *middir;
550	struct page *subdir;
551	swp_entry_t *ptr;
552	LIST_HEAD(pages_to_free);
553	long nr_pages_to_free = 0;
554	long nr_swaps_freed = 0;
555	int offset;
556	int freed;
557	int punch_hole;
558	spinlock_t *needs_lock;
559	spinlock_t *punch_lock;
560	unsigned long upper_limit;
561
562	truncate_inode_pages_range(inode->i_mapping, start, end);
563
564	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
565	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
566	if (idx >= info->next_index)
567		return;
568
569	spin_lock(&info->lock);
570	info->flags |= SHMEM_TRUNCATE;
571	if (likely(end == (loff_t) -1)) {
572		limit = info->next_index;
573		upper_limit = SHMEM_MAX_INDEX;
574		info->next_index = idx;
575		needs_lock = NULL;
576		punch_hole = 0;
577	} else {
578		if (end + 1 >= inode->i_size) {	/* we may free a little more */
579			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
580							PAGE_CACHE_SHIFT;
581			upper_limit = SHMEM_MAX_INDEX;
582		} else {
583			limit = (end + 1) >> PAGE_CACHE_SHIFT;
584			upper_limit = limit;
585		}
586		needs_lock = &info->lock;
587		punch_hole = 1;
588	}
589
590	topdir = info->i_indirect;
591	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
592		info->i_indirect = NULL;
593		nr_pages_to_free++;
594		list_add(&topdir->lru, &pages_to_free);
595	}
596	spin_unlock(&info->lock);
597
598	if (info->swapped && idx < SHMEM_NR_DIRECT) {
599		ptr = info->i_direct;
600		size = limit;
601		if (size > SHMEM_NR_DIRECT)
602			size = SHMEM_NR_DIRECT;
603		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
604	}
605
606	/*
607	 * If there are no indirect blocks or we are punching a hole
608	 * below indirect blocks, nothing to be done.
609	 */
610	if (!topdir || limit <= SHMEM_NR_DIRECT)
611		goto done2;
612
613	/*
614	 * The truncation case has already dropped info->lock, and we're safe
615	 * because i_size and next_index have already been lowered, preventing
616	 * access beyond.  But in the punch_hole case, we still need to take
617	 * the lock when updating the swap directory, because there might be
618	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
619	 * shmem_writepage.  However, whenever we find we can remove a whole
620	 * directory page (not at the misaligned start or end of the range),
621	 * we first NULLify its pointer in the level above, and then have no
622	 * need to take the lock when updating its contents: needs_lock and
623	 * punch_lock (either pointing to info->lock or NULL) manage this.
624	 */
625
626	upper_limit -= SHMEM_NR_DIRECT;
627	limit -= SHMEM_NR_DIRECT;
628	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
629	offset = idx % ENTRIES_PER_PAGE;
630	idx -= offset;
631
632	dir = shmem_dir_map(topdir);
633	stage = ENTRIES_PER_PAGEPAGE/2;
634	if (idx < ENTRIES_PER_PAGEPAGE/2) {
635		middir = topdir;
636		diroff = idx/ENTRIES_PER_PAGE;
637	} else {
638		dir += ENTRIES_PER_PAGE/2;
639		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
640		while (stage <= idx)
641			stage += ENTRIES_PER_PAGEPAGE;
642		middir = *dir;
643		if (*dir) {
644			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
645				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
646			if (!diroff && !offset && upper_limit >= stage) {
647				if (needs_lock) {
648					spin_lock(needs_lock);
649					*dir = NULL;
650					spin_unlock(needs_lock);
651					needs_lock = NULL;
652				} else
653					*dir = NULL;
654				nr_pages_to_free++;
655				list_add(&middir->lru, &pages_to_free);
656			}
657			shmem_dir_unmap(dir);
658			dir = shmem_dir_map(middir);
659		} else {
660			diroff = 0;
661			offset = 0;
662			idx = stage;
663		}
664	}
665
666	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
667		if (unlikely(idx == stage)) {
668			shmem_dir_unmap(dir);
669			dir = shmem_dir_map(topdir) +
670			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
671			while (!*dir) {
672				dir++;
673				idx += ENTRIES_PER_PAGEPAGE;
674				if (idx >= limit)
675					goto done1;
676			}
677			stage = idx + ENTRIES_PER_PAGEPAGE;
678			middir = *dir;
679			if (punch_hole)
680				needs_lock = &info->lock;
681			if (upper_limit >= stage) {
682				if (needs_lock) {
683					spin_lock(needs_lock);
684					*dir = NULL;
685					spin_unlock(needs_lock);
686					needs_lock = NULL;
687				} else
688					*dir = NULL;
689				nr_pages_to_free++;
690				list_add(&middir->lru, &pages_to_free);
691			}
692			shmem_dir_unmap(dir);
693			cond_resched();
694			dir = shmem_dir_map(middir);
695			diroff = 0;
696		}
697		punch_lock = needs_lock;
698		subdir = dir[diroff];
699		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
700			if (needs_lock) {
701				spin_lock(needs_lock);
702				dir[diroff] = NULL;
703				spin_unlock(needs_lock);
704				punch_lock = NULL;
705			} else
706				dir[diroff] = NULL;
707			nr_pages_to_free++;
708			list_add(&subdir->lru, &pages_to_free);
709		}
710		if (subdir && page_private(subdir) /* has swap entries */) {
711			size = limit - idx;
712			if (size > ENTRIES_PER_PAGE)
713				size = ENTRIES_PER_PAGE;
714			freed = shmem_map_and_free_swp(subdir,
715					offset, size, &dir, punch_lock);
716			if (!dir)
717				dir = shmem_dir_map(middir);
718			nr_swaps_freed += freed;
719			if (offset || punch_lock) {
720				spin_lock(&info->lock);
721				set_page_private(subdir,
722					page_private(subdir) - freed);
723				spin_unlock(&info->lock);
724			} else
725				BUG_ON(page_private(subdir) != freed);
726		}
727		offset = 0;
728	}
729done1:
730	shmem_dir_unmap(dir);
731done2:
732	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
733		/*
734		 * Call truncate_inode_pages again: racing shmem_unuse_inode
735		 * may have swizzled a page in from swap since
736		 * truncate_pagecache or generic_delete_inode did it, before we
737		 * lowered next_index.  Also, though shmem_getpage checks
738		 * i_size before adding to cache, no recheck after: so fix the
739		 * narrow window there too.
740		 */
741		truncate_inode_pages_range(inode->i_mapping, start, end);
742	}
743
744	spin_lock(&info->lock);
745	info->flags &= ~SHMEM_TRUNCATE;
746	info->swapped -= nr_swaps_freed;
747	if (nr_pages_to_free)
748		shmem_free_blocks(inode, nr_pages_to_free);
749	shmem_recalc_inode(inode);
750	spin_unlock(&info->lock);
751
752	/*
753	 * Empty swap vector directory pages to be freed?
754	 */
755	if (!list_empty(&pages_to_free)) {
756		pages_to_free.prev->next = NULL;
757		shmem_free_pages(pages_to_free.next);
758	}
759}
760EXPORT_SYMBOL_GPL(shmem_truncate_range);
761
762static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
763{
764	struct inode *inode = dentry->d_inode;
765	int error;
766
767	error = inode_change_ok(inode, attr);
768	if (error)
769		return error;
770
771	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
772		loff_t oldsize = inode->i_size;
773		loff_t newsize = attr->ia_size;
774		struct page *page = NULL;
775
776		if (newsize < oldsize) {
777			/*
778			 * If truncating down to a partial page, then
779			 * if that page is already allocated, hold it
780			 * in memory until the truncation is over, so
781			 * truncate_partial_page cannot miss it were
782			 * it assigned to swap.
783			 */
784			if (newsize & (PAGE_CACHE_SIZE-1)) {
785				(void) shmem_getpage(inode,
786					newsize >> PAGE_CACHE_SHIFT,
787						&page, SGP_READ, NULL);
788				if (page)
789					unlock_page(page);
790			}
791			/*
792			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
793			 * detect if any pages might have been added to cache
794			 * after truncate_inode_pages.  But we needn't bother
795			 * if it's being fully truncated to zero-length: the
796			 * nrpages check is efficient enough in that case.
797			 */
798			if (newsize) {
799				struct shmem_inode_info *info = SHMEM_I(inode);
800				spin_lock(&info->lock);
801				info->flags &= ~SHMEM_PAGEIN;
802				spin_unlock(&info->lock);
803			}
804		}
805		if (newsize != oldsize) {
806			i_size_write(inode, newsize);
807			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
808		}
809		if (newsize < oldsize) {
810			loff_t holebegin = round_up(newsize, PAGE_SIZE);
811			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
812			shmem_truncate_range(inode, newsize, (loff_t)-1);
813			/* unmap again to remove racily COWed private pages */
814			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
815		}
816		if (page)
817			page_cache_release(page);
818	}
819
820	setattr_copy(inode, attr);
821#ifdef CONFIG_TMPFS_POSIX_ACL
822	if (attr->ia_valid & ATTR_MODE)
823		error = generic_acl_chmod(inode);
824#endif
825	return error;
826}
827
828static void shmem_evict_inode(struct inode *inode)
829{
830	struct shmem_inode_info *info = SHMEM_I(inode);
831	struct shmem_xattr *xattr, *nxattr;
832
833	if (inode->i_mapping->a_ops == &shmem_aops) {
834		shmem_unacct_size(info->flags, inode->i_size);
835		inode->i_size = 0;
836		shmem_truncate_range(inode, 0, (loff_t)-1);
837		if (!list_empty(&info->swaplist)) {
838			mutex_lock(&shmem_swaplist_mutex);
839			list_del_init(&info->swaplist);
840			mutex_unlock(&shmem_swaplist_mutex);
841		}
842	}
843
844	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
845		kfree(xattr->name);
846		kfree(xattr);
847	}
848	BUG_ON(inode->i_blocks);
849	shmem_free_inode(inode->i_sb);
850	end_writeback(inode);
851}
852
853static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
854{
855	swp_entry_t *ptr;
856
857	for (ptr = dir; ptr < edir; ptr++) {
858		if (ptr->val == entry.val)
859			return ptr - dir;
860	}
861	return -1;
862}
863
864static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
865{
866	struct address_space *mapping;
867	unsigned long idx;
868	unsigned long size;
869	unsigned long limit;
870	unsigned long stage;
871	struct page **dir;
872	struct page *subdir;
873	swp_entry_t *ptr;
874	int offset;
875	int error;
876
877	idx = 0;
878	ptr = info->i_direct;
879	spin_lock(&info->lock);
880	if (!info->swapped) {
881		list_del_init(&info->swaplist);
882		goto lost2;
883	}
884	limit = info->next_index;
885	size = limit;
886	if (size > SHMEM_NR_DIRECT)
887		size = SHMEM_NR_DIRECT;
888	offset = shmem_find_swp(entry, ptr, ptr+size);
889	if (offset >= 0) {
890		shmem_swp_balance_unmap();
891		goto found;
892	}
893	if (!info->i_indirect)
894		goto lost2;
895
896	dir = shmem_dir_map(info->i_indirect);
897	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
898
899	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
900		if (unlikely(idx == stage)) {
901			shmem_dir_unmap(dir-1);
902			if (cond_resched_lock(&info->lock)) {
903				/* check it has not been truncated */
904				if (limit > info->next_index) {
905					limit = info->next_index;
906					if (idx >= limit)
907						goto lost2;
908				}
909			}
910			dir = shmem_dir_map(info->i_indirect) +
911			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
912			while (!*dir) {
913				dir++;
914				idx += ENTRIES_PER_PAGEPAGE;
915				if (idx >= limit)
916					goto lost1;
917			}
918			stage = idx + ENTRIES_PER_PAGEPAGE;
919			subdir = *dir;
920			shmem_dir_unmap(dir);
921			dir = shmem_dir_map(subdir);
922		}
923		subdir = *dir;
924		if (subdir && page_private(subdir)) {
925			ptr = shmem_swp_map(subdir);
926			size = limit - idx;
927			if (size > ENTRIES_PER_PAGE)
928				size = ENTRIES_PER_PAGE;
929			offset = shmem_find_swp(entry, ptr, ptr+size);
930			shmem_swp_unmap(ptr);
931			if (offset >= 0) {
932				shmem_dir_unmap(dir);
933				ptr = shmem_swp_map(subdir);
934				goto found;
935			}
936		}
937	}
938lost1:
939	shmem_dir_unmap(dir-1);
940lost2:
941	spin_unlock(&info->lock);
942	return 0;
943found:
944	idx += offset;
945	ptr += offset;
946
947	/*
948	 * Move _head_ to start search for next from here.
949	 * But be careful: shmem_evict_inode checks list_empty without taking
950	 * mutex, and there's an instant in list_move_tail when info->swaplist
951	 * would appear empty, if it were the only one on shmem_swaplist.  We
952	 * could avoid doing it if inode NULL; or use this minor optimization.
953	 */
954	if (shmem_swaplist.next != &info->swaplist)
955		list_move_tail(&shmem_swaplist, &info->swaplist);
956
957	/*
958	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
959	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
960	 * beneath us (pagelock doesn't help until the page is in pagecache).
961	 */
962	mapping = info->vfs_inode.i_mapping;
963	error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
964	/* which does mem_cgroup_uncharge_cache_page on error */
965
966	if (error == -EEXIST) {
967		struct page *filepage = find_get_page(mapping, idx);
968		error = 1;
969		if (filepage) {
970			/*
971			 * There might be a more uptodate page coming down
972			 * from a stacked writepage: forget our swappage if so.
973			 */
974			if (PageUptodate(filepage))
975				error = 0;
976			page_cache_release(filepage);
977		}
978	}
979	if (!error) {
980		delete_from_swap_cache(page);
981		set_page_dirty(page);
982		info->flags |= SHMEM_PAGEIN;
983		shmem_swp_set(info, ptr, 0);
984		swap_free(entry);
985		error = 1;	/* not an error, but entry was found */
986	}
987	shmem_swp_unmap(ptr);
988	spin_unlock(&info->lock);
989	return error;
990}
991
992/*
993 * shmem_unuse() search for an eventually swapped out shmem page.
994 */
995int shmem_unuse(swp_entry_t entry, struct page *page)
996{
997	struct list_head *p, *next;
998	struct shmem_inode_info *info;
999	int found = 0;
1000	int error;
1001
1002	/*
1003	 * Charge page using GFP_KERNEL while we can wait, before taking
1004	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1005	 * Charged back to the user (not to caller) when swap account is used.
1006	 * add_to_page_cache() will be called with GFP_NOWAIT.
1007	 */
1008	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1009	if (error)
1010		goto out;
1011	/*
1012	 * Try to preload while we can wait, to not make a habit of
1013	 * draining atomic reserves; but don't latch on to this cpu,
1014	 * it's okay if sometimes we get rescheduled after this.
1015	 */
1016	error = radix_tree_preload(GFP_KERNEL);
1017	if (error)
1018		goto uncharge;
1019	radix_tree_preload_end();
1020
1021	mutex_lock(&shmem_swaplist_mutex);
1022	list_for_each_safe(p, next, &shmem_swaplist) {
1023		info = list_entry(p, struct shmem_inode_info, swaplist);
1024		found = shmem_unuse_inode(info, entry, page);
1025		cond_resched();
1026		if (found)
1027			break;
1028	}
1029	mutex_unlock(&shmem_swaplist_mutex);
1030
1031uncharge:
1032	if (!found)
1033		mem_cgroup_uncharge_cache_page(page);
1034	if (found < 0)
1035		error = found;
1036out:
1037	unlock_page(page);
1038	page_cache_release(page);
1039	return error;
1040}
1041
1042/*
1043 * Move the page from the page cache to the swap cache.
1044 */
1045static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1046{
1047	struct shmem_inode_info *info;
1048	swp_entry_t *entry, swap;
1049	struct address_space *mapping;
1050	unsigned long index;
1051	struct inode *inode;
1052
1053	BUG_ON(!PageLocked(page));
1054	mapping = page->mapping;
1055	index = page->index;
1056	inode = mapping->host;
1057	info = SHMEM_I(inode);
1058	if (info->flags & VM_LOCKED)
1059		goto redirty;
1060	if (!total_swap_pages)
1061		goto redirty;
1062
1063	/*
1064	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1065	 * sync from ever calling shmem_writepage; but a stacking filesystem
1066	 * may use the ->writepage of its underlying filesystem, in which case
1067	 * tmpfs should write out to swap only in response to memory pressure,
1068	 * and not for the writeback threads or sync.  However, in those cases,
1069	 * we do still want to check if there's a redundant swappage to be
1070	 * discarded.
1071	 */
1072	if (wbc->for_reclaim)
1073		swap = get_swap_page();
1074	else
1075		swap.val = 0;
1076
1077	/*
1078	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1079	 * if it's not already there.  Do it now because we cannot take
1080	 * mutex while holding spinlock, and must do so before the page
1081	 * is moved to swap cache, when its pagelock no longer protects
1082	 * the inode from eviction.  But don't unlock the mutex until
1083	 * we've taken the spinlock, because shmem_unuse_inode() will
1084	 * prune a !swapped inode from the swaplist under both locks.
1085	 */
1086	if (swap.val) {
1087		mutex_lock(&shmem_swaplist_mutex);
1088		if (list_empty(&info->swaplist))
1089			list_add_tail(&info->swaplist, &shmem_swaplist);
1090	}
1091
1092	spin_lock(&info->lock);
1093	if (swap.val)
1094		mutex_unlock(&shmem_swaplist_mutex);
1095
1096	if (index >= info->next_index) {
1097		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1098		goto unlock;
1099	}
1100	entry = shmem_swp_entry(info, index, NULL);
1101	if (entry->val) {
1102		/*
1103		 * The more uptodate page coming down from a stacked
1104		 * writepage should replace our old swappage.
1105		 */
1106		free_swap_and_cache(*entry);
1107		shmem_swp_set(info, entry, 0);
1108	}
1109	shmem_recalc_inode(inode);
1110
1111	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1112		delete_from_page_cache(page);
1113		shmem_swp_set(info, entry, swap.val);
1114		shmem_swp_unmap(entry);
1115		swap_shmem_alloc(swap);
1116		spin_unlock(&info->lock);
1117		BUG_ON(page_mapped(page));
1118		swap_writepage(page, wbc);
1119		return 0;
1120	}
1121
1122	shmem_swp_unmap(entry);
1123unlock:
1124	spin_unlock(&info->lock);
1125	/*
1126	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1127	 * clear SWAP_HAS_CACHE flag.
1128	 */
1129	swapcache_free(swap, NULL);
1130redirty:
1131	set_page_dirty(page);
1132	if (wbc->for_reclaim)
1133		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1134	unlock_page(page);
1135	return 0;
1136}
1137
1138#ifdef CONFIG_NUMA
1139#ifdef CONFIG_TMPFS
1140static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1141{
1142	char buffer[64];
1143
1144	if (!mpol || mpol->mode == MPOL_DEFAULT)
1145		return;		/* show nothing */
1146
1147	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1148
1149	seq_printf(seq, ",mpol=%s", buffer);
1150}
1151
1152static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1153{
1154	struct mempolicy *mpol = NULL;
1155	if (sbinfo->mpol) {
1156		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1157		mpol = sbinfo->mpol;
1158		mpol_get(mpol);
1159		spin_unlock(&sbinfo->stat_lock);
1160	}
1161	return mpol;
1162}
1163#endif /* CONFIG_TMPFS */
1164
1165static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1166			struct shmem_inode_info *info, unsigned long idx)
1167{
1168	struct mempolicy mpol, *spol;
1169	struct vm_area_struct pvma;
1170	struct page *page;
1171
1172	spol = mpol_cond_copy(&mpol,
1173				mpol_shared_policy_lookup(&info->policy, idx));
1174
1175	/* Create a pseudo vma that just contains the policy */
1176	pvma.vm_start = 0;
1177	pvma.vm_pgoff = idx;
1178	pvma.vm_ops = NULL;
1179	pvma.vm_policy = spol;
1180	page = swapin_readahead(entry, gfp, &pvma, 0);
1181	return page;
1182}
1183
1184static struct page *shmem_alloc_page(gfp_t gfp,
1185			struct shmem_inode_info *info, unsigned long idx)
1186{
1187	struct vm_area_struct pvma;
1188
1189	/* Create a pseudo vma that just contains the policy */
1190	pvma.vm_start = 0;
1191	pvma.vm_pgoff = idx;
1192	pvma.vm_ops = NULL;
1193	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1194
1195	/*
1196	 * alloc_page_vma() will drop the shared policy reference
1197	 */
1198	return alloc_page_vma(gfp, &pvma, 0);
1199}
1200#else /* !CONFIG_NUMA */
1201#ifdef CONFIG_TMPFS
1202static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1203{
1204}
1205#endif /* CONFIG_TMPFS */
1206
1207static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1208			struct shmem_inode_info *info, unsigned long idx)
1209{
1210	return swapin_readahead(entry, gfp, NULL, 0);
1211}
1212
1213static inline struct page *shmem_alloc_page(gfp_t gfp,
1214			struct shmem_inode_info *info, unsigned long idx)
1215{
1216	return alloc_page(gfp);
1217}
1218#endif /* CONFIG_NUMA */
1219
1220#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1221static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1222{
1223	return NULL;
1224}
1225#endif
1226
1227/*
1228 * shmem_getpage - either get the page from swap or allocate a new one
1229 *
1230 * If we allocate a new one we do not mark it dirty. That's up to the
1231 * vm. If we swap it in we mark it dirty since we also free the swap
1232 * entry since a page cannot live in both the swap and page cache
1233 */
1234static int shmem_getpage(struct inode *inode, unsigned long idx,
1235			struct page **pagep, enum sgp_type sgp, int *type)
1236{
1237	struct address_space *mapping = inode->i_mapping;
1238	struct shmem_inode_info *info = SHMEM_I(inode);
1239	struct shmem_sb_info *sbinfo;
1240	struct page *filepage = *pagep;
1241	struct page *swappage;
1242	struct page *prealloc_page = NULL;
1243	swp_entry_t *entry;
1244	swp_entry_t swap;
1245	gfp_t gfp;
1246	int error;
1247
1248	if (idx >= SHMEM_MAX_INDEX)
1249		return -EFBIG;
1250
1251	if (type)
1252		*type = 0;
1253
1254	/*
1255	 * Normally, filepage is NULL on entry, and either found
1256	 * uptodate immediately, or allocated and zeroed, or read
1257	 * in under swappage, which is then assigned to filepage.
1258	 * But shmem_readpage (required for splice) passes in a locked
1259	 * filepage, which may be found not uptodate by other callers
1260	 * too, and may need to be copied from the swappage read in.
1261	 */
1262repeat:
1263	if (!filepage)
1264		filepage = find_lock_page(mapping, idx);
1265	if (filepage && PageUptodate(filepage))
1266		goto done;
1267	gfp = mapping_gfp_mask(mapping);
1268	if (!filepage) {
1269		/*
1270		 * Try to preload while we can wait, to not make a habit of
1271		 * draining atomic reserves; but don't latch on to this cpu.
1272		 */
1273		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1274		if (error)
1275			goto failed;
1276		radix_tree_preload_end();
1277		if (sgp != SGP_READ && !prealloc_page) {
1278			/* We don't care if this fails */
1279			prealloc_page = shmem_alloc_page(gfp, info, idx);
1280			if (prealloc_page) {
1281				if (mem_cgroup_cache_charge(prealloc_page,
1282						current->mm, GFP_KERNEL)) {
1283					page_cache_release(prealloc_page);
1284					prealloc_page = NULL;
1285				}
1286			}
1287		}
1288	}
1289	error = 0;
1290
1291	spin_lock(&info->lock);
1292	shmem_recalc_inode(inode);
1293	entry = shmem_swp_alloc(info, idx, sgp);
1294	if (IS_ERR(entry)) {
1295		spin_unlock(&info->lock);
1296		error = PTR_ERR(entry);
1297		goto failed;
1298	}
1299	swap = *entry;
1300
1301	if (swap.val) {
1302		/* Look it up and read it in.. */
1303		swappage = lookup_swap_cache(swap);
1304		if (!swappage) {
1305			shmem_swp_unmap(entry);
1306			spin_unlock(&info->lock);
1307			/* here we actually do the io */
1308			if (type)
1309				*type |= VM_FAULT_MAJOR;
1310			swappage = shmem_swapin(swap, gfp, info, idx);
1311			if (!swappage) {
1312				spin_lock(&info->lock);
1313				entry = shmem_swp_alloc(info, idx, sgp);
1314				if (IS_ERR(entry))
1315					error = PTR_ERR(entry);
1316				else {
1317					if (entry->val == swap.val)
1318						error = -ENOMEM;
1319					shmem_swp_unmap(entry);
1320				}
1321				spin_unlock(&info->lock);
1322				if (error)
1323					goto failed;
1324				goto repeat;
1325			}
1326			wait_on_page_locked(swappage);
1327			page_cache_release(swappage);
1328			goto repeat;
1329		}
1330
1331		/* We have to do this with page locked to prevent races */
1332		if (!trylock_page(swappage)) {
1333			shmem_swp_unmap(entry);
1334			spin_unlock(&info->lock);
1335			wait_on_page_locked(swappage);
1336			page_cache_release(swappage);
1337			goto repeat;
1338		}
1339		if (PageWriteback(swappage)) {
1340			shmem_swp_unmap(entry);
1341			spin_unlock(&info->lock);
1342			wait_on_page_writeback(swappage);
1343			unlock_page(swappage);
1344			page_cache_release(swappage);
1345			goto repeat;
1346		}
1347		if (!PageUptodate(swappage)) {
1348			shmem_swp_unmap(entry);
1349			spin_unlock(&info->lock);
1350			unlock_page(swappage);
1351			page_cache_release(swappage);
1352			error = -EIO;
1353			goto failed;
1354		}
1355
1356		if (filepage) {
1357			shmem_swp_set(info, entry, 0);
1358			shmem_swp_unmap(entry);
1359			delete_from_swap_cache(swappage);
1360			spin_unlock(&info->lock);
1361			copy_highpage(filepage, swappage);
1362			unlock_page(swappage);
1363			page_cache_release(swappage);
1364			flush_dcache_page(filepage);
1365			SetPageUptodate(filepage);
1366			set_page_dirty(filepage);
1367			swap_free(swap);
1368		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1369					idx, GFP_NOWAIT))) {
1370			info->flags |= SHMEM_PAGEIN;
1371			shmem_swp_set(info, entry, 0);
1372			shmem_swp_unmap(entry);
1373			delete_from_swap_cache(swappage);
1374			spin_unlock(&info->lock);
1375			filepage = swappage;
1376			set_page_dirty(filepage);
1377			swap_free(swap);
1378		} else {
1379			shmem_swp_unmap(entry);
1380			spin_unlock(&info->lock);
1381			if (error == -ENOMEM) {
1382				/*
1383				 * reclaim from proper memory cgroup and
1384				 * call memcg's OOM if needed.
1385				 */
1386				error = mem_cgroup_shmem_charge_fallback(
1387								swappage,
1388								current->mm,
1389								gfp);
1390				if (error) {
1391					unlock_page(swappage);
1392					page_cache_release(swappage);
1393					goto failed;
1394				}
1395			}
1396			unlock_page(swappage);
1397			page_cache_release(swappage);
1398			goto repeat;
1399		}
1400	} else if (sgp == SGP_READ && !filepage) {
1401		shmem_swp_unmap(entry);
1402		filepage = find_get_page(mapping, idx);
1403		if (filepage &&
1404		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1405			spin_unlock(&info->lock);
1406			wait_on_page_locked(filepage);
1407			page_cache_release(filepage);
1408			filepage = NULL;
1409			goto repeat;
1410		}
1411		spin_unlock(&info->lock);
1412	} else {
1413		shmem_swp_unmap(entry);
1414		sbinfo = SHMEM_SB(inode->i_sb);
1415		if (sbinfo->max_blocks) {
1416			if (percpu_counter_compare(&sbinfo->used_blocks,
1417						sbinfo->max_blocks) >= 0 ||
1418			    shmem_acct_block(info->flags))
1419				goto nospace;
1420			percpu_counter_inc(&sbinfo->used_blocks);
1421			inode->i_blocks += BLOCKS_PER_PAGE;
1422		} else if (shmem_acct_block(info->flags))
1423			goto nospace;
1424
1425		if (!filepage) {
1426			int ret;
1427
1428			if (!prealloc_page) {
1429				spin_unlock(&info->lock);
1430				filepage = shmem_alloc_page(gfp, info, idx);
1431				if (!filepage) {
1432					spin_lock(&info->lock);
1433					shmem_unacct_blocks(info->flags, 1);
1434					shmem_free_blocks(inode, 1);
1435					spin_unlock(&info->lock);
1436					error = -ENOMEM;
1437					goto failed;
1438				}
1439				SetPageSwapBacked(filepage);
1440
1441				/*
1442				 * Precharge page while we can wait, compensate
1443				 * after
1444				 */
1445				error = mem_cgroup_cache_charge(filepage,
1446					current->mm, GFP_KERNEL);
1447				if (error) {
1448					page_cache_release(filepage);
1449					spin_lock(&info->lock);
1450					shmem_unacct_blocks(info->flags, 1);
1451					shmem_free_blocks(inode, 1);
1452					spin_unlock(&info->lock);
1453					filepage = NULL;
1454					goto failed;
1455				}
1456
1457				spin_lock(&info->lock);
1458			} else {
1459				filepage = prealloc_page;
1460				prealloc_page = NULL;
1461				SetPageSwapBacked(filepage);
1462			}
1463
1464			entry = shmem_swp_alloc(info, idx, sgp);
1465			if (IS_ERR(entry))
1466				error = PTR_ERR(entry);
1467			else {
1468				swap = *entry;
1469				shmem_swp_unmap(entry);
1470			}
1471			ret = error || swap.val;
1472			if (ret)
1473				mem_cgroup_uncharge_cache_page(filepage);
1474			else
1475				ret = add_to_page_cache_lru(filepage, mapping,
1476						idx, GFP_NOWAIT);
1477			/*
1478			 * At add_to_page_cache_lru() failure, uncharge will
1479			 * be done automatically.
1480			 */
1481			if (ret) {
1482				shmem_unacct_blocks(info->flags, 1);
1483				shmem_free_blocks(inode, 1);
1484				spin_unlock(&info->lock);
1485				page_cache_release(filepage);
1486				filepage = NULL;
1487				if (error)
1488					goto failed;
1489				goto repeat;
1490			}
1491			info->flags |= SHMEM_PAGEIN;
1492		}
1493
1494		info->alloced++;
1495		spin_unlock(&info->lock);
1496		clear_highpage(filepage);
1497		flush_dcache_page(filepage);
1498		SetPageUptodate(filepage);
1499		if (sgp == SGP_DIRTY)
1500			set_page_dirty(filepage);
1501	}
1502done:
1503	*pagep = filepage;
1504	error = 0;
1505	goto out;
1506
1507nospace:
1508	/*
1509	 * Perhaps the page was brought in from swap between find_lock_page
1510	 * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1511	 * but must also avoid reporting a spurious ENOSPC while working on a
1512	 * full tmpfs.  (When filepage has been passed in to shmem_getpage, it
1513	 * is already in page cache, which prevents this race from occurring.)
1514	 */
1515	if (!filepage) {
1516		struct page *page = find_get_page(mapping, idx);
1517		if (page) {
1518			spin_unlock(&info->lock);
1519			page_cache_release(page);
1520			goto repeat;
1521		}
1522	}
1523	spin_unlock(&info->lock);
1524	error = -ENOSPC;
1525failed:
1526	if (*pagep != filepage) {
1527		unlock_page(filepage);
1528		page_cache_release(filepage);
1529	}
1530out:
1531	if (prealloc_page) {
1532		mem_cgroup_uncharge_cache_page(prealloc_page);
1533		page_cache_release(prealloc_page);
1534	}
1535	return error;
1536}
1537
1538static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1539{
1540	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1541	int error;
1542	int ret;
1543
1544	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1545		return VM_FAULT_SIGBUS;
1546
1547	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1548	if (error)
1549		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1550	if (ret & VM_FAULT_MAJOR) {
1551		count_vm_event(PGMAJFAULT);
1552		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1553	}
1554	return ret | VM_FAULT_LOCKED;
1555}
1556
1557#ifdef CONFIG_NUMA
1558static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1559{
1560	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1561	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1562}
1563
1564static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1565					  unsigned long addr)
1566{
1567	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1568	unsigned long idx;
1569
1570	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1571	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1572}
1573#endif
1574
1575int shmem_lock(struct file *file, int lock, struct user_struct *user)
1576{
1577	struct inode *inode = file->f_path.dentry->d_inode;
1578	struct shmem_inode_info *info = SHMEM_I(inode);
1579	int retval = -ENOMEM;
1580
1581	spin_lock(&info->lock);
1582	if (lock && !(info->flags & VM_LOCKED)) {
1583		if (!user_shm_lock(inode->i_size, user))
1584			goto out_nomem;
1585		info->flags |= VM_LOCKED;
1586		mapping_set_unevictable(file->f_mapping);
1587	}
1588	if (!lock && (info->flags & VM_LOCKED) && user) {
1589		user_shm_unlock(inode->i_size, user);
1590		info->flags &= ~VM_LOCKED;
1591		mapping_clear_unevictable(file->f_mapping);
1592		scan_mapping_unevictable_pages(file->f_mapping);
1593	}
1594	retval = 0;
1595
1596out_nomem:
1597	spin_unlock(&info->lock);
1598	return retval;
1599}
1600
1601static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1602{
1603	file_accessed(file);
1604	vma->vm_ops = &shmem_vm_ops;
1605	vma->vm_flags |= VM_CAN_NONLINEAR;
1606	return 0;
1607}
1608
1609static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1610				     int mode, dev_t dev, unsigned long flags)
1611{
1612	struct inode *inode;
1613	struct shmem_inode_info *info;
1614	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1615
1616	if (shmem_reserve_inode(sb))
1617		return NULL;
1618
1619	inode = new_inode(sb);
1620	if (inode) {
1621		inode->i_ino = get_next_ino();
1622		inode_init_owner(inode, dir, mode);
1623		inode->i_blocks = 0;
1624		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1625		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1626		inode->i_generation = get_seconds();
1627		info = SHMEM_I(inode);
1628		memset(info, 0, (char *)inode - (char *)info);
1629		spin_lock_init(&info->lock);
1630		info->flags = flags & VM_NORESERVE;
1631		INIT_LIST_HEAD(&info->swaplist);
1632		INIT_LIST_HEAD(&info->xattr_list);
1633		cache_no_acl(inode);
1634
1635		switch (mode & S_IFMT) {
1636		default:
1637			inode->i_op = &shmem_special_inode_operations;
1638			init_special_inode(inode, mode, dev);
1639			break;
1640		case S_IFREG:
1641			inode->i_mapping->a_ops = &shmem_aops;
1642			inode->i_op = &shmem_inode_operations;
1643			inode->i_fop = &shmem_file_operations;
1644			mpol_shared_policy_init(&info->policy,
1645						 shmem_get_sbmpol(sbinfo));
1646			break;
1647		case S_IFDIR:
1648			inc_nlink(inode);
1649			/* Some things misbehave if size == 0 on a directory */
1650			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1651			inode->i_op = &shmem_dir_inode_operations;
1652			inode->i_fop = &simple_dir_operations;
1653			break;
1654		case S_IFLNK:
1655			/*
1656			 * Must not load anything in the rbtree,
1657			 * mpol_free_shared_policy will not be called.
1658			 */
1659			mpol_shared_policy_init(&info->policy, NULL);
1660			break;
1661		}
1662	} else
1663		shmem_free_inode(sb);
1664	return inode;
1665}
1666
1667#ifdef CONFIG_TMPFS
1668static const struct inode_operations shmem_symlink_inode_operations;
1669static const struct inode_operations shmem_symlink_inline_operations;
1670
1671/*
1672 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1673 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1674 * below the loop driver, in the generic fashion that many filesystems support.
1675 */
1676static int shmem_readpage(struct file *file, struct page *page)
1677{
1678	struct inode *inode = page->mapping->host;
1679	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1680	unlock_page(page);
1681	return error;
1682}
1683
1684static int
1685shmem_write_begin(struct file *file, struct address_space *mapping,
1686			loff_t pos, unsigned len, unsigned flags,
1687			struct page **pagep, void **fsdata)
1688{
1689	struct inode *inode = mapping->host;
1690	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1691	*pagep = NULL;
1692	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1693}
1694
1695static int
1696shmem_write_end(struct file *file, struct address_space *mapping,
1697			loff_t pos, unsigned len, unsigned copied,
1698			struct page *page, void *fsdata)
1699{
1700	struct inode *inode = mapping->host;
1701
1702	if (pos + copied > inode->i_size)
1703		i_size_write(inode, pos + copied);
1704
1705	set_page_dirty(page);
1706	unlock_page(page);
1707	page_cache_release(page);
1708
1709	return copied;
1710}
1711
1712static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1713{
1714	struct inode *inode = filp->f_path.dentry->d_inode;
1715	struct address_space *mapping = inode->i_mapping;
1716	unsigned long index, offset;
1717	enum sgp_type sgp = SGP_READ;
1718
1719	/*
1720	 * Might this read be for a stacking filesystem?  Then when reading
1721	 * holes of a sparse file, we actually need to allocate those pages,
1722	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1723	 */
1724	if (segment_eq(get_fs(), KERNEL_DS))
1725		sgp = SGP_DIRTY;
1726
1727	index = *ppos >> PAGE_CACHE_SHIFT;
1728	offset = *ppos & ~PAGE_CACHE_MASK;
1729
1730	for (;;) {
1731		struct page *page = NULL;
1732		unsigned long end_index, nr, ret;
1733		loff_t i_size = i_size_read(inode);
1734
1735		end_index = i_size >> PAGE_CACHE_SHIFT;
1736		if (index > end_index)
1737			break;
1738		if (index == end_index) {
1739			nr = i_size & ~PAGE_CACHE_MASK;
1740			if (nr <= offset)
1741				break;
1742		}
1743
1744		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1745		if (desc->error) {
1746			if (desc->error == -EINVAL)
1747				desc->error = 0;
1748			break;
1749		}
1750		if (page)
1751			unlock_page(page);
1752
1753		/*
1754		 * We must evaluate after, since reads (unlike writes)
1755		 * are called without i_mutex protection against truncate
1756		 */
1757		nr = PAGE_CACHE_SIZE;
1758		i_size = i_size_read(inode);
1759		end_index = i_size >> PAGE_CACHE_SHIFT;
1760		if (index == end_index) {
1761			nr = i_size & ~PAGE_CACHE_MASK;
1762			if (nr <= offset) {
1763				if (page)
1764					page_cache_release(page);
1765				break;
1766			}
1767		}
1768		nr -= offset;
1769
1770		if (page) {
1771			/*
1772			 * If users can be writing to this page using arbitrary
1773			 * virtual addresses, take care about potential aliasing
1774			 * before reading the page on the kernel side.
1775			 */
1776			if (mapping_writably_mapped(mapping))
1777				flush_dcache_page(page);
1778			/*
1779			 * Mark the page accessed if we read the beginning.
1780			 */
1781			if (!offset)
1782				mark_page_accessed(page);
1783		} else {
1784			page = ZERO_PAGE(0);
1785			page_cache_get(page);
1786		}
1787
1788		/*
1789		 * Ok, we have the page, and it's up-to-date, so
1790		 * now we can copy it to user space...
1791		 *
1792		 * The actor routine returns how many bytes were actually used..
1793		 * NOTE! This may not be the same as how much of a user buffer
1794		 * we filled up (we may be padding etc), so we can only update
1795		 * "pos" here (the actor routine has to update the user buffer
1796		 * pointers and the remaining count).
1797		 */
1798		ret = actor(desc, page, offset, nr);
1799		offset += ret;
1800		index += offset >> PAGE_CACHE_SHIFT;
1801		offset &= ~PAGE_CACHE_MASK;
1802
1803		page_cache_release(page);
1804		if (ret != nr || !desc->count)
1805			break;
1806
1807		cond_resched();
1808	}
1809
1810	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1811	file_accessed(filp);
1812}
1813
1814static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1815		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1816{
1817	struct file *filp = iocb->ki_filp;
1818	ssize_t retval;
1819	unsigned long seg;
1820	size_t count;
1821	loff_t *ppos = &iocb->ki_pos;
1822
1823	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1824	if (retval)
1825		return retval;
1826
1827	for (seg = 0; seg < nr_segs; seg++) {
1828		read_descriptor_t desc;
1829
1830		desc.written = 0;
1831		desc.arg.buf = iov[seg].iov_base;
1832		desc.count = iov[seg].iov_len;
1833		if (desc.count == 0)
1834			continue;
1835		desc.error = 0;
1836		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1837		retval += desc.written;
1838		if (desc.error) {
1839			retval = retval ?: desc.error;
1840			break;
1841		}
1842		if (desc.count > 0)
1843			break;
1844	}
1845	return retval;
1846}
1847
1848static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1849				struct pipe_inode_info *pipe, size_t len,
1850				unsigned int flags)
1851{
1852	struct address_space *mapping = in->f_mapping;
1853	unsigned int loff, nr_pages, req_pages;
1854	struct page *pages[PIPE_DEF_BUFFERS];
1855	struct partial_page partial[PIPE_DEF_BUFFERS];
1856	struct page *page;
1857	pgoff_t index, end_index;
1858	loff_t isize, left;
1859	int error, page_nr;
1860	struct splice_pipe_desc spd = {
1861		.pages = pages,
1862		.partial = partial,
1863		.flags = flags,
1864		.ops = &page_cache_pipe_buf_ops,
1865		.spd_release = spd_release_page,
1866	};
1867
1868	isize = i_size_read(in->f_mapping->host);
1869	if (unlikely(*ppos >= isize))
1870		return 0;
1871
1872	left = isize - *ppos;
1873	if (unlikely(left < len))
1874		len = left;
1875
1876	if (splice_grow_spd(pipe, &spd))
1877		return -ENOMEM;
1878
1879	index = *ppos >> PAGE_CACHE_SHIFT;
1880	loff = *ppos & ~PAGE_CACHE_MASK;
1881	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1882	nr_pages = min(req_pages, pipe->buffers);
1883
1884	/*
1885	 * Lookup the (hopefully) full range of pages we need.
1886	 */
1887	spd.nr_pages = find_get_pages_contig(mapping, index,
1888						nr_pages, spd.pages);
1889	index += spd.nr_pages;
1890
1891	/*
1892	 * If find_get_pages_contig() returned fewer pages than we needed,
1893	 * readahead/allocate the rest and fill in the holes.
1894	 */
1895	if (spd.nr_pages < nr_pages)
1896		page_cache_sync_readahead(mapping, &in->f_ra, in,
1897				index, req_pages - spd.nr_pages);
1898
1899	error = 0;
1900	while (spd.nr_pages < nr_pages) {
1901		/*
1902		 * Page could be there, find_get_pages_contig() breaks on
1903		 * the first hole.
1904		 */
1905		page = find_get_page(mapping, index);
1906		if (!page) {
1907			/*
1908			 * page didn't exist, allocate one.
1909			 */
1910			page = page_cache_alloc_cold(mapping);
1911			if (!page)
1912				break;
1913
1914			error = add_to_page_cache_lru(page, mapping, index,
1915						GFP_KERNEL);
1916			if (unlikely(error)) {
1917				page_cache_release(page);
1918				if (error == -EEXIST)
1919					continue;
1920				break;
1921			}
1922			/*
1923			 * add_to_page_cache() locks the page, unlock it
1924			 * to avoid convoluting the logic below even more.
1925			 */
1926			unlock_page(page);
1927		}
1928
1929		spd.pages[spd.nr_pages++] = page;
1930		index++;
1931	}
1932
1933	/*
1934	 * Now loop over the map and see if we need to start IO on any
1935	 * pages, fill in the partial map, etc.
1936	 */
1937	index = *ppos >> PAGE_CACHE_SHIFT;
1938	nr_pages = spd.nr_pages;
1939	spd.nr_pages = 0;
1940	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1941		unsigned int this_len;
1942
1943		if (!len)
1944			break;
1945
1946		/*
1947		 * this_len is the max we'll use from this page
1948		 */
1949		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1950		page = spd.pages[page_nr];
1951
1952		if (PageReadahead(page))
1953			page_cache_async_readahead(mapping, &in->f_ra, in,
1954					page, index, req_pages - page_nr);
1955
1956		/*
1957		 * If the page isn't uptodate, we may need to start io on it
1958		 */
1959		if (!PageUptodate(page)) {
1960			lock_page(page);
1961
1962			/*
1963			 * Page was truncated, or invalidated by the
1964			 * filesystem.  Redo the find/create, but this time the
1965			 * page is kept locked, so there's no chance of another
1966			 * race with truncate/invalidate.
1967			 */
1968			if (!page->mapping) {
1969				unlock_page(page);
1970				page = find_or_create_page(mapping, index,
1971						mapping_gfp_mask(mapping));
1972
1973				if (!page) {
1974					error = -ENOMEM;
1975					break;
1976				}
1977				page_cache_release(spd.pages[page_nr]);
1978				spd.pages[page_nr] = page;
1979			}
1980			/*
1981			 * page was already under io and is now done, great
1982			 */
1983			if (PageUptodate(page)) {
1984				unlock_page(page);
1985				goto fill_it;
1986			}
1987
1988			/*
1989			 * need to read in the page
1990			 */
1991			error = mapping->a_ops->readpage(in, page);
1992			if (unlikely(error)) {
1993				/*
1994				 * We really should re-lookup the page here,
1995				 * but it complicates things a lot. Instead
1996				 * lets just do what we already stored, and
1997				 * we'll get it the next time we are called.
1998				 */
1999				if (error == AOP_TRUNCATED_PAGE)
2000					error = 0;
2001
2002				break;
2003			}
2004		}
2005fill_it:
2006		/*
2007		 * i_size must be checked after PageUptodate.
2008		 */
2009		isize = i_size_read(mapping->host);
2010		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
2011		if (unlikely(!isize || index > end_index))
2012			break;
2013
2014		/*
2015		 * if this is the last page, see if we need to shrink
2016		 * the length and stop
2017		 */
2018		if (end_index == index) {
2019			unsigned int plen;
2020
2021			/*
2022			 * max good bytes in this page
2023			 */
2024			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
2025			if (plen <= loff)
2026				break;
2027
2028			/*
2029			 * force quit after adding this page
2030			 */
2031			this_len = min(this_len, plen - loff);
2032			len = this_len;
2033		}
2034
2035		spd.partial[page_nr].offset = loff;
2036		spd.partial[page_nr].len = this_len;
2037		len -= this_len;
2038		loff = 0;
2039		spd.nr_pages++;
2040		index++;
2041	}
2042
2043	/*
2044	 * Release any pages at the end, if we quit early. 'page_nr' is how far
2045	 * we got, 'nr_pages' is how many pages are in the map.
2046	 */
2047	while (page_nr < nr_pages)
2048		page_cache_release(spd.pages[page_nr++]);
2049	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
2050
2051	if (spd.nr_pages)
2052		error = splice_to_pipe(pipe, &spd);
2053
2054	splice_shrink_spd(pipe, &spd);
2055
2056	if (error > 0) {
2057		*ppos += error;
2058		file_accessed(in);
2059	}
2060	return error;
2061}
2062
2063static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2064{
2065	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2066
2067	buf->f_type = TMPFS_MAGIC;
2068	buf->f_bsize = PAGE_CACHE_SIZE;
2069	buf->f_namelen = NAME_MAX;
2070	if (sbinfo->max_blocks) {
2071		buf->f_blocks = sbinfo->max_blocks;
2072		buf->f_bavail = buf->f_bfree =
2073				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
2074	}
2075	if (sbinfo->max_inodes) {
2076		buf->f_files = sbinfo->max_inodes;
2077		buf->f_ffree = sbinfo->free_inodes;
2078	}
2079	/* else leave those fields 0 like simple_statfs */
2080	return 0;
2081}
2082
2083/*
2084 * File creation. Allocate an inode, and we're done..
2085 */
2086static int
2087shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2088{
2089	struct inode *inode;
2090	int error = -ENOSPC;
2091
2092	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2093	if (inode) {
2094		error = security_inode_init_security(inode, dir,
2095						     &dentry->d_name, NULL,
2096						     NULL, NULL);
2097		if (error) {
2098			if (error != -EOPNOTSUPP) {
2099				iput(inode);
2100				return error;
2101			}
2102		}
2103#ifdef CONFIG_TMPFS_POSIX_ACL
2104		error = generic_acl_init(inode, dir);
2105		if (error) {
2106			iput(inode);
2107			return error;
2108		}
2109#else
2110		error = 0;
2111#endif
2112		dir->i_size += BOGO_DIRENT_SIZE;
2113		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2114		d_instantiate(dentry, inode);
2115		dget(dentry); /* Extra count - pin the dentry in core */
2116	}
2117	return error;
2118}
2119
2120static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2121{
2122	int error;
2123
2124	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2125		return error;
2126	inc_nlink(dir);
2127	return 0;
2128}
2129
2130static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
2131		struct nameidata *nd)
2132{
2133	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2134}
2135
2136/*
2137 * Link a file..
2138 */
2139static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2140{
2141	struct inode *inode = old_dentry->d_inode;
2142	int ret;
2143
2144	/*
2145	 * No ordinary (disk based) filesystem counts links as inodes;
2146	 * but each new link needs a new dentry, pinning lowmem, and
2147	 * tmpfs dentries cannot be pruned until they are unlinked.
2148	 */
2149	ret = shmem_reserve_inode(inode->i_sb);
2150	if (ret)
2151		goto out;
2152
2153	dir->i_size += BOGO_DIRENT_SIZE;
2154	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2155	inc_nlink(inode);
2156	ihold(inode);	/* New dentry reference */
2157	dget(dentry);		/* Extra pinning count for the created dentry */
2158	d_instantiate(dentry, inode);
2159out:
2160	return ret;
2161}
2162
2163static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2164{
2165	struct inode *inode = dentry->d_inode;
2166
2167	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2168		shmem_free_inode(inode->i_sb);
2169
2170	dir->i_size -= BOGO_DIRENT_SIZE;
2171	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2172	drop_nlink(inode);
2173	dput(dentry);	/* Undo the count from "create" - this does all the work */
2174	return 0;
2175}
2176
2177static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2178{
2179	if (!simple_empty(dentry))
2180		return -ENOTEMPTY;
2181
2182	drop_nlink(dentry->d_inode);
2183	drop_nlink(dir);
2184	return shmem_unlink(dir, dentry);
2185}
2186
2187/*
2188 * The VFS layer already does all the dentry stuff for rename,
2189 * we just have to decrement the usage count for the target if
2190 * it exists so that the VFS layer correctly free's it when it
2191 * gets overwritten.
2192 */
2193static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2194{
2195	struct inode *inode = old_dentry->d_inode;
2196	int they_are_dirs = S_ISDIR(inode->i_mode);
2197
2198	if (!simple_empty(new_dentry))
2199		return -ENOTEMPTY;
2200
2201	if (new_dentry->d_inode) {
2202		(void) shmem_unlink(new_dir, new_dentry);
2203		if (they_are_dirs)
2204			drop_nlink(old_dir);
2205	} else if (they_are_dirs) {
2206		drop_nlink(old_dir);
2207		inc_nlink(new_dir);
2208	}
2209
2210	old_dir->i_size -= BOGO_DIRENT_SIZE;
2211	new_dir->i_size += BOGO_DIRENT_SIZE;
2212	old_dir->i_ctime = old_dir->i_mtime =
2213	new_dir->i_ctime = new_dir->i_mtime =
2214	inode->i_ctime = CURRENT_TIME;
2215	return 0;
2216}
2217
2218static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2219{
2220	int error;
2221	int len;
2222	struct inode *inode;
2223	struct page *page = NULL;
2224	char *kaddr;
2225	struct shmem_inode_info *info;
2226
2227	len = strlen(symname) + 1;
2228	if (len > PAGE_CACHE_SIZE)
2229		return -ENAMETOOLONG;
2230
2231	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2232	if (!inode)
2233		return -ENOSPC;
2234
2235	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2236					     NULL, NULL);
2237	if (error) {
2238		if (error != -EOPNOTSUPP) {
2239			iput(inode);
2240			return error;
2241		}
2242		error = 0;
2243	}
2244
2245	info = SHMEM_I(inode);
2246	inode->i_size = len-1;
2247	if (len <= SHMEM_SYMLINK_INLINE_LEN) {
2248		/* do it inline */
2249		memcpy(info->inline_symlink, symname, len);
2250		inode->i_op = &shmem_symlink_inline_operations;
2251	} else {
2252		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2253		if (error) {
2254			iput(inode);
2255			return error;
2256		}
2257		inode->i_mapping->a_ops = &shmem_aops;
2258		inode->i_op = &shmem_symlink_inode_operations;
2259		kaddr = kmap_atomic(page, KM_USER0);
2260		memcpy(kaddr, symname, len);
2261		kunmap_atomic(kaddr, KM_USER0);
2262		set_page_dirty(page);
2263		unlock_page(page);
2264		page_cache_release(page);
2265	}
2266	dir->i_size += BOGO_DIRENT_SIZE;
2267	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2268	d_instantiate(dentry, inode);
2269	dget(dentry);
2270	return 0;
2271}
2272
2273static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2274{
2275	nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
2276	return NULL;
2277}
2278
2279static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2280{
2281	struct page *page = NULL;
2282	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2283	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2284	if (page)
2285		unlock_page(page);
2286	return page;
2287}
2288
2289static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2290{
2291	if (!IS_ERR(nd_get_link(nd))) {
2292		struct page *page = cookie;
2293		kunmap(page);
2294		mark_page_accessed(page);
2295		page_cache_release(page);
2296	}
2297}
2298
2299#ifdef CONFIG_TMPFS_XATTR
2300/*
2301 * Superblocks without xattr inode operations may get some security.* xattr
2302 * support from the LSM "for free". As soon as we have any other xattrs
2303 * like ACLs, we also need to implement the security.* handlers at
2304 * filesystem level, though.
2305 */
2306
2307static int shmem_xattr_get(struct dentry *dentry, const char *name,
2308			   void *buffer, size_t size)
2309{
2310	struct shmem_inode_info *info;
2311	struct shmem_xattr *xattr;
2312	int ret = -ENODATA;
2313
2314	info = SHMEM_I(dentry->d_inode);
2315
2316	spin_lock(&info->lock);
2317	list_for_each_entry(xattr, &info->xattr_list, list) {
2318		if (strcmp(name, xattr->name))
2319			continue;
2320
2321		ret = xattr->size;
2322		if (buffer) {
2323			if (size < xattr->size)
2324				ret = -ERANGE;
2325			else
2326				memcpy(buffer, xattr->value, xattr->size);
2327		}
2328		break;
2329	}
2330	spin_unlock(&info->lock);
2331	return ret;
2332}
2333
2334static int shmem_xattr_set(struct dentry *dentry, const char *name,
2335			   const void *value, size_t size, int flags)
2336{
2337	struct inode *inode = dentry->d_inode;
2338	struct shmem_inode_info *info = SHMEM_I(inode);
2339	struct shmem_xattr *xattr;
2340	struct shmem_xattr *new_xattr = NULL;
2341	size_t len;
2342	int err = 0;
2343
2344	/* value == NULL means remove */
2345	if (value) {
2346		/* wrap around? */
2347		len = sizeof(*new_xattr) + size;
2348		if (len <= sizeof(*new_xattr))
2349			return -ENOMEM;
2350
2351		new_xattr = kmalloc(len, GFP_KERNEL);
2352		if (!new_xattr)
2353			return -ENOMEM;
2354
2355		new_xattr->name = kstrdup(name, GFP_KERNEL);
2356		if (!new_xattr->name) {
2357			kfree(new_xattr);
2358			return -ENOMEM;
2359		}
2360
2361		new_xattr->size = size;
2362		memcpy(new_xattr->value, value, size);
2363	}
2364
2365	spin_lock(&info->lock);
2366	list_for_each_entry(xattr, &info->xattr_list, list) {
2367		if (!strcmp(name, xattr->name)) {
2368			if (flags & XATTR_CREATE) {
2369				xattr = new_xattr;
2370				err = -EEXIST;
2371			} else if (new_xattr) {
2372				list_replace(&xattr->list, &new_xattr->list);
2373			} else {
2374				list_del(&xattr->list);
2375			}
2376			goto out;
2377		}
2378	}
2379	if (flags & XATTR_REPLACE) {
2380		xattr = new_xattr;
2381		err = -ENODATA;
2382	} else {
2383		list_add(&new_xattr->list, &info->xattr_list);
2384		xattr = NULL;
2385	}
2386out:
2387	spin_unlock(&info->lock);
2388	if (xattr)
2389		kfree(xattr->name);
2390	kfree(xattr);
2391	return err;
2392}
2393
2394
2395static const struct xattr_handler *shmem_xattr_handlers[] = {
2396#ifdef CONFIG_TMPFS_POSIX_ACL
2397	&generic_acl_access_handler,
2398	&generic_acl_default_handler,
2399#endif
2400	NULL
2401};
2402
2403static int shmem_xattr_validate(const char *name)
2404{
2405	struct { const char *prefix; size_t len; } arr[] = {
2406		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2407		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2408	};
2409	int i;
2410
2411	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2412		size_t preflen = arr[i].len;
2413		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2414			if (!name[preflen])
2415				return -EINVAL;
2416			return 0;
2417		}
2418	}
2419	return -EOPNOTSUPP;
2420}
2421
2422static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2423			      void *buffer, size_t size)
2424{
2425	int err;
2426
2427	/*
2428	 * If this is a request for a synthetic attribute in the system.*
2429	 * namespace use the generic infrastructure to resolve a handler
2430	 * for it via sb->s_xattr.
2431	 */
2432	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2433		return generic_getxattr(dentry, name, buffer, size);
2434
2435	err = shmem_xattr_validate(name);
2436	if (err)
2437		return err;
2438
2439	return shmem_xattr_get(dentry, name, buffer, size);
2440}
2441
2442static int shmem_setxattr(struct dentry *dentry, const char *name,
2443			  const void *value, size_t size, int flags)
2444{
2445	int err;
2446
2447	/*
2448	 * If this is a request for a synthetic attribute in the system.*
2449	 * namespace use the generic infrastructure to resolve a handler
2450	 * for it via sb->s_xattr.
2451	 */
2452	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2453		return generic_setxattr(dentry, name, value, size, flags);
2454
2455	err = shmem_xattr_validate(name);
2456	if (err)
2457		return err;
2458
2459	if (size == 0)
2460		value = "";  /* empty EA, do not remove */
2461
2462	return shmem_xattr_set(dentry, name, value, size, flags);
2463
2464}
2465
2466static int shmem_removexattr(struct dentry *dentry, const char *name)
2467{
2468	int err;
2469
2470	/*
2471	 * If this is a request for a synthetic attribute in the system.*
2472	 * namespace use the generic infrastructure to resolve a handler
2473	 * for it via sb->s_xattr.
2474	 */
2475	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2476		return generic_removexattr(dentry, name);
2477
2478	err = shmem_xattr_validate(name);
2479	if (err)
2480		return err;
2481
2482	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2483}
2484
2485static bool xattr_is_trusted(const char *name)
2486{
2487	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2488}
2489
2490static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2491{
2492	bool trusted = capable(CAP_SYS_ADMIN);
2493	struct shmem_xattr *xattr;
2494	struct shmem_inode_info *info;
2495	size_t used = 0;
2496
2497	info = SHMEM_I(dentry->d_inode);
2498
2499	spin_lock(&info->lock);
2500	list_for_each_entry(xattr, &info->xattr_list, list) {
2501		size_t len;
2502
2503		/* skip "trusted." attributes for unprivileged callers */
2504		if (!trusted && xattr_is_trusted(xattr->name))
2505			continue;
2506
2507		len = strlen(xattr->name) + 1;
2508		used += len;
2509		if (buffer) {
2510			if (size < used) {
2511				used = -ERANGE;
2512				break;
2513			}
2514			memcpy(buffer, xattr->name, len);
2515			buffer += len;
2516		}
2517	}
2518	spin_unlock(&info->lock);
2519
2520	return used;
2521}
2522#endif /* CONFIG_TMPFS_XATTR */
2523
2524static const struct inode_operations shmem_symlink_inline_operations = {
2525	.readlink	= generic_readlink,
2526	.follow_link	= shmem_follow_link_inline,
2527#ifdef CONFIG_TMPFS_XATTR
2528	.setxattr	= shmem_setxattr,
2529	.getxattr	= shmem_getxattr,
2530	.listxattr	= shmem_listxattr,
2531	.removexattr	= shmem_removexattr,
2532#endif
2533};
2534
2535static const struct inode_operations shmem_symlink_inode_operations = {
2536	.readlink	= generic_readlink,
2537	.follow_link	= shmem_follow_link,
2538	.put_link	= shmem_put_link,
2539#ifdef CONFIG_TMPFS_XATTR
2540	.setxattr	= shmem_setxattr,
2541	.getxattr	= shmem_getxattr,
2542	.listxattr	= shmem_listxattr,
2543	.removexattr	= shmem_removexattr,
2544#endif
2545};
2546
2547static struct dentry *shmem_get_parent(struct dentry *child)
2548{
2549	return ERR_PTR(-ESTALE);
2550}
2551
2552static int shmem_match(struct inode *ino, void *vfh)
2553{
2554	__u32 *fh = vfh;
2555	__u64 inum = fh[2];
2556	inum = (inum << 32) | fh[1];
2557	return ino->i_ino == inum && fh[0] == ino->i_generation;
2558}
2559
2560static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2561		struct fid *fid, int fh_len, int fh_type)
2562{
2563	struct inode *inode;
2564	struct dentry *dentry = NULL;
2565	u64 inum = fid->raw[2];
2566	inum = (inum << 32) | fid->raw[1];
2567
2568	if (fh_len < 3)
2569		return NULL;
2570
2571	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2572			shmem_match, fid->raw);
2573	if (inode) {
2574		dentry = d_find_alias(inode);
2575		iput(inode);
2576	}
2577
2578	return dentry;
2579}
2580
2581static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2582				int connectable)
2583{
2584	struct inode *inode = dentry->d_inode;
2585
2586	if (*len < 3) {
2587		*len = 3;
2588		return 255;
2589	}
2590
2591	if (inode_unhashed(inode)) {
2592		/* Unfortunately insert_inode_hash is not idempotent,
2593		 * so as we hash inodes here rather than at creation
2594		 * time, we need a lock to ensure we only try
2595		 * to do it once
2596		 */
2597		static DEFINE_SPINLOCK(lock);
2598		spin_lock(&lock);
2599		if (inode_unhashed(inode))
2600			__insert_inode_hash(inode,
2601					    inode->i_ino + inode->i_generation);
2602		spin_unlock(&lock);
2603	}
2604
2605	fh[0] = inode->i_generation;
2606	fh[1] = inode->i_ino;
2607	fh[2] = ((__u64)inode->i_ino) >> 32;
2608
2609	*len = 3;
2610	return 1;
2611}
2612
2613static const struct export_operations shmem_export_ops = {
2614	.get_parent     = shmem_get_parent,
2615	.encode_fh      = shmem_encode_fh,
2616	.fh_to_dentry	= shmem_fh_to_dentry,
2617};
2618
2619static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2620			       bool remount)
2621{
2622	char *this_char, *value, *rest;
2623
2624	while (options != NULL) {
2625		this_char = options;
2626		for (;;) {
2627			/*
2628			 * NUL-terminate this option: unfortunately,
2629			 * mount options form a comma-separated list,
2630			 * but mpol's nodelist may also contain commas.
2631			 */
2632			options = strchr(options, ',');
2633			if (options == NULL)
2634				break;
2635			options++;
2636			if (!isdigit(*options)) {
2637				options[-1] = '\0';
2638				break;
2639			}
2640		}
2641		if (!*this_char)
2642			continue;
2643		if ((value = strchr(this_char,'=')) != NULL) {
2644			*value++ = 0;
2645		} else {
2646			printk(KERN_ERR
2647			    "tmpfs: No value for mount option '%s'\n",
2648			    this_char);
2649			return 1;
2650		}
2651
2652		if (!strcmp(this_char,"size")) {
2653			unsigned long long size;
2654			size = memparse(value,&rest);
2655			if (*rest == '%') {
2656				size <<= PAGE_SHIFT;
2657				size *= totalram_pages;
2658				do_div(size, 100);
2659				rest++;
2660			}
2661			if (*rest)
2662				goto bad_val;
2663			sbinfo->max_blocks =
2664				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2665		} else if (!strcmp(this_char,"nr_blocks")) {
2666			sbinfo->max_blocks = memparse(value, &rest);
2667			if (*rest)
2668				goto bad_val;
2669		} else if (!strcmp(this_char,"nr_inodes")) {
2670			sbinfo->max_inodes = memparse(value, &rest);
2671			if (*rest)
2672				goto bad_val;
2673		} else if (!strcmp(this_char,"mode")) {
2674			if (remount)
2675				continue;
2676			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2677			if (*rest)
2678				goto bad_val;
2679		} else if (!strcmp(this_char,"uid")) {
2680			if (remount)
2681				continue;
2682			sbinfo->uid = simple_strtoul(value, &rest, 0);
2683			if (*rest)
2684				goto bad_val;
2685		} else if (!strcmp(this_char,"gid")) {
2686			if (remount)
2687				continue;
2688			sbinfo->gid = simple_strtoul(value, &rest, 0);
2689			if (*rest)
2690				goto bad_val;
2691		} else if (!strcmp(this_char,"mpol")) {
2692			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2693				goto bad_val;
2694		} else {
2695			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2696			       this_char);
2697			return 1;
2698		}
2699	}
2700	return 0;
2701
2702bad_val:
2703	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2704	       value, this_char);
2705	return 1;
2706
2707}
2708
2709static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2710{
2711	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2712	struct shmem_sb_info config = *sbinfo;
2713	unsigned long inodes;
2714	int error = -EINVAL;
2715
2716	if (shmem_parse_options(data, &config, true))
2717		return error;
2718
2719	spin_lock(&sbinfo->stat_lock);
2720	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2721	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2722		goto out;
2723	if (config.max_inodes < inodes)
2724		goto out;
2725	/*
2726	 * Those tests also disallow limited->unlimited while any are in
2727	 * use, so i_blocks will always be zero when max_blocks is zero;
2728	 * but we must separately disallow unlimited->limited, because
2729	 * in that case we have no record of how much is already in use.
2730	 */
2731	if (config.max_blocks && !sbinfo->max_blocks)
2732		goto out;
2733	if (config.max_inodes && !sbinfo->max_inodes)
2734		goto out;
2735
2736	error = 0;
2737	sbinfo->max_blocks  = config.max_blocks;
2738	sbinfo->max_inodes  = config.max_inodes;
2739	sbinfo->free_inodes = config.max_inodes - inodes;
2740
2741	mpol_put(sbinfo->mpol);
2742	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2743out:
2744	spin_unlock(&sbinfo->stat_lock);
2745	return error;
2746}
2747
2748static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2749{
2750	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2751
2752	if (sbinfo->max_blocks != shmem_default_max_blocks())
2753		seq_printf(seq, ",size=%luk",
2754			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2755	if (sbinfo->max_inodes != shmem_default_max_inodes())
2756		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2757	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2758		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2759	if (sbinfo->uid != 0)
2760		seq_printf(seq, ",uid=%u", sbinfo->uid);
2761	if (sbinfo->gid != 0)
2762		seq_printf(seq, ",gid=%u", sbinfo->gid);
2763	shmem_show_mpol(seq, sbinfo->mpol);
2764	return 0;
2765}
2766#endif /* CONFIG_TMPFS */
2767
2768static void shmem_put_super(struct super_block *sb)
2769{
2770	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2771
2772	percpu_counter_destroy(&sbinfo->used_blocks);
2773	kfree(sbinfo);
2774	sb->s_fs_info = NULL;
2775}
2776
2777int shmem_fill_super(struct super_block *sb, void *data, int silent)
2778{
2779	struct inode *inode;
2780	struct dentry *root;
2781	struct shmem_sb_info *sbinfo;
2782	int err = -ENOMEM;
2783
2784	/* Round up to L1_CACHE_BYTES to resist false sharing */
2785	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2786				L1_CACHE_BYTES), GFP_KERNEL);
2787	if (!sbinfo)
2788		return -ENOMEM;
2789
2790	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2791	sbinfo->uid = current_fsuid();
2792	sbinfo->gid = current_fsgid();
2793	sb->s_fs_info = sbinfo;
2794
2795#ifdef CONFIG_TMPFS
2796	/*
2797	 * Per default we only allow half of the physical ram per
2798	 * tmpfs instance, limiting inodes to one per page of lowmem;
2799	 * but the internal instance is left unlimited.
2800	 */
2801	if (!(sb->s_flags & MS_NOUSER)) {
2802		sbinfo->max_blocks = shmem_default_max_blocks();
2803		sbinfo->max_inodes = shmem_default_max_inodes();
2804		if (shmem_parse_options(data, sbinfo, false)) {
2805			err = -EINVAL;
2806			goto failed;
2807		}
2808	}
2809	sb->s_export_op = &shmem_export_ops;
2810#else
2811	sb->s_flags |= MS_NOUSER;
2812#endif
2813
2814	spin_lock_init(&sbinfo->stat_lock);
2815	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2816		goto failed;
2817	sbinfo->free_inodes = sbinfo->max_inodes;
2818
2819	sb->s_maxbytes = SHMEM_MAX_BYTES;
2820	sb->s_blocksize = PAGE_CACHE_SIZE;
2821	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2822	sb->s_magic = TMPFS_MAGIC;
2823	sb->s_op = &shmem_ops;
2824	sb->s_time_gran = 1;
2825#ifdef CONFIG_TMPFS_XATTR
2826	sb->s_xattr = shmem_xattr_handlers;
2827#endif
2828#ifdef CONFIG_TMPFS_POSIX_ACL
2829	sb->s_flags |= MS_POSIXACL;
2830#endif
2831
2832	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2833	if (!inode)
2834		goto failed;
2835	inode->i_uid = sbinfo->uid;
2836	inode->i_gid = sbinfo->gid;
2837	root = d_alloc_root(inode);
2838	if (!root)
2839		goto failed_iput;
2840	sb->s_root = root;
2841	return 0;
2842
2843failed_iput:
2844	iput(inode);
2845failed:
2846	shmem_put_super(sb);
2847	return err;
2848}
2849
2850static struct kmem_cache *shmem_inode_cachep;
2851
2852static struct inode *shmem_alloc_inode(struct super_block *sb)
2853{
2854	struct shmem_inode_info *p;
2855	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2856	if (!p)
2857		return NULL;
2858	return &p->vfs_inode;
2859}
2860
2861static void shmem_i_callback(struct rcu_head *head)
2862{
2863	struct inode *inode = container_of(head, struct inode, i_rcu);
2864	INIT_LIST_HEAD(&inode->i_dentry);
2865	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2866}
2867
2868static void shmem_destroy_inode(struct inode *inode)
2869{
2870	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2871		/* only struct inode is valid if it's an inline symlink */
2872		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2873	}
2874	call_rcu(&inode->i_rcu, shmem_i_callback);
2875}
2876
2877static void init_once(void *foo)
2878{
2879	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2880
2881	inode_init_once(&p->vfs_inode);
2882}
2883
2884static int init_inodecache(void)
2885{
2886	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2887				sizeof(struct shmem_inode_info),
2888				0, SLAB_PANIC, init_once);
2889	return 0;
2890}
2891
2892static void destroy_inodecache(void)
2893{
2894	kmem_cache_destroy(shmem_inode_cachep);
2895}
2896
2897static const struct address_space_operations shmem_aops = {
2898	.writepage	= shmem_writepage,
2899	.set_page_dirty	= __set_page_dirty_no_writeback,
2900#ifdef CONFIG_TMPFS
2901	.readpage	= shmem_readpage,
2902	.write_begin	= shmem_write_begin,
2903	.write_end	= shmem_write_end,
2904#endif
2905	.migratepage	= migrate_page,
2906	.error_remove_page = generic_error_remove_page,
2907};
2908
2909static const struct file_operations shmem_file_operations = {
2910	.mmap		= shmem_mmap,
2911#ifdef CONFIG_TMPFS
2912	.llseek		= generic_file_llseek,
2913	.read		= do_sync_read,
2914	.write		= do_sync_write,
2915	.aio_read	= shmem_file_aio_read,
2916	.aio_write	= generic_file_aio_write,
2917	.fsync		= noop_fsync,
2918	.splice_read	= shmem_file_splice_read,
2919	.splice_write	= generic_file_splice_write,
2920#endif
2921};
2922
2923static const struct inode_operations shmem_inode_operations = {
2924	.setattr	= shmem_setattr,
2925	.truncate_range	= shmem_truncate_range,
2926#ifdef CONFIG_TMPFS_XATTR
2927	.setxattr	= shmem_setxattr,
2928	.getxattr	= shmem_getxattr,
2929	.listxattr	= shmem_listxattr,
2930	.removexattr	= shmem_removexattr,
2931#endif
2932#ifdef CONFIG_TMPFS_POSIX_ACL
2933	.check_acl	= generic_check_acl,
2934#endif
2935
2936};
2937
2938static const struct inode_operations shmem_dir_inode_operations = {
2939#ifdef CONFIG_TMPFS
2940	.create		= shmem_create,
2941	.lookup		= simple_lookup,
2942	.link		= shmem_link,
2943	.unlink		= shmem_unlink,
2944	.symlink	= shmem_symlink,
2945	.mkdir		= shmem_mkdir,
2946	.rmdir		= shmem_rmdir,
2947	.mknod		= shmem_mknod,
2948	.rename		= shmem_rename,
2949#endif
2950#ifdef CONFIG_TMPFS_XATTR
2951	.setxattr	= shmem_setxattr,
2952	.getxattr	= shmem_getxattr,
2953	.listxattr	= shmem_listxattr,
2954	.removexattr	= shmem_removexattr,
2955#endif
2956#ifdef CONFIG_TMPFS_POSIX_ACL
2957	.setattr	= shmem_setattr,
2958	.check_acl	= generic_check_acl,
2959#endif
2960};
2961
2962static const struct inode_operations shmem_special_inode_operations = {
2963#ifdef CONFIG_TMPFS_XATTR
2964	.setxattr	= shmem_setxattr,
2965	.getxattr	= shmem_getxattr,
2966	.listxattr	= shmem_listxattr,
2967	.removexattr	= shmem_removexattr,
2968#endif
2969#ifdef CONFIG_TMPFS_POSIX_ACL
2970	.setattr	= shmem_setattr,
2971	.check_acl	= generic_check_acl,
2972#endif
2973};
2974
2975static const struct super_operations shmem_ops = {
2976	.alloc_inode	= shmem_alloc_inode,
2977	.destroy_inode	= shmem_destroy_inode,
2978#ifdef CONFIG_TMPFS
2979	.statfs		= shmem_statfs,
2980	.remount_fs	= shmem_remount_fs,
2981	.show_options	= shmem_show_options,
2982#endif
2983	.evict_inode	= shmem_evict_inode,
2984	.drop_inode	= generic_delete_inode,
2985	.put_super	= shmem_put_super,
2986};
2987
2988static const struct vm_operations_struct shmem_vm_ops = {
2989	.fault		= shmem_fault,
2990#ifdef CONFIG_NUMA
2991	.set_policy     = shmem_set_policy,
2992	.get_policy     = shmem_get_policy,
2993#endif
2994};
2995
2996
2997static struct dentry *shmem_mount(struct file_system_type *fs_type,
2998	int flags, const char *dev_name, void *data)
2999{
3000	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3001}
3002
3003static struct file_system_type tmpfs_fs_type = {
3004	.owner		= THIS_MODULE,
3005	.name		= "tmpfs",
3006	.mount		= shmem_mount,
3007	.kill_sb	= kill_litter_super,
3008};
3009
3010int __init init_tmpfs(void)
3011{
3012	int error;
3013
3014	error = bdi_init(&shmem_backing_dev_info);
3015	if (error)
3016		goto out4;
3017
3018	error = init_inodecache();
3019	if (error)
3020		goto out3;
3021
3022	error = register_filesystem(&tmpfs_fs_type);
3023	if (error) {
3024		printk(KERN_ERR "Could not register tmpfs\n");
3025		goto out2;
3026	}
3027
3028	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
3029				tmpfs_fs_type.name, NULL);
3030	if (IS_ERR(shm_mnt)) {
3031		error = PTR_ERR(shm_mnt);
3032		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3033		goto out1;
3034	}
3035	return 0;
3036
3037out1:
3038	unregister_filesystem(&tmpfs_fs_type);
3039out2:
3040	destroy_inodecache();
3041out3:
3042	bdi_destroy(&shmem_backing_dev_info);
3043out4:
3044	shm_mnt = ERR_PTR(error);
3045	return error;
3046}
3047
3048#ifdef CONFIG_CGROUP_MEM_RES_CTLR
3049/**
3050 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
3051 * @inode: the inode to be searched
3052 * @pgoff: the offset to be searched
3053 * @pagep: the pointer for the found page to be stored
3054 * @ent: the pointer for the found swap entry to be stored
3055 *
3056 * If a page is found, refcount of it is incremented. Callers should handle
3057 * these refcount.
3058 */
3059void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
3060					struct page **pagep, swp_entry_t *ent)
3061{
3062	swp_entry_t entry = { .val = 0 }, *ptr;
3063	struct page *page = NULL;
3064	struct shmem_inode_info *info = SHMEM_I(inode);
3065
3066	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
3067		goto out;
3068
3069	spin_lock(&info->lock);
3070	ptr = shmem_swp_entry(info, pgoff, NULL);
3071#ifdef CONFIG_SWAP
3072	if (ptr && ptr->val) {
3073		entry.val = ptr->val;
3074		page = find_get_page(&swapper_space, entry.val);
3075	} else
3076#endif
3077		page = find_get_page(inode->i_mapping, pgoff);
3078	if (ptr)
3079		shmem_swp_unmap(ptr);
3080	spin_unlock(&info->lock);
3081out:
3082	*pagep = page;
3083	*ent = entry;
3084}
3085#endif
3086
3087#else /* !CONFIG_SHMEM */
3088
3089/*
3090 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3091 *
3092 * This is intended for small system where the benefits of the full
3093 * shmem code (swap-backed and resource-limited) are outweighed by
3094 * their complexity. On systems without swap this code should be
3095 * effectively equivalent, but much lighter weight.
3096 */
3097
3098#include <linux/ramfs.h>
3099
3100static struct file_system_type tmpfs_fs_type = {
3101	.name		= "tmpfs",
3102	.mount		= ramfs_mount,
3103	.kill_sb	= kill_litter_super,
3104};
3105
3106int __init init_tmpfs(void)
3107{
3108	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
3109
3110	shm_mnt = kern_mount(&tmpfs_fs_type);
3111	BUG_ON(IS_ERR(shm_mnt));
3112
3113	return 0;
3114}
3115
3116int shmem_unuse(swp_entry_t entry, struct page *page)
3117{
3118	return 0;
3119}
3120
3121int shmem_lock(struct file *file, int lock, struct user_struct *user)
3122{
3123	return 0;
3124}
3125
3126void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
3127{
3128	truncate_inode_pages_range(inode->i_mapping, start, end);
3129}
3130EXPORT_SYMBOL_GPL(shmem_truncate_range);
3131
3132#ifdef CONFIG_CGROUP_MEM_RES_CTLR
3133/**
3134 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
3135 * @inode: the inode to be searched
3136 * @pgoff: the offset to be searched
3137 * @pagep: the pointer for the found page to be stored
3138 * @ent: the pointer for the found swap entry to be stored
3139 *
3140 * If a page is found, refcount of it is incremented. Callers should handle
3141 * these refcount.
3142 */
3143void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
3144					struct page **pagep, swp_entry_t *ent)
3145{
3146	struct page *page = NULL;
3147
3148	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
3149		goto out;
3150	page = find_get_page(inode->i_mapping, pgoff);
3151out:
3152	*pagep = page;
3153	*ent = (swp_entry_t){ .val = 0 };
3154}
3155#endif
3156
3157#define shmem_vm_ops				generic_file_vm_ops
3158#define shmem_file_operations			ramfs_file_operations
3159#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3160#define shmem_acct_size(flags, size)		0
3161#define shmem_unacct_size(flags, size)		do {} while (0)
3162#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
3163
3164#endif /* CONFIG_SHMEM */
3165
3166/* common code */
3167
3168/**
3169 * shmem_file_setup - get an unlinked file living in tmpfs
3170 * @name: name for dentry (to be seen in /proc/<pid>/maps
3171 * @size: size to be set for the file
3172 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3173 */
3174struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3175{
3176	int error;
3177	struct file *file;
3178	struct inode *inode;
3179	struct path path;
3180	struct dentry *root;
3181	struct qstr this;
3182
3183	if (IS_ERR(shm_mnt))
3184		return (void *)shm_mnt;
3185
3186	if (size < 0 || size > SHMEM_MAX_BYTES)
3187		return ERR_PTR(-EINVAL);
3188
3189	if (shmem_acct_size(flags, size))
3190		return ERR_PTR(-ENOMEM);
3191
3192	error = -ENOMEM;
3193	this.name = name;
3194	this.len = strlen(name);
3195	this.hash = 0; /* will go */
3196	root = shm_mnt->mnt_root;
3197	path.dentry = d_alloc(root, &this);
3198	if (!path.dentry)
3199		goto put_memory;
3200	path.mnt = mntget(shm_mnt);
3201
3202	error = -ENOSPC;
3203	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3204	if (!inode)
3205		goto put_dentry;
3206
3207	d_instantiate(path.dentry, inode);
3208	inode->i_size = size;
3209	inode->i_nlink = 0;	/* It is unlinked */
3210#ifndef CONFIG_MMU
3211	error = ramfs_nommu_expand_for_mapping(inode, size);
3212	if (error)
3213		goto put_dentry;
3214#endif
3215
3216	error = -ENFILE;
3217	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3218		  &shmem_file_operations);
3219	if (!file)
3220		goto put_dentry;
3221
3222	return file;
3223
3224put_dentry:
3225	path_put(&path);
3226put_memory:
3227	shmem_unacct_size(flags, size);
3228	return ERR_PTR(error);
3229}
3230EXPORT_SYMBOL_GPL(shmem_file_setup);
3231
3232/**
3233 * shmem_zero_setup - setup a shared anonymous mapping
3234 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3235 */
3236int shmem_zero_setup(struct vm_area_struct *vma)
3237{
3238	struct file *file;
3239	loff_t size = vma->vm_end - vma->vm_start;
3240
3241	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3242	if (IS_ERR(file))
3243		return PTR_ERR(file);
3244
3245	if (vma->vm_file)
3246		fput(vma->vm_file);
3247	vma->vm_file = file;
3248	vma->vm_ops = &shmem_vm_ops;
3249	vma->vm_flags |= VM_CAN_NONLINEAR;
3250	return 0;
3251}
3252
3253/**
3254 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3255 * @mapping:	the page's address_space
3256 * @index:	the page index
3257 * @gfp:	the page allocator flags to use if allocating
3258 *
3259 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3260 * with any new page allocations done using the specified allocation flags.
3261 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3262 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3263 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3264 *
3265 * Provide a stub for those callers to start using now, then later
3266 * flesh it out to call shmem_getpage() with additional gfp mask, when
3267 * shmem_file_splice_read() is added and shmem_readpage() is removed.
3268 */
3269struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3270					 pgoff_t index, gfp_t gfp)
3271{
3272	return read_cache_page_gfp(mapping, index, gfp);
3273}
3274EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3275