shmem.c revision 731572d39fcd3498702eda4600db4c43d51e0b26
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52#include <linux/seq_file.h>
53#include <linux/magic.h>
54
55#include <asm/uaccess.h>
56#include <asm/div64.h>
57#include <asm/pgtable.h>
58
59#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
60#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
61#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
62
63#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
64#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
65
66#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
67
68/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
69#define SHMEM_PAGEIN	 VM_READ
70#define SHMEM_TRUNCATE	 VM_WRITE
71
72/* Definition to limit shmem_truncate's steps between cond_rescheds */
73#define LATENCY_LIMIT	 64
74
75/* Pretend that each entry is of this size in directory's i_size */
76#define BOGO_DIRENT_SIZE 20
77
78/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
79enum sgp_type {
80	SGP_READ,	/* don't exceed i_size, don't allocate page */
81	SGP_CACHE,	/* don't exceed i_size, may allocate page */
82	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
83	SGP_WRITE,	/* may exceed i_size, may allocate page */
84};
85
86#ifdef CONFIG_TMPFS
87static unsigned long shmem_default_max_blocks(void)
88{
89	return totalram_pages / 2;
90}
91
92static unsigned long shmem_default_max_inodes(void)
93{
94	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
95}
96#endif
97
98static int shmem_getpage(struct inode *inode, unsigned long idx,
99			 struct page **pagep, enum sgp_type sgp, int *type);
100
101static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
102{
103	/*
104	 * The above definition of ENTRIES_PER_PAGE, and the use of
105	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
106	 * might be reconsidered if it ever diverges from PAGE_SIZE.
107	 *
108	 * Mobility flags are masked out as swap vectors cannot move
109	 */
110	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
111				PAGE_CACHE_SHIFT-PAGE_SHIFT);
112}
113
114static inline void shmem_dir_free(struct page *page)
115{
116	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
117}
118
119static struct page **shmem_dir_map(struct page *page)
120{
121	return (struct page **)kmap_atomic(page, KM_USER0);
122}
123
124static inline void shmem_dir_unmap(struct page **dir)
125{
126	kunmap_atomic(dir, KM_USER0);
127}
128
129static swp_entry_t *shmem_swp_map(struct page *page)
130{
131	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
132}
133
134static inline void shmem_swp_balance_unmap(void)
135{
136	/*
137	 * When passing a pointer to an i_direct entry, to code which
138	 * also handles indirect entries and so will shmem_swp_unmap,
139	 * we must arrange for the preempt count to remain in balance.
140	 * What kmap_atomic of a lowmem page does depends on config
141	 * and architecture, so pretend to kmap_atomic some lowmem page.
142	 */
143	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
144}
145
146static inline void shmem_swp_unmap(swp_entry_t *entry)
147{
148	kunmap_atomic(entry, KM_USER1);
149}
150
151static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
152{
153	return sb->s_fs_info;
154}
155
156/*
157 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
158 * for shared memory and for shared anonymous (/dev/zero) mappings
159 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
160 * consistent with the pre-accounting of private mappings ...
161 */
162static inline int shmem_acct_size(unsigned long flags, loff_t size)
163{
164	return (flags & VM_ACCOUNT) ?
165		security_vm_enough_memory_kern(VM_ACCT(size)) : 0;
166}
167
168static inline void shmem_unacct_size(unsigned long flags, loff_t size)
169{
170	if (flags & VM_ACCOUNT)
171		vm_unacct_memory(VM_ACCT(size));
172}
173
174/*
175 * ... whereas tmpfs objects are accounted incrementally as
176 * pages are allocated, in order to allow huge sparse files.
177 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
178 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
179 */
180static inline int shmem_acct_block(unsigned long flags)
181{
182	return (flags & VM_ACCOUNT) ?
183		0 : security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE));
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
188	if (!(flags & VM_ACCOUNT))
189		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
190}
191
192static const struct super_operations shmem_ops;
193static const struct address_space_operations shmem_aops;
194static const struct file_operations shmem_file_operations;
195static const struct inode_operations shmem_inode_operations;
196static const struct inode_operations shmem_dir_inode_operations;
197static const struct inode_operations shmem_special_inode_operations;
198static struct vm_operations_struct shmem_vm_ops;
199
200static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
201	.ra_pages	= 0,	/* No readahead */
202	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
203	.unplug_io_fn	= default_unplug_io_fn,
204};
205
206static LIST_HEAD(shmem_swaplist);
207static DEFINE_MUTEX(shmem_swaplist_mutex);
208
209static void shmem_free_blocks(struct inode *inode, long pages)
210{
211	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
212	if (sbinfo->max_blocks) {
213		spin_lock(&sbinfo->stat_lock);
214		sbinfo->free_blocks += pages;
215		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
216		spin_unlock(&sbinfo->stat_lock);
217	}
218}
219
220static int shmem_reserve_inode(struct super_block *sb)
221{
222	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
223	if (sbinfo->max_inodes) {
224		spin_lock(&sbinfo->stat_lock);
225		if (!sbinfo->free_inodes) {
226			spin_unlock(&sbinfo->stat_lock);
227			return -ENOSPC;
228		}
229		sbinfo->free_inodes--;
230		spin_unlock(&sbinfo->stat_lock);
231	}
232	return 0;
233}
234
235static void shmem_free_inode(struct super_block *sb)
236{
237	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
238	if (sbinfo->max_inodes) {
239		spin_lock(&sbinfo->stat_lock);
240		sbinfo->free_inodes++;
241		spin_unlock(&sbinfo->stat_lock);
242	}
243}
244
245/**
246 * shmem_recalc_inode - recalculate the size of an inode
247 * @inode: inode to recalc
248 *
249 * We have to calculate the free blocks since the mm can drop
250 * undirtied hole pages behind our back.
251 *
252 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
253 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
254 *
255 * It has to be called with the spinlock held.
256 */
257static void shmem_recalc_inode(struct inode *inode)
258{
259	struct shmem_inode_info *info = SHMEM_I(inode);
260	long freed;
261
262	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
263	if (freed > 0) {
264		info->alloced -= freed;
265		shmem_unacct_blocks(info->flags, freed);
266		shmem_free_blocks(inode, freed);
267	}
268}
269
270/**
271 * shmem_swp_entry - find the swap vector position in the info structure
272 * @info:  info structure for the inode
273 * @index: index of the page to find
274 * @page:  optional page to add to the structure. Has to be preset to
275 *         all zeros
276 *
277 * If there is no space allocated yet it will return NULL when
278 * page is NULL, else it will use the page for the needed block,
279 * setting it to NULL on return to indicate that it has been used.
280 *
281 * The swap vector is organized the following way:
282 *
283 * There are SHMEM_NR_DIRECT entries directly stored in the
284 * shmem_inode_info structure. So small files do not need an addional
285 * allocation.
286 *
287 * For pages with index > SHMEM_NR_DIRECT there is the pointer
288 * i_indirect which points to a page which holds in the first half
289 * doubly indirect blocks, in the second half triple indirect blocks:
290 *
291 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
292 * following layout (for SHMEM_NR_DIRECT == 16):
293 *
294 * i_indirect -> dir --> 16-19
295 * 	      |	     +-> 20-23
296 * 	      |
297 * 	      +-->dir2 --> 24-27
298 * 	      |	       +-> 28-31
299 * 	      |	       +-> 32-35
300 * 	      |	       +-> 36-39
301 * 	      |
302 * 	      +-->dir3 --> 40-43
303 * 	       	       +-> 44-47
304 * 	      	       +-> 48-51
305 * 	      	       +-> 52-55
306 */
307static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
308{
309	unsigned long offset;
310	struct page **dir;
311	struct page *subdir;
312
313	if (index < SHMEM_NR_DIRECT) {
314		shmem_swp_balance_unmap();
315		return info->i_direct+index;
316	}
317	if (!info->i_indirect) {
318		if (page) {
319			info->i_indirect = *page;
320			*page = NULL;
321		}
322		return NULL;			/* need another page */
323	}
324
325	index -= SHMEM_NR_DIRECT;
326	offset = index % ENTRIES_PER_PAGE;
327	index /= ENTRIES_PER_PAGE;
328	dir = shmem_dir_map(info->i_indirect);
329
330	if (index >= ENTRIES_PER_PAGE/2) {
331		index -= ENTRIES_PER_PAGE/2;
332		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
333		index %= ENTRIES_PER_PAGE;
334		subdir = *dir;
335		if (!subdir) {
336			if (page) {
337				*dir = *page;
338				*page = NULL;
339			}
340			shmem_dir_unmap(dir);
341			return NULL;		/* need another page */
342		}
343		shmem_dir_unmap(dir);
344		dir = shmem_dir_map(subdir);
345	}
346
347	dir += index;
348	subdir = *dir;
349	if (!subdir) {
350		if (!page || !(subdir = *page)) {
351			shmem_dir_unmap(dir);
352			return NULL;		/* need a page */
353		}
354		*dir = subdir;
355		*page = NULL;
356	}
357	shmem_dir_unmap(dir);
358	return shmem_swp_map(subdir) + offset;
359}
360
361static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
362{
363	long incdec = value? 1: -1;
364
365	entry->val = value;
366	info->swapped += incdec;
367	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
368		struct page *page = kmap_atomic_to_page(entry);
369		set_page_private(page, page_private(page) + incdec);
370	}
371}
372
373/**
374 * shmem_swp_alloc - get the position of the swap entry for the page.
375 * @info:	info structure for the inode
376 * @index:	index of the page to find
377 * @sgp:	check and recheck i_size? skip allocation?
378 *
379 * If the entry does not exist, allocate it.
380 */
381static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
382{
383	struct inode *inode = &info->vfs_inode;
384	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
385	struct page *page = NULL;
386	swp_entry_t *entry;
387
388	if (sgp != SGP_WRITE &&
389	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
390		return ERR_PTR(-EINVAL);
391
392	while (!(entry = shmem_swp_entry(info, index, &page))) {
393		if (sgp == SGP_READ)
394			return shmem_swp_map(ZERO_PAGE(0));
395		/*
396		 * Test free_blocks against 1 not 0, since we have 1 data
397		 * page (and perhaps indirect index pages) yet to allocate:
398		 * a waste to allocate index if we cannot allocate data.
399		 */
400		if (sbinfo->max_blocks) {
401			spin_lock(&sbinfo->stat_lock);
402			if (sbinfo->free_blocks <= 1) {
403				spin_unlock(&sbinfo->stat_lock);
404				return ERR_PTR(-ENOSPC);
405			}
406			sbinfo->free_blocks--;
407			inode->i_blocks += BLOCKS_PER_PAGE;
408			spin_unlock(&sbinfo->stat_lock);
409		}
410
411		spin_unlock(&info->lock);
412		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
413		if (page)
414			set_page_private(page, 0);
415		spin_lock(&info->lock);
416
417		if (!page) {
418			shmem_free_blocks(inode, 1);
419			return ERR_PTR(-ENOMEM);
420		}
421		if (sgp != SGP_WRITE &&
422		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
423			entry = ERR_PTR(-EINVAL);
424			break;
425		}
426		if (info->next_index <= index)
427			info->next_index = index + 1;
428	}
429	if (page) {
430		/* another task gave its page, or truncated the file */
431		shmem_free_blocks(inode, 1);
432		shmem_dir_free(page);
433	}
434	if (info->next_index <= index && !IS_ERR(entry))
435		info->next_index = index + 1;
436	return entry;
437}
438
439/**
440 * shmem_free_swp - free some swap entries in a directory
441 * @dir:        pointer to the directory
442 * @edir:       pointer after last entry of the directory
443 * @punch_lock: pointer to spinlock when needed for the holepunch case
444 */
445static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
446						spinlock_t *punch_lock)
447{
448	spinlock_t *punch_unlock = NULL;
449	swp_entry_t *ptr;
450	int freed = 0;
451
452	for (ptr = dir; ptr < edir; ptr++) {
453		if (ptr->val) {
454			if (unlikely(punch_lock)) {
455				punch_unlock = punch_lock;
456				punch_lock = NULL;
457				spin_lock(punch_unlock);
458				if (!ptr->val)
459					continue;
460			}
461			free_swap_and_cache(*ptr);
462			*ptr = (swp_entry_t){0};
463			freed++;
464		}
465	}
466	if (punch_unlock)
467		spin_unlock(punch_unlock);
468	return freed;
469}
470
471static int shmem_map_and_free_swp(struct page *subdir, int offset,
472		int limit, struct page ***dir, spinlock_t *punch_lock)
473{
474	swp_entry_t *ptr;
475	int freed = 0;
476
477	ptr = shmem_swp_map(subdir);
478	for (; offset < limit; offset += LATENCY_LIMIT) {
479		int size = limit - offset;
480		if (size > LATENCY_LIMIT)
481			size = LATENCY_LIMIT;
482		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
483							punch_lock);
484		if (need_resched()) {
485			shmem_swp_unmap(ptr);
486			if (*dir) {
487				shmem_dir_unmap(*dir);
488				*dir = NULL;
489			}
490			cond_resched();
491			ptr = shmem_swp_map(subdir);
492		}
493	}
494	shmem_swp_unmap(ptr);
495	return freed;
496}
497
498static void shmem_free_pages(struct list_head *next)
499{
500	struct page *page;
501	int freed = 0;
502
503	do {
504		page = container_of(next, struct page, lru);
505		next = next->next;
506		shmem_dir_free(page);
507		freed++;
508		if (freed >= LATENCY_LIMIT) {
509			cond_resched();
510			freed = 0;
511		}
512	} while (next);
513}
514
515static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
516{
517	struct shmem_inode_info *info = SHMEM_I(inode);
518	unsigned long idx;
519	unsigned long size;
520	unsigned long limit;
521	unsigned long stage;
522	unsigned long diroff;
523	struct page **dir;
524	struct page *topdir;
525	struct page *middir;
526	struct page *subdir;
527	swp_entry_t *ptr;
528	LIST_HEAD(pages_to_free);
529	long nr_pages_to_free = 0;
530	long nr_swaps_freed = 0;
531	int offset;
532	int freed;
533	int punch_hole;
534	spinlock_t *needs_lock;
535	spinlock_t *punch_lock;
536	unsigned long upper_limit;
537
538	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
539	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
540	if (idx >= info->next_index)
541		return;
542
543	spin_lock(&info->lock);
544	info->flags |= SHMEM_TRUNCATE;
545	if (likely(end == (loff_t) -1)) {
546		limit = info->next_index;
547		upper_limit = SHMEM_MAX_INDEX;
548		info->next_index = idx;
549		needs_lock = NULL;
550		punch_hole = 0;
551	} else {
552		if (end + 1 >= inode->i_size) {	/* we may free a little more */
553			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
554							PAGE_CACHE_SHIFT;
555			upper_limit = SHMEM_MAX_INDEX;
556		} else {
557			limit = (end + 1) >> PAGE_CACHE_SHIFT;
558			upper_limit = limit;
559		}
560		needs_lock = &info->lock;
561		punch_hole = 1;
562	}
563
564	topdir = info->i_indirect;
565	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
566		info->i_indirect = NULL;
567		nr_pages_to_free++;
568		list_add(&topdir->lru, &pages_to_free);
569	}
570	spin_unlock(&info->lock);
571
572	if (info->swapped && idx < SHMEM_NR_DIRECT) {
573		ptr = info->i_direct;
574		size = limit;
575		if (size > SHMEM_NR_DIRECT)
576			size = SHMEM_NR_DIRECT;
577		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
578	}
579
580	/*
581	 * If there are no indirect blocks or we are punching a hole
582	 * below indirect blocks, nothing to be done.
583	 */
584	if (!topdir || limit <= SHMEM_NR_DIRECT)
585		goto done2;
586
587	/*
588	 * The truncation case has already dropped info->lock, and we're safe
589	 * because i_size and next_index have already been lowered, preventing
590	 * access beyond.  But in the punch_hole case, we still need to take
591	 * the lock when updating the swap directory, because there might be
592	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
593	 * shmem_writepage.  However, whenever we find we can remove a whole
594	 * directory page (not at the misaligned start or end of the range),
595	 * we first NULLify its pointer in the level above, and then have no
596	 * need to take the lock when updating its contents: needs_lock and
597	 * punch_lock (either pointing to info->lock or NULL) manage this.
598	 */
599
600	upper_limit -= SHMEM_NR_DIRECT;
601	limit -= SHMEM_NR_DIRECT;
602	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
603	offset = idx % ENTRIES_PER_PAGE;
604	idx -= offset;
605
606	dir = shmem_dir_map(topdir);
607	stage = ENTRIES_PER_PAGEPAGE/2;
608	if (idx < ENTRIES_PER_PAGEPAGE/2) {
609		middir = topdir;
610		diroff = idx/ENTRIES_PER_PAGE;
611	} else {
612		dir += ENTRIES_PER_PAGE/2;
613		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
614		while (stage <= idx)
615			stage += ENTRIES_PER_PAGEPAGE;
616		middir = *dir;
617		if (*dir) {
618			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
619				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
620			if (!diroff && !offset && upper_limit >= stage) {
621				if (needs_lock) {
622					spin_lock(needs_lock);
623					*dir = NULL;
624					spin_unlock(needs_lock);
625					needs_lock = NULL;
626				} else
627					*dir = NULL;
628				nr_pages_to_free++;
629				list_add(&middir->lru, &pages_to_free);
630			}
631			shmem_dir_unmap(dir);
632			dir = shmem_dir_map(middir);
633		} else {
634			diroff = 0;
635			offset = 0;
636			idx = stage;
637		}
638	}
639
640	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
641		if (unlikely(idx == stage)) {
642			shmem_dir_unmap(dir);
643			dir = shmem_dir_map(topdir) +
644			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
645			while (!*dir) {
646				dir++;
647				idx += ENTRIES_PER_PAGEPAGE;
648				if (idx >= limit)
649					goto done1;
650			}
651			stage = idx + ENTRIES_PER_PAGEPAGE;
652			middir = *dir;
653			if (punch_hole)
654				needs_lock = &info->lock;
655			if (upper_limit >= stage) {
656				if (needs_lock) {
657					spin_lock(needs_lock);
658					*dir = NULL;
659					spin_unlock(needs_lock);
660					needs_lock = NULL;
661				} else
662					*dir = NULL;
663				nr_pages_to_free++;
664				list_add(&middir->lru, &pages_to_free);
665			}
666			shmem_dir_unmap(dir);
667			cond_resched();
668			dir = shmem_dir_map(middir);
669			diroff = 0;
670		}
671		punch_lock = needs_lock;
672		subdir = dir[diroff];
673		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
674			if (needs_lock) {
675				spin_lock(needs_lock);
676				dir[diroff] = NULL;
677				spin_unlock(needs_lock);
678				punch_lock = NULL;
679			} else
680				dir[diroff] = NULL;
681			nr_pages_to_free++;
682			list_add(&subdir->lru, &pages_to_free);
683		}
684		if (subdir && page_private(subdir) /* has swap entries */) {
685			size = limit - idx;
686			if (size > ENTRIES_PER_PAGE)
687				size = ENTRIES_PER_PAGE;
688			freed = shmem_map_and_free_swp(subdir,
689					offset, size, &dir, punch_lock);
690			if (!dir)
691				dir = shmem_dir_map(middir);
692			nr_swaps_freed += freed;
693			if (offset || punch_lock) {
694				spin_lock(&info->lock);
695				set_page_private(subdir,
696					page_private(subdir) - freed);
697				spin_unlock(&info->lock);
698			} else
699				BUG_ON(page_private(subdir) != freed);
700		}
701		offset = 0;
702	}
703done1:
704	shmem_dir_unmap(dir);
705done2:
706	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
707		/*
708		 * Call truncate_inode_pages again: racing shmem_unuse_inode
709		 * may have swizzled a page in from swap since vmtruncate or
710		 * generic_delete_inode did it, before we lowered next_index.
711		 * Also, though shmem_getpage checks i_size before adding to
712		 * cache, no recheck after: so fix the narrow window there too.
713		 *
714		 * Recalling truncate_inode_pages_range and unmap_mapping_range
715		 * every time for punch_hole (which never got a chance to clear
716		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
717		 * yet hardly ever necessary: try to optimize them out later.
718		 */
719		truncate_inode_pages_range(inode->i_mapping, start, end);
720		if (punch_hole)
721			unmap_mapping_range(inode->i_mapping, start,
722							end - start, 1);
723	}
724
725	spin_lock(&info->lock);
726	info->flags &= ~SHMEM_TRUNCATE;
727	info->swapped -= nr_swaps_freed;
728	if (nr_pages_to_free)
729		shmem_free_blocks(inode, nr_pages_to_free);
730	shmem_recalc_inode(inode);
731	spin_unlock(&info->lock);
732
733	/*
734	 * Empty swap vector directory pages to be freed?
735	 */
736	if (!list_empty(&pages_to_free)) {
737		pages_to_free.prev->next = NULL;
738		shmem_free_pages(pages_to_free.next);
739	}
740}
741
742static void shmem_truncate(struct inode *inode)
743{
744	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
745}
746
747static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
748{
749	struct inode *inode = dentry->d_inode;
750	struct page *page = NULL;
751	int error;
752
753	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
754		if (attr->ia_size < inode->i_size) {
755			/*
756			 * If truncating down to a partial page, then
757			 * if that page is already allocated, hold it
758			 * in memory until the truncation is over, so
759			 * truncate_partial_page cannnot miss it were
760			 * it assigned to swap.
761			 */
762			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
763				(void) shmem_getpage(inode,
764					attr->ia_size>>PAGE_CACHE_SHIFT,
765						&page, SGP_READ, NULL);
766				if (page)
767					unlock_page(page);
768			}
769			/*
770			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
771			 * detect if any pages might have been added to cache
772			 * after truncate_inode_pages.  But we needn't bother
773			 * if it's being fully truncated to zero-length: the
774			 * nrpages check is efficient enough in that case.
775			 */
776			if (attr->ia_size) {
777				struct shmem_inode_info *info = SHMEM_I(inode);
778				spin_lock(&info->lock);
779				info->flags &= ~SHMEM_PAGEIN;
780				spin_unlock(&info->lock);
781			}
782		}
783	}
784
785	error = inode_change_ok(inode, attr);
786	if (!error)
787		error = inode_setattr(inode, attr);
788#ifdef CONFIG_TMPFS_POSIX_ACL
789	if (!error && (attr->ia_valid & ATTR_MODE))
790		error = generic_acl_chmod(inode, &shmem_acl_ops);
791#endif
792	if (page)
793		page_cache_release(page);
794	return error;
795}
796
797static void shmem_delete_inode(struct inode *inode)
798{
799	struct shmem_inode_info *info = SHMEM_I(inode);
800
801	if (inode->i_op->truncate == shmem_truncate) {
802		truncate_inode_pages(inode->i_mapping, 0);
803		shmem_unacct_size(info->flags, inode->i_size);
804		inode->i_size = 0;
805		shmem_truncate(inode);
806		if (!list_empty(&info->swaplist)) {
807			mutex_lock(&shmem_swaplist_mutex);
808			list_del_init(&info->swaplist);
809			mutex_unlock(&shmem_swaplist_mutex);
810		}
811	}
812	BUG_ON(inode->i_blocks);
813	shmem_free_inode(inode->i_sb);
814	clear_inode(inode);
815}
816
817static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
818{
819	swp_entry_t *ptr;
820
821	for (ptr = dir; ptr < edir; ptr++) {
822		if (ptr->val == entry.val)
823			return ptr - dir;
824	}
825	return -1;
826}
827
828static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
829{
830	struct inode *inode;
831	unsigned long idx;
832	unsigned long size;
833	unsigned long limit;
834	unsigned long stage;
835	struct page **dir;
836	struct page *subdir;
837	swp_entry_t *ptr;
838	int offset;
839	int error;
840
841	idx = 0;
842	ptr = info->i_direct;
843	spin_lock(&info->lock);
844	if (!info->swapped) {
845		list_del_init(&info->swaplist);
846		goto lost2;
847	}
848	limit = info->next_index;
849	size = limit;
850	if (size > SHMEM_NR_DIRECT)
851		size = SHMEM_NR_DIRECT;
852	offset = shmem_find_swp(entry, ptr, ptr+size);
853	if (offset >= 0)
854		goto found;
855	if (!info->i_indirect)
856		goto lost2;
857
858	dir = shmem_dir_map(info->i_indirect);
859	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
860
861	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
862		if (unlikely(idx == stage)) {
863			shmem_dir_unmap(dir-1);
864			if (cond_resched_lock(&info->lock)) {
865				/* check it has not been truncated */
866				if (limit > info->next_index) {
867					limit = info->next_index;
868					if (idx >= limit)
869						goto lost2;
870				}
871			}
872			dir = shmem_dir_map(info->i_indirect) +
873			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
874			while (!*dir) {
875				dir++;
876				idx += ENTRIES_PER_PAGEPAGE;
877				if (idx >= limit)
878					goto lost1;
879			}
880			stage = idx + ENTRIES_PER_PAGEPAGE;
881			subdir = *dir;
882			shmem_dir_unmap(dir);
883			dir = shmem_dir_map(subdir);
884		}
885		subdir = *dir;
886		if (subdir && page_private(subdir)) {
887			ptr = shmem_swp_map(subdir);
888			size = limit - idx;
889			if (size > ENTRIES_PER_PAGE)
890				size = ENTRIES_PER_PAGE;
891			offset = shmem_find_swp(entry, ptr, ptr+size);
892			shmem_swp_unmap(ptr);
893			if (offset >= 0) {
894				shmem_dir_unmap(dir);
895				goto found;
896			}
897		}
898	}
899lost1:
900	shmem_dir_unmap(dir-1);
901lost2:
902	spin_unlock(&info->lock);
903	return 0;
904found:
905	idx += offset;
906	inode = igrab(&info->vfs_inode);
907	spin_unlock(&info->lock);
908
909	/*
910	 * Move _head_ to start search for next from here.
911	 * But be careful: shmem_delete_inode checks list_empty without taking
912	 * mutex, and there's an instant in list_move_tail when info->swaplist
913	 * would appear empty, if it were the only one on shmem_swaplist.  We
914	 * could avoid doing it if inode NULL; or use this minor optimization.
915	 */
916	if (shmem_swaplist.next != &info->swaplist)
917		list_move_tail(&shmem_swaplist, &info->swaplist);
918	mutex_unlock(&shmem_swaplist_mutex);
919
920	error = 1;
921	if (!inode)
922		goto out;
923	/* Precharge page using GFP_KERNEL while we can wait */
924	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
925	if (error)
926		goto out;
927	error = radix_tree_preload(GFP_KERNEL);
928	if (error) {
929		mem_cgroup_uncharge_cache_page(page);
930		goto out;
931	}
932	error = 1;
933
934	spin_lock(&info->lock);
935	ptr = shmem_swp_entry(info, idx, NULL);
936	if (ptr && ptr->val == entry.val) {
937		error = add_to_page_cache_locked(page, inode->i_mapping,
938						idx, GFP_NOWAIT);
939		/* does mem_cgroup_uncharge_cache_page on error */
940	} else	/* we must compensate for our precharge above */
941		mem_cgroup_uncharge_cache_page(page);
942
943	if (error == -EEXIST) {
944		struct page *filepage = find_get_page(inode->i_mapping, idx);
945		error = 1;
946		if (filepage) {
947			/*
948			 * There might be a more uptodate page coming down
949			 * from a stacked writepage: forget our swappage if so.
950			 */
951			if (PageUptodate(filepage))
952				error = 0;
953			page_cache_release(filepage);
954		}
955	}
956	if (!error) {
957		delete_from_swap_cache(page);
958		set_page_dirty(page);
959		info->flags |= SHMEM_PAGEIN;
960		shmem_swp_set(info, ptr, 0);
961		swap_free(entry);
962		error = 1;	/* not an error, but entry was found */
963	}
964	if (ptr)
965		shmem_swp_unmap(ptr);
966	spin_unlock(&info->lock);
967	radix_tree_preload_end();
968out:
969	unlock_page(page);
970	page_cache_release(page);
971	iput(inode);		/* allows for NULL */
972	return error;
973}
974
975/*
976 * shmem_unuse() search for an eventually swapped out shmem page.
977 */
978int shmem_unuse(swp_entry_t entry, struct page *page)
979{
980	struct list_head *p, *next;
981	struct shmem_inode_info *info;
982	int found = 0;
983
984	mutex_lock(&shmem_swaplist_mutex);
985	list_for_each_safe(p, next, &shmem_swaplist) {
986		info = list_entry(p, struct shmem_inode_info, swaplist);
987		found = shmem_unuse_inode(info, entry, page);
988		cond_resched();
989		if (found)
990			goto out;
991	}
992	mutex_unlock(&shmem_swaplist_mutex);
993out:	return found;	/* 0 or 1 or -ENOMEM */
994}
995
996/*
997 * Move the page from the page cache to the swap cache.
998 */
999static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1000{
1001	struct shmem_inode_info *info;
1002	swp_entry_t *entry, swap;
1003	struct address_space *mapping;
1004	unsigned long index;
1005	struct inode *inode;
1006
1007	BUG_ON(!PageLocked(page));
1008	mapping = page->mapping;
1009	index = page->index;
1010	inode = mapping->host;
1011	info = SHMEM_I(inode);
1012	if (info->flags & VM_LOCKED)
1013		goto redirty;
1014	if (!total_swap_pages)
1015		goto redirty;
1016
1017	/*
1018	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1019	 * sync from ever calling shmem_writepage; but a stacking filesystem
1020	 * may use the ->writepage of its underlying filesystem, in which case
1021	 * tmpfs should write out to swap only in response to memory pressure,
1022	 * and not for pdflush or sync.  However, in those cases, we do still
1023	 * want to check if there's a redundant swappage to be discarded.
1024	 */
1025	if (wbc->for_reclaim)
1026		swap = get_swap_page();
1027	else
1028		swap.val = 0;
1029
1030	spin_lock(&info->lock);
1031	if (index >= info->next_index) {
1032		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1033		goto unlock;
1034	}
1035	entry = shmem_swp_entry(info, index, NULL);
1036	if (entry->val) {
1037		/*
1038		 * The more uptodate page coming down from a stacked
1039		 * writepage should replace our old swappage.
1040		 */
1041		free_swap_and_cache(*entry);
1042		shmem_swp_set(info, entry, 0);
1043	}
1044	shmem_recalc_inode(inode);
1045
1046	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1047		remove_from_page_cache(page);
1048		shmem_swp_set(info, entry, swap.val);
1049		shmem_swp_unmap(entry);
1050		if (list_empty(&info->swaplist))
1051			inode = igrab(inode);
1052		else
1053			inode = NULL;
1054		spin_unlock(&info->lock);
1055		swap_duplicate(swap);
1056		BUG_ON(page_mapped(page));
1057		page_cache_release(page);	/* pagecache ref */
1058		set_page_dirty(page);
1059		unlock_page(page);
1060		if (inode) {
1061			mutex_lock(&shmem_swaplist_mutex);
1062			/* move instead of add in case we're racing */
1063			list_move_tail(&info->swaplist, &shmem_swaplist);
1064			mutex_unlock(&shmem_swaplist_mutex);
1065			iput(inode);
1066		}
1067		return 0;
1068	}
1069
1070	shmem_swp_unmap(entry);
1071unlock:
1072	spin_unlock(&info->lock);
1073	swap_free(swap);
1074redirty:
1075	set_page_dirty(page);
1076	if (wbc->for_reclaim)
1077		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1078	unlock_page(page);
1079	return 0;
1080}
1081
1082#ifdef CONFIG_NUMA
1083#ifdef CONFIG_TMPFS
1084static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1085{
1086	char buffer[64];
1087
1088	if (!mpol || mpol->mode == MPOL_DEFAULT)
1089		return;		/* show nothing */
1090
1091	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1092
1093	seq_printf(seq, ",mpol=%s", buffer);
1094}
1095
1096static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1097{
1098	struct mempolicy *mpol = NULL;
1099	if (sbinfo->mpol) {
1100		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1101		mpol = sbinfo->mpol;
1102		mpol_get(mpol);
1103		spin_unlock(&sbinfo->stat_lock);
1104	}
1105	return mpol;
1106}
1107#endif /* CONFIG_TMPFS */
1108
1109static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1110			struct shmem_inode_info *info, unsigned long idx)
1111{
1112	struct mempolicy mpol, *spol;
1113	struct vm_area_struct pvma;
1114	struct page *page;
1115
1116	spol = mpol_cond_copy(&mpol,
1117				mpol_shared_policy_lookup(&info->policy, idx));
1118
1119	/* Create a pseudo vma that just contains the policy */
1120	pvma.vm_start = 0;
1121	pvma.vm_pgoff = idx;
1122	pvma.vm_ops = NULL;
1123	pvma.vm_policy = spol;
1124	page = swapin_readahead(entry, gfp, &pvma, 0);
1125	return page;
1126}
1127
1128static struct page *shmem_alloc_page(gfp_t gfp,
1129			struct shmem_inode_info *info, unsigned long idx)
1130{
1131	struct vm_area_struct pvma;
1132
1133	/* Create a pseudo vma that just contains the policy */
1134	pvma.vm_start = 0;
1135	pvma.vm_pgoff = idx;
1136	pvma.vm_ops = NULL;
1137	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1138
1139	/*
1140	 * alloc_page_vma() will drop the shared policy reference
1141	 */
1142	return alloc_page_vma(gfp, &pvma, 0);
1143}
1144#else /* !CONFIG_NUMA */
1145#ifdef CONFIG_TMPFS
1146static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1147{
1148}
1149#endif /* CONFIG_TMPFS */
1150
1151static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1152			struct shmem_inode_info *info, unsigned long idx)
1153{
1154	return swapin_readahead(entry, gfp, NULL, 0);
1155}
1156
1157static inline struct page *shmem_alloc_page(gfp_t gfp,
1158			struct shmem_inode_info *info, unsigned long idx)
1159{
1160	return alloc_page(gfp);
1161}
1162#endif /* CONFIG_NUMA */
1163
1164#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1165static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1166{
1167	return NULL;
1168}
1169#endif
1170
1171/*
1172 * shmem_getpage - either get the page from swap or allocate a new one
1173 *
1174 * If we allocate a new one we do not mark it dirty. That's up to the
1175 * vm. If we swap it in we mark it dirty since we also free the swap
1176 * entry since a page cannot live in both the swap and page cache
1177 */
1178static int shmem_getpage(struct inode *inode, unsigned long idx,
1179			struct page **pagep, enum sgp_type sgp, int *type)
1180{
1181	struct address_space *mapping = inode->i_mapping;
1182	struct shmem_inode_info *info = SHMEM_I(inode);
1183	struct shmem_sb_info *sbinfo;
1184	struct page *filepage = *pagep;
1185	struct page *swappage;
1186	swp_entry_t *entry;
1187	swp_entry_t swap;
1188	gfp_t gfp;
1189	int error;
1190
1191	if (idx >= SHMEM_MAX_INDEX)
1192		return -EFBIG;
1193
1194	if (type)
1195		*type = 0;
1196
1197	/*
1198	 * Normally, filepage is NULL on entry, and either found
1199	 * uptodate immediately, or allocated and zeroed, or read
1200	 * in under swappage, which is then assigned to filepage.
1201	 * But shmem_readpage (required for splice) passes in a locked
1202	 * filepage, which may be found not uptodate by other callers
1203	 * too, and may need to be copied from the swappage read in.
1204	 */
1205repeat:
1206	if (!filepage)
1207		filepage = find_lock_page(mapping, idx);
1208	if (filepage && PageUptodate(filepage))
1209		goto done;
1210	error = 0;
1211	gfp = mapping_gfp_mask(mapping);
1212	if (!filepage) {
1213		/*
1214		 * Try to preload while we can wait, to not make a habit of
1215		 * draining atomic reserves; but don't latch on to this cpu.
1216		 */
1217		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1218		if (error)
1219			goto failed;
1220		radix_tree_preload_end();
1221	}
1222
1223	spin_lock(&info->lock);
1224	shmem_recalc_inode(inode);
1225	entry = shmem_swp_alloc(info, idx, sgp);
1226	if (IS_ERR(entry)) {
1227		spin_unlock(&info->lock);
1228		error = PTR_ERR(entry);
1229		goto failed;
1230	}
1231	swap = *entry;
1232
1233	if (swap.val) {
1234		/* Look it up and read it in.. */
1235		swappage = lookup_swap_cache(swap);
1236		if (!swappage) {
1237			shmem_swp_unmap(entry);
1238			/* here we actually do the io */
1239			if (type && !(*type & VM_FAULT_MAJOR)) {
1240				__count_vm_event(PGMAJFAULT);
1241				*type |= VM_FAULT_MAJOR;
1242			}
1243			spin_unlock(&info->lock);
1244			swappage = shmem_swapin(swap, gfp, info, idx);
1245			if (!swappage) {
1246				spin_lock(&info->lock);
1247				entry = shmem_swp_alloc(info, idx, sgp);
1248				if (IS_ERR(entry))
1249					error = PTR_ERR(entry);
1250				else {
1251					if (entry->val == swap.val)
1252						error = -ENOMEM;
1253					shmem_swp_unmap(entry);
1254				}
1255				spin_unlock(&info->lock);
1256				if (error)
1257					goto failed;
1258				goto repeat;
1259			}
1260			wait_on_page_locked(swappage);
1261			page_cache_release(swappage);
1262			goto repeat;
1263		}
1264
1265		/* We have to do this with page locked to prevent races */
1266		if (!trylock_page(swappage)) {
1267			shmem_swp_unmap(entry);
1268			spin_unlock(&info->lock);
1269			wait_on_page_locked(swappage);
1270			page_cache_release(swappage);
1271			goto repeat;
1272		}
1273		if (PageWriteback(swappage)) {
1274			shmem_swp_unmap(entry);
1275			spin_unlock(&info->lock);
1276			wait_on_page_writeback(swappage);
1277			unlock_page(swappage);
1278			page_cache_release(swappage);
1279			goto repeat;
1280		}
1281		if (!PageUptodate(swappage)) {
1282			shmem_swp_unmap(entry);
1283			spin_unlock(&info->lock);
1284			unlock_page(swappage);
1285			page_cache_release(swappage);
1286			error = -EIO;
1287			goto failed;
1288		}
1289
1290		if (filepage) {
1291			shmem_swp_set(info, entry, 0);
1292			shmem_swp_unmap(entry);
1293			delete_from_swap_cache(swappage);
1294			spin_unlock(&info->lock);
1295			copy_highpage(filepage, swappage);
1296			unlock_page(swappage);
1297			page_cache_release(swappage);
1298			flush_dcache_page(filepage);
1299			SetPageUptodate(filepage);
1300			set_page_dirty(filepage);
1301			swap_free(swap);
1302		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1303					idx, GFP_NOWAIT))) {
1304			info->flags |= SHMEM_PAGEIN;
1305			shmem_swp_set(info, entry, 0);
1306			shmem_swp_unmap(entry);
1307			delete_from_swap_cache(swappage);
1308			spin_unlock(&info->lock);
1309			filepage = swappage;
1310			set_page_dirty(filepage);
1311			swap_free(swap);
1312		} else {
1313			shmem_swp_unmap(entry);
1314			spin_unlock(&info->lock);
1315			unlock_page(swappage);
1316			page_cache_release(swappage);
1317			if (error == -ENOMEM) {
1318				/* allow reclaim from this memory cgroup */
1319				error = mem_cgroup_shrink_usage(current->mm,
1320								gfp);
1321				if (error)
1322					goto failed;
1323			}
1324			goto repeat;
1325		}
1326	} else if (sgp == SGP_READ && !filepage) {
1327		shmem_swp_unmap(entry);
1328		filepage = find_get_page(mapping, idx);
1329		if (filepage &&
1330		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1331			spin_unlock(&info->lock);
1332			wait_on_page_locked(filepage);
1333			page_cache_release(filepage);
1334			filepage = NULL;
1335			goto repeat;
1336		}
1337		spin_unlock(&info->lock);
1338	} else {
1339		shmem_swp_unmap(entry);
1340		sbinfo = SHMEM_SB(inode->i_sb);
1341		if (sbinfo->max_blocks) {
1342			spin_lock(&sbinfo->stat_lock);
1343			if (sbinfo->free_blocks == 0 ||
1344			    shmem_acct_block(info->flags)) {
1345				spin_unlock(&sbinfo->stat_lock);
1346				spin_unlock(&info->lock);
1347				error = -ENOSPC;
1348				goto failed;
1349			}
1350			sbinfo->free_blocks--;
1351			inode->i_blocks += BLOCKS_PER_PAGE;
1352			spin_unlock(&sbinfo->stat_lock);
1353		} else if (shmem_acct_block(info->flags)) {
1354			spin_unlock(&info->lock);
1355			error = -ENOSPC;
1356			goto failed;
1357		}
1358
1359		if (!filepage) {
1360			int ret;
1361
1362			spin_unlock(&info->lock);
1363			filepage = shmem_alloc_page(gfp, info, idx);
1364			if (!filepage) {
1365				shmem_unacct_blocks(info->flags, 1);
1366				shmem_free_blocks(inode, 1);
1367				error = -ENOMEM;
1368				goto failed;
1369			}
1370			SetPageSwapBacked(filepage);
1371
1372			/* Precharge page while we can wait, compensate after */
1373			error = mem_cgroup_cache_charge(filepage, current->mm,
1374							gfp & ~__GFP_HIGHMEM);
1375			if (error) {
1376				page_cache_release(filepage);
1377				shmem_unacct_blocks(info->flags, 1);
1378				shmem_free_blocks(inode, 1);
1379				filepage = NULL;
1380				goto failed;
1381			}
1382
1383			spin_lock(&info->lock);
1384			entry = shmem_swp_alloc(info, idx, sgp);
1385			if (IS_ERR(entry))
1386				error = PTR_ERR(entry);
1387			else {
1388				swap = *entry;
1389				shmem_swp_unmap(entry);
1390			}
1391			ret = error || swap.val;
1392			if (ret)
1393				mem_cgroup_uncharge_cache_page(filepage);
1394			else
1395				ret = add_to_page_cache_lru(filepage, mapping,
1396						idx, GFP_NOWAIT);
1397			/*
1398			 * At add_to_page_cache_lru() failure, uncharge will
1399			 * be done automatically.
1400			 */
1401			if (ret) {
1402				spin_unlock(&info->lock);
1403				page_cache_release(filepage);
1404				shmem_unacct_blocks(info->flags, 1);
1405				shmem_free_blocks(inode, 1);
1406				filepage = NULL;
1407				if (error)
1408					goto failed;
1409				goto repeat;
1410			}
1411			info->flags |= SHMEM_PAGEIN;
1412		}
1413
1414		info->alloced++;
1415		spin_unlock(&info->lock);
1416		clear_highpage(filepage);
1417		flush_dcache_page(filepage);
1418		SetPageUptodate(filepage);
1419		if (sgp == SGP_DIRTY)
1420			set_page_dirty(filepage);
1421	}
1422done:
1423	*pagep = filepage;
1424	return 0;
1425
1426failed:
1427	if (*pagep != filepage) {
1428		unlock_page(filepage);
1429		page_cache_release(filepage);
1430	}
1431	return error;
1432}
1433
1434static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1435{
1436	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1437	int error;
1438	int ret;
1439
1440	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1441		return VM_FAULT_SIGBUS;
1442
1443	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1444	if (error)
1445		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1446
1447	mark_page_accessed(vmf->page);
1448	return ret | VM_FAULT_LOCKED;
1449}
1450
1451#ifdef CONFIG_NUMA
1452static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1453{
1454	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1455	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1456}
1457
1458static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1459					  unsigned long addr)
1460{
1461	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1462	unsigned long idx;
1463
1464	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1465	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1466}
1467#endif
1468
1469int shmem_lock(struct file *file, int lock, struct user_struct *user)
1470{
1471	struct inode *inode = file->f_path.dentry->d_inode;
1472	struct shmem_inode_info *info = SHMEM_I(inode);
1473	int retval = -ENOMEM;
1474
1475	spin_lock(&info->lock);
1476	if (lock && !(info->flags & VM_LOCKED)) {
1477		if (!user_shm_lock(inode->i_size, user))
1478			goto out_nomem;
1479		info->flags |= VM_LOCKED;
1480		mapping_set_unevictable(file->f_mapping);
1481	}
1482	if (!lock && (info->flags & VM_LOCKED) && user) {
1483		user_shm_unlock(inode->i_size, user);
1484		info->flags &= ~VM_LOCKED;
1485		mapping_clear_unevictable(file->f_mapping);
1486		scan_mapping_unevictable_pages(file->f_mapping);
1487	}
1488	retval = 0;
1489
1490out_nomem:
1491	spin_unlock(&info->lock);
1492	return retval;
1493}
1494
1495static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1496{
1497	file_accessed(file);
1498	vma->vm_ops = &shmem_vm_ops;
1499	vma->vm_flags |= VM_CAN_NONLINEAR;
1500	return 0;
1501}
1502
1503static struct inode *
1504shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1505{
1506	struct inode *inode;
1507	struct shmem_inode_info *info;
1508	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1509
1510	if (shmem_reserve_inode(sb))
1511		return NULL;
1512
1513	inode = new_inode(sb);
1514	if (inode) {
1515		inode->i_mode = mode;
1516		inode->i_uid = current->fsuid;
1517		inode->i_gid = current->fsgid;
1518		inode->i_blocks = 0;
1519		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1520		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1521		inode->i_generation = get_seconds();
1522		info = SHMEM_I(inode);
1523		memset(info, 0, (char *)inode - (char *)info);
1524		spin_lock_init(&info->lock);
1525		INIT_LIST_HEAD(&info->swaplist);
1526
1527		switch (mode & S_IFMT) {
1528		default:
1529			inode->i_op = &shmem_special_inode_operations;
1530			init_special_inode(inode, mode, dev);
1531			break;
1532		case S_IFREG:
1533			inode->i_mapping->a_ops = &shmem_aops;
1534			inode->i_op = &shmem_inode_operations;
1535			inode->i_fop = &shmem_file_operations;
1536			mpol_shared_policy_init(&info->policy,
1537						 shmem_get_sbmpol(sbinfo));
1538			break;
1539		case S_IFDIR:
1540			inc_nlink(inode);
1541			/* Some things misbehave if size == 0 on a directory */
1542			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1543			inode->i_op = &shmem_dir_inode_operations;
1544			inode->i_fop = &simple_dir_operations;
1545			break;
1546		case S_IFLNK:
1547			/*
1548			 * Must not load anything in the rbtree,
1549			 * mpol_free_shared_policy will not be called.
1550			 */
1551			mpol_shared_policy_init(&info->policy, NULL);
1552			break;
1553		}
1554	} else
1555		shmem_free_inode(sb);
1556	return inode;
1557}
1558
1559#ifdef CONFIG_TMPFS
1560static const struct inode_operations shmem_symlink_inode_operations;
1561static const struct inode_operations shmem_symlink_inline_operations;
1562
1563/*
1564 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1565 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1566 * below the loop driver, in the generic fashion that many filesystems support.
1567 */
1568static int shmem_readpage(struct file *file, struct page *page)
1569{
1570	struct inode *inode = page->mapping->host;
1571	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1572	unlock_page(page);
1573	return error;
1574}
1575
1576static int
1577shmem_write_begin(struct file *file, struct address_space *mapping,
1578			loff_t pos, unsigned len, unsigned flags,
1579			struct page **pagep, void **fsdata)
1580{
1581	struct inode *inode = mapping->host;
1582	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1583	*pagep = NULL;
1584	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1585}
1586
1587static int
1588shmem_write_end(struct file *file, struct address_space *mapping,
1589			loff_t pos, unsigned len, unsigned copied,
1590			struct page *page, void *fsdata)
1591{
1592	struct inode *inode = mapping->host;
1593
1594	if (pos + copied > inode->i_size)
1595		i_size_write(inode, pos + copied);
1596
1597	unlock_page(page);
1598	set_page_dirty(page);
1599	page_cache_release(page);
1600
1601	return copied;
1602}
1603
1604static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1605{
1606	struct inode *inode = filp->f_path.dentry->d_inode;
1607	struct address_space *mapping = inode->i_mapping;
1608	unsigned long index, offset;
1609	enum sgp_type sgp = SGP_READ;
1610
1611	/*
1612	 * Might this read be for a stacking filesystem?  Then when reading
1613	 * holes of a sparse file, we actually need to allocate those pages,
1614	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1615	 */
1616	if (segment_eq(get_fs(), KERNEL_DS))
1617		sgp = SGP_DIRTY;
1618
1619	index = *ppos >> PAGE_CACHE_SHIFT;
1620	offset = *ppos & ~PAGE_CACHE_MASK;
1621
1622	for (;;) {
1623		struct page *page = NULL;
1624		unsigned long end_index, nr, ret;
1625		loff_t i_size = i_size_read(inode);
1626
1627		end_index = i_size >> PAGE_CACHE_SHIFT;
1628		if (index > end_index)
1629			break;
1630		if (index == end_index) {
1631			nr = i_size & ~PAGE_CACHE_MASK;
1632			if (nr <= offset)
1633				break;
1634		}
1635
1636		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1637		if (desc->error) {
1638			if (desc->error == -EINVAL)
1639				desc->error = 0;
1640			break;
1641		}
1642		if (page)
1643			unlock_page(page);
1644
1645		/*
1646		 * We must evaluate after, since reads (unlike writes)
1647		 * are called without i_mutex protection against truncate
1648		 */
1649		nr = PAGE_CACHE_SIZE;
1650		i_size = i_size_read(inode);
1651		end_index = i_size >> PAGE_CACHE_SHIFT;
1652		if (index == end_index) {
1653			nr = i_size & ~PAGE_CACHE_MASK;
1654			if (nr <= offset) {
1655				if (page)
1656					page_cache_release(page);
1657				break;
1658			}
1659		}
1660		nr -= offset;
1661
1662		if (page) {
1663			/*
1664			 * If users can be writing to this page using arbitrary
1665			 * virtual addresses, take care about potential aliasing
1666			 * before reading the page on the kernel side.
1667			 */
1668			if (mapping_writably_mapped(mapping))
1669				flush_dcache_page(page);
1670			/*
1671			 * Mark the page accessed if we read the beginning.
1672			 */
1673			if (!offset)
1674				mark_page_accessed(page);
1675		} else {
1676			page = ZERO_PAGE(0);
1677			page_cache_get(page);
1678		}
1679
1680		/*
1681		 * Ok, we have the page, and it's up-to-date, so
1682		 * now we can copy it to user space...
1683		 *
1684		 * The actor routine returns how many bytes were actually used..
1685		 * NOTE! This may not be the same as how much of a user buffer
1686		 * we filled up (we may be padding etc), so we can only update
1687		 * "pos" here (the actor routine has to update the user buffer
1688		 * pointers and the remaining count).
1689		 */
1690		ret = actor(desc, page, offset, nr);
1691		offset += ret;
1692		index += offset >> PAGE_CACHE_SHIFT;
1693		offset &= ~PAGE_CACHE_MASK;
1694
1695		page_cache_release(page);
1696		if (ret != nr || !desc->count)
1697			break;
1698
1699		cond_resched();
1700	}
1701
1702	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1703	file_accessed(filp);
1704}
1705
1706static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1707		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1708{
1709	struct file *filp = iocb->ki_filp;
1710	ssize_t retval;
1711	unsigned long seg;
1712	size_t count;
1713	loff_t *ppos = &iocb->ki_pos;
1714
1715	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1716	if (retval)
1717		return retval;
1718
1719	for (seg = 0; seg < nr_segs; seg++) {
1720		read_descriptor_t desc;
1721
1722		desc.written = 0;
1723		desc.arg.buf = iov[seg].iov_base;
1724		desc.count = iov[seg].iov_len;
1725		if (desc.count == 0)
1726			continue;
1727		desc.error = 0;
1728		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1729		retval += desc.written;
1730		if (desc.error) {
1731			retval = retval ?: desc.error;
1732			break;
1733		}
1734		if (desc.count > 0)
1735			break;
1736	}
1737	return retval;
1738}
1739
1740static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1741{
1742	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1743
1744	buf->f_type = TMPFS_MAGIC;
1745	buf->f_bsize = PAGE_CACHE_SIZE;
1746	buf->f_namelen = NAME_MAX;
1747	spin_lock(&sbinfo->stat_lock);
1748	if (sbinfo->max_blocks) {
1749		buf->f_blocks = sbinfo->max_blocks;
1750		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1751	}
1752	if (sbinfo->max_inodes) {
1753		buf->f_files = sbinfo->max_inodes;
1754		buf->f_ffree = sbinfo->free_inodes;
1755	}
1756	/* else leave those fields 0 like simple_statfs */
1757	spin_unlock(&sbinfo->stat_lock);
1758	return 0;
1759}
1760
1761/*
1762 * File creation. Allocate an inode, and we're done..
1763 */
1764static int
1765shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1766{
1767	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1768	int error = -ENOSPC;
1769
1770	if (inode) {
1771		error = security_inode_init_security(inode, dir, NULL, NULL,
1772						     NULL);
1773		if (error) {
1774			if (error != -EOPNOTSUPP) {
1775				iput(inode);
1776				return error;
1777			}
1778		}
1779		error = shmem_acl_init(inode, dir);
1780		if (error) {
1781			iput(inode);
1782			return error;
1783		}
1784		if (dir->i_mode & S_ISGID) {
1785			inode->i_gid = dir->i_gid;
1786			if (S_ISDIR(mode))
1787				inode->i_mode |= S_ISGID;
1788		}
1789		dir->i_size += BOGO_DIRENT_SIZE;
1790		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1791		d_instantiate(dentry, inode);
1792		dget(dentry); /* Extra count - pin the dentry in core */
1793	}
1794	return error;
1795}
1796
1797static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1798{
1799	int error;
1800
1801	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1802		return error;
1803	inc_nlink(dir);
1804	return 0;
1805}
1806
1807static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1808		struct nameidata *nd)
1809{
1810	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1811}
1812
1813/*
1814 * Link a file..
1815 */
1816static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1817{
1818	struct inode *inode = old_dentry->d_inode;
1819	int ret;
1820
1821	/*
1822	 * No ordinary (disk based) filesystem counts links as inodes;
1823	 * but each new link needs a new dentry, pinning lowmem, and
1824	 * tmpfs dentries cannot be pruned until they are unlinked.
1825	 */
1826	ret = shmem_reserve_inode(inode->i_sb);
1827	if (ret)
1828		goto out;
1829
1830	dir->i_size += BOGO_DIRENT_SIZE;
1831	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1832	inc_nlink(inode);
1833	atomic_inc(&inode->i_count);	/* New dentry reference */
1834	dget(dentry);		/* Extra pinning count for the created dentry */
1835	d_instantiate(dentry, inode);
1836out:
1837	return ret;
1838}
1839
1840static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1841{
1842	struct inode *inode = dentry->d_inode;
1843
1844	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1845		shmem_free_inode(inode->i_sb);
1846
1847	dir->i_size -= BOGO_DIRENT_SIZE;
1848	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1849	drop_nlink(inode);
1850	dput(dentry);	/* Undo the count from "create" - this does all the work */
1851	return 0;
1852}
1853
1854static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1855{
1856	if (!simple_empty(dentry))
1857		return -ENOTEMPTY;
1858
1859	drop_nlink(dentry->d_inode);
1860	drop_nlink(dir);
1861	return shmem_unlink(dir, dentry);
1862}
1863
1864/*
1865 * The VFS layer already does all the dentry stuff for rename,
1866 * we just have to decrement the usage count for the target if
1867 * it exists so that the VFS layer correctly free's it when it
1868 * gets overwritten.
1869 */
1870static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1871{
1872	struct inode *inode = old_dentry->d_inode;
1873	int they_are_dirs = S_ISDIR(inode->i_mode);
1874
1875	if (!simple_empty(new_dentry))
1876		return -ENOTEMPTY;
1877
1878	if (new_dentry->d_inode) {
1879		(void) shmem_unlink(new_dir, new_dentry);
1880		if (they_are_dirs)
1881			drop_nlink(old_dir);
1882	} else if (they_are_dirs) {
1883		drop_nlink(old_dir);
1884		inc_nlink(new_dir);
1885	}
1886
1887	old_dir->i_size -= BOGO_DIRENT_SIZE;
1888	new_dir->i_size += BOGO_DIRENT_SIZE;
1889	old_dir->i_ctime = old_dir->i_mtime =
1890	new_dir->i_ctime = new_dir->i_mtime =
1891	inode->i_ctime = CURRENT_TIME;
1892	return 0;
1893}
1894
1895static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1896{
1897	int error;
1898	int len;
1899	struct inode *inode;
1900	struct page *page = NULL;
1901	char *kaddr;
1902	struct shmem_inode_info *info;
1903
1904	len = strlen(symname) + 1;
1905	if (len > PAGE_CACHE_SIZE)
1906		return -ENAMETOOLONG;
1907
1908	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1909	if (!inode)
1910		return -ENOSPC;
1911
1912	error = security_inode_init_security(inode, dir, NULL, NULL,
1913					     NULL);
1914	if (error) {
1915		if (error != -EOPNOTSUPP) {
1916			iput(inode);
1917			return error;
1918		}
1919		error = 0;
1920	}
1921
1922	info = SHMEM_I(inode);
1923	inode->i_size = len-1;
1924	if (len <= (char *)inode - (char *)info) {
1925		/* do it inline */
1926		memcpy(info, symname, len);
1927		inode->i_op = &shmem_symlink_inline_operations;
1928	} else {
1929		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1930		if (error) {
1931			iput(inode);
1932			return error;
1933		}
1934		unlock_page(page);
1935		inode->i_mapping->a_ops = &shmem_aops;
1936		inode->i_op = &shmem_symlink_inode_operations;
1937		kaddr = kmap_atomic(page, KM_USER0);
1938		memcpy(kaddr, symname, len);
1939		kunmap_atomic(kaddr, KM_USER0);
1940		set_page_dirty(page);
1941		page_cache_release(page);
1942	}
1943	if (dir->i_mode & S_ISGID)
1944		inode->i_gid = dir->i_gid;
1945	dir->i_size += BOGO_DIRENT_SIZE;
1946	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1947	d_instantiate(dentry, inode);
1948	dget(dentry);
1949	return 0;
1950}
1951
1952static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1953{
1954	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1955	return NULL;
1956}
1957
1958static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1959{
1960	struct page *page = NULL;
1961	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1962	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1963	if (page)
1964		unlock_page(page);
1965	return page;
1966}
1967
1968static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1969{
1970	if (!IS_ERR(nd_get_link(nd))) {
1971		struct page *page = cookie;
1972		kunmap(page);
1973		mark_page_accessed(page);
1974		page_cache_release(page);
1975	}
1976}
1977
1978static const struct inode_operations shmem_symlink_inline_operations = {
1979	.readlink	= generic_readlink,
1980	.follow_link	= shmem_follow_link_inline,
1981};
1982
1983static const struct inode_operations shmem_symlink_inode_operations = {
1984	.truncate	= shmem_truncate,
1985	.readlink	= generic_readlink,
1986	.follow_link	= shmem_follow_link,
1987	.put_link	= shmem_put_link,
1988};
1989
1990#ifdef CONFIG_TMPFS_POSIX_ACL
1991/*
1992 * Superblocks without xattr inode operations will get security.* xattr
1993 * support from the VFS "for free". As soon as we have any other xattrs
1994 * like ACLs, we also need to implement the security.* handlers at
1995 * filesystem level, though.
1996 */
1997
1998static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1999					size_t list_len, const char *name,
2000					size_t name_len)
2001{
2002	return security_inode_listsecurity(inode, list, list_len);
2003}
2004
2005static int shmem_xattr_security_get(struct inode *inode, const char *name,
2006				    void *buffer, size_t size)
2007{
2008	if (strcmp(name, "") == 0)
2009		return -EINVAL;
2010	return xattr_getsecurity(inode, name, buffer, size);
2011}
2012
2013static int shmem_xattr_security_set(struct inode *inode, const char *name,
2014				    const void *value, size_t size, int flags)
2015{
2016	if (strcmp(name, "") == 0)
2017		return -EINVAL;
2018	return security_inode_setsecurity(inode, name, value, size, flags);
2019}
2020
2021static struct xattr_handler shmem_xattr_security_handler = {
2022	.prefix = XATTR_SECURITY_PREFIX,
2023	.list   = shmem_xattr_security_list,
2024	.get    = shmem_xattr_security_get,
2025	.set    = shmem_xattr_security_set,
2026};
2027
2028static struct xattr_handler *shmem_xattr_handlers[] = {
2029	&shmem_xattr_acl_access_handler,
2030	&shmem_xattr_acl_default_handler,
2031	&shmem_xattr_security_handler,
2032	NULL
2033};
2034#endif
2035
2036static struct dentry *shmem_get_parent(struct dentry *child)
2037{
2038	return ERR_PTR(-ESTALE);
2039}
2040
2041static int shmem_match(struct inode *ino, void *vfh)
2042{
2043	__u32 *fh = vfh;
2044	__u64 inum = fh[2];
2045	inum = (inum << 32) | fh[1];
2046	return ino->i_ino == inum && fh[0] == ino->i_generation;
2047}
2048
2049static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2050		struct fid *fid, int fh_len, int fh_type)
2051{
2052	struct inode *inode;
2053	struct dentry *dentry = NULL;
2054	u64 inum = fid->raw[2];
2055	inum = (inum << 32) | fid->raw[1];
2056
2057	if (fh_len < 3)
2058		return NULL;
2059
2060	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2061			shmem_match, fid->raw);
2062	if (inode) {
2063		dentry = d_find_alias(inode);
2064		iput(inode);
2065	}
2066
2067	return dentry;
2068}
2069
2070static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2071				int connectable)
2072{
2073	struct inode *inode = dentry->d_inode;
2074
2075	if (*len < 3)
2076		return 255;
2077
2078	if (hlist_unhashed(&inode->i_hash)) {
2079		/* Unfortunately insert_inode_hash is not idempotent,
2080		 * so as we hash inodes here rather than at creation
2081		 * time, we need a lock to ensure we only try
2082		 * to do it once
2083		 */
2084		static DEFINE_SPINLOCK(lock);
2085		spin_lock(&lock);
2086		if (hlist_unhashed(&inode->i_hash))
2087			__insert_inode_hash(inode,
2088					    inode->i_ino + inode->i_generation);
2089		spin_unlock(&lock);
2090	}
2091
2092	fh[0] = inode->i_generation;
2093	fh[1] = inode->i_ino;
2094	fh[2] = ((__u64)inode->i_ino) >> 32;
2095
2096	*len = 3;
2097	return 1;
2098}
2099
2100static const struct export_operations shmem_export_ops = {
2101	.get_parent     = shmem_get_parent,
2102	.encode_fh      = shmem_encode_fh,
2103	.fh_to_dentry	= shmem_fh_to_dentry,
2104};
2105
2106static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2107			       bool remount)
2108{
2109	char *this_char, *value, *rest;
2110
2111	while (options != NULL) {
2112		this_char = options;
2113		for (;;) {
2114			/*
2115			 * NUL-terminate this option: unfortunately,
2116			 * mount options form a comma-separated list,
2117			 * but mpol's nodelist may also contain commas.
2118			 */
2119			options = strchr(options, ',');
2120			if (options == NULL)
2121				break;
2122			options++;
2123			if (!isdigit(*options)) {
2124				options[-1] = '\0';
2125				break;
2126			}
2127		}
2128		if (!*this_char)
2129			continue;
2130		if ((value = strchr(this_char,'=')) != NULL) {
2131			*value++ = 0;
2132		} else {
2133			printk(KERN_ERR
2134			    "tmpfs: No value for mount option '%s'\n",
2135			    this_char);
2136			return 1;
2137		}
2138
2139		if (!strcmp(this_char,"size")) {
2140			unsigned long long size;
2141			size = memparse(value,&rest);
2142			if (*rest == '%') {
2143				size <<= PAGE_SHIFT;
2144				size *= totalram_pages;
2145				do_div(size, 100);
2146				rest++;
2147			}
2148			if (*rest)
2149				goto bad_val;
2150			sbinfo->max_blocks =
2151				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2152		} else if (!strcmp(this_char,"nr_blocks")) {
2153			sbinfo->max_blocks = memparse(value, &rest);
2154			if (*rest)
2155				goto bad_val;
2156		} else if (!strcmp(this_char,"nr_inodes")) {
2157			sbinfo->max_inodes = memparse(value, &rest);
2158			if (*rest)
2159				goto bad_val;
2160		} else if (!strcmp(this_char,"mode")) {
2161			if (remount)
2162				continue;
2163			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2164			if (*rest)
2165				goto bad_val;
2166		} else if (!strcmp(this_char,"uid")) {
2167			if (remount)
2168				continue;
2169			sbinfo->uid = simple_strtoul(value, &rest, 0);
2170			if (*rest)
2171				goto bad_val;
2172		} else if (!strcmp(this_char,"gid")) {
2173			if (remount)
2174				continue;
2175			sbinfo->gid = simple_strtoul(value, &rest, 0);
2176			if (*rest)
2177				goto bad_val;
2178		} else if (!strcmp(this_char,"mpol")) {
2179			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2180				goto bad_val;
2181		} else {
2182			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2183			       this_char);
2184			return 1;
2185		}
2186	}
2187	return 0;
2188
2189bad_val:
2190	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2191	       value, this_char);
2192	return 1;
2193
2194}
2195
2196static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2197{
2198	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2199	struct shmem_sb_info config = *sbinfo;
2200	unsigned long blocks;
2201	unsigned long inodes;
2202	int error = -EINVAL;
2203
2204	if (shmem_parse_options(data, &config, true))
2205		return error;
2206
2207	spin_lock(&sbinfo->stat_lock);
2208	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2209	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2210	if (config.max_blocks < blocks)
2211		goto out;
2212	if (config.max_inodes < inodes)
2213		goto out;
2214	/*
2215	 * Those tests also disallow limited->unlimited while any are in
2216	 * use, so i_blocks will always be zero when max_blocks is zero;
2217	 * but we must separately disallow unlimited->limited, because
2218	 * in that case we have no record of how much is already in use.
2219	 */
2220	if (config.max_blocks && !sbinfo->max_blocks)
2221		goto out;
2222	if (config.max_inodes && !sbinfo->max_inodes)
2223		goto out;
2224
2225	error = 0;
2226	sbinfo->max_blocks  = config.max_blocks;
2227	sbinfo->free_blocks = config.max_blocks - blocks;
2228	sbinfo->max_inodes  = config.max_inodes;
2229	sbinfo->free_inodes = config.max_inodes - inodes;
2230
2231	mpol_put(sbinfo->mpol);
2232	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2233out:
2234	spin_unlock(&sbinfo->stat_lock);
2235	return error;
2236}
2237
2238static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2239{
2240	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2241
2242	if (sbinfo->max_blocks != shmem_default_max_blocks())
2243		seq_printf(seq, ",size=%luk",
2244			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2245	if (sbinfo->max_inodes != shmem_default_max_inodes())
2246		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2247	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2248		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2249	if (sbinfo->uid != 0)
2250		seq_printf(seq, ",uid=%u", sbinfo->uid);
2251	if (sbinfo->gid != 0)
2252		seq_printf(seq, ",gid=%u", sbinfo->gid);
2253	shmem_show_mpol(seq, sbinfo->mpol);
2254	return 0;
2255}
2256#endif /* CONFIG_TMPFS */
2257
2258static void shmem_put_super(struct super_block *sb)
2259{
2260	kfree(sb->s_fs_info);
2261	sb->s_fs_info = NULL;
2262}
2263
2264static int shmem_fill_super(struct super_block *sb,
2265			    void *data, int silent)
2266{
2267	struct inode *inode;
2268	struct dentry *root;
2269	struct shmem_sb_info *sbinfo;
2270	int err = -ENOMEM;
2271
2272	/* Round up to L1_CACHE_BYTES to resist false sharing */
2273	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2274				L1_CACHE_BYTES), GFP_KERNEL);
2275	if (!sbinfo)
2276		return -ENOMEM;
2277
2278	sbinfo->max_blocks = 0;
2279	sbinfo->max_inodes = 0;
2280	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2281	sbinfo->uid = current->fsuid;
2282	sbinfo->gid = current->fsgid;
2283	sbinfo->mpol = NULL;
2284	sb->s_fs_info = sbinfo;
2285
2286#ifdef CONFIG_TMPFS
2287	/*
2288	 * Per default we only allow half of the physical ram per
2289	 * tmpfs instance, limiting inodes to one per page of lowmem;
2290	 * but the internal instance is left unlimited.
2291	 */
2292	if (!(sb->s_flags & MS_NOUSER)) {
2293		sbinfo->max_blocks = shmem_default_max_blocks();
2294		sbinfo->max_inodes = shmem_default_max_inodes();
2295		if (shmem_parse_options(data, sbinfo, false)) {
2296			err = -EINVAL;
2297			goto failed;
2298		}
2299	}
2300	sb->s_export_op = &shmem_export_ops;
2301#else
2302	sb->s_flags |= MS_NOUSER;
2303#endif
2304
2305	spin_lock_init(&sbinfo->stat_lock);
2306	sbinfo->free_blocks = sbinfo->max_blocks;
2307	sbinfo->free_inodes = sbinfo->max_inodes;
2308
2309	sb->s_maxbytes = SHMEM_MAX_BYTES;
2310	sb->s_blocksize = PAGE_CACHE_SIZE;
2311	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2312	sb->s_magic = TMPFS_MAGIC;
2313	sb->s_op = &shmem_ops;
2314	sb->s_time_gran = 1;
2315#ifdef CONFIG_TMPFS_POSIX_ACL
2316	sb->s_xattr = shmem_xattr_handlers;
2317	sb->s_flags |= MS_POSIXACL;
2318#endif
2319
2320	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2321	if (!inode)
2322		goto failed;
2323	inode->i_uid = sbinfo->uid;
2324	inode->i_gid = sbinfo->gid;
2325	root = d_alloc_root(inode);
2326	if (!root)
2327		goto failed_iput;
2328	sb->s_root = root;
2329	return 0;
2330
2331failed_iput:
2332	iput(inode);
2333failed:
2334	shmem_put_super(sb);
2335	return err;
2336}
2337
2338static struct kmem_cache *shmem_inode_cachep;
2339
2340static struct inode *shmem_alloc_inode(struct super_block *sb)
2341{
2342	struct shmem_inode_info *p;
2343	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2344	if (!p)
2345		return NULL;
2346	return &p->vfs_inode;
2347}
2348
2349static void shmem_destroy_inode(struct inode *inode)
2350{
2351	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2352		/* only struct inode is valid if it's an inline symlink */
2353		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2354	}
2355	shmem_acl_destroy_inode(inode);
2356	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2357}
2358
2359static void init_once(void *foo)
2360{
2361	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2362
2363	inode_init_once(&p->vfs_inode);
2364#ifdef CONFIG_TMPFS_POSIX_ACL
2365	p->i_acl = NULL;
2366	p->i_default_acl = NULL;
2367#endif
2368}
2369
2370static int init_inodecache(void)
2371{
2372	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2373				sizeof(struct shmem_inode_info),
2374				0, SLAB_PANIC, init_once);
2375	return 0;
2376}
2377
2378static void destroy_inodecache(void)
2379{
2380	kmem_cache_destroy(shmem_inode_cachep);
2381}
2382
2383static const struct address_space_operations shmem_aops = {
2384	.writepage	= shmem_writepage,
2385	.set_page_dirty	= __set_page_dirty_no_writeback,
2386#ifdef CONFIG_TMPFS
2387	.readpage	= shmem_readpage,
2388	.write_begin	= shmem_write_begin,
2389	.write_end	= shmem_write_end,
2390#endif
2391	.migratepage	= migrate_page,
2392};
2393
2394static const struct file_operations shmem_file_operations = {
2395	.mmap		= shmem_mmap,
2396#ifdef CONFIG_TMPFS
2397	.llseek		= generic_file_llseek,
2398	.read		= do_sync_read,
2399	.write		= do_sync_write,
2400	.aio_read	= shmem_file_aio_read,
2401	.aio_write	= generic_file_aio_write,
2402	.fsync		= simple_sync_file,
2403	.splice_read	= generic_file_splice_read,
2404	.splice_write	= generic_file_splice_write,
2405#endif
2406};
2407
2408static const struct inode_operations shmem_inode_operations = {
2409	.truncate	= shmem_truncate,
2410	.setattr	= shmem_notify_change,
2411	.truncate_range	= shmem_truncate_range,
2412#ifdef CONFIG_TMPFS_POSIX_ACL
2413	.setxattr	= generic_setxattr,
2414	.getxattr	= generic_getxattr,
2415	.listxattr	= generic_listxattr,
2416	.removexattr	= generic_removexattr,
2417	.permission	= shmem_permission,
2418#endif
2419
2420};
2421
2422static const struct inode_operations shmem_dir_inode_operations = {
2423#ifdef CONFIG_TMPFS
2424	.create		= shmem_create,
2425	.lookup		= simple_lookup,
2426	.link		= shmem_link,
2427	.unlink		= shmem_unlink,
2428	.symlink	= shmem_symlink,
2429	.mkdir		= shmem_mkdir,
2430	.rmdir		= shmem_rmdir,
2431	.mknod		= shmem_mknod,
2432	.rename		= shmem_rename,
2433#endif
2434#ifdef CONFIG_TMPFS_POSIX_ACL
2435	.setattr	= shmem_notify_change,
2436	.setxattr	= generic_setxattr,
2437	.getxattr	= generic_getxattr,
2438	.listxattr	= generic_listxattr,
2439	.removexattr	= generic_removexattr,
2440	.permission	= shmem_permission,
2441#endif
2442};
2443
2444static const struct inode_operations shmem_special_inode_operations = {
2445#ifdef CONFIG_TMPFS_POSIX_ACL
2446	.setattr	= shmem_notify_change,
2447	.setxattr	= generic_setxattr,
2448	.getxattr	= generic_getxattr,
2449	.listxattr	= generic_listxattr,
2450	.removexattr	= generic_removexattr,
2451	.permission	= shmem_permission,
2452#endif
2453};
2454
2455static const struct super_operations shmem_ops = {
2456	.alloc_inode	= shmem_alloc_inode,
2457	.destroy_inode	= shmem_destroy_inode,
2458#ifdef CONFIG_TMPFS
2459	.statfs		= shmem_statfs,
2460	.remount_fs	= shmem_remount_fs,
2461	.show_options	= shmem_show_options,
2462#endif
2463	.delete_inode	= shmem_delete_inode,
2464	.drop_inode	= generic_delete_inode,
2465	.put_super	= shmem_put_super,
2466};
2467
2468static struct vm_operations_struct shmem_vm_ops = {
2469	.fault		= shmem_fault,
2470#ifdef CONFIG_NUMA
2471	.set_policy     = shmem_set_policy,
2472	.get_policy     = shmem_get_policy,
2473#endif
2474};
2475
2476
2477static int shmem_get_sb(struct file_system_type *fs_type,
2478	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2479{
2480	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2481}
2482
2483static struct file_system_type tmpfs_fs_type = {
2484	.owner		= THIS_MODULE,
2485	.name		= "tmpfs",
2486	.get_sb		= shmem_get_sb,
2487	.kill_sb	= kill_litter_super,
2488};
2489static struct vfsmount *shm_mnt;
2490
2491static int __init init_tmpfs(void)
2492{
2493	int error;
2494
2495	error = bdi_init(&shmem_backing_dev_info);
2496	if (error)
2497		goto out4;
2498
2499	error = init_inodecache();
2500	if (error)
2501		goto out3;
2502
2503	error = register_filesystem(&tmpfs_fs_type);
2504	if (error) {
2505		printk(KERN_ERR "Could not register tmpfs\n");
2506		goto out2;
2507	}
2508
2509	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2510				tmpfs_fs_type.name, NULL);
2511	if (IS_ERR(shm_mnt)) {
2512		error = PTR_ERR(shm_mnt);
2513		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2514		goto out1;
2515	}
2516	return 0;
2517
2518out1:
2519	unregister_filesystem(&tmpfs_fs_type);
2520out2:
2521	destroy_inodecache();
2522out3:
2523	bdi_destroy(&shmem_backing_dev_info);
2524out4:
2525	shm_mnt = ERR_PTR(error);
2526	return error;
2527}
2528module_init(init_tmpfs)
2529
2530/**
2531 * shmem_file_setup - get an unlinked file living in tmpfs
2532 * @name: name for dentry (to be seen in /proc/<pid>/maps
2533 * @size: size to be set for the file
2534 * @flags: vm_flags
2535 */
2536struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2537{
2538	int error;
2539	struct file *file;
2540	struct inode *inode;
2541	struct dentry *dentry, *root;
2542	struct qstr this;
2543
2544	if (IS_ERR(shm_mnt))
2545		return (void *)shm_mnt;
2546
2547	if (size < 0 || size > SHMEM_MAX_BYTES)
2548		return ERR_PTR(-EINVAL);
2549
2550	if (shmem_acct_size(flags, size))
2551		return ERR_PTR(-ENOMEM);
2552
2553	error = -ENOMEM;
2554	this.name = name;
2555	this.len = strlen(name);
2556	this.hash = 0; /* will go */
2557	root = shm_mnt->mnt_root;
2558	dentry = d_alloc(root, &this);
2559	if (!dentry)
2560		goto put_memory;
2561
2562	error = -ENFILE;
2563	file = get_empty_filp();
2564	if (!file)
2565		goto put_dentry;
2566
2567	error = -ENOSPC;
2568	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2569	if (!inode)
2570		goto close_file;
2571
2572	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2573	d_instantiate(dentry, inode);
2574	inode->i_size = size;
2575	inode->i_nlink = 0;	/* It is unlinked */
2576	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2577			&shmem_file_operations);
2578	return file;
2579
2580close_file:
2581	put_filp(file);
2582put_dentry:
2583	dput(dentry);
2584put_memory:
2585	shmem_unacct_size(flags, size);
2586	return ERR_PTR(error);
2587}
2588EXPORT_SYMBOL_GPL(shmem_file_setup);
2589
2590/**
2591 * shmem_zero_setup - setup a shared anonymous mapping
2592 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2593 */
2594int shmem_zero_setup(struct vm_area_struct *vma)
2595{
2596	struct file *file;
2597	loff_t size = vma->vm_end - vma->vm_start;
2598
2599	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2600	if (IS_ERR(file))
2601		return PTR_ERR(file);
2602
2603	if (vma->vm_file)
2604		fput(vma->vm_file);
2605	vma->vm_file = file;
2606	vma->vm_ops = &shmem_vm_ops;
2607	return 0;
2608}
2609