shmem.c revision 800d15a53e7d14fa26495b7b95d3bfe7877dd69d
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52
53#include <asm/uaccess.h>
54#include <asm/div64.h>
55#include <asm/pgtable.h>
56
57/* This magic number is used in glibc for posix shared memory */
58#define TMPFS_MAGIC	0x01021994
59
60#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70#define SHMEM_PAGEIN	 VM_READ
71#define SHMEM_TRUNCATE	 VM_WRITE
72
73/* Definition to limit shmem_truncate's steps between cond_rescheds */
74#define LATENCY_LIMIT	 64
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80enum sgp_type {
81	SGP_QUICK,	/* don't try more than file page cache lookup */
82	SGP_READ,	/* don't exceed i_size, don't allocate page */
83	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84	SGP_WRITE,	/* may exceed i_size, may allocate page */
85	SGP_FAULT,	/* same as SGP_CACHE, return with page locked */
86};
87
88static int shmem_getpage(struct inode *inode, unsigned long idx,
89			 struct page **pagep, enum sgp_type sgp, int *type);
90
91static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
92{
93	/*
94	 * The above definition of ENTRIES_PER_PAGE, and the use of
95	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
96	 * might be reconsidered if it ever diverges from PAGE_SIZE.
97	 *
98	 * __GFP_MOVABLE is masked out as swap vectors cannot move
99	 */
100	return alloc_pages((gfp_mask & ~__GFP_MOVABLE) | __GFP_ZERO,
101				PAGE_CACHE_SHIFT-PAGE_SHIFT);
102}
103
104static inline void shmem_dir_free(struct page *page)
105{
106	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
107}
108
109static struct page **shmem_dir_map(struct page *page)
110{
111	return (struct page **)kmap_atomic(page, KM_USER0);
112}
113
114static inline void shmem_dir_unmap(struct page **dir)
115{
116	kunmap_atomic(dir, KM_USER0);
117}
118
119static swp_entry_t *shmem_swp_map(struct page *page)
120{
121	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
122}
123
124static inline void shmem_swp_balance_unmap(void)
125{
126	/*
127	 * When passing a pointer to an i_direct entry, to code which
128	 * also handles indirect entries and so will shmem_swp_unmap,
129	 * we must arrange for the preempt count to remain in balance.
130	 * What kmap_atomic of a lowmem page does depends on config
131	 * and architecture, so pretend to kmap_atomic some lowmem page.
132	 */
133	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
134}
135
136static inline void shmem_swp_unmap(swp_entry_t *entry)
137{
138	kunmap_atomic(entry, KM_USER1);
139}
140
141static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
142{
143	return sb->s_fs_info;
144}
145
146/*
147 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
148 * for shared memory and for shared anonymous (/dev/zero) mappings
149 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
150 * consistent with the pre-accounting of private mappings ...
151 */
152static inline int shmem_acct_size(unsigned long flags, loff_t size)
153{
154	return (flags & VM_ACCOUNT)?
155		security_vm_enough_memory(VM_ACCT(size)): 0;
156}
157
158static inline void shmem_unacct_size(unsigned long flags, loff_t size)
159{
160	if (flags & VM_ACCOUNT)
161		vm_unacct_memory(VM_ACCT(size));
162}
163
164/*
165 * ... whereas tmpfs objects are accounted incrementally as
166 * pages are allocated, in order to allow huge sparse files.
167 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
168 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 */
170static inline int shmem_acct_block(unsigned long flags)
171{
172	return (flags & VM_ACCOUNT)?
173		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
174}
175
176static inline void shmem_unacct_blocks(unsigned long flags, long pages)
177{
178	if (!(flags & VM_ACCOUNT))
179		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
180}
181
182static const struct super_operations shmem_ops;
183static const struct address_space_operations shmem_aops;
184static const struct file_operations shmem_file_operations;
185static const struct inode_operations shmem_inode_operations;
186static const struct inode_operations shmem_dir_inode_operations;
187static const struct inode_operations shmem_special_inode_operations;
188static struct vm_operations_struct shmem_vm_ops;
189
190static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
191	.ra_pages	= 0,	/* No readahead */
192	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
193	.unplug_io_fn	= default_unplug_io_fn,
194};
195
196static LIST_HEAD(shmem_swaplist);
197static DEFINE_SPINLOCK(shmem_swaplist_lock);
198
199static void shmem_free_blocks(struct inode *inode, long pages)
200{
201	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
202	if (sbinfo->max_blocks) {
203		spin_lock(&sbinfo->stat_lock);
204		sbinfo->free_blocks += pages;
205		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
206		spin_unlock(&sbinfo->stat_lock);
207	}
208}
209
210/*
211 * shmem_recalc_inode - recalculate the size of an inode
212 *
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223static void shmem_recalc_inode(struct inode *inode)
224{
225	struct shmem_inode_info *info = SHMEM_I(inode);
226	long freed;
227
228	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229	if (freed > 0) {
230		info->alloced -= freed;
231		shmem_unacct_blocks(info->flags, freed);
232		shmem_free_blocks(inode, freed);
233	}
234}
235
236/*
237 * shmem_swp_entry - find the swap vector position in the info structure
238 *
239 * @info:  info structure for the inode
240 * @index: index of the page to find
241 * @page:  optional page to add to the structure. Has to be preset to
242 *         all zeros
243 *
244 * If there is no space allocated yet it will return NULL when
245 * page is NULL, else it will use the page for the needed block,
246 * setting it to NULL on return to indicate that it has been used.
247 *
248 * The swap vector is organized the following way:
249 *
250 * There are SHMEM_NR_DIRECT entries directly stored in the
251 * shmem_inode_info structure. So small files do not need an addional
252 * allocation.
253 *
254 * For pages with index > SHMEM_NR_DIRECT there is the pointer
255 * i_indirect which points to a page which holds in the first half
256 * doubly indirect blocks, in the second half triple indirect blocks:
257 *
258 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
259 * following layout (for SHMEM_NR_DIRECT == 16):
260 *
261 * i_indirect -> dir --> 16-19
262 * 	      |	     +-> 20-23
263 * 	      |
264 * 	      +-->dir2 --> 24-27
265 * 	      |	       +-> 28-31
266 * 	      |	       +-> 32-35
267 * 	      |	       +-> 36-39
268 * 	      |
269 * 	      +-->dir3 --> 40-43
270 * 	       	       +-> 44-47
271 * 	      	       +-> 48-51
272 * 	      	       +-> 52-55
273 */
274static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
275{
276	unsigned long offset;
277	struct page **dir;
278	struct page *subdir;
279
280	if (index < SHMEM_NR_DIRECT) {
281		shmem_swp_balance_unmap();
282		return info->i_direct+index;
283	}
284	if (!info->i_indirect) {
285		if (page) {
286			info->i_indirect = *page;
287			*page = NULL;
288		}
289		return NULL;			/* need another page */
290	}
291
292	index -= SHMEM_NR_DIRECT;
293	offset = index % ENTRIES_PER_PAGE;
294	index /= ENTRIES_PER_PAGE;
295	dir = shmem_dir_map(info->i_indirect);
296
297	if (index >= ENTRIES_PER_PAGE/2) {
298		index -= ENTRIES_PER_PAGE/2;
299		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
300		index %= ENTRIES_PER_PAGE;
301		subdir = *dir;
302		if (!subdir) {
303			if (page) {
304				*dir = *page;
305				*page = NULL;
306			}
307			shmem_dir_unmap(dir);
308			return NULL;		/* need another page */
309		}
310		shmem_dir_unmap(dir);
311		dir = shmem_dir_map(subdir);
312	}
313
314	dir += index;
315	subdir = *dir;
316	if (!subdir) {
317		if (!page || !(subdir = *page)) {
318			shmem_dir_unmap(dir);
319			return NULL;		/* need a page */
320		}
321		*dir = subdir;
322		*page = NULL;
323	}
324	shmem_dir_unmap(dir);
325	return shmem_swp_map(subdir) + offset;
326}
327
328static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
329{
330	long incdec = value? 1: -1;
331
332	entry->val = value;
333	info->swapped += incdec;
334	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
335		struct page *page = kmap_atomic_to_page(entry);
336		set_page_private(page, page_private(page) + incdec);
337	}
338}
339
340/*
341 * shmem_swp_alloc - get the position of the swap entry for the page.
342 *                   If it does not exist allocate the entry.
343 *
344 * @info:	info structure for the inode
345 * @index:	index of the page to find
346 * @sgp:	check and recheck i_size? skip allocation?
347 */
348static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
349{
350	struct inode *inode = &info->vfs_inode;
351	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
352	struct page *page = NULL;
353	swp_entry_t *entry;
354
355	if (sgp != SGP_WRITE &&
356	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
357		return ERR_PTR(-EINVAL);
358
359	while (!(entry = shmem_swp_entry(info, index, &page))) {
360		if (sgp == SGP_READ)
361			return shmem_swp_map(ZERO_PAGE(0));
362		/*
363		 * Test free_blocks against 1 not 0, since we have 1 data
364		 * page (and perhaps indirect index pages) yet to allocate:
365		 * a waste to allocate index if we cannot allocate data.
366		 */
367		if (sbinfo->max_blocks) {
368			spin_lock(&sbinfo->stat_lock);
369			if (sbinfo->free_blocks <= 1) {
370				spin_unlock(&sbinfo->stat_lock);
371				return ERR_PTR(-ENOSPC);
372			}
373			sbinfo->free_blocks--;
374			inode->i_blocks += BLOCKS_PER_PAGE;
375			spin_unlock(&sbinfo->stat_lock);
376		}
377
378		spin_unlock(&info->lock);
379		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
380		if (page)
381			set_page_private(page, 0);
382		spin_lock(&info->lock);
383
384		if (!page) {
385			shmem_free_blocks(inode, 1);
386			return ERR_PTR(-ENOMEM);
387		}
388		if (sgp != SGP_WRITE &&
389		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
390			entry = ERR_PTR(-EINVAL);
391			break;
392		}
393		if (info->next_index <= index)
394			info->next_index = index + 1;
395	}
396	if (page) {
397		/* another task gave its page, or truncated the file */
398		shmem_free_blocks(inode, 1);
399		shmem_dir_free(page);
400	}
401	if (info->next_index <= index && !IS_ERR(entry))
402		info->next_index = index + 1;
403	return entry;
404}
405
406/*
407 * shmem_free_swp - free some swap entries in a directory
408 *
409 * @dir:        pointer to the directory
410 * @edir:       pointer after last entry of the directory
411 * @punch_lock: pointer to spinlock when needed for the holepunch case
412 */
413static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
414						spinlock_t *punch_lock)
415{
416	spinlock_t *punch_unlock = NULL;
417	swp_entry_t *ptr;
418	int freed = 0;
419
420	for (ptr = dir; ptr < edir; ptr++) {
421		if (ptr->val) {
422			if (unlikely(punch_lock)) {
423				punch_unlock = punch_lock;
424				punch_lock = NULL;
425				spin_lock(punch_unlock);
426				if (!ptr->val)
427					continue;
428			}
429			free_swap_and_cache(*ptr);
430			*ptr = (swp_entry_t){0};
431			freed++;
432		}
433	}
434	if (punch_unlock)
435		spin_unlock(punch_unlock);
436	return freed;
437}
438
439static int shmem_map_and_free_swp(struct page *subdir, int offset,
440		int limit, struct page ***dir, spinlock_t *punch_lock)
441{
442	swp_entry_t *ptr;
443	int freed = 0;
444
445	ptr = shmem_swp_map(subdir);
446	for (; offset < limit; offset += LATENCY_LIMIT) {
447		int size = limit - offset;
448		if (size > LATENCY_LIMIT)
449			size = LATENCY_LIMIT;
450		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
451							punch_lock);
452		if (need_resched()) {
453			shmem_swp_unmap(ptr);
454			if (*dir) {
455				shmem_dir_unmap(*dir);
456				*dir = NULL;
457			}
458			cond_resched();
459			ptr = shmem_swp_map(subdir);
460		}
461	}
462	shmem_swp_unmap(ptr);
463	return freed;
464}
465
466static void shmem_free_pages(struct list_head *next)
467{
468	struct page *page;
469	int freed = 0;
470
471	do {
472		page = container_of(next, struct page, lru);
473		next = next->next;
474		shmem_dir_free(page);
475		freed++;
476		if (freed >= LATENCY_LIMIT) {
477			cond_resched();
478			freed = 0;
479		}
480	} while (next);
481}
482
483static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
484{
485	struct shmem_inode_info *info = SHMEM_I(inode);
486	unsigned long idx;
487	unsigned long size;
488	unsigned long limit;
489	unsigned long stage;
490	unsigned long diroff;
491	struct page **dir;
492	struct page *topdir;
493	struct page *middir;
494	struct page *subdir;
495	swp_entry_t *ptr;
496	LIST_HEAD(pages_to_free);
497	long nr_pages_to_free = 0;
498	long nr_swaps_freed = 0;
499	int offset;
500	int freed;
501	int punch_hole;
502	spinlock_t *needs_lock;
503	spinlock_t *punch_lock;
504	unsigned long upper_limit;
505
506	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
507	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
508	if (idx >= info->next_index)
509		return;
510
511	spin_lock(&info->lock);
512	info->flags |= SHMEM_TRUNCATE;
513	if (likely(end == (loff_t) -1)) {
514		limit = info->next_index;
515		upper_limit = SHMEM_MAX_INDEX;
516		info->next_index = idx;
517		needs_lock = NULL;
518		punch_hole = 0;
519	} else {
520		if (end + 1 >= inode->i_size) {	/* we may free a little more */
521			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
522							PAGE_CACHE_SHIFT;
523			upper_limit = SHMEM_MAX_INDEX;
524		} else {
525			limit = (end + 1) >> PAGE_CACHE_SHIFT;
526			upper_limit = limit;
527		}
528		needs_lock = &info->lock;
529		punch_hole = 1;
530	}
531
532	topdir = info->i_indirect;
533	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
534		info->i_indirect = NULL;
535		nr_pages_to_free++;
536		list_add(&topdir->lru, &pages_to_free);
537	}
538	spin_unlock(&info->lock);
539
540	if (info->swapped && idx < SHMEM_NR_DIRECT) {
541		ptr = info->i_direct;
542		size = limit;
543		if (size > SHMEM_NR_DIRECT)
544			size = SHMEM_NR_DIRECT;
545		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
546	}
547
548	/*
549	 * If there are no indirect blocks or we are punching a hole
550	 * below indirect blocks, nothing to be done.
551	 */
552	if (!topdir || limit <= SHMEM_NR_DIRECT)
553		goto done2;
554
555	/*
556	 * The truncation case has already dropped info->lock, and we're safe
557	 * because i_size and next_index have already been lowered, preventing
558	 * access beyond.  But in the punch_hole case, we still need to take
559	 * the lock when updating the swap directory, because there might be
560	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
561	 * shmem_writepage.  However, whenever we find we can remove a whole
562	 * directory page (not at the misaligned start or end of the range),
563	 * we first NULLify its pointer in the level above, and then have no
564	 * need to take the lock when updating its contents: needs_lock and
565	 * punch_lock (either pointing to info->lock or NULL) manage this.
566	 */
567
568	upper_limit -= SHMEM_NR_DIRECT;
569	limit -= SHMEM_NR_DIRECT;
570	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
571	offset = idx % ENTRIES_PER_PAGE;
572	idx -= offset;
573
574	dir = shmem_dir_map(topdir);
575	stage = ENTRIES_PER_PAGEPAGE/2;
576	if (idx < ENTRIES_PER_PAGEPAGE/2) {
577		middir = topdir;
578		diroff = idx/ENTRIES_PER_PAGE;
579	} else {
580		dir += ENTRIES_PER_PAGE/2;
581		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
582		while (stage <= idx)
583			stage += ENTRIES_PER_PAGEPAGE;
584		middir = *dir;
585		if (*dir) {
586			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
587				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
588			if (!diroff && !offset && upper_limit >= stage) {
589				if (needs_lock) {
590					spin_lock(needs_lock);
591					*dir = NULL;
592					spin_unlock(needs_lock);
593					needs_lock = NULL;
594				} else
595					*dir = NULL;
596				nr_pages_to_free++;
597				list_add(&middir->lru, &pages_to_free);
598			}
599			shmem_dir_unmap(dir);
600			dir = shmem_dir_map(middir);
601		} else {
602			diroff = 0;
603			offset = 0;
604			idx = stage;
605		}
606	}
607
608	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
609		if (unlikely(idx == stage)) {
610			shmem_dir_unmap(dir);
611			dir = shmem_dir_map(topdir) +
612			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
613			while (!*dir) {
614				dir++;
615				idx += ENTRIES_PER_PAGEPAGE;
616				if (idx >= limit)
617					goto done1;
618			}
619			stage = idx + ENTRIES_PER_PAGEPAGE;
620			middir = *dir;
621			if (punch_hole)
622				needs_lock = &info->lock;
623			if (upper_limit >= stage) {
624				if (needs_lock) {
625					spin_lock(needs_lock);
626					*dir = NULL;
627					spin_unlock(needs_lock);
628					needs_lock = NULL;
629				} else
630					*dir = NULL;
631				nr_pages_to_free++;
632				list_add(&middir->lru, &pages_to_free);
633			}
634			shmem_dir_unmap(dir);
635			cond_resched();
636			dir = shmem_dir_map(middir);
637			diroff = 0;
638		}
639		punch_lock = needs_lock;
640		subdir = dir[diroff];
641		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
642			if (needs_lock) {
643				spin_lock(needs_lock);
644				dir[diroff] = NULL;
645				spin_unlock(needs_lock);
646				punch_lock = NULL;
647			} else
648				dir[diroff] = NULL;
649			nr_pages_to_free++;
650			list_add(&subdir->lru, &pages_to_free);
651		}
652		if (subdir && page_private(subdir) /* has swap entries */) {
653			size = limit - idx;
654			if (size > ENTRIES_PER_PAGE)
655				size = ENTRIES_PER_PAGE;
656			freed = shmem_map_and_free_swp(subdir,
657					offset, size, &dir, punch_lock);
658			if (!dir)
659				dir = shmem_dir_map(middir);
660			nr_swaps_freed += freed;
661			if (offset || punch_lock) {
662				spin_lock(&info->lock);
663				set_page_private(subdir,
664					page_private(subdir) - freed);
665				spin_unlock(&info->lock);
666			} else
667				BUG_ON(page_private(subdir) != freed);
668		}
669		offset = 0;
670	}
671done1:
672	shmem_dir_unmap(dir);
673done2:
674	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
675		/*
676		 * Call truncate_inode_pages again: racing shmem_unuse_inode
677		 * may have swizzled a page in from swap since vmtruncate or
678		 * generic_delete_inode did it, before we lowered next_index.
679		 * Also, though shmem_getpage checks i_size before adding to
680		 * cache, no recheck after: so fix the narrow window there too.
681		 *
682		 * Recalling truncate_inode_pages_range and unmap_mapping_range
683		 * every time for punch_hole (which never got a chance to clear
684		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
685		 * yet hardly ever necessary: try to optimize them out later.
686		 */
687		truncate_inode_pages_range(inode->i_mapping, start, end);
688		if (punch_hole)
689			unmap_mapping_range(inode->i_mapping, start,
690							end - start, 1);
691	}
692
693	spin_lock(&info->lock);
694	info->flags &= ~SHMEM_TRUNCATE;
695	info->swapped -= nr_swaps_freed;
696	if (nr_pages_to_free)
697		shmem_free_blocks(inode, nr_pages_to_free);
698	shmem_recalc_inode(inode);
699	spin_unlock(&info->lock);
700
701	/*
702	 * Empty swap vector directory pages to be freed?
703	 */
704	if (!list_empty(&pages_to_free)) {
705		pages_to_free.prev->next = NULL;
706		shmem_free_pages(pages_to_free.next);
707	}
708}
709
710static void shmem_truncate(struct inode *inode)
711{
712	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
713}
714
715static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
716{
717	struct inode *inode = dentry->d_inode;
718	struct page *page = NULL;
719	int error;
720
721	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
722		if (attr->ia_size < inode->i_size) {
723			/*
724			 * If truncating down to a partial page, then
725			 * if that page is already allocated, hold it
726			 * in memory until the truncation is over, so
727			 * truncate_partial_page cannnot miss it were
728			 * it assigned to swap.
729			 */
730			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
731				(void) shmem_getpage(inode,
732					attr->ia_size>>PAGE_CACHE_SHIFT,
733						&page, SGP_READ, NULL);
734			}
735			/*
736			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
737			 * detect if any pages might have been added to cache
738			 * after truncate_inode_pages.  But we needn't bother
739			 * if it's being fully truncated to zero-length: the
740			 * nrpages check is efficient enough in that case.
741			 */
742			if (attr->ia_size) {
743				struct shmem_inode_info *info = SHMEM_I(inode);
744				spin_lock(&info->lock);
745				info->flags &= ~SHMEM_PAGEIN;
746				spin_unlock(&info->lock);
747			}
748		}
749	}
750
751	error = inode_change_ok(inode, attr);
752	if (!error)
753		error = inode_setattr(inode, attr);
754#ifdef CONFIG_TMPFS_POSIX_ACL
755	if (!error && (attr->ia_valid & ATTR_MODE))
756		error = generic_acl_chmod(inode, &shmem_acl_ops);
757#endif
758	if (page)
759		page_cache_release(page);
760	return error;
761}
762
763static void shmem_delete_inode(struct inode *inode)
764{
765	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
766	struct shmem_inode_info *info = SHMEM_I(inode);
767
768	if (inode->i_op->truncate == shmem_truncate) {
769		truncate_inode_pages(inode->i_mapping, 0);
770		shmem_unacct_size(info->flags, inode->i_size);
771		inode->i_size = 0;
772		shmem_truncate(inode);
773		if (!list_empty(&info->swaplist)) {
774			spin_lock(&shmem_swaplist_lock);
775			list_del_init(&info->swaplist);
776			spin_unlock(&shmem_swaplist_lock);
777		}
778	}
779	BUG_ON(inode->i_blocks);
780	if (sbinfo->max_inodes) {
781		spin_lock(&sbinfo->stat_lock);
782		sbinfo->free_inodes++;
783		spin_unlock(&sbinfo->stat_lock);
784	}
785	clear_inode(inode);
786}
787
788static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
789{
790	swp_entry_t *ptr;
791
792	for (ptr = dir; ptr < edir; ptr++) {
793		if (ptr->val == entry.val)
794			return ptr - dir;
795	}
796	return -1;
797}
798
799static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
800{
801	struct inode *inode;
802	unsigned long idx;
803	unsigned long size;
804	unsigned long limit;
805	unsigned long stage;
806	struct page **dir;
807	struct page *subdir;
808	swp_entry_t *ptr;
809	int offset;
810
811	idx = 0;
812	ptr = info->i_direct;
813	spin_lock(&info->lock);
814	limit = info->next_index;
815	size = limit;
816	if (size > SHMEM_NR_DIRECT)
817		size = SHMEM_NR_DIRECT;
818	offset = shmem_find_swp(entry, ptr, ptr+size);
819	if (offset >= 0) {
820		shmem_swp_balance_unmap();
821		goto found;
822	}
823	if (!info->i_indirect)
824		goto lost2;
825
826	dir = shmem_dir_map(info->i_indirect);
827	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
828
829	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
830		if (unlikely(idx == stage)) {
831			shmem_dir_unmap(dir-1);
832			dir = shmem_dir_map(info->i_indirect) +
833			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
834			while (!*dir) {
835				dir++;
836				idx += ENTRIES_PER_PAGEPAGE;
837				if (idx >= limit)
838					goto lost1;
839			}
840			stage = idx + ENTRIES_PER_PAGEPAGE;
841			subdir = *dir;
842			shmem_dir_unmap(dir);
843			dir = shmem_dir_map(subdir);
844		}
845		subdir = *dir;
846		if (subdir && page_private(subdir)) {
847			ptr = shmem_swp_map(subdir);
848			size = limit - idx;
849			if (size > ENTRIES_PER_PAGE)
850				size = ENTRIES_PER_PAGE;
851			offset = shmem_find_swp(entry, ptr, ptr+size);
852			if (offset >= 0) {
853				shmem_dir_unmap(dir);
854				goto found;
855			}
856			shmem_swp_unmap(ptr);
857		}
858	}
859lost1:
860	shmem_dir_unmap(dir-1);
861lost2:
862	spin_unlock(&info->lock);
863	return 0;
864found:
865	idx += offset;
866	inode = &info->vfs_inode;
867	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
868		info->flags |= SHMEM_PAGEIN;
869		shmem_swp_set(info, ptr + offset, 0);
870	}
871	shmem_swp_unmap(ptr);
872	spin_unlock(&info->lock);
873	/*
874	 * Decrement swap count even when the entry is left behind:
875	 * try_to_unuse will skip over mms, then reincrement count.
876	 */
877	swap_free(entry);
878	return 1;
879}
880
881/*
882 * shmem_unuse() search for an eventually swapped out shmem page.
883 */
884int shmem_unuse(swp_entry_t entry, struct page *page)
885{
886	struct list_head *p, *next;
887	struct shmem_inode_info *info;
888	int found = 0;
889
890	spin_lock(&shmem_swaplist_lock);
891	list_for_each_safe(p, next, &shmem_swaplist) {
892		info = list_entry(p, struct shmem_inode_info, swaplist);
893		if (!info->swapped)
894			list_del_init(&info->swaplist);
895		else if (shmem_unuse_inode(info, entry, page)) {
896			/* move head to start search for next from here */
897			list_move_tail(&shmem_swaplist, &info->swaplist);
898			found = 1;
899			break;
900		}
901	}
902	spin_unlock(&shmem_swaplist_lock);
903	return found;
904}
905
906/*
907 * Move the page from the page cache to the swap cache.
908 */
909static int shmem_writepage(struct page *page, struct writeback_control *wbc)
910{
911	struct shmem_inode_info *info;
912	swp_entry_t *entry, swap;
913	struct address_space *mapping;
914	unsigned long index;
915	struct inode *inode;
916
917	BUG_ON(!PageLocked(page));
918	BUG_ON(page_mapped(page));
919
920	mapping = page->mapping;
921	index = page->index;
922	inode = mapping->host;
923	info = SHMEM_I(inode);
924	if (info->flags & VM_LOCKED)
925		goto redirty;
926	swap = get_swap_page();
927	if (!swap.val)
928		goto redirty;
929
930	spin_lock(&info->lock);
931	shmem_recalc_inode(inode);
932	if (index >= info->next_index) {
933		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
934		goto unlock;
935	}
936	entry = shmem_swp_entry(info, index, NULL);
937	BUG_ON(!entry);
938	BUG_ON(entry->val);
939
940	if (move_to_swap_cache(page, swap) == 0) {
941		shmem_swp_set(info, entry, swap.val);
942		shmem_swp_unmap(entry);
943		spin_unlock(&info->lock);
944		if (list_empty(&info->swaplist)) {
945			spin_lock(&shmem_swaplist_lock);
946			/* move instead of add in case we're racing */
947			list_move_tail(&info->swaplist, &shmem_swaplist);
948			spin_unlock(&shmem_swaplist_lock);
949		}
950		unlock_page(page);
951		return 0;
952	}
953
954	shmem_swp_unmap(entry);
955unlock:
956	spin_unlock(&info->lock);
957	swap_free(swap);
958redirty:
959	set_page_dirty(page);
960	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
961}
962
963#ifdef CONFIG_NUMA
964static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
965{
966	char *nodelist = strchr(value, ':');
967	int err = 1;
968
969	if (nodelist) {
970		/* NUL-terminate policy string */
971		*nodelist++ = '\0';
972		if (nodelist_parse(nodelist, *policy_nodes))
973			goto out;
974		if (!nodes_subset(*policy_nodes, node_online_map))
975			goto out;
976	}
977	if (!strcmp(value, "default")) {
978		*policy = MPOL_DEFAULT;
979		/* Don't allow a nodelist */
980		if (!nodelist)
981			err = 0;
982	} else if (!strcmp(value, "prefer")) {
983		*policy = MPOL_PREFERRED;
984		/* Insist on a nodelist of one node only */
985		if (nodelist) {
986			char *rest = nodelist;
987			while (isdigit(*rest))
988				rest++;
989			if (!*rest)
990				err = 0;
991		}
992	} else if (!strcmp(value, "bind")) {
993		*policy = MPOL_BIND;
994		/* Insist on a nodelist */
995		if (nodelist)
996			err = 0;
997	} else if (!strcmp(value, "interleave")) {
998		*policy = MPOL_INTERLEAVE;
999		/* Default to nodes online if no nodelist */
1000		if (!nodelist)
1001			*policy_nodes = node_online_map;
1002		err = 0;
1003	}
1004out:
1005	/* Restore string for error message */
1006	if (nodelist)
1007		*--nodelist = ':';
1008	return err;
1009}
1010
1011static struct page *shmem_swapin_async(struct shared_policy *p,
1012				       swp_entry_t entry, unsigned long idx)
1013{
1014	struct page *page;
1015	struct vm_area_struct pvma;
1016
1017	/* Create a pseudo vma that just contains the policy */
1018	memset(&pvma, 0, sizeof(struct vm_area_struct));
1019	pvma.vm_end = PAGE_SIZE;
1020	pvma.vm_pgoff = idx;
1021	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1022	page = read_swap_cache_async(entry, &pvma, 0);
1023	mpol_free(pvma.vm_policy);
1024	return page;
1025}
1026
1027struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
1028			  unsigned long idx)
1029{
1030	struct shared_policy *p = &info->policy;
1031	int i, num;
1032	struct page *page;
1033	unsigned long offset;
1034
1035	num = valid_swaphandles(entry, &offset);
1036	for (i = 0; i < num; offset++, i++) {
1037		page = shmem_swapin_async(p,
1038				swp_entry(swp_type(entry), offset), idx);
1039		if (!page)
1040			break;
1041		page_cache_release(page);
1042	}
1043	lru_add_drain();	/* Push any new pages onto the LRU now */
1044	return shmem_swapin_async(p, entry, idx);
1045}
1046
1047static struct page *
1048shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1049		 unsigned long idx)
1050{
1051	struct vm_area_struct pvma;
1052	struct page *page;
1053
1054	memset(&pvma, 0, sizeof(struct vm_area_struct));
1055	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1056	pvma.vm_pgoff = idx;
1057	pvma.vm_end = PAGE_SIZE;
1058	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1059	mpol_free(pvma.vm_policy);
1060	return page;
1061}
1062#else
1063static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1064{
1065	return 1;
1066}
1067
1068static inline struct page *
1069shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1070{
1071	swapin_readahead(entry, 0, NULL);
1072	return read_swap_cache_async(entry, NULL, 0);
1073}
1074
1075static inline struct page *
1076shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1077{
1078	return alloc_page(gfp | __GFP_ZERO);
1079}
1080#endif
1081
1082/*
1083 * shmem_getpage - either get the page from swap or allocate a new one
1084 *
1085 * If we allocate a new one we do not mark it dirty. That's up to the
1086 * vm. If we swap it in we mark it dirty since we also free the swap
1087 * entry since a page cannot live in both the swap and page cache
1088 */
1089static int shmem_getpage(struct inode *inode, unsigned long idx,
1090			struct page **pagep, enum sgp_type sgp, int *type)
1091{
1092	struct address_space *mapping = inode->i_mapping;
1093	struct shmem_inode_info *info = SHMEM_I(inode);
1094	struct shmem_sb_info *sbinfo;
1095	struct page *filepage = *pagep;
1096	struct page *swappage;
1097	swp_entry_t *entry;
1098	swp_entry_t swap;
1099	int error;
1100
1101	if (idx >= SHMEM_MAX_INDEX)
1102		return -EFBIG;
1103
1104	if (type)
1105		*type = 0;
1106
1107	/*
1108	 * Normally, filepage is NULL on entry, and either found
1109	 * uptodate immediately, or allocated and zeroed, or read
1110	 * in under swappage, which is then assigned to filepage.
1111	 * But shmem_readpage and shmem_write_begin pass in a locked
1112	 * filepage, which may be found not uptodate by other callers
1113	 * too, and may need to be copied from the swappage read in.
1114	 */
1115repeat:
1116	if (!filepage)
1117		filepage = find_lock_page(mapping, idx);
1118	if (filepage && PageUptodate(filepage))
1119		goto done;
1120	error = 0;
1121	if (sgp == SGP_QUICK)
1122		goto failed;
1123
1124	spin_lock(&info->lock);
1125	shmem_recalc_inode(inode);
1126	entry = shmem_swp_alloc(info, idx, sgp);
1127	if (IS_ERR(entry)) {
1128		spin_unlock(&info->lock);
1129		error = PTR_ERR(entry);
1130		goto failed;
1131	}
1132	swap = *entry;
1133
1134	if (swap.val) {
1135		/* Look it up and read it in.. */
1136		swappage = lookup_swap_cache(swap);
1137		if (!swappage) {
1138			shmem_swp_unmap(entry);
1139			/* here we actually do the io */
1140			if (type && !(*type & VM_FAULT_MAJOR)) {
1141				__count_vm_event(PGMAJFAULT);
1142				*type |= VM_FAULT_MAJOR;
1143			}
1144			spin_unlock(&info->lock);
1145			swappage = shmem_swapin(info, swap, idx);
1146			if (!swappage) {
1147				spin_lock(&info->lock);
1148				entry = shmem_swp_alloc(info, idx, sgp);
1149				if (IS_ERR(entry))
1150					error = PTR_ERR(entry);
1151				else {
1152					if (entry->val == swap.val)
1153						error = -ENOMEM;
1154					shmem_swp_unmap(entry);
1155				}
1156				spin_unlock(&info->lock);
1157				if (error)
1158					goto failed;
1159				goto repeat;
1160			}
1161			wait_on_page_locked(swappage);
1162			page_cache_release(swappage);
1163			goto repeat;
1164		}
1165
1166		/* We have to do this with page locked to prevent races */
1167		if (TestSetPageLocked(swappage)) {
1168			shmem_swp_unmap(entry);
1169			spin_unlock(&info->lock);
1170			wait_on_page_locked(swappage);
1171			page_cache_release(swappage);
1172			goto repeat;
1173		}
1174		if (PageWriteback(swappage)) {
1175			shmem_swp_unmap(entry);
1176			spin_unlock(&info->lock);
1177			wait_on_page_writeback(swappage);
1178			unlock_page(swappage);
1179			page_cache_release(swappage);
1180			goto repeat;
1181		}
1182		if (!PageUptodate(swappage)) {
1183			shmem_swp_unmap(entry);
1184			spin_unlock(&info->lock);
1185			unlock_page(swappage);
1186			page_cache_release(swappage);
1187			error = -EIO;
1188			goto failed;
1189		}
1190
1191		if (filepage) {
1192			shmem_swp_set(info, entry, 0);
1193			shmem_swp_unmap(entry);
1194			delete_from_swap_cache(swappage);
1195			spin_unlock(&info->lock);
1196			copy_highpage(filepage, swappage);
1197			unlock_page(swappage);
1198			page_cache_release(swappage);
1199			flush_dcache_page(filepage);
1200			SetPageUptodate(filepage);
1201			set_page_dirty(filepage);
1202			swap_free(swap);
1203		} else if (!(error = move_from_swap_cache(
1204				swappage, idx, mapping))) {
1205			info->flags |= SHMEM_PAGEIN;
1206			shmem_swp_set(info, entry, 0);
1207			shmem_swp_unmap(entry);
1208			spin_unlock(&info->lock);
1209			filepage = swappage;
1210			swap_free(swap);
1211		} else {
1212			shmem_swp_unmap(entry);
1213			spin_unlock(&info->lock);
1214			unlock_page(swappage);
1215			page_cache_release(swappage);
1216			if (error == -ENOMEM) {
1217				/* let kswapd refresh zone for GFP_ATOMICs */
1218				congestion_wait(WRITE, HZ/50);
1219			}
1220			goto repeat;
1221		}
1222	} else if (sgp == SGP_READ && !filepage) {
1223		shmem_swp_unmap(entry);
1224		filepage = find_get_page(mapping, idx);
1225		if (filepage &&
1226		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1227			spin_unlock(&info->lock);
1228			wait_on_page_locked(filepage);
1229			page_cache_release(filepage);
1230			filepage = NULL;
1231			goto repeat;
1232		}
1233		spin_unlock(&info->lock);
1234	} else {
1235		shmem_swp_unmap(entry);
1236		sbinfo = SHMEM_SB(inode->i_sb);
1237		if (sbinfo->max_blocks) {
1238			spin_lock(&sbinfo->stat_lock);
1239			if (sbinfo->free_blocks == 0 ||
1240			    shmem_acct_block(info->flags)) {
1241				spin_unlock(&sbinfo->stat_lock);
1242				spin_unlock(&info->lock);
1243				error = -ENOSPC;
1244				goto failed;
1245			}
1246			sbinfo->free_blocks--;
1247			inode->i_blocks += BLOCKS_PER_PAGE;
1248			spin_unlock(&sbinfo->stat_lock);
1249		} else if (shmem_acct_block(info->flags)) {
1250			spin_unlock(&info->lock);
1251			error = -ENOSPC;
1252			goto failed;
1253		}
1254
1255		if (!filepage) {
1256			spin_unlock(&info->lock);
1257			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1258						    info,
1259						    idx);
1260			if (!filepage) {
1261				shmem_unacct_blocks(info->flags, 1);
1262				shmem_free_blocks(inode, 1);
1263				error = -ENOMEM;
1264				goto failed;
1265			}
1266
1267			spin_lock(&info->lock);
1268			entry = shmem_swp_alloc(info, idx, sgp);
1269			if (IS_ERR(entry))
1270				error = PTR_ERR(entry);
1271			else {
1272				swap = *entry;
1273				shmem_swp_unmap(entry);
1274			}
1275			if (error || swap.val || 0 != add_to_page_cache_lru(
1276					filepage, mapping, idx, GFP_ATOMIC)) {
1277				spin_unlock(&info->lock);
1278				page_cache_release(filepage);
1279				shmem_unacct_blocks(info->flags, 1);
1280				shmem_free_blocks(inode, 1);
1281				filepage = NULL;
1282				if (error)
1283					goto failed;
1284				goto repeat;
1285			}
1286			info->flags |= SHMEM_PAGEIN;
1287		}
1288
1289		info->alloced++;
1290		spin_unlock(&info->lock);
1291		flush_dcache_page(filepage);
1292		SetPageUptodate(filepage);
1293	}
1294done:
1295	if (*pagep != filepage) {
1296		*pagep = filepage;
1297		if (sgp != SGP_FAULT)
1298			unlock_page(filepage);
1299
1300	}
1301	return 0;
1302
1303failed:
1304	if (*pagep != filepage) {
1305		unlock_page(filepage);
1306		page_cache_release(filepage);
1307	}
1308	return error;
1309}
1310
1311static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1312{
1313	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1314	int error;
1315	int ret;
1316
1317	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1318		return VM_FAULT_SIGBUS;
1319
1320	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret);
1321	if (error)
1322		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1323
1324	mark_page_accessed(vmf->page);
1325	return ret | VM_FAULT_LOCKED;
1326}
1327
1328#ifdef CONFIG_NUMA
1329int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1330{
1331	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1332	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1333}
1334
1335struct mempolicy *
1336shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1337{
1338	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1339	unsigned long idx;
1340
1341	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1342	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1343}
1344#endif
1345
1346int shmem_lock(struct file *file, int lock, struct user_struct *user)
1347{
1348	struct inode *inode = file->f_path.dentry->d_inode;
1349	struct shmem_inode_info *info = SHMEM_I(inode);
1350	int retval = -ENOMEM;
1351
1352	spin_lock(&info->lock);
1353	if (lock && !(info->flags & VM_LOCKED)) {
1354		if (!user_shm_lock(inode->i_size, user))
1355			goto out_nomem;
1356		info->flags |= VM_LOCKED;
1357	}
1358	if (!lock && (info->flags & VM_LOCKED) && user) {
1359		user_shm_unlock(inode->i_size, user);
1360		info->flags &= ~VM_LOCKED;
1361	}
1362	retval = 0;
1363out_nomem:
1364	spin_unlock(&info->lock);
1365	return retval;
1366}
1367
1368static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1369{
1370	file_accessed(file);
1371	vma->vm_ops = &shmem_vm_ops;
1372	vma->vm_flags |= VM_CAN_NONLINEAR;
1373	return 0;
1374}
1375
1376static struct inode *
1377shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1378{
1379	struct inode *inode;
1380	struct shmem_inode_info *info;
1381	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1382
1383	if (sbinfo->max_inodes) {
1384		spin_lock(&sbinfo->stat_lock);
1385		if (!sbinfo->free_inodes) {
1386			spin_unlock(&sbinfo->stat_lock);
1387			return NULL;
1388		}
1389		sbinfo->free_inodes--;
1390		spin_unlock(&sbinfo->stat_lock);
1391	}
1392
1393	inode = new_inode(sb);
1394	if (inode) {
1395		inode->i_mode = mode;
1396		inode->i_uid = current->fsuid;
1397		inode->i_gid = current->fsgid;
1398		inode->i_blocks = 0;
1399		inode->i_mapping->a_ops = &shmem_aops;
1400		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1401		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1402		inode->i_generation = get_seconds();
1403		info = SHMEM_I(inode);
1404		memset(info, 0, (char *)inode - (char *)info);
1405		spin_lock_init(&info->lock);
1406		INIT_LIST_HEAD(&info->swaplist);
1407
1408		switch (mode & S_IFMT) {
1409		default:
1410			inode->i_op = &shmem_special_inode_operations;
1411			init_special_inode(inode, mode, dev);
1412			break;
1413		case S_IFREG:
1414			inode->i_op = &shmem_inode_operations;
1415			inode->i_fop = &shmem_file_operations;
1416			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1417							&sbinfo->policy_nodes);
1418			break;
1419		case S_IFDIR:
1420			inc_nlink(inode);
1421			/* Some things misbehave if size == 0 on a directory */
1422			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1423			inode->i_op = &shmem_dir_inode_operations;
1424			inode->i_fop = &simple_dir_operations;
1425			break;
1426		case S_IFLNK:
1427			/*
1428			 * Must not load anything in the rbtree,
1429			 * mpol_free_shared_policy will not be called.
1430			 */
1431			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1432						NULL);
1433			break;
1434		}
1435	} else if (sbinfo->max_inodes) {
1436		spin_lock(&sbinfo->stat_lock);
1437		sbinfo->free_inodes++;
1438		spin_unlock(&sbinfo->stat_lock);
1439	}
1440	return inode;
1441}
1442
1443#ifdef CONFIG_TMPFS
1444static const struct inode_operations shmem_symlink_inode_operations;
1445static const struct inode_operations shmem_symlink_inline_operations;
1446
1447/*
1448 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1449 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1450 * below the loop driver, in the generic fashion that many filesystems support.
1451 */
1452static int shmem_readpage(struct file *file, struct page *page)
1453{
1454	struct inode *inode = page->mapping->host;
1455	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1456	unlock_page(page);
1457	return error;
1458}
1459
1460static int
1461shmem_write_begin(struct file *file, struct address_space *mapping,
1462			loff_t pos, unsigned len, unsigned flags,
1463			struct page **pagep, void **fsdata)
1464{
1465	struct inode *inode = mapping->host;
1466	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1467	*pagep = NULL;
1468	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1469}
1470
1471static int
1472shmem_write_end(struct file *file, struct address_space *mapping,
1473			loff_t pos, unsigned len, unsigned copied,
1474			struct page *page, void *fsdata)
1475{
1476	struct inode *inode = mapping->host;
1477
1478	set_page_dirty(page);
1479	page_cache_release(page);
1480
1481	if (pos+copied > inode->i_size)
1482		i_size_write(inode, pos+copied);
1483
1484	return copied;
1485}
1486
1487static ssize_t
1488shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1489{
1490	struct inode	*inode = file->f_path.dentry->d_inode;
1491	loff_t		pos;
1492	unsigned long	written;
1493	ssize_t		err;
1494
1495	if ((ssize_t) count < 0)
1496		return -EINVAL;
1497
1498	if (!access_ok(VERIFY_READ, buf, count))
1499		return -EFAULT;
1500
1501	mutex_lock(&inode->i_mutex);
1502
1503	pos = *ppos;
1504	written = 0;
1505
1506	err = generic_write_checks(file, &pos, &count, 0);
1507	if (err || !count)
1508		goto out;
1509
1510	err = remove_suid(file->f_path.dentry);
1511	if (err)
1512		goto out;
1513
1514	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1515
1516	do {
1517		struct page *page = NULL;
1518		unsigned long bytes, index, offset;
1519		char *kaddr;
1520		int left;
1521
1522		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1523		index = pos >> PAGE_CACHE_SHIFT;
1524		bytes = PAGE_CACHE_SIZE - offset;
1525		if (bytes > count)
1526			bytes = count;
1527
1528		/*
1529		 * We don't hold page lock across copy from user -
1530		 * what would it guard against? - so no deadlock here.
1531		 * But it still may be a good idea to prefault below.
1532		 */
1533
1534		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1535		if (err)
1536			break;
1537
1538		left = bytes;
1539		if (PageHighMem(page)) {
1540			volatile unsigned char dummy;
1541			__get_user(dummy, buf);
1542			__get_user(dummy, buf + bytes - 1);
1543
1544			kaddr = kmap_atomic(page, KM_USER0);
1545			left = __copy_from_user_inatomic(kaddr + offset,
1546							buf, bytes);
1547			kunmap_atomic(kaddr, KM_USER0);
1548		}
1549		if (left) {
1550			kaddr = kmap(page);
1551			left = __copy_from_user(kaddr + offset, buf, bytes);
1552			kunmap(page);
1553		}
1554
1555		written += bytes;
1556		count -= bytes;
1557		pos += bytes;
1558		buf += bytes;
1559		if (pos > inode->i_size)
1560			i_size_write(inode, pos);
1561
1562		flush_dcache_page(page);
1563		set_page_dirty(page);
1564		mark_page_accessed(page);
1565		page_cache_release(page);
1566
1567		if (left) {
1568			pos -= left;
1569			written -= left;
1570			err = -EFAULT;
1571			break;
1572		}
1573
1574		/*
1575		 * Our dirty pages are not counted in nr_dirty,
1576		 * and we do not attempt to balance dirty pages.
1577		 */
1578
1579		cond_resched();
1580	} while (count);
1581
1582	*ppos = pos;
1583	if (written)
1584		err = written;
1585out:
1586	mutex_unlock(&inode->i_mutex);
1587	return err;
1588}
1589
1590static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1591{
1592	struct inode *inode = filp->f_path.dentry->d_inode;
1593	struct address_space *mapping = inode->i_mapping;
1594	unsigned long index, offset;
1595
1596	index = *ppos >> PAGE_CACHE_SHIFT;
1597	offset = *ppos & ~PAGE_CACHE_MASK;
1598
1599	for (;;) {
1600		struct page *page = NULL;
1601		unsigned long end_index, nr, ret;
1602		loff_t i_size = i_size_read(inode);
1603
1604		end_index = i_size >> PAGE_CACHE_SHIFT;
1605		if (index > end_index)
1606			break;
1607		if (index == end_index) {
1608			nr = i_size & ~PAGE_CACHE_MASK;
1609			if (nr <= offset)
1610				break;
1611		}
1612
1613		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1614		if (desc->error) {
1615			if (desc->error == -EINVAL)
1616				desc->error = 0;
1617			break;
1618		}
1619
1620		/*
1621		 * We must evaluate after, since reads (unlike writes)
1622		 * are called without i_mutex protection against truncate
1623		 */
1624		nr = PAGE_CACHE_SIZE;
1625		i_size = i_size_read(inode);
1626		end_index = i_size >> PAGE_CACHE_SHIFT;
1627		if (index == end_index) {
1628			nr = i_size & ~PAGE_CACHE_MASK;
1629			if (nr <= offset) {
1630				if (page)
1631					page_cache_release(page);
1632				break;
1633			}
1634		}
1635		nr -= offset;
1636
1637		if (page) {
1638			/*
1639			 * If users can be writing to this page using arbitrary
1640			 * virtual addresses, take care about potential aliasing
1641			 * before reading the page on the kernel side.
1642			 */
1643			if (mapping_writably_mapped(mapping))
1644				flush_dcache_page(page);
1645			/*
1646			 * Mark the page accessed if we read the beginning.
1647			 */
1648			if (!offset)
1649				mark_page_accessed(page);
1650		} else {
1651			page = ZERO_PAGE(0);
1652			page_cache_get(page);
1653		}
1654
1655		/*
1656		 * Ok, we have the page, and it's up-to-date, so
1657		 * now we can copy it to user space...
1658		 *
1659		 * The actor routine returns how many bytes were actually used..
1660		 * NOTE! This may not be the same as how much of a user buffer
1661		 * we filled up (we may be padding etc), so we can only update
1662		 * "pos" here (the actor routine has to update the user buffer
1663		 * pointers and the remaining count).
1664		 */
1665		ret = actor(desc, page, offset, nr);
1666		offset += ret;
1667		index += offset >> PAGE_CACHE_SHIFT;
1668		offset &= ~PAGE_CACHE_MASK;
1669
1670		page_cache_release(page);
1671		if (ret != nr || !desc->count)
1672			break;
1673
1674		cond_resched();
1675	}
1676
1677	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1678	file_accessed(filp);
1679}
1680
1681static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1682{
1683	read_descriptor_t desc;
1684
1685	if ((ssize_t) count < 0)
1686		return -EINVAL;
1687	if (!access_ok(VERIFY_WRITE, buf, count))
1688		return -EFAULT;
1689	if (!count)
1690		return 0;
1691
1692	desc.written = 0;
1693	desc.count = count;
1694	desc.arg.buf = buf;
1695	desc.error = 0;
1696
1697	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1698	if (desc.written)
1699		return desc.written;
1700	return desc.error;
1701}
1702
1703static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1704{
1705	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1706
1707	buf->f_type = TMPFS_MAGIC;
1708	buf->f_bsize = PAGE_CACHE_SIZE;
1709	buf->f_namelen = NAME_MAX;
1710	spin_lock(&sbinfo->stat_lock);
1711	if (sbinfo->max_blocks) {
1712		buf->f_blocks = sbinfo->max_blocks;
1713		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1714	}
1715	if (sbinfo->max_inodes) {
1716		buf->f_files = sbinfo->max_inodes;
1717		buf->f_ffree = sbinfo->free_inodes;
1718	}
1719	/* else leave those fields 0 like simple_statfs */
1720	spin_unlock(&sbinfo->stat_lock);
1721	return 0;
1722}
1723
1724/*
1725 * File creation. Allocate an inode, and we're done..
1726 */
1727static int
1728shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1729{
1730	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1731	int error = -ENOSPC;
1732
1733	if (inode) {
1734		error = security_inode_init_security(inode, dir, NULL, NULL,
1735						     NULL);
1736		if (error) {
1737			if (error != -EOPNOTSUPP) {
1738				iput(inode);
1739				return error;
1740			}
1741		}
1742		error = shmem_acl_init(inode, dir);
1743		if (error) {
1744			iput(inode);
1745			return error;
1746		}
1747		if (dir->i_mode & S_ISGID) {
1748			inode->i_gid = dir->i_gid;
1749			if (S_ISDIR(mode))
1750				inode->i_mode |= S_ISGID;
1751		}
1752		dir->i_size += BOGO_DIRENT_SIZE;
1753		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1754		d_instantiate(dentry, inode);
1755		dget(dentry); /* Extra count - pin the dentry in core */
1756	}
1757	return error;
1758}
1759
1760static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1761{
1762	int error;
1763
1764	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1765		return error;
1766	inc_nlink(dir);
1767	return 0;
1768}
1769
1770static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1771		struct nameidata *nd)
1772{
1773	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1774}
1775
1776/*
1777 * Link a file..
1778 */
1779static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1780{
1781	struct inode *inode = old_dentry->d_inode;
1782	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1783
1784	/*
1785	 * No ordinary (disk based) filesystem counts links as inodes;
1786	 * but each new link needs a new dentry, pinning lowmem, and
1787	 * tmpfs dentries cannot be pruned until they are unlinked.
1788	 */
1789	if (sbinfo->max_inodes) {
1790		spin_lock(&sbinfo->stat_lock);
1791		if (!sbinfo->free_inodes) {
1792			spin_unlock(&sbinfo->stat_lock);
1793			return -ENOSPC;
1794		}
1795		sbinfo->free_inodes--;
1796		spin_unlock(&sbinfo->stat_lock);
1797	}
1798
1799	dir->i_size += BOGO_DIRENT_SIZE;
1800	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1801	inc_nlink(inode);
1802	atomic_inc(&inode->i_count);	/* New dentry reference */
1803	dget(dentry);		/* Extra pinning count for the created dentry */
1804	d_instantiate(dentry, inode);
1805	return 0;
1806}
1807
1808static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1809{
1810	struct inode *inode = dentry->d_inode;
1811
1812	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1813		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1814		if (sbinfo->max_inodes) {
1815			spin_lock(&sbinfo->stat_lock);
1816			sbinfo->free_inodes++;
1817			spin_unlock(&sbinfo->stat_lock);
1818		}
1819	}
1820
1821	dir->i_size -= BOGO_DIRENT_SIZE;
1822	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1823	drop_nlink(inode);
1824	dput(dentry);	/* Undo the count from "create" - this does all the work */
1825	return 0;
1826}
1827
1828static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1829{
1830	if (!simple_empty(dentry))
1831		return -ENOTEMPTY;
1832
1833	drop_nlink(dentry->d_inode);
1834	drop_nlink(dir);
1835	return shmem_unlink(dir, dentry);
1836}
1837
1838/*
1839 * The VFS layer already does all the dentry stuff for rename,
1840 * we just have to decrement the usage count for the target if
1841 * it exists so that the VFS layer correctly free's it when it
1842 * gets overwritten.
1843 */
1844static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1845{
1846	struct inode *inode = old_dentry->d_inode;
1847	int they_are_dirs = S_ISDIR(inode->i_mode);
1848
1849	if (!simple_empty(new_dentry))
1850		return -ENOTEMPTY;
1851
1852	if (new_dentry->d_inode) {
1853		(void) shmem_unlink(new_dir, new_dentry);
1854		if (they_are_dirs)
1855			drop_nlink(old_dir);
1856	} else if (they_are_dirs) {
1857		drop_nlink(old_dir);
1858		inc_nlink(new_dir);
1859	}
1860
1861	old_dir->i_size -= BOGO_DIRENT_SIZE;
1862	new_dir->i_size += BOGO_DIRENT_SIZE;
1863	old_dir->i_ctime = old_dir->i_mtime =
1864	new_dir->i_ctime = new_dir->i_mtime =
1865	inode->i_ctime = CURRENT_TIME;
1866	return 0;
1867}
1868
1869static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1870{
1871	int error;
1872	int len;
1873	struct inode *inode;
1874	struct page *page = NULL;
1875	char *kaddr;
1876	struct shmem_inode_info *info;
1877
1878	len = strlen(symname) + 1;
1879	if (len > PAGE_CACHE_SIZE)
1880		return -ENAMETOOLONG;
1881
1882	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1883	if (!inode)
1884		return -ENOSPC;
1885
1886	error = security_inode_init_security(inode, dir, NULL, NULL,
1887					     NULL);
1888	if (error) {
1889		if (error != -EOPNOTSUPP) {
1890			iput(inode);
1891			return error;
1892		}
1893		error = 0;
1894	}
1895
1896	info = SHMEM_I(inode);
1897	inode->i_size = len-1;
1898	if (len <= (char *)inode - (char *)info) {
1899		/* do it inline */
1900		memcpy(info, symname, len);
1901		inode->i_op = &shmem_symlink_inline_operations;
1902	} else {
1903		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1904		if (error) {
1905			iput(inode);
1906			return error;
1907		}
1908		inode->i_op = &shmem_symlink_inode_operations;
1909		kaddr = kmap_atomic(page, KM_USER0);
1910		memcpy(kaddr, symname, len);
1911		kunmap_atomic(kaddr, KM_USER0);
1912		set_page_dirty(page);
1913		page_cache_release(page);
1914	}
1915	if (dir->i_mode & S_ISGID)
1916		inode->i_gid = dir->i_gid;
1917	dir->i_size += BOGO_DIRENT_SIZE;
1918	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1919	d_instantiate(dentry, inode);
1920	dget(dentry);
1921	return 0;
1922}
1923
1924static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1925{
1926	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1927	return NULL;
1928}
1929
1930static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1931{
1932	struct page *page = NULL;
1933	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1934	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1935	return page;
1936}
1937
1938static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1939{
1940	if (!IS_ERR(nd_get_link(nd))) {
1941		struct page *page = cookie;
1942		kunmap(page);
1943		mark_page_accessed(page);
1944		page_cache_release(page);
1945	}
1946}
1947
1948static const struct inode_operations shmem_symlink_inline_operations = {
1949	.readlink	= generic_readlink,
1950	.follow_link	= shmem_follow_link_inline,
1951};
1952
1953static const struct inode_operations shmem_symlink_inode_operations = {
1954	.truncate	= shmem_truncate,
1955	.readlink	= generic_readlink,
1956	.follow_link	= shmem_follow_link,
1957	.put_link	= shmem_put_link,
1958};
1959
1960#ifdef CONFIG_TMPFS_POSIX_ACL
1961/**
1962 * Superblocks without xattr inode operations will get security.* xattr
1963 * support from the VFS "for free". As soon as we have any other xattrs
1964 * like ACLs, we also need to implement the security.* handlers at
1965 * filesystem level, though.
1966 */
1967
1968static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1969					size_t list_len, const char *name,
1970					size_t name_len)
1971{
1972	return security_inode_listsecurity(inode, list, list_len);
1973}
1974
1975static int shmem_xattr_security_get(struct inode *inode, const char *name,
1976				    void *buffer, size_t size)
1977{
1978	if (strcmp(name, "") == 0)
1979		return -EINVAL;
1980	return security_inode_getsecurity(inode, name, buffer, size,
1981					  -EOPNOTSUPP);
1982}
1983
1984static int shmem_xattr_security_set(struct inode *inode, const char *name,
1985				    const void *value, size_t size, int flags)
1986{
1987	if (strcmp(name, "") == 0)
1988		return -EINVAL;
1989	return security_inode_setsecurity(inode, name, value, size, flags);
1990}
1991
1992static struct xattr_handler shmem_xattr_security_handler = {
1993	.prefix = XATTR_SECURITY_PREFIX,
1994	.list   = shmem_xattr_security_list,
1995	.get    = shmem_xattr_security_get,
1996	.set    = shmem_xattr_security_set,
1997};
1998
1999static struct xattr_handler *shmem_xattr_handlers[] = {
2000	&shmem_xattr_acl_access_handler,
2001	&shmem_xattr_acl_default_handler,
2002	&shmem_xattr_security_handler,
2003	NULL
2004};
2005#endif
2006
2007static struct dentry *shmem_get_parent(struct dentry *child)
2008{
2009	return ERR_PTR(-ESTALE);
2010}
2011
2012static int shmem_match(struct inode *ino, void *vfh)
2013{
2014	__u32 *fh = vfh;
2015	__u64 inum = fh[2];
2016	inum = (inum << 32) | fh[1];
2017	return ino->i_ino == inum && fh[0] == ino->i_generation;
2018}
2019
2020static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2021{
2022	struct dentry *de = NULL;
2023	struct inode *inode;
2024	__u32 *fh = vfh;
2025	__u64 inum = fh[2];
2026	inum = (inum << 32) | fh[1];
2027
2028	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2029	if (inode) {
2030		de = d_find_alias(inode);
2031		iput(inode);
2032	}
2033
2034	return de? de: ERR_PTR(-ESTALE);
2035}
2036
2037static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2038		int len, int type,
2039		int (*acceptable)(void *context, struct dentry *de),
2040		void *context)
2041{
2042	if (len < 3)
2043		return ERR_PTR(-ESTALE);
2044
2045	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2046							context);
2047}
2048
2049static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2050				int connectable)
2051{
2052	struct inode *inode = dentry->d_inode;
2053
2054	if (*len < 3)
2055		return 255;
2056
2057	if (hlist_unhashed(&inode->i_hash)) {
2058		/* Unfortunately insert_inode_hash is not idempotent,
2059		 * so as we hash inodes here rather than at creation
2060		 * time, we need a lock to ensure we only try
2061		 * to do it once
2062		 */
2063		static DEFINE_SPINLOCK(lock);
2064		spin_lock(&lock);
2065		if (hlist_unhashed(&inode->i_hash))
2066			__insert_inode_hash(inode,
2067					    inode->i_ino + inode->i_generation);
2068		spin_unlock(&lock);
2069	}
2070
2071	fh[0] = inode->i_generation;
2072	fh[1] = inode->i_ino;
2073	fh[2] = ((__u64)inode->i_ino) >> 32;
2074
2075	*len = 3;
2076	return 1;
2077}
2078
2079static struct export_operations shmem_export_ops = {
2080	.get_parent     = shmem_get_parent,
2081	.get_dentry     = shmem_get_dentry,
2082	.encode_fh      = shmem_encode_fh,
2083	.decode_fh      = shmem_decode_fh,
2084};
2085
2086static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2087	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2088	int *policy, nodemask_t *policy_nodes)
2089{
2090	char *this_char, *value, *rest;
2091
2092	while (options != NULL) {
2093		this_char = options;
2094		for (;;) {
2095			/*
2096			 * NUL-terminate this option: unfortunately,
2097			 * mount options form a comma-separated list,
2098			 * but mpol's nodelist may also contain commas.
2099			 */
2100			options = strchr(options, ',');
2101			if (options == NULL)
2102				break;
2103			options++;
2104			if (!isdigit(*options)) {
2105				options[-1] = '\0';
2106				break;
2107			}
2108		}
2109		if (!*this_char)
2110			continue;
2111		if ((value = strchr(this_char,'=')) != NULL) {
2112			*value++ = 0;
2113		} else {
2114			printk(KERN_ERR
2115			    "tmpfs: No value for mount option '%s'\n",
2116			    this_char);
2117			return 1;
2118		}
2119
2120		if (!strcmp(this_char,"size")) {
2121			unsigned long long size;
2122			size = memparse(value,&rest);
2123			if (*rest == '%') {
2124				size <<= PAGE_SHIFT;
2125				size *= totalram_pages;
2126				do_div(size, 100);
2127				rest++;
2128			}
2129			if (*rest)
2130				goto bad_val;
2131			*blocks = size >> PAGE_CACHE_SHIFT;
2132		} else if (!strcmp(this_char,"nr_blocks")) {
2133			*blocks = memparse(value,&rest);
2134			if (*rest)
2135				goto bad_val;
2136		} else if (!strcmp(this_char,"nr_inodes")) {
2137			*inodes = memparse(value,&rest);
2138			if (*rest)
2139				goto bad_val;
2140		} else if (!strcmp(this_char,"mode")) {
2141			if (!mode)
2142				continue;
2143			*mode = simple_strtoul(value,&rest,8);
2144			if (*rest)
2145				goto bad_val;
2146		} else if (!strcmp(this_char,"uid")) {
2147			if (!uid)
2148				continue;
2149			*uid = simple_strtoul(value,&rest,0);
2150			if (*rest)
2151				goto bad_val;
2152		} else if (!strcmp(this_char,"gid")) {
2153			if (!gid)
2154				continue;
2155			*gid = simple_strtoul(value,&rest,0);
2156			if (*rest)
2157				goto bad_val;
2158		} else if (!strcmp(this_char,"mpol")) {
2159			if (shmem_parse_mpol(value,policy,policy_nodes))
2160				goto bad_val;
2161		} else {
2162			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2163			       this_char);
2164			return 1;
2165		}
2166	}
2167	return 0;
2168
2169bad_val:
2170	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2171	       value, this_char);
2172	return 1;
2173
2174}
2175
2176static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2177{
2178	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2179	unsigned long max_blocks = sbinfo->max_blocks;
2180	unsigned long max_inodes = sbinfo->max_inodes;
2181	int policy = sbinfo->policy;
2182	nodemask_t policy_nodes = sbinfo->policy_nodes;
2183	unsigned long blocks;
2184	unsigned long inodes;
2185	int error = -EINVAL;
2186
2187	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2188				&max_inodes, &policy, &policy_nodes))
2189		return error;
2190
2191	spin_lock(&sbinfo->stat_lock);
2192	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2193	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2194	if (max_blocks < blocks)
2195		goto out;
2196	if (max_inodes < inodes)
2197		goto out;
2198	/*
2199	 * Those tests also disallow limited->unlimited while any are in
2200	 * use, so i_blocks will always be zero when max_blocks is zero;
2201	 * but we must separately disallow unlimited->limited, because
2202	 * in that case we have no record of how much is already in use.
2203	 */
2204	if (max_blocks && !sbinfo->max_blocks)
2205		goto out;
2206	if (max_inodes && !sbinfo->max_inodes)
2207		goto out;
2208
2209	error = 0;
2210	sbinfo->max_blocks  = max_blocks;
2211	sbinfo->free_blocks = max_blocks - blocks;
2212	sbinfo->max_inodes  = max_inodes;
2213	sbinfo->free_inodes = max_inodes - inodes;
2214	sbinfo->policy = policy;
2215	sbinfo->policy_nodes = policy_nodes;
2216out:
2217	spin_unlock(&sbinfo->stat_lock);
2218	return error;
2219}
2220#endif
2221
2222static void shmem_put_super(struct super_block *sb)
2223{
2224	kfree(sb->s_fs_info);
2225	sb->s_fs_info = NULL;
2226}
2227
2228static int shmem_fill_super(struct super_block *sb,
2229			    void *data, int silent)
2230{
2231	struct inode *inode;
2232	struct dentry *root;
2233	int mode   = S_IRWXUGO | S_ISVTX;
2234	uid_t uid = current->fsuid;
2235	gid_t gid = current->fsgid;
2236	int err = -ENOMEM;
2237	struct shmem_sb_info *sbinfo;
2238	unsigned long blocks = 0;
2239	unsigned long inodes = 0;
2240	int policy = MPOL_DEFAULT;
2241	nodemask_t policy_nodes = node_online_map;
2242
2243#ifdef CONFIG_TMPFS
2244	/*
2245	 * Per default we only allow half of the physical ram per
2246	 * tmpfs instance, limiting inodes to one per page of lowmem;
2247	 * but the internal instance is left unlimited.
2248	 */
2249	if (!(sb->s_flags & MS_NOUSER)) {
2250		blocks = totalram_pages / 2;
2251		inodes = totalram_pages - totalhigh_pages;
2252		if (inodes > blocks)
2253			inodes = blocks;
2254		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2255					&inodes, &policy, &policy_nodes))
2256			return -EINVAL;
2257	}
2258	sb->s_export_op = &shmem_export_ops;
2259#else
2260	sb->s_flags |= MS_NOUSER;
2261#endif
2262
2263	/* Round up to L1_CACHE_BYTES to resist false sharing */
2264	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2265				L1_CACHE_BYTES), GFP_KERNEL);
2266	if (!sbinfo)
2267		return -ENOMEM;
2268
2269	spin_lock_init(&sbinfo->stat_lock);
2270	sbinfo->max_blocks = blocks;
2271	sbinfo->free_blocks = blocks;
2272	sbinfo->max_inodes = inodes;
2273	sbinfo->free_inodes = inodes;
2274	sbinfo->policy = policy;
2275	sbinfo->policy_nodes = policy_nodes;
2276
2277	sb->s_fs_info = sbinfo;
2278	sb->s_maxbytes = SHMEM_MAX_BYTES;
2279	sb->s_blocksize = PAGE_CACHE_SIZE;
2280	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2281	sb->s_magic = TMPFS_MAGIC;
2282	sb->s_op = &shmem_ops;
2283	sb->s_time_gran = 1;
2284#ifdef CONFIG_TMPFS_POSIX_ACL
2285	sb->s_xattr = shmem_xattr_handlers;
2286	sb->s_flags |= MS_POSIXACL;
2287#endif
2288
2289	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2290	if (!inode)
2291		goto failed;
2292	inode->i_uid = uid;
2293	inode->i_gid = gid;
2294	root = d_alloc_root(inode);
2295	if (!root)
2296		goto failed_iput;
2297	sb->s_root = root;
2298	return 0;
2299
2300failed_iput:
2301	iput(inode);
2302failed:
2303	shmem_put_super(sb);
2304	return err;
2305}
2306
2307static struct kmem_cache *shmem_inode_cachep;
2308
2309static struct inode *shmem_alloc_inode(struct super_block *sb)
2310{
2311	struct shmem_inode_info *p;
2312	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2313	if (!p)
2314		return NULL;
2315	return &p->vfs_inode;
2316}
2317
2318static void shmem_destroy_inode(struct inode *inode)
2319{
2320	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2321		/* only struct inode is valid if it's an inline symlink */
2322		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2323	}
2324	shmem_acl_destroy_inode(inode);
2325	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2326}
2327
2328static void init_once(void *foo, struct kmem_cache *cachep,
2329		      unsigned long flags)
2330{
2331	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2332
2333	inode_init_once(&p->vfs_inode);
2334#ifdef CONFIG_TMPFS_POSIX_ACL
2335	p->i_acl = NULL;
2336	p->i_default_acl = NULL;
2337#endif
2338}
2339
2340static int init_inodecache(void)
2341{
2342	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2343				sizeof(struct shmem_inode_info),
2344				0, 0, init_once);
2345	if (shmem_inode_cachep == NULL)
2346		return -ENOMEM;
2347	return 0;
2348}
2349
2350static void destroy_inodecache(void)
2351{
2352	kmem_cache_destroy(shmem_inode_cachep);
2353}
2354
2355static const struct address_space_operations shmem_aops = {
2356	.writepage	= shmem_writepage,
2357	.set_page_dirty	= __set_page_dirty_no_writeback,
2358#ifdef CONFIG_TMPFS
2359	.readpage	= shmem_readpage,
2360	.write_begin	= shmem_write_begin,
2361	.write_end	= shmem_write_end,
2362#endif
2363	.migratepage	= migrate_page,
2364};
2365
2366static const struct file_operations shmem_file_operations = {
2367	.mmap		= shmem_mmap,
2368#ifdef CONFIG_TMPFS
2369	.llseek		= generic_file_llseek,
2370	.read		= shmem_file_read,
2371	.write		= shmem_file_write,
2372	.fsync		= simple_sync_file,
2373	.splice_read	= generic_file_splice_read,
2374	.splice_write	= generic_file_splice_write,
2375#endif
2376};
2377
2378static const struct inode_operations shmem_inode_operations = {
2379	.truncate	= shmem_truncate,
2380	.setattr	= shmem_notify_change,
2381	.truncate_range	= shmem_truncate_range,
2382#ifdef CONFIG_TMPFS_POSIX_ACL
2383	.setxattr	= generic_setxattr,
2384	.getxattr	= generic_getxattr,
2385	.listxattr	= generic_listxattr,
2386	.removexattr	= generic_removexattr,
2387	.permission	= shmem_permission,
2388#endif
2389
2390};
2391
2392static const struct inode_operations shmem_dir_inode_operations = {
2393#ifdef CONFIG_TMPFS
2394	.create		= shmem_create,
2395	.lookup		= simple_lookup,
2396	.link		= shmem_link,
2397	.unlink		= shmem_unlink,
2398	.symlink	= shmem_symlink,
2399	.mkdir		= shmem_mkdir,
2400	.rmdir		= shmem_rmdir,
2401	.mknod		= shmem_mknod,
2402	.rename		= shmem_rename,
2403#endif
2404#ifdef CONFIG_TMPFS_POSIX_ACL
2405	.setattr	= shmem_notify_change,
2406	.setxattr	= generic_setxattr,
2407	.getxattr	= generic_getxattr,
2408	.listxattr	= generic_listxattr,
2409	.removexattr	= generic_removexattr,
2410	.permission	= shmem_permission,
2411#endif
2412};
2413
2414static const struct inode_operations shmem_special_inode_operations = {
2415#ifdef CONFIG_TMPFS_POSIX_ACL
2416	.setattr	= shmem_notify_change,
2417	.setxattr	= generic_setxattr,
2418	.getxattr	= generic_getxattr,
2419	.listxattr	= generic_listxattr,
2420	.removexattr	= generic_removexattr,
2421	.permission	= shmem_permission,
2422#endif
2423};
2424
2425static const struct super_operations shmem_ops = {
2426	.alloc_inode	= shmem_alloc_inode,
2427	.destroy_inode	= shmem_destroy_inode,
2428#ifdef CONFIG_TMPFS
2429	.statfs		= shmem_statfs,
2430	.remount_fs	= shmem_remount_fs,
2431#endif
2432	.delete_inode	= shmem_delete_inode,
2433	.drop_inode	= generic_delete_inode,
2434	.put_super	= shmem_put_super,
2435};
2436
2437static struct vm_operations_struct shmem_vm_ops = {
2438	.fault		= shmem_fault,
2439#ifdef CONFIG_NUMA
2440	.set_policy     = shmem_set_policy,
2441	.get_policy     = shmem_get_policy,
2442#endif
2443};
2444
2445
2446static int shmem_get_sb(struct file_system_type *fs_type,
2447	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2448{
2449	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2450}
2451
2452static struct file_system_type tmpfs_fs_type = {
2453	.owner		= THIS_MODULE,
2454	.name		= "tmpfs",
2455	.get_sb		= shmem_get_sb,
2456	.kill_sb	= kill_litter_super,
2457};
2458static struct vfsmount *shm_mnt;
2459
2460static int __init init_tmpfs(void)
2461{
2462	int error;
2463
2464	error = init_inodecache();
2465	if (error)
2466		goto out3;
2467
2468	error = register_filesystem(&tmpfs_fs_type);
2469	if (error) {
2470		printk(KERN_ERR "Could not register tmpfs\n");
2471		goto out2;
2472	}
2473
2474	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2475				tmpfs_fs_type.name, NULL);
2476	if (IS_ERR(shm_mnt)) {
2477		error = PTR_ERR(shm_mnt);
2478		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2479		goto out1;
2480	}
2481	return 0;
2482
2483out1:
2484	unregister_filesystem(&tmpfs_fs_type);
2485out2:
2486	destroy_inodecache();
2487out3:
2488	shm_mnt = ERR_PTR(error);
2489	return error;
2490}
2491module_init(init_tmpfs)
2492
2493/*
2494 * shmem_file_setup - get an unlinked file living in tmpfs
2495 *
2496 * @name: name for dentry (to be seen in /proc/<pid>/maps
2497 * @size: size to be set for the file
2498 *
2499 */
2500struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2501{
2502	int error;
2503	struct file *file;
2504	struct inode *inode;
2505	struct dentry *dentry, *root;
2506	struct qstr this;
2507
2508	if (IS_ERR(shm_mnt))
2509		return (void *)shm_mnt;
2510
2511	if (size < 0 || size > SHMEM_MAX_BYTES)
2512		return ERR_PTR(-EINVAL);
2513
2514	if (shmem_acct_size(flags, size))
2515		return ERR_PTR(-ENOMEM);
2516
2517	error = -ENOMEM;
2518	this.name = name;
2519	this.len = strlen(name);
2520	this.hash = 0; /* will go */
2521	root = shm_mnt->mnt_root;
2522	dentry = d_alloc(root, &this);
2523	if (!dentry)
2524		goto put_memory;
2525
2526	error = -ENFILE;
2527	file = get_empty_filp();
2528	if (!file)
2529		goto put_dentry;
2530
2531	error = -ENOSPC;
2532	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2533	if (!inode)
2534		goto close_file;
2535
2536	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2537	d_instantiate(dentry, inode);
2538	inode->i_size = size;
2539	inode->i_nlink = 0;	/* It is unlinked */
2540	file->f_path.mnt = mntget(shm_mnt);
2541	file->f_path.dentry = dentry;
2542	file->f_mapping = inode->i_mapping;
2543	file->f_op = &shmem_file_operations;
2544	file->f_mode = FMODE_WRITE | FMODE_READ;
2545	return file;
2546
2547close_file:
2548	put_filp(file);
2549put_dentry:
2550	dput(dentry);
2551put_memory:
2552	shmem_unacct_size(flags, size);
2553	return ERR_PTR(error);
2554}
2555
2556/*
2557 * shmem_zero_setup - setup a shared anonymous mapping
2558 *
2559 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2560 */
2561int shmem_zero_setup(struct vm_area_struct *vma)
2562{
2563	struct file *file;
2564	loff_t size = vma->vm_end - vma->vm_start;
2565
2566	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2567	if (IS_ERR(file))
2568		return PTR_ERR(file);
2569
2570	if (vma->vm_file)
2571		fput(vma->vm_file);
2572	vma->vm_file = file;
2573	vma->vm_ops = &shmem_vm_ops;
2574	return 0;
2575}
2576