shmem.c revision 818db35992c249dc32c1d86daf7d533fb0952f5d
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52
53#include <asm/uaccess.h>
54#include <asm/div64.h>
55#include <asm/pgtable.h>
56
57/* This magic number is used in glibc for posix shared memory */
58#define TMPFS_MAGIC	0x01021994
59
60#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70#define SHMEM_PAGEIN	 VM_READ
71#define SHMEM_TRUNCATE	 VM_WRITE
72
73/* Definition to limit shmem_truncate's steps between cond_rescheds */
74#define LATENCY_LIMIT	 64
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80enum sgp_type {
81	SGP_READ,	/* don't exceed i_size, don't allocate page */
82	SGP_CACHE,	/* don't exceed i_size, may allocate page */
83	SGP_WRITE,	/* may exceed i_size, may allocate page */
84};
85
86static int shmem_getpage(struct inode *inode, unsigned long idx,
87			 struct page **pagep, enum sgp_type sgp, int *type);
88
89static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
90{
91	/*
92	 * The above definition of ENTRIES_PER_PAGE, and the use of
93	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
94	 * might be reconsidered if it ever diverges from PAGE_SIZE.
95	 *
96	 * Mobility flags are masked out as swap vectors cannot move
97	 */
98	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
99				PAGE_CACHE_SHIFT-PAGE_SHIFT);
100}
101
102static inline void shmem_dir_free(struct page *page)
103{
104	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
105}
106
107static struct page **shmem_dir_map(struct page *page)
108{
109	return (struct page **)kmap_atomic(page, KM_USER0);
110}
111
112static inline void shmem_dir_unmap(struct page **dir)
113{
114	kunmap_atomic(dir, KM_USER0);
115}
116
117static swp_entry_t *shmem_swp_map(struct page *page)
118{
119	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
120}
121
122static inline void shmem_swp_balance_unmap(void)
123{
124	/*
125	 * When passing a pointer to an i_direct entry, to code which
126	 * also handles indirect entries and so will shmem_swp_unmap,
127	 * we must arrange for the preempt count to remain in balance.
128	 * What kmap_atomic of a lowmem page does depends on config
129	 * and architecture, so pretend to kmap_atomic some lowmem page.
130	 */
131	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
132}
133
134static inline void shmem_swp_unmap(swp_entry_t *entry)
135{
136	kunmap_atomic(entry, KM_USER1);
137}
138
139static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
140{
141	return sb->s_fs_info;
142}
143
144/*
145 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
146 * for shared memory and for shared anonymous (/dev/zero) mappings
147 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
148 * consistent with the pre-accounting of private mappings ...
149 */
150static inline int shmem_acct_size(unsigned long flags, loff_t size)
151{
152	return (flags & VM_ACCOUNT)?
153		security_vm_enough_memory(VM_ACCT(size)): 0;
154}
155
156static inline void shmem_unacct_size(unsigned long flags, loff_t size)
157{
158	if (flags & VM_ACCOUNT)
159		vm_unacct_memory(VM_ACCT(size));
160}
161
162/*
163 * ... whereas tmpfs objects are accounted incrementally as
164 * pages are allocated, in order to allow huge sparse files.
165 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
166 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
167 */
168static inline int shmem_acct_block(unsigned long flags)
169{
170	return (flags & VM_ACCOUNT)?
171		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
172}
173
174static inline void shmem_unacct_blocks(unsigned long flags, long pages)
175{
176	if (!(flags & VM_ACCOUNT))
177		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
178}
179
180static const struct super_operations shmem_ops;
181static const struct address_space_operations shmem_aops;
182static const struct file_operations shmem_file_operations;
183static const struct inode_operations shmem_inode_operations;
184static const struct inode_operations shmem_dir_inode_operations;
185static const struct inode_operations shmem_special_inode_operations;
186static struct vm_operations_struct shmem_vm_ops;
187
188static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
189	.ra_pages	= 0,	/* No readahead */
190	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
191	.unplug_io_fn	= default_unplug_io_fn,
192};
193
194static LIST_HEAD(shmem_swaplist);
195static DEFINE_SPINLOCK(shmem_swaplist_lock);
196
197static void shmem_free_blocks(struct inode *inode, long pages)
198{
199	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
200	if (sbinfo->max_blocks) {
201		spin_lock(&sbinfo->stat_lock);
202		sbinfo->free_blocks += pages;
203		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
204		spin_unlock(&sbinfo->stat_lock);
205	}
206}
207
208static int shmem_reserve_inode(struct super_block *sb)
209{
210	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211	if (sbinfo->max_inodes) {
212		spin_lock(&sbinfo->stat_lock);
213		if (!sbinfo->free_inodes) {
214			spin_unlock(&sbinfo->stat_lock);
215			return -ENOSPC;
216		}
217		sbinfo->free_inodes--;
218		spin_unlock(&sbinfo->stat_lock);
219	}
220	return 0;
221}
222
223static void shmem_free_inode(struct super_block *sb)
224{
225	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226	if (sbinfo->max_inodes) {
227		spin_lock(&sbinfo->stat_lock);
228		sbinfo->free_inodes++;
229		spin_unlock(&sbinfo->stat_lock);
230	}
231}
232
233/*
234 * shmem_recalc_inode - recalculate the size of an inode
235 *
236 * @inode: inode to recalc
237 *
238 * We have to calculate the free blocks since the mm can drop
239 * undirtied hole pages behind our back.
240 *
241 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
242 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
243 *
244 * It has to be called with the spinlock held.
245 */
246static void shmem_recalc_inode(struct inode *inode)
247{
248	struct shmem_inode_info *info = SHMEM_I(inode);
249	long freed;
250
251	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
252	if (freed > 0) {
253		info->alloced -= freed;
254		shmem_unacct_blocks(info->flags, freed);
255		shmem_free_blocks(inode, freed);
256	}
257}
258
259/*
260 * shmem_swp_entry - find the swap vector position in the info structure
261 *
262 * @info:  info structure for the inode
263 * @index: index of the page to find
264 * @page:  optional page to add to the structure. Has to be preset to
265 *         all zeros
266 *
267 * If there is no space allocated yet it will return NULL when
268 * page is NULL, else it will use the page for the needed block,
269 * setting it to NULL on return to indicate that it has been used.
270 *
271 * The swap vector is organized the following way:
272 *
273 * There are SHMEM_NR_DIRECT entries directly stored in the
274 * shmem_inode_info structure. So small files do not need an addional
275 * allocation.
276 *
277 * For pages with index > SHMEM_NR_DIRECT there is the pointer
278 * i_indirect which points to a page which holds in the first half
279 * doubly indirect blocks, in the second half triple indirect blocks:
280 *
281 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
282 * following layout (for SHMEM_NR_DIRECT == 16):
283 *
284 * i_indirect -> dir --> 16-19
285 * 	      |	     +-> 20-23
286 * 	      |
287 * 	      +-->dir2 --> 24-27
288 * 	      |	       +-> 28-31
289 * 	      |	       +-> 32-35
290 * 	      |	       +-> 36-39
291 * 	      |
292 * 	      +-->dir3 --> 40-43
293 * 	       	       +-> 44-47
294 * 	      	       +-> 48-51
295 * 	      	       +-> 52-55
296 */
297static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
298{
299	unsigned long offset;
300	struct page **dir;
301	struct page *subdir;
302
303	if (index < SHMEM_NR_DIRECT) {
304		shmem_swp_balance_unmap();
305		return info->i_direct+index;
306	}
307	if (!info->i_indirect) {
308		if (page) {
309			info->i_indirect = *page;
310			*page = NULL;
311		}
312		return NULL;			/* need another page */
313	}
314
315	index -= SHMEM_NR_DIRECT;
316	offset = index % ENTRIES_PER_PAGE;
317	index /= ENTRIES_PER_PAGE;
318	dir = shmem_dir_map(info->i_indirect);
319
320	if (index >= ENTRIES_PER_PAGE/2) {
321		index -= ENTRIES_PER_PAGE/2;
322		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
323		index %= ENTRIES_PER_PAGE;
324		subdir = *dir;
325		if (!subdir) {
326			if (page) {
327				*dir = *page;
328				*page = NULL;
329			}
330			shmem_dir_unmap(dir);
331			return NULL;		/* need another page */
332		}
333		shmem_dir_unmap(dir);
334		dir = shmem_dir_map(subdir);
335	}
336
337	dir += index;
338	subdir = *dir;
339	if (!subdir) {
340		if (!page || !(subdir = *page)) {
341			shmem_dir_unmap(dir);
342			return NULL;		/* need a page */
343		}
344		*dir = subdir;
345		*page = NULL;
346	}
347	shmem_dir_unmap(dir);
348	return shmem_swp_map(subdir) + offset;
349}
350
351static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
352{
353	long incdec = value? 1: -1;
354
355	entry->val = value;
356	info->swapped += incdec;
357	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
358		struct page *page = kmap_atomic_to_page(entry);
359		set_page_private(page, page_private(page) + incdec);
360	}
361}
362
363/*
364 * shmem_swp_alloc - get the position of the swap entry for the page.
365 *                   If it does not exist allocate the entry.
366 *
367 * @info:	info structure for the inode
368 * @index:	index of the page to find
369 * @sgp:	check and recheck i_size? skip allocation?
370 */
371static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
372{
373	struct inode *inode = &info->vfs_inode;
374	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
375	struct page *page = NULL;
376	swp_entry_t *entry;
377
378	if (sgp != SGP_WRITE &&
379	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
380		return ERR_PTR(-EINVAL);
381
382	while (!(entry = shmem_swp_entry(info, index, &page))) {
383		if (sgp == SGP_READ)
384			return shmem_swp_map(ZERO_PAGE(0));
385		/*
386		 * Test free_blocks against 1 not 0, since we have 1 data
387		 * page (and perhaps indirect index pages) yet to allocate:
388		 * a waste to allocate index if we cannot allocate data.
389		 */
390		if (sbinfo->max_blocks) {
391			spin_lock(&sbinfo->stat_lock);
392			if (sbinfo->free_blocks <= 1) {
393				spin_unlock(&sbinfo->stat_lock);
394				return ERR_PTR(-ENOSPC);
395			}
396			sbinfo->free_blocks--;
397			inode->i_blocks += BLOCKS_PER_PAGE;
398			spin_unlock(&sbinfo->stat_lock);
399		}
400
401		spin_unlock(&info->lock);
402		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
403		if (page)
404			set_page_private(page, 0);
405		spin_lock(&info->lock);
406
407		if (!page) {
408			shmem_free_blocks(inode, 1);
409			return ERR_PTR(-ENOMEM);
410		}
411		if (sgp != SGP_WRITE &&
412		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
413			entry = ERR_PTR(-EINVAL);
414			break;
415		}
416		if (info->next_index <= index)
417			info->next_index = index + 1;
418	}
419	if (page) {
420		/* another task gave its page, or truncated the file */
421		shmem_free_blocks(inode, 1);
422		shmem_dir_free(page);
423	}
424	if (info->next_index <= index && !IS_ERR(entry))
425		info->next_index = index + 1;
426	return entry;
427}
428
429/*
430 * shmem_free_swp - free some swap entries in a directory
431 *
432 * @dir:        pointer to the directory
433 * @edir:       pointer after last entry of the directory
434 * @punch_lock: pointer to spinlock when needed for the holepunch case
435 */
436static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
437						spinlock_t *punch_lock)
438{
439	spinlock_t *punch_unlock = NULL;
440	swp_entry_t *ptr;
441	int freed = 0;
442
443	for (ptr = dir; ptr < edir; ptr++) {
444		if (ptr->val) {
445			if (unlikely(punch_lock)) {
446				punch_unlock = punch_lock;
447				punch_lock = NULL;
448				spin_lock(punch_unlock);
449				if (!ptr->val)
450					continue;
451			}
452			free_swap_and_cache(*ptr);
453			*ptr = (swp_entry_t){0};
454			freed++;
455		}
456	}
457	if (punch_unlock)
458		spin_unlock(punch_unlock);
459	return freed;
460}
461
462static int shmem_map_and_free_swp(struct page *subdir, int offset,
463		int limit, struct page ***dir, spinlock_t *punch_lock)
464{
465	swp_entry_t *ptr;
466	int freed = 0;
467
468	ptr = shmem_swp_map(subdir);
469	for (; offset < limit; offset += LATENCY_LIMIT) {
470		int size = limit - offset;
471		if (size > LATENCY_LIMIT)
472			size = LATENCY_LIMIT;
473		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
474							punch_lock);
475		if (need_resched()) {
476			shmem_swp_unmap(ptr);
477			if (*dir) {
478				shmem_dir_unmap(*dir);
479				*dir = NULL;
480			}
481			cond_resched();
482			ptr = shmem_swp_map(subdir);
483		}
484	}
485	shmem_swp_unmap(ptr);
486	return freed;
487}
488
489static void shmem_free_pages(struct list_head *next)
490{
491	struct page *page;
492	int freed = 0;
493
494	do {
495		page = container_of(next, struct page, lru);
496		next = next->next;
497		shmem_dir_free(page);
498		freed++;
499		if (freed >= LATENCY_LIMIT) {
500			cond_resched();
501			freed = 0;
502		}
503	} while (next);
504}
505
506static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
507{
508	struct shmem_inode_info *info = SHMEM_I(inode);
509	unsigned long idx;
510	unsigned long size;
511	unsigned long limit;
512	unsigned long stage;
513	unsigned long diroff;
514	struct page **dir;
515	struct page *topdir;
516	struct page *middir;
517	struct page *subdir;
518	swp_entry_t *ptr;
519	LIST_HEAD(pages_to_free);
520	long nr_pages_to_free = 0;
521	long nr_swaps_freed = 0;
522	int offset;
523	int freed;
524	int punch_hole;
525	spinlock_t *needs_lock;
526	spinlock_t *punch_lock;
527	unsigned long upper_limit;
528
529	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
530	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
531	if (idx >= info->next_index)
532		return;
533
534	spin_lock(&info->lock);
535	info->flags |= SHMEM_TRUNCATE;
536	if (likely(end == (loff_t) -1)) {
537		limit = info->next_index;
538		upper_limit = SHMEM_MAX_INDEX;
539		info->next_index = idx;
540		needs_lock = NULL;
541		punch_hole = 0;
542	} else {
543		if (end + 1 >= inode->i_size) {	/* we may free a little more */
544			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
545							PAGE_CACHE_SHIFT;
546			upper_limit = SHMEM_MAX_INDEX;
547		} else {
548			limit = (end + 1) >> PAGE_CACHE_SHIFT;
549			upper_limit = limit;
550		}
551		needs_lock = &info->lock;
552		punch_hole = 1;
553	}
554
555	topdir = info->i_indirect;
556	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
557		info->i_indirect = NULL;
558		nr_pages_to_free++;
559		list_add(&topdir->lru, &pages_to_free);
560	}
561	spin_unlock(&info->lock);
562
563	if (info->swapped && idx < SHMEM_NR_DIRECT) {
564		ptr = info->i_direct;
565		size = limit;
566		if (size > SHMEM_NR_DIRECT)
567			size = SHMEM_NR_DIRECT;
568		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
569	}
570
571	/*
572	 * If there are no indirect blocks or we are punching a hole
573	 * below indirect blocks, nothing to be done.
574	 */
575	if (!topdir || limit <= SHMEM_NR_DIRECT)
576		goto done2;
577
578	/*
579	 * The truncation case has already dropped info->lock, and we're safe
580	 * because i_size and next_index have already been lowered, preventing
581	 * access beyond.  But in the punch_hole case, we still need to take
582	 * the lock when updating the swap directory, because there might be
583	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
584	 * shmem_writepage.  However, whenever we find we can remove a whole
585	 * directory page (not at the misaligned start or end of the range),
586	 * we first NULLify its pointer in the level above, and then have no
587	 * need to take the lock when updating its contents: needs_lock and
588	 * punch_lock (either pointing to info->lock or NULL) manage this.
589	 */
590
591	upper_limit -= SHMEM_NR_DIRECT;
592	limit -= SHMEM_NR_DIRECT;
593	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
594	offset = idx % ENTRIES_PER_PAGE;
595	idx -= offset;
596
597	dir = shmem_dir_map(topdir);
598	stage = ENTRIES_PER_PAGEPAGE/2;
599	if (idx < ENTRIES_PER_PAGEPAGE/2) {
600		middir = topdir;
601		diroff = idx/ENTRIES_PER_PAGE;
602	} else {
603		dir += ENTRIES_PER_PAGE/2;
604		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
605		while (stage <= idx)
606			stage += ENTRIES_PER_PAGEPAGE;
607		middir = *dir;
608		if (*dir) {
609			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
610				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
611			if (!diroff && !offset && upper_limit >= stage) {
612				if (needs_lock) {
613					spin_lock(needs_lock);
614					*dir = NULL;
615					spin_unlock(needs_lock);
616					needs_lock = NULL;
617				} else
618					*dir = NULL;
619				nr_pages_to_free++;
620				list_add(&middir->lru, &pages_to_free);
621			}
622			shmem_dir_unmap(dir);
623			dir = shmem_dir_map(middir);
624		} else {
625			diroff = 0;
626			offset = 0;
627			idx = stage;
628		}
629	}
630
631	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
632		if (unlikely(idx == stage)) {
633			shmem_dir_unmap(dir);
634			dir = shmem_dir_map(topdir) +
635			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
636			while (!*dir) {
637				dir++;
638				idx += ENTRIES_PER_PAGEPAGE;
639				if (idx >= limit)
640					goto done1;
641			}
642			stage = idx + ENTRIES_PER_PAGEPAGE;
643			middir = *dir;
644			if (punch_hole)
645				needs_lock = &info->lock;
646			if (upper_limit >= stage) {
647				if (needs_lock) {
648					spin_lock(needs_lock);
649					*dir = NULL;
650					spin_unlock(needs_lock);
651					needs_lock = NULL;
652				} else
653					*dir = NULL;
654				nr_pages_to_free++;
655				list_add(&middir->lru, &pages_to_free);
656			}
657			shmem_dir_unmap(dir);
658			cond_resched();
659			dir = shmem_dir_map(middir);
660			diroff = 0;
661		}
662		punch_lock = needs_lock;
663		subdir = dir[diroff];
664		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
665			if (needs_lock) {
666				spin_lock(needs_lock);
667				dir[diroff] = NULL;
668				spin_unlock(needs_lock);
669				punch_lock = NULL;
670			} else
671				dir[diroff] = NULL;
672			nr_pages_to_free++;
673			list_add(&subdir->lru, &pages_to_free);
674		}
675		if (subdir && page_private(subdir) /* has swap entries */) {
676			size = limit - idx;
677			if (size > ENTRIES_PER_PAGE)
678				size = ENTRIES_PER_PAGE;
679			freed = shmem_map_and_free_swp(subdir,
680					offset, size, &dir, punch_lock);
681			if (!dir)
682				dir = shmem_dir_map(middir);
683			nr_swaps_freed += freed;
684			if (offset || punch_lock) {
685				spin_lock(&info->lock);
686				set_page_private(subdir,
687					page_private(subdir) - freed);
688				spin_unlock(&info->lock);
689			} else
690				BUG_ON(page_private(subdir) != freed);
691		}
692		offset = 0;
693	}
694done1:
695	shmem_dir_unmap(dir);
696done2:
697	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
698		/*
699		 * Call truncate_inode_pages again: racing shmem_unuse_inode
700		 * may have swizzled a page in from swap since vmtruncate or
701		 * generic_delete_inode did it, before we lowered next_index.
702		 * Also, though shmem_getpage checks i_size before adding to
703		 * cache, no recheck after: so fix the narrow window there too.
704		 *
705		 * Recalling truncate_inode_pages_range and unmap_mapping_range
706		 * every time for punch_hole (which never got a chance to clear
707		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
708		 * yet hardly ever necessary: try to optimize them out later.
709		 */
710		truncate_inode_pages_range(inode->i_mapping, start, end);
711		if (punch_hole)
712			unmap_mapping_range(inode->i_mapping, start,
713							end - start, 1);
714	}
715
716	spin_lock(&info->lock);
717	info->flags &= ~SHMEM_TRUNCATE;
718	info->swapped -= nr_swaps_freed;
719	if (nr_pages_to_free)
720		shmem_free_blocks(inode, nr_pages_to_free);
721	shmem_recalc_inode(inode);
722	spin_unlock(&info->lock);
723
724	/*
725	 * Empty swap vector directory pages to be freed?
726	 */
727	if (!list_empty(&pages_to_free)) {
728		pages_to_free.prev->next = NULL;
729		shmem_free_pages(pages_to_free.next);
730	}
731}
732
733static void shmem_truncate(struct inode *inode)
734{
735	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
736}
737
738static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
739{
740	struct inode *inode = dentry->d_inode;
741	struct page *page = NULL;
742	int error;
743
744	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
745		if (attr->ia_size < inode->i_size) {
746			/*
747			 * If truncating down to a partial page, then
748			 * if that page is already allocated, hold it
749			 * in memory until the truncation is over, so
750			 * truncate_partial_page cannnot miss it were
751			 * it assigned to swap.
752			 */
753			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
754				(void) shmem_getpage(inode,
755					attr->ia_size>>PAGE_CACHE_SHIFT,
756						&page, SGP_READ, NULL);
757				if (page)
758					unlock_page(page);
759			}
760			/*
761			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
762			 * detect if any pages might have been added to cache
763			 * after truncate_inode_pages.  But we needn't bother
764			 * if it's being fully truncated to zero-length: the
765			 * nrpages check is efficient enough in that case.
766			 */
767			if (attr->ia_size) {
768				struct shmem_inode_info *info = SHMEM_I(inode);
769				spin_lock(&info->lock);
770				info->flags &= ~SHMEM_PAGEIN;
771				spin_unlock(&info->lock);
772			}
773		}
774	}
775
776	error = inode_change_ok(inode, attr);
777	if (!error)
778		error = inode_setattr(inode, attr);
779#ifdef CONFIG_TMPFS_POSIX_ACL
780	if (!error && (attr->ia_valid & ATTR_MODE))
781		error = generic_acl_chmod(inode, &shmem_acl_ops);
782#endif
783	if (page)
784		page_cache_release(page);
785	return error;
786}
787
788static void shmem_delete_inode(struct inode *inode)
789{
790	struct shmem_inode_info *info = SHMEM_I(inode);
791
792	if (inode->i_op->truncate == shmem_truncate) {
793		truncate_inode_pages(inode->i_mapping, 0);
794		shmem_unacct_size(info->flags, inode->i_size);
795		inode->i_size = 0;
796		shmem_truncate(inode);
797		if (!list_empty(&info->swaplist)) {
798			spin_lock(&shmem_swaplist_lock);
799			list_del_init(&info->swaplist);
800			spin_unlock(&shmem_swaplist_lock);
801		}
802	}
803	BUG_ON(inode->i_blocks);
804	shmem_free_inode(inode->i_sb);
805	clear_inode(inode);
806}
807
808static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
809{
810	swp_entry_t *ptr;
811
812	for (ptr = dir; ptr < edir; ptr++) {
813		if (ptr->val == entry.val)
814			return ptr - dir;
815	}
816	return -1;
817}
818
819static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
820{
821	struct inode *inode;
822	unsigned long idx;
823	unsigned long size;
824	unsigned long limit;
825	unsigned long stage;
826	struct page **dir;
827	struct page *subdir;
828	swp_entry_t *ptr;
829	int offset;
830
831	idx = 0;
832	ptr = info->i_direct;
833	spin_lock(&info->lock);
834	limit = info->next_index;
835	size = limit;
836	if (size > SHMEM_NR_DIRECT)
837		size = SHMEM_NR_DIRECT;
838	offset = shmem_find_swp(entry, ptr, ptr+size);
839	if (offset >= 0) {
840		shmem_swp_balance_unmap();
841		goto found;
842	}
843	if (!info->i_indirect)
844		goto lost2;
845
846	dir = shmem_dir_map(info->i_indirect);
847	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
848
849	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
850		if (unlikely(idx == stage)) {
851			shmem_dir_unmap(dir-1);
852			dir = shmem_dir_map(info->i_indirect) +
853			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
854			while (!*dir) {
855				dir++;
856				idx += ENTRIES_PER_PAGEPAGE;
857				if (idx >= limit)
858					goto lost1;
859			}
860			stage = idx + ENTRIES_PER_PAGEPAGE;
861			subdir = *dir;
862			shmem_dir_unmap(dir);
863			dir = shmem_dir_map(subdir);
864		}
865		subdir = *dir;
866		if (subdir && page_private(subdir)) {
867			ptr = shmem_swp_map(subdir);
868			size = limit - idx;
869			if (size > ENTRIES_PER_PAGE)
870				size = ENTRIES_PER_PAGE;
871			offset = shmem_find_swp(entry, ptr, ptr+size);
872			if (offset >= 0) {
873				shmem_dir_unmap(dir);
874				goto found;
875			}
876			shmem_swp_unmap(ptr);
877		}
878	}
879lost1:
880	shmem_dir_unmap(dir-1);
881lost2:
882	spin_unlock(&info->lock);
883	return 0;
884found:
885	idx += offset;
886	inode = &info->vfs_inode;
887	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
888		info->flags |= SHMEM_PAGEIN;
889		shmem_swp_set(info, ptr + offset, 0);
890	}
891	shmem_swp_unmap(ptr);
892	spin_unlock(&info->lock);
893	/*
894	 * Decrement swap count even when the entry is left behind:
895	 * try_to_unuse will skip over mms, then reincrement count.
896	 */
897	swap_free(entry);
898	return 1;
899}
900
901/*
902 * shmem_unuse() search for an eventually swapped out shmem page.
903 */
904int shmem_unuse(swp_entry_t entry, struct page *page)
905{
906	struct list_head *p, *next;
907	struct shmem_inode_info *info;
908	int found = 0;
909
910	spin_lock(&shmem_swaplist_lock);
911	list_for_each_safe(p, next, &shmem_swaplist) {
912		info = list_entry(p, struct shmem_inode_info, swaplist);
913		if (!info->swapped)
914			list_del_init(&info->swaplist);
915		else if (shmem_unuse_inode(info, entry, page)) {
916			/* move head to start search for next from here */
917			list_move_tail(&shmem_swaplist, &info->swaplist);
918			found = 1;
919			break;
920		}
921	}
922	spin_unlock(&shmem_swaplist_lock);
923	return found;
924}
925
926/*
927 * Move the page from the page cache to the swap cache.
928 */
929static int shmem_writepage(struct page *page, struct writeback_control *wbc)
930{
931	struct shmem_inode_info *info;
932	swp_entry_t *entry, swap;
933	struct address_space *mapping;
934	unsigned long index;
935	struct inode *inode;
936
937	BUG_ON(!PageLocked(page));
938	/*
939	 * shmem_backing_dev_info's capabilities prevent regular writeback or
940	 * sync from ever calling shmem_writepage; but a stacking filesystem
941	 * may use the ->writepage of its underlying filesystem, in which case
942	 * we want to do nothing when that underlying filesystem is tmpfs
943	 * (writing out to swap is useful as a response to memory pressure, but
944	 * of no use to stabilize the data) - just redirty the page, unlock it
945	 * and claim success in this case.  AOP_WRITEPAGE_ACTIVATE, and the
946	 * page_mapped check below, must be avoided unless we're in reclaim.
947	 */
948	if (!wbc->for_reclaim) {
949		set_page_dirty(page);
950		unlock_page(page);
951		return 0;
952	}
953	BUG_ON(page_mapped(page));
954
955	mapping = page->mapping;
956	index = page->index;
957	inode = mapping->host;
958	info = SHMEM_I(inode);
959	if (info->flags & VM_LOCKED)
960		goto redirty;
961	swap = get_swap_page();
962	if (!swap.val)
963		goto redirty;
964
965	spin_lock(&info->lock);
966	shmem_recalc_inode(inode);
967	if (index >= info->next_index) {
968		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
969		goto unlock;
970	}
971	entry = shmem_swp_entry(info, index, NULL);
972	BUG_ON(!entry);
973	BUG_ON(entry->val);
974
975	if (move_to_swap_cache(page, swap) == 0) {
976		shmem_swp_set(info, entry, swap.val);
977		shmem_swp_unmap(entry);
978		spin_unlock(&info->lock);
979		if (list_empty(&info->swaplist)) {
980			spin_lock(&shmem_swaplist_lock);
981			/* move instead of add in case we're racing */
982			list_move_tail(&info->swaplist, &shmem_swaplist);
983			spin_unlock(&shmem_swaplist_lock);
984		}
985		unlock_page(page);
986		return 0;
987	}
988
989	shmem_swp_unmap(entry);
990unlock:
991	spin_unlock(&info->lock);
992	swap_free(swap);
993redirty:
994	set_page_dirty(page);
995	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
996}
997
998#ifdef CONFIG_NUMA
999static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1000{
1001	char *nodelist = strchr(value, ':');
1002	int err = 1;
1003
1004	if (nodelist) {
1005		/* NUL-terminate policy string */
1006		*nodelist++ = '\0';
1007		if (nodelist_parse(nodelist, *policy_nodes))
1008			goto out;
1009		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1010			goto out;
1011	}
1012	if (!strcmp(value, "default")) {
1013		*policy = MPOL_DEFAULT;
1014		/* Don't allow a nodelist */
1015		if (!nodelist)
1016			err = 0;
1017	} else if (!strcmp(value, "prefer")) {
1018		*policy = MPOL_PREFERRED;
1019		/* Insist on a nodelist of one node only */
1020		if (nodelist) {
1021			char *rest = nodelist;
1022			while (isdigit(*rest))
1023				rest++;
1024			if (!*rest)
1025				err = 0;
1026		}
1027	} else if (!strcmp(value, "bind")) {
1028		*policy = MPOL_BIND;
1029		/* Insist on a nodelist */
1030		if (nodelist)
1031			err = 0;
1032	} else if (!strcmp(value, "interleave")) {
1033		*policy = MPOL_INTERLEAVE;
1034		/*
1035		 * Default to online nodes with memory if no nodelist
1036		 */
1037		if (!nodelist)
1038			*policy_nodes = node_states[N_HIGH_MEMORY];
1039		err = 0;
1040	}
1041out:
1042	/* Restore string for error message */
1043	if (nodelist)
1044		*--nodelist = ':';
1045	return err;
1046}
1047
1048static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1049			struct shmem_inode_info *info, unsigned long idx)
1050{
1051	struct vm_area_struct pvma;
1052	struct page *page;
1053
1054	/* Create a pseudo vma that just contains the policy */
1055	pvma.vm_start = 0;
1056	pvma.vm_pgoff = idx;
1057	pvma.vm_ops = NULL;
1058	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1059	page = swapin_readahead(entry, gfp, &pvma, 0);
1060	mpol_free(pvma.vm_policy);
1061	return page;
1062}
1063
1064static struct page *shmem_alloc_page(gfp_t gfp,
1065			struct shmem_inode_info *info, unsigned long idx)
1066{
1067	struct vm_area_struct pvma;
1068	struct page *page;
1069
1070	/* Create a pseudo vma that just contains the policy */
1071	pvma.vm_start = 0;
1072	pvma.vm_pgoff = idx;
1073	pvma.vm_ops = NULL;
1074	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1075	page = alloc_page_vma(gfp, &pvma, 0);
1076	mpol_free(pvma.vm_policy);
1077	return page;
1078}
1079#else
1080static inline int shmem_parse_mpol(char *value, int *policy,
1081						nodemask_t *policy_nodes)
1082{
1083	return 1;
1084}
1085
1086static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1087			struct shmem_inode_info *info, unsigned long idx)
1088{
1089	return swapin_readahead(entry, gfp, NULL, 0);
1090}
1091
1092static inline struct page *shmem_alloc_page(gfp_t gfp,
1093			struct shmem_inode_info *info, unsigned long idx)
1094{
1095	return alloc_page(gfp);
1096}
1097#endif
1098
1099/*
1100 * shmem_getpage - either get the page from swap or allocate a new one
1101 *
1102 * If we allocate a new one we do not mark it dirty. That's up to the
1103 * vm. If we swap it in we mark it dirty since we also free the swap
1104 * entry since a page cannot live in both the swap and page cache
1105 */
1106static int shmem_getpage(struct inode *inode, unsigned long idx,
1107			struct page **pagep, enum sgp_type sgp, int *type)
1108{
1109	struct address_space *mapping = inode->i_mapping;
1110	struct shmem_inode_info *info = SHMEM_I(inode);
1111	struct shmem_sb_info *sbinfo;
1112	struct page *filepage = *pagep;
1113	struct page *swappage;
1114	swp_entry_t *entry;
1115	swp_entry_t swap;
1116	gfp_t gfp;
1117	int error;
1118
1119	if (idx >= SHMEM_MAX_INDEX)
1120		return -EFBIG;
1121
1122	if (type)
1123		*type = 0;
1124
1125	/*
1126	 * Normally, filepage is NULL on entry, and either found
1127	 * uptodate immediately, or allocated and zeroed, or read
1128	 * in under swappage, which is then assigned to filepage.
1129	 * But shmem_readpage (required for splice) passes in a locked
1130	 * filepage, which may be found not uptodate by other callers
1131	 * too, and may need to be copied from the swappage read in.
1132	 */
1133repeat:
1134	if (!filepage)
1135		filepage = find_lock_page(mapping, idx);
1136	if (filepage && PageUptodate(filepage))
1137		goto done;
1138	error = 0;
1139	gfp = mapping_gfp_mask(mapping);
1140
1141	spin_lock(&info->lock);
1142	shmem_recalc_inode(inode);
1143	entry = shmem_swp_alloc(info, idx, sgp);
1144	if (IS_ERR(entry)) {
1145		spin_unlock(&info->lock);
1146		error = PTR_ERR(entry);
1147		goto failed;
1148	}
1149	swap = *entry;
1150
1151	if (swap.val) {
1152		/* Look it up and read it in.. */
1153		swappage = lookup_swap_cache(swap);
1154		if (!swappage) {
1155			shmem_swp_unmap(entry);
1156			/* here we actually do the io */
1157			if (type && !(*type & VM_FAULT_MAJOR)) {
1158				__count_vm_event(PGMAJFAULT);
1159				*type |= VM_FAULT_MAJOR;
1160			}
1161			spin_unlock(&info->lock);
1162			swappage = shmem_swapin(swap, gfp, info, idx);
1163			if (!swappage) {
1164				spin_lock(&info->lock);
1165				entry = shmem_swp_alloc(info, idx, sgp);
1166				if (IS_ERR(entry))
1167					error = PTR_ERR(entry);
1168				else {
1169					if (entry->val == swap.val)
1170						error = -ENOMEM;
1171					shmem_swp_unmap(entry);
1172				}
1173				spin_unlock(&info->lock);
1174				if (error)
1175					goto failed;
1176				goto repeat;
1177			}
1178			wait_on_page_locked(swappage);
1179			page_cache_release(swappage);
1180			goto repeat;
1181		}
1182
1183		/* We have to do this with page locked to prevent races */
1184		if (TestSetPageLocked(swappage)) {
1185			shmem_swp_unmap(entry);
1186			spin_unlock(&info->lock);
1187			wait_on_page_locked(swappage);
1188			page_cache_release(swappage);
1189			goto repeat;
1190		}
1191		if (PageWriteback(swappage)) {
1192			shmem_swp_unmap(entry);
1193			spin_unlock(&info->lock);
1194			wait_on_page_writeback(swappage);
1195			unlock_page(swappage);
1196			page_cache_release(swappage);
1197			goto repeat;
1198		}
1199		if (!PageUptodate(swappage)) {
1200			shmem_swp_unmap(entry);
1201			spin_unlock(&info->lock);
1202			unlock_page(swappage);
1203			page_cache_release(swappage);
1204			error = -EIO;
1205			goto failed;
1206		}
1207
1208		if (filepage) {
1209			shmem_swp_set(info, entry, 0);
1210			shmem_swp_unmap(entry);
1211			delete_from_swap_cache(swappage);
1212			spin_unlock(&info->lock);
1213			copy_highpage(filepage, swappage);
1214			unlock_page(swappage);
1215			page_cache_release(swappage);
1216			flush_dcache_page(filepage);
1217			SetPageUptodate(filepage);
1218			set_page_dirty(filepage);
1219			swap_free(swap);
1220		} else if (!(error = move_from_swap_cache(
1221				swappage, idx, mapping))) {
1222			info->flags |= SHMEM_PAGEIN;
1223			shmem_swp_set(info, entry, 0);
1224			shmem_swp_unmap(entry);
1225			spin_unlock(&info->lock);
1226			filepage = swappage;
1227			swap_free(swap);
1228		} else {
1229			shmem_swp_unmap(entry);
1230			spin_unlock(&info->lock);
1231			unlock_page(swappage);
1232			page_cache_release(swappage);
1233			if (error == -ENOMEM) {
1234				/* let kswapd refresh zone for GFP_ATOMICs */
1235				congestion_wait(WRITE, HZ/50);
1236			}
1237			goto repeat;
1238		}
1239	} else if (sgp == SGP_READ && !filepage) {
1240		shmem_swp_unmap(entry);
1241		filepage = find_get_page(mapping, idx);
1242		if (filepage &&
1243		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1244			spin_unlock(&info->lock);
1245			wait_on_page_locked(filepage);
1246			page_cache_release(filepage);
1247			filepage = NULL;
1248			goto repeat;
1249		}
1250		spin_unlock(&info->lock);
1251	} else {
1252		shmem_swp_unmap(entry);
1253		sbinfo = SHMEM_SB(inode->i_sb);
1254		if (sbinfo->max_blocks) {
1255			spin_lock(&sbinfo->stat_lock);
1256			if (sbinfo->free_blocks == 0 ||
1257			    shmem_acct_block(info->flags)) {
1258				spin_unlock(&sbinfo->stat_lock);
1259				spin_unlock(&info->lock);
1260				error = -ENOSPC;
1261				goto failed;
1262			}
1263			sbinfo->free_blocks--;
1264			inode->i_blocks += BLOCKS_PER_PAGE;
1265			spin_unlock(&sbinfo->stat_lock);
1266		} else if (shmem_acct_block(info->flags)) {
1267			spin_unlock(&info->lock);
1268			error = -ENOSPC;
1269			goto failed;
1270		}
1271
1272		if (!filepage) {
1273			spin_unlock(&info->lock);
1274			filepage = shmem_alloc_page(gfp, info, idx);
1275			if (!filepage) {
1276				shmem_unacct_blocks(info->flags, 1);
1277				shmem_free_blocks(inode, 1);
1278				error = -ENOMEM;
1279				goto failed;
1280			}
1281
1282			spin_lock(&info->lock);
1283			entry = shmem_swp_alloc(info, idx, sgp);
1284			if (IS_ERR(entry))
1285				error = PTR_ERR(entry);
1286			else {
1287				swap = *entry;
1288				shmem_swp_unmap(entry);
1289			}
1290			if (error || swap.val || 0 != add_to_page_cache_lru(
1291					filepage, mapping, idx, GFP_ATOMIC)) {
1292				spin_unlock(&info->lock);
1293				page_cache_release(filepage);
1294				shmem_unacct_blocks(info->flags, 1);
1295				shmem_free_blocks(inode, 1);
1296				filepage = NULL;
1297				if (error)
1298					goto failed;
1299				goto repeat;
1300			}
1301			info->flags |= SHMEM_PAGEIN;
1302		}
1303
1304		info->alloced++;
1305		spin_unlock(&info->lock);
1306		clear_highpage(filepage);
1307		flush_dcache_page(filepage);
1308		SetPageUptodate(filepage);
1309	}
1310done:
1311	*pagep = filepage;
1312	return 0;
1313
1314failed:
1315	if (*pagep != filepage) {
1316		unlock_page(filepage);
1317		page_cache_release(filepage);
1318	}
1319	return error;
1320}
1321
1322static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323{
1324	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1325	int error;
1326	int ret;
1327
1328	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1329		return VM_FAULT_SIGBUS;
1330
1331	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1332	if (error)
1333		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1334
1335	mark_page_accessed(vmf->page);
1336	return ret | VM_FAULT_LOCKED;
1337}
1338
1339#ifdef CONFIG_NUMA
1340static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1341{
1342	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1343	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1344}
1345
1346static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1347					  unsigned long addr)
1348{
1349	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1350	unsigned long idx;
1351
1352	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1353	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1354}
1355#endif
1356
1357int shmem_lock(struct file *file, int lock, struct user_struct *user)
1358{
1359	struct inode *inode = file->f_path.dentry->d_inode;
1360	struct shmem_inode_info *info = SHMEM_I(inode);
1361	int retval = -ENOMEM;
1362
1363	spin_lock(&info->lock);
1364	if (lock && !(info->flags & VM_LOCKED)) {
1365		if (!user_shm_lock(inode->i_size, user))
1366			goto out_nomem;
1367		info->flags |= VM_LOCKED;
1368	}
1369	if (!lock && (info->flags & VM_LOCKED) && user) {
1370		user_shm_unlock(inode->i_size, user);
1371		info->flags &= ~VM_LOCKED;
1372	}
1373	retval = 0;
1374out_nomem:
1375	spin_unlock(&info->lock);
1376	return retval;
1377}
1378
1379static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1380{
1381	file_accessed(file);
1382	vma->vm_ops = &shmem_vm_ops;
1383	vma->vm_flags |= VM_CAN_NONLINEAR;
1384	return 0;
1385}
1386
1387static struct inode *
1388shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1389{
1390	struct inode *inode;
1391	struct shmem_inode_info *info;
1392	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1393
1394	if (shmem_reserve_inode(sb))
1395		return NULL;
1396
1397	inode = new_inode(sb);
1398	if (inode) {
1399		inode->i_mode = mode;
1400		inode->i_uid = current->fsuid;
1401		inode->i_gid = current->fsgid;
1402		inode->i_blocks = 0;
1403		inode->i_mapping->a_ops = &shmem_aops;
1404		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1405		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1406		inode->i_generation = get_seconds();
1407		info = SHMEM_I(inode);
1408		memset(info, 0, (char *)inode - (char *)info);
1409		spin_lock_init(&info->lock);
1410		INIT_LIST_HEAD(&info->swaplist);
1411
1412		switch (mode & S_IFMT) {
1413		default:
1414			inode->i_op = &shmem_special_inode_operations;
1415			init_special_inode(inode, mode, dev);
1416			break;
1417		case S_IFREG:
1418			inode->i_op = &shmem_inode_operations;
1419			inode->i_fop = &shmem_file_operations;
1420			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1421							&sbinfo->policy_nodes);
1422			break;
1423		case S_IFDIR:
1424			inc_nlink(inode);
1425			/* Some things misbehave if size == 0 on a directory */
1426			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1427			inode->i_op = &shmem_dir_inode_operations;
1428			inode->i_fop = &simple_dir_operations;
1429			break;
1430		case S_IFLNK:
1431			/*
1432			 * Must not load anything in the rbtree,
1433			 * mpol_free_shared_policy will not be called.
1434			 */
1435			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1436						NULL);
1437			break;
1438		}
1439	} else
1440		shmem_free_inode(sb);
1441	return inode;
1442}
1443
1444#ifdef CONFIG_TMPFS
1445static const struct inode_operations shmem_symlink_inode_operations;
1446static const struct inode_operations shmem_symlink_inline_operations;
1447
1448/*
1449 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1450 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1451 * below the loop driver, in the generic fashion that many filesystems support.
1452 */
1453static int shmem_readpage(struct file *file, struct page *page)
1454{
1455	struct inode *inode = page->mapping->host;
1456	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1457	unlock_page(page);
1458	return error;
1459}
1460
1461static int
1462shmem_write_begin(struct file *file, struct address_space *mapping,
1463			loff_t pos, unsigned len, unsigned flags,
1464			struct page **pagep, void **fsdata)
1465{
1466	struct inode *inode = mapping->host;
1467	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1468	*pagep = NULL;
1469	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1470}
1471
1472static int
1473shmem_write_end(struct file *file, struct address_space *mapping,
1474			loff_t pos, unsigned len, unsigned copied,
1475			struct page *page, void *fsdata)
1476{
1477	struct inode *inode = mapping->host;
1478
1479	if (pos + copied > inode->i_size)
1480		i_size_write(inode, pos + copied);
1481
1482	unlock_page(page);
1483	set_page_dirty(page);
1484	page_cache_release(page);
1485
1486	return copied;
1487}
1488
1489static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1490{
1491	struct inode *inode = filp->f_path.dentry->d_inode;
1492	struct address_space *mapping = inode->i_mapping;
1493	unsigned long index, offset;
1494
1495	index = *ppos >> PAGE_CACHE_SHIFT;
1496	offset = *ppos & ~PAGE_CACHE_MASK;
1497
1498	for (;;) {
1499		struct page *page = NULL;
1500		unsigned long end_index, nr, ret;
1501		loff_t i_size = i_size_read(inode);
1502
1503		end_index = i_size >> PAGE_CACHE_SHIFT;
1504		if (index > end_index)
1505			break;
1506		if (index == end_index) {
1507			nr = i_size & ~PAGE_CACHE_MASK;
1508			if (nr <= offset)
1509				break;
1510		}
1511
1512		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1513		if (desc->error) {
1514			if (desc->error == -EINVAL)
1515				desc->error = 0;
1516			break;
1517		}
1518		if (page)
1519			unlock_page(page);
1520
1521		/*
1522		 * We must evaluate after, since reads (unlike writes)
1523		 * are called without i_mutex protection against truncate
1524		 */
1525		nr = PAGE_CACHE_SIZE;
1526		i_size = i_size_read(inode);
1527		end_index = i_size >> PAGE_CACHE_SHIFT;
1528		if (index == end_index) {
1529			nr = i_size & ~PAGE_CACHE_MASK;
1530			if (nr <= offset) {
1531				if (page)
1532					page_cache_release(page);
1533				break;
1534			}
1535		}
1536		nr -= offset;
1537
1538		if (page) {
1539			/*
1540			 * If users can be writing to this page using arbitrary
1541			 * virtual addresses, take care about potential aliasing
1542			 * before reading the page on the kernel side.
1543			 */
1544			if (mapping_writably_mapped(mapping))
1545				flush_dcache_page(page);
1546			/*
1547			 * Mark the page accessed if we read the beginning.
1548			 */
1549			if (!offset)
1550				mark_page_accessed(page);
1551		} else {
1552			page = ZERO_PAGE(0);
1553			page_cache_get(page);
1554		}
1555
1556		/*
1557		 * Ok, we have the page, and it's up-to-date, so
1558		 * now we can copy it to user space...
1559		 *
1560		 * The actor routine returns how many bytes were actually used..
1561		 * NOTE! This may not be the same as how much of a user buffer
1562		 * we filled up (we may be padding etc), so we can only update
1563		 * "pos" here (the actor routine has to update the user buffer
1564		 * pointers and the remaining count).
1565		 */
1566		ret = actor(desc, page, offset, nr);
1567		offset += ret;
1568		index += offset >> PAGE_CACHE_SHIFT;
1569		offset &= ~PAGE_CACHE_MASK;
1570
1571		page_cache_release(page);
1572		if (ret != nr || !desc->count)
1573			break;
1574
1575		cond_resched();
1576	}
1577
1578	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1579	file_accessed(filp);
1580}
1581
1582static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1583{
1584	read_descriptor_t desc;
1585
1586	if ((ssize_t) count < 0)
1587		return -EINVAL;
1588	if (!access_ok(VERIFY_WRITE, buf, count))
1589		return -EFAULT;
1590	if (!count)
1591		return 0;
1592
1593	desc.written = 0;
1594	desc.count = count;
1595	desc.arg.buf = buf;
1596	desc.error = 0;
1597
1598	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1599	if (desc.written)
1600		return desc.written;
1601	return desc.error;
1602}
1603
1604static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1605{
1606	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1607
1608	buf->f_type = TMPFS_MAGIC;
1609	buf->f_bsize = PAGE_CACHE_SIZE;
1610	buf->f_namelen = NAME_MAX;
1611	spin_lock(&sbinfo->stat_lock);
1612	if (sbinfo->max_blocks) {
1613		buf->f_blocks = sbinfo->max_blocks;
1614		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1615	}
1616	if (sbinfo->max_inodes) {
1617		buf->f_files = sbinfo->max_inodes;
1618		buf->f_ffree = sbinfo->free_inodes;
1619	}
1620	/* else leave those fields 0 like simple_statfs */
1621	spin_unlock(&sbinfo->stat_lock);
1622	return 0;
1623}
1624
1625/*
1626 * File creation. Allocate an inode, and we're done..
1627 */
1628static int
1629shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1630{
1631	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1632	int error = -ENOSPC;
1633
1634	if (inode) {
1635		error = security_inode_init_security(inode, dir, NULL, NULL,
1636						     NULL);
1637		if (error) {
1638			if (error != -EOPNOTSUPP) {
1639				iput(inode);
1640				return error;
1641			}
1642		}
1643		error = shmem_acl_init(inode, dir);
1644		if (error) {
1645			iput(inode);
1646			return error;
1647		}
1648		if (dir->i_mode & S_ISGID) {
1649			inode->i_gid = dir->i_gid;
1650			if (S_ISDIR(mode))
1651				inode->i_mode |= S_ISGID;
1652		}
1653		dir->i_size += BOGO_DIRENT_SIZE;
1654		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1655		d_instantiate(dentry, inode);
1656		dget(dentry); /* Extra count - pin the dentry in core */
1657	}
1658	return error;
1659}
1660
1661static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1662{
1663	int error;
1664
1665	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1666		return error;
1667	inc_nlink(dir);
1668	return 0;
1669}
1670
1671static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1672		struct nameidata *nd)
1673{
1674	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1675}
1676
1677/*
1678 * Link a file..
1679 */
1680static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1681{
1682	struct inode *inode = old_dentry->d_inode;
1683	int ret;
1684
1685	/*
1686	 * No ordinary (disk based) filesystem counts links as inodes;
1687	 * but each new link needs a new dentry, pinning lowmem, and
1688	 * tmpfs dentries cannot be pruned until they are unlinked.
1689	 */
1690	ret = shmem_reserve_inode(inode->i_sb);
1691	if (ret)
1692		goto out;
1693
1694	dir->i_size += BOGO_DIRENT_SIZE;
1695	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1696	inc_nlink(inode);
1697	atomic_inc(&inode->i_count);	/* New dentry reference */
1698	dget(dentry);		/* Extra pinning count for the created dentry */
1699	d_instantiate(dentry, inode);
1700out:
1701	return ret;
1702}
1703
1704static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1705{
1706	struct inode *inode = dentry->d_inode;
1707
1708	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1709		shmem_free_inode(inode->i_sb);
1710
1711	dir->i_size -= BOGO_DIRENT_SIZE;
1712	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1713	drop_nlink(inode);
1714	dput(dentry);	/* Undo the count from "create" - this does all the work */
1715	return 0;
1716}
1717
1718static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1719{
1720	if (!simple_empty(dentry))
1721		return -ENOTEMPTY;
1722
1723	drop_nlink(dentry->d_inode);
1724	drop_nlink(dir);
1725	return shmem_unlink(dir, dentry);
1726}
1727
1728/*
1729 * The VFS layer already does all the dentry stuff for rename,
1730 * we just have to decrement the usage count for the target if
1731 * it exists so that the VFS layer correctly free's it when it
1732 * gets overwritten.
1733 */
1734static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1735{
1736	struct inode *inode = old_dentry->d_inode;
1737	int they_are_dirs = S_ISDIR(inode->i_mode);
1738
1739	if (!simple_empty(new_dentry))
1740		return -ENOTEMPTY;
1741
1742	if (new_dentry->d_inode) {
1743		(void) shmem_unlink(new_dir, new_dentry);
1744		if (they_are_dirs)
1745			drop_nlink(old_dir);
1746	} else if (they_are_dirs) {
1747		drop_nlink(old_dir);
1748		inc_nlink(new_dir);
1749	}
1750
1751	old_dir->i_size -= BOGO_DIRENT_SIZE;
1752	new_dir->i_size += BOGO_DIRENT_SIZE;
1753	old_dir->i_ctime = old_dir->i_mtime =
1754	new_dir->i_ctime = new_dir->i_mtime =
1755	inode->i_ctime = CURRENT_TIME;
1756	return 0;
1757}
1758
1759static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1760{
1761	int error;
1762	int len;
1763	struct inode *inode;
1764	struct page *page = NULL;
1765	char *kaddr;
1766	struct shmem_inode_info *info;
1767
1768	len = strlen(symname) + 1;
1769	if (len > PAGE_CACHE_SIZE)
1770		return -ENAMETOOLONG;
1771
1772	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1773	if (!inode)
1774		return -ENOSPC;
1775
1776	error = security_inode_init_security(inode, dir, NULL, NULL,
1777					     NULL);
1778	if (error) {
1779		if (error != -EOPNOTSUPP) {
1780			iput(inode);
1781			return error;
1782		}
1783		error = 0;
1784	}
1785
1786	info = SHMEM_I(inode);
1787	inode->i_size = len-1;
1788	if (len <= (char *)inode - (char *)info) {
1789		/* do it inline */
1790		memcpy(info, symname, len);
1791		inode->i_op = &shmem_symlink_inline_operations;
1792	} else {
1793		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1794		if (error) {
1795			iput(inode);
1796			return error;
1797		}
1798		unlock_page(page);
1799		inode->i_op = &shmem_symlink_inode_operations;
1800		kaddr = kmap_atomic(page, KM_USER0);
1801		memcpy(kaddr, symname, len);
1802		kunmap_atomic(kaddr, KM_USER0);
1803		set_page_dirty(page);
1804		page_cache_release(page);
1805	}
1806	if (dir->i_mode & S_ISGID)
1807		inode->i_gid = dir->i_gid;
1808	dir->i_size += BOGO_DIRENT_SIZE;
1809	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1810	d_instantiate(dentry, inode);
1811	dget(dentry);
1812	return 0;
1813}
1814
1815static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1816{
1817	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1818	return NULL;
1819}
1820
1821static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1822{
1823	struct page *page = NULL;
1824	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1825	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1826	if (page)
1827		unlock_page(page);
1828	return page;
1829}
1830
1831static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1832{
1833	if (!IS_ERR(nd_get_link(nd))) {
1834		struct page *page = cookie;
1835		kunmap(page);
1836		mark_page_accessed(page);
1837		page_cache_release(page);
1838	}
1839}
1840
1841static const struct inode_operations shmem_symlink_inline_operations = {
1842	.readlink	= generic_readlink,
1843	.follow_link	= shmem_follow_link_inline,
1844};
1845
1846static const struct inode_operations shmem_symlink_inode_operations = {
1847	.truncate	= shmem_truncate,
1848	.readlink	= generic_readlink,
1849	.follow_link	= shmem_follow_link,
1850	.put_link	= shmem_put_link,
1851};
1852
1853#ifdef CONFIG_TMPFS_POSIX_ACL
1854/**
1855 * Superblocks without xattr inode operations will get security.* xattr
1856 * support from the VFS "for free". As soon as we have any other xattrs
1857 * like ACLs, we also need to implement the security.* handlers at
1858 * filesystem level, though.
1859 */
1860
1861static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1862					size_t list_len, const char *name,
1863					size_t name_len)
1864{
1865	return security_inode_listsecurity(inode, list, list_len);
1866}
1867
1868static int shmem_xattr_security_get(struct inode *inode, const char *name,
1869				    void *buffer, size_t size)
1870{
1871	if (strcmp(name, "") == 0)
1872		return -EINVAL;
1873	return security_inode_getsecurity(inode, name, buffer, size,
1874					  -EOPNOTSUPP);
1875}
1876
1877static int shmem_xattr_security_set(struct inode *inode, const char *name,
1878				    const void *value, size_t size, int flags)
1879{
1880	if (strcmp(name, "") == 0)
1881		return -EINVAL;
1882	return security_inode_setsecurity(inode, name, value, size, flags);
1883}
1884
1885static struct xattr_handler shmem_xattr_security_handler = {
1886	.prefix = XATTR_SECURITY_PREFIX,
1887	.list   = shmem_xattr_security_list,
1888	.get    = shmem_xattr_security_get,
1889	.set    = shmem_xattr_security_set,
1890};
1891
1892static struct xattr_handler *shmem_xattr_handlers[] = {
1893	&shmem_xattr_acl_access_handler,
1894	&shmem_xattr_acl_default_handler,
1895	&shmem_xattr_security_handler,
1896	NULL
1897};
1898#endif
1899
1900static struct dentry *shmem_get_parent(struct dentry *child)
1901{
1902	return ERR_PTR(-ESTALE);
1903}
1904
1905static int shmem_match(struct inode *ino, void *vfh)
1906{
1907	__u32 *fh = vfh;
1908	__u64 inum = fh[2];
1909	inum = (inum << 32) | fh[1];
1910	return ino->i_ino == inum && fh[0] == ino->i_generation;
1911}
1912
1913static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1914		struct fid *fid, int fh_len, int fh_type)
1915{
1916	struct inode *inode;
1917	struct dentry *dentry = NULL;
1918	u64 inum = fid->raw[2];
1919	inum = (inum << 32) | fid->raw[1];
1920
1921	if (fh_len < 3)
1922		return NULL;
1923
1924	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1925			shmem_match, fid->raw);
1926	if (inode) {
1927		dentry = d_find_alias(inode);
1928		iput(inode);
1929	}
1930
1931	return dentry;
1932}
1933
1934static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1935				int connectable)
1936{
1937	struct inode *inode = dentry->d_inode;
1938
1939	if (*len < 3)
1940		return 255;
1941
1942	if (hlist_unhashed(&inode->i_hash)) {
1943		/* Unfortunately insert_inode_hash is not idempotent,
1944		 * so as we hash inodes here rather than at creation
1945		 * time, we need a lock to ensure we only try
1946		 * to do it once
1947		 */
1948		static DEFINE_SPINLOCK(lock);
1949		spin_lock(&lock);
1950		if (hlist_unhashed(&inode->i_hash))
1951			__insert_inode_hash(inode,
1952					    inode->i_ino + inode->i_generation);
1953		spin_unlock(&lock);
1954	}
1955
1956	fh[0] = inode->i_generation;
1957	fh[1] = inode->i_ino;
1958	fh[2] = ((__u64)inode->i_ino) >> 32;
1959
1960	*len = 3;
1961	return 1;
1962}
1963
1964static const struct export_operations shmem_export_ops = {
1965	.get_parent     = shmem_get_parent,
1966	.encode_fh      = shmem_encode_fh,
1967	.fh_to_dentry	= shmem_fh_to_dentry,
1968};
1969
1970static int shmem_parse_options(char *options, int *mode, uid_t *uid,
1971	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
1972	int *policy, nodemask_t *policy_nodes)
1973{
1974	char *this_char, *value, *rest;
1975
1976	while (options != NULL) {
1977		this_char = options;
1978		for (;;) {
1979			/*
1980			 * NUL-terminate this option: unfortunately,
1981			 * mount options form a comma-separated list,
1982			 * but mpol's nodelist may also contain commas.
1983			 */
1984			options = strchr(options, ',');
1985			if (options == NULL)
1986				break;
1987			options++;
1988			if (!isdigit(*options)) {
1989				options[-1] = '\0';
1990				break;
1991			}
1992		}
1993		if (!*this_char)
1994			continue;
1995		if ((value = strchr(this_char,'=')) != NULL) {
1996			*value++ = 0;
1997		} else {
1998			printk(KERN_ERR
1999			    "tmpfs: No value for mount option '%s'\n",
2000			    this_char);
2001			return 1;
2002		}
2003
2004		if (!strcmp(this_char,"size")) {
2005			unsigned long long size;
2006			size = memparse(value,&rest);
2007			if (*rest == '%') {
2008				size <<= PAGE_SHIFT;
2009				size *= totalram_pages;
2010				do_div(size, 100);
2011				rest++;
2012			}
2013			if (*rest)
2014				goto bad_val;
2015			*blocks = DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2016		} else if (!strcmp(this_char,"nr_blocks")) {
2017			*blocks = memparse(value,&rest);
2018			if (*rest)
2019				goto bad_val;
2020		} else if (!strcmp(this_char,"nr_inodes")) {
2021			*inodes = memparse(value,&rest);
2022			if (*rest)
2023				goto bad_val;
2024		} else if (!strcmp(this_char,"mode")) {
2025			if (!mode)
2026				continue;
2027			*mode = simple_strtoul(value,&rest,8);
2028			if (*rest)
2029				goto bad_val;
2030		} else if (!strcmp(this_char,"uid")) {
2031			if (!uid)
2032				continue;
2033			*uid = simple_strtoul(value,&rest,0);
2034			if (*rest)
2035				goto bad_val;
2036		} else if (!strcmp(this_char,"gid")) {
2037			if (!gid)
2038				continue;
2039			*gid = simple_strtoul(value,&rest,0);
2040			if (*rest)
2041				goto bad_val;
2042		} else if (!strcmp(this_char,"mpol")) {
2043			if (shmem_parse_mpol(value,policy,policy_nodes))
2044				goto bad_val;
2045		} else {
2046			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2047			       this_char);
2048			return 1;
2049		}
2050	}
2051	return 0;
2052
2053bad_val:
2054	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2055	       value, this_char);
2056	return 1;
2057
2058}
2059
2060static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2061{
2062	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2063	unsigned long max_blocks = sbinfo->max_blocks;
2064	unsigned long max_inodes = sbinfo->max_inodes;
2065	int policy = sbinfo->policy;
2066	nodemask_t policy_nodes = sbinfo->policy_nodes;
2067	unsigned long blocks;
2068	unsigned long inodes;
2069	int error = -EINVAL;
2070
2071	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2072				&max_inodes, &policy, &policy_nodes))
2073		return error;
2074
2075	spin_lock(&sbinfo->stat_lock);
2076	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2077	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2078	if (max_blocks < blocks)
2079		goto out;
2080	if (max_inodes < inodes)
2081		goto out;
2082	/*
2083	 * Those tests also disallow limited->unlimited while any are in
2084	 * use, so i_blocks will always be zero when max_blocks is zero;
2085	 * but we must separately disallow unlimited->limited, because
2086	 * in that case we have no record of how much is already in use.
2087	 */
2088	if (max_blocks && !sbinfo->max_blocks)
2089		goto out;
2090	if (max_inodes && !sbinfo->max_inodes)
2091		goto out;
2092
2093	error = 0;
2094	sbinfo->max_blocks  = max_blocks;
2095	sbinfo->free_blocks = max_blocks - blocks;
2096	sbinfo->max_inodes  = max_inodes;
2097	sbinfo->free_inodes = max_inodes - inodes;
2098	sbinfo->policy = policy;
2099	sbinfo->policy_nodes = policy_nodes;
2100out:
2101	spin_unlock(&sbinfo->stat_lock);
2102	return error;
2103}
2104#endif
2105
2106static void shmem_put_super(struct super_block *sb)
2107{
2108	kfree(sb->s_fs_info);
2109	sb->s_fs_info = NULL;
2110}
2111
2112static int shmem_fill_super(struct super_block *sb,
2113			    void *data, int silent)
2114{
2115	struct inode *inode;
2116	struct dentry *root;
2117	int mode   = S_IRWXUGO | S_ISVTX;
2118	uid_t uid = current->fsuid;
2119	gid_t gid = current->fsgid;
2120	int err = -ENOMEM;
2121	struct shmem_sb_info *sbinfo;
2122	unsigned long blocks = 0;
2123	unsigned long inodes = 0;
2124	int policy = MPOL_DEFAULT;
2125	nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2126
2127#ifdef CONFIG_TMPFS
2128	/*
2129	 * Per default we only allow half of the physical ram per
2130	 * tmpfs instance, limiting inodes to one per page of lowmem;
2131	 * but the internal instance is left unlimited.
2132	 */
2133	if (!(sb->s_flags & MS_NOUSER)) {
2134		blocks = totalram_pages / 2;
2135		inodes = totalram_pages - totalhigh_pages;
2136		if (inodes > blocks)
2137			inodes = blocks;
2138		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2139					&inodes, &policy, &policy_nodes))
2140			return -EINVAL;
2141	}
2142	sb->s_export_op = &shmem_export_ops;
2143#else
2144	sb->s_flags |= MS_NOUSER;
2145#endif
2146
2147	/* Round up to L1_CACHE_BYTES to resist false sharing */
2148	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2149				L1_CACHE_BYTES), GFP_KERNEL);
2150	if (!sbinfo)
2151		return -ENOMEM;
2152
2153	spin_lock_init(&sbinfo->stat_lock);
2154	sbinfo->max_blocks = blocks;
2155	sbinfo->free_blocks = blocks;
2156	sbinfo->max_inodes = inodes;
2157	sbinfo->free_inodes = inodes;
2158	sbinfo->policy = policy;
2159	sbinfo->policy_nodes = policy_nodes;
2160
2161	sb->s_fs_info = sbinfo;
2162	sb->s_maxbytes = SHMEM_MAX_BYTES;
2163	sb->s_blocksize = PAGE_CACHE_SIZE;
2164	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2165	sb->s_magic = TMPFS_MAGIC;
2166	sb->s_op = &shmem_ops;
2167	sb->s_time_gran = 1;
2168#ifdef CONFIG_TMPFS_POSIX_ACL
2169	sb->s_xattr = shmem_xattr_handlers;
2170	sb->s_flags |= MS_POSIXACL;
2171#endif
2172
2173	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2174	if (!inode)
2175		goto failed;
2176	inode->i_uid = uid;
2177	inode->i_gid = gid;
2178	root = d_alloc_root(inode);
2179	if (!root)
2180		goto failed_iput;
2181	sb->s_root = root;
2182	return 0;
2183
2184failed_iput:
2185	iput(inode);
2186failed:
2187	shmem_put_super(sb);
2188	return err;
2189}
2190
2191static struct kmem_cache *shmem_inode_cachep;
2192
2193static struct inode *shmem_alloc_inode(struct super_block *sb)
2194{
2195	struct shmem_inode_info *p;
2196	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2197	if (!p)
2198		return NULL;
2199	return &p->vfs_inode;
2200}
2201
2202static void shmem_destroy_inode(struct inode *inode)
2203{
2204	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2205		/* only struct inode is valid if it's an inline symlink */
2206		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2207	}
2208	shmem_acl_destroy_inode(inode);
2209	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2210}
2211
2212static void init_once(struct kmem_cache *cachep, void *foo)
2213{
2214	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2215
2216	inode_init_once(&p->vfs_inode);
2217#ifdef CONFIG_TMPFS_POSIX_ACL
2218	p->i_acl = NULL;
2219	p->i_default_acl = NULL;
2220#endif
2221}
2222
2223static int init_inodecache(void)
2224{
2225	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2226				sizeof(struct shmem_inode_info),
2227				0, SLAB_PANIC, init_once);
2228	return 0;
2229}
2230
2231static void destroy_inodecache(void)
2232{
2233	kmem_cache_destroy(shmem_inode_cachep);
2234}
2235
2236static const struct address_space_operations shmem_aops = {
2237	.writepage	= shmem_writepage,
2238	.set_page_dirty	= __set_page_dirty_no_writeback,
2239#ifdef CONFIG_TMPFS
2240	.readpage	= shmem_readpage,
2241	.write_begin	= shmem_write_begin,
2242	.write_end	= shmem_write_end,
2243#endif
2244	.migratepage	= migrate_page,
2245};
2246
2247static const struct file_operations shmem_file_operations = {
2248	.mmap		= shmem_mmap,
2249#ifdef CONFIG_TMPFS
2250	.llseek		= generic_file_llseek,
2251	.read		= shmem_file_read,
2252	.write		= do_sync_write,
2253	.aio_write	= generic_file_aio_write,
2254	.fsync		= simple_sync_file,
2255	.splice_read	= generic_file_splice_read,
2256	.splice_write	= generic_file_splice_write,
2257#endif
2258};
2259
2260static const struct inode_operations shmem_inode_operations = {
2261	.truncate	= shmem_truncate,
2262	.setattr	= shmem_notify_change,
2263	.truncate_range	= shmem_truncate_range,
2264#ifdef CONFIG_TMPFS_POSIX_ACL
2265	.setxattr	= generic_setxattr,
2266	.getxattr	= generic_getxattr,
2267	.listxattr	= generic_listxattr,
2268	.removexattr	= generic_removexattr,
2269	.permission	= shmem_permission,
2270#endif
2271
2272};
2273
2274static const struct inode_operations shmem_dir_inode_operations = {
2275#ifdef CONFIG_TMPFS
2276	.create		= shmem_create,
2277	.lookup		= simple_lookup,
2278	.link		= shmem_link,
2279	.unlink		= shmem_unlink,
2280	.symlink	= shmem_symlink,
2281	.mkdir		= shmem_mkdir,
2282	.rmdir		= shmem_rmdir,
2283	.mknod		= shmem_mknod,
2284	.rename		= shmem_rename,
2285#endif
2286#ifdef CONFIG_TMPFS_POSIX_ACL
2287	.setattr	= shmem_notify_change,
2288	.setxattr	= generic_setxattr,
2289	.getxattr	= generic_getxattr,
2290	.listxattr	= generic_listxattr,
2291	.removexattr	= generic_removexattr,
2292	.permission	= shmem_permission,
2293#endif
2294};
2295
2296static const struct inode_operations shmem_special_inode_operations = {
2297#ifdef CONFIG_TMPFS_POSIX_ACL
2298	.setattr	= shmem_notify_change,
2299	.setxattr	= generic_setxattr,
2300	.getxattr	= generic_getxattr,
2301	.listxattr	= generic_listxattr,
2302	.removexattr	= generic_removexattr,
2303	.permission	= shmem_permission,
2304#endif
2305};
2306
2307static const struct super_operations shmem_ops = {
2308	.alloc_inode	= shmem_alloc_inode,
2309	.destroy_inode	= shmem_destroy_inode,
2310#ifdef CONFIG_TMPFS
2311	.statfs		= shmem_statfs,
2312	.remount_fs	= shmem_remount_fs,
2313#endif
2314	.delete_inode	= shmem_delete_inode,
2315	.drop_inode	= generic_delete_inode,
2316	.put_super	= shmem_put_super,
2317};
2318
2319static struct vm_operations_struct shmem_vm_ops = {
2320	.fault		= shmem_fault,
2321#ifdef CONFIG_NUMA
2322	.set_policy     = shmem_set_policy,
2323	.get_policy     = shmem_get_policy,
2324#endif
2325};
2326
2327
2328static int shmem_get_sb(struct file_system_type *fs_type,
2329	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2330{
2331	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2332}
2333
2334static struct file_system_type tmpfs_fs_type = {
2335	.owner		= THIS_MODULE,
2336	.name		= "tmpfs",
2337	.get_sb		= shmem_get_sb,
2338	.kill_sb	= kill_litter_super,
2339};
2340static struct vfsmount *shm_mnt;
2341
2342static int __init init_tmpfs(void)
2343{
2344	int error;
2345
2346	error = bdi_init(&shmem_backing_dev_info);
2347	if (error)
2348		goto out4;
2349
2350	error = init_inodecache();
2351	if (error)
2352		goto out3;
2353
2354	error = register_filesystem(&tmpfs_fs_type);
2355	if (error) {
2356		printk(KERN_ERR "Could not register tmpfs\n");
2357		goto out2;
2358	}
2359
2360	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2361				tmpfs_fs_type.name, NULL);
2362	if (IS_ERR(shm_mnt)) {
2363		error = PTR_ERR(shm_mnt);
2364		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2365		goto out1;
2366	}
2367	return 0;
2368
2369out1:
2370	unregister_filesystem(&tmpfs_fs_type);
2371out2:
2372	destroy_inodecache();
2373out3:
2374	bdi_destroy(&shmem_backing_dev_info);
2375out4:
2376	shm_mnt = ERR_PTR(error);
2377	return error;
2378}
2379module_init(init_tmpfs)
2380
2381/*
2382 * shmem_file_setup - get an unlinked file living in tmpfs
2383 *
2384 * @name: name for dentry (to be seen in /proc/<pid>/maps
2385 * @size: size to be set for the file
2386 *
2387 */
2388struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2389{
2390	int error;
2391	struct file *file;
2392	struct inode *inode;
2393	struct dentry *dentry, *root;
2394	struct qstr this;
2395
2396	if (IS_ERR(shm_mnt))
2397		return (void *)shm_mnt;
2398
2399	if (size < 0 || size > SHMEM_MAX_BYTES)
2400		return ERR_PTR(-EINVAL);
2401
2402	if (shmem_acct_size(flags, size))
2403		return ERR_PTR(-ENOMEM);
2404
2405	error = -ENOMEM;
2406	this.name = name;
2407	this.len = strlen(name);
2408	this.hash = 0; /* will go */
2409	root = shm_mnt->mnt_root;
2410	dentry = d_alloc(root, &this);
2411	if (!dentry)
2412		goto put_memory;
2413
2414	error = -ENFILE;
2415	file = get_empty_filp();
2416	if (!file)
2417		goto put_dentry;
2418
2419	error = -ENOSPC;
2420	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2421	if (!inode)
2422		goto close_file;
2423
2424	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2425	d_instantiate(dentry, inode);
2426	inode->i_size = size;
2427	inode->i_nlink = 0;	/* It is unlinked */
2428	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2429			&shmem_file_operations);
2430	return file;
2431
2432close_file:
2433	put_filp(file);
2434put_dentry:
2435	dput(dentry);
2436put_memory:
2437	shmem_unacct_size(flags, size);
2438	return ERR_PTR(error);
2439}
2440
2441/*
2442 * shmem_zero_setup - setup a shared anonymous mapping
2443 *
2444 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2445 */
2446int shmem_zero_setup(struct vm_area_struct *vma)
2447{
2448	struct file *file;
2449	loff_t size = vma->vm_end - vma->vm_start;
2450
2451	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2452	if (IS_ERR(file))
2453		return PTR_ERR(file);
2454
2455	if (vma->vm_file)
2456		fput(vma->vm_file);
2457	vma->vm_file = file;
2458	vma->vm_ops = &shmem_vm_ops;
2459	return 0;
2460}
2461