shmem.c revision 82369553d6d3bc67c54129a02e0bc0b5b88f3045
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52
53#include <asm/uaccess.h>
54#include <asm/div64.h>
55#include <asm/pgtable.h>
56
57/* This magic number is used in glibc for posix shared memory */
58#define TMPFS_MAGIC	0x01021994
59
60#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70#define SHMEM_PAGEIN	 VM_READ
71#define SHMEM_TRUNCATE	 VM_WRITE
72
73/* Definition to limit shmem_truncate's steps between cond_rescheds */
74#define LATENCY_LIMIT	 64
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80enum sgp_type {
81	SGP_READ,	/* don't exceed i_size, don't allocate page */
82	SGP_CACHE,	/* don't exceed i_size, may allocate page */
83	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
84	SGP_WRITE,	/* may exceed i_size, may allocate page */
85};
86
87static int shmem_getpage(struct inode *inode, unsigned long idx,
88			 struct page **pagep, enum sgp_type sgp, int *type);
89
90static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91{
92	/*
93	 * The above definition of ENTRIES_PER_PAGE, and the use of
94	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95	 * might be reconsidered if it ever diverges from PAGE_SIZE.
96	 *
97	 * Mobility flags are masked out as swap vectors cannot move
98	 */
99	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
100				PAGE_CACHE_SHIFT-PAGE_SHIFT);
101}
102
103static inline void shmem_dir_free(struct page *page)
104{
105	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
106}
107
108static struct page **shmem_dir_map(struct page *page)
109{
110	return (struct page **)kmap_atomic(page, KM_USER0);
111}
112
113static inline void shmem_dir_unmap(struct page **dir)
114{
115	kunmap_atomic(dir, KM_USER0);
116}
117
118static swp_entry_t *shmem_swp_map(struct page *page)
119{
120	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
121}
122
123static inline void shmem_swp_balance_unmap(void)
124{
125	/*
126	 * When passing a pointer to an i_direct entry, to code which
127	 * also handles indirect entries and so will shmem_swp_unmap,
128	 * we must arrange for the preempt count to remain in balance.
129	 * What kmap_atomic of a lowmem page does depends on config
130	 * and architecture, so pretend to kmap_atomic some lowmem page.
131	 */
132	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
133}
134
135static inline void shmem_swp_unmap(swp_entry_t *entry)
136{
137	kunmap_atomic(entry, KM_USER1);
138}
139
140static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
141{
142	return sb->s_fs_info;
143}
144
145/*
146 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
147 * for shared memory and for shared anonymous (/dev/zero) mappings
148 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
149 * consistent with the pre-accounting of private mappings ...
150 */
151static inline int shmem_acct_size(unsigned long flags, loff_t size)
152{
153	return (flags & VM_ACCOUNT)?
154		security_vm_enough_memory(VM_ACCT(size)): 0;
155}
156
157static inline void shmem_unacct_size(unsigned long flags, loff_t size)
158{
159	if (flags & VM_ACCOUNT)
160		vm_unacct_memory(VM_ACCT(size));
161}
162
163/*
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow huge sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
169static inline int shmem_acct_block(unsigned long flags)
170{
171	return (flags & VM_ACCOUNT)?
172		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
173}
174
175static inline void shmem_unacct_blocks(unsigned long flags, long pages)
176{
177	if (!(flags & VM_ACCOUNT))
178		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
179}
180
181static const struct super_operations shmem_ops;
182static const struct address_space_operations shmem_aops;
183static const struct file_operations shmem_file_operations;
184static const struct inode_operations shmem_inode_operations;
185static const struct inode_operations shmem_dir_inode_operations;
186static const struct inode_operations shmem_special_inode_operations;
187static struct vm_operations_struct shmem_vm_ops;
188
189static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
190	.ra_pages	= 0,	/* No readahead */
191	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
192	.unplug_io_fn	= default_unplug_io_fn,
193};
194
195static LIST_HEAD(shmem_swaplist);
196static DEFINE_MUTEX(shmem_swaplist_mutex);
197
198static void shmem_free_blocks(struct inode *inode, long pages)
199{
200	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
201	if (sbinfo->max_blocks) {
202		spin_lock(&sbinfo->stat_lock);
203		sbinfo->free_blocks += pages;
204		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
205		spin_unlock(&sbinfo->stat_lock);
206	}
207}
208
209static int shmem_reserve_inode(struct super_block *sb)
210{
211	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
212	if (sbinfo->max_inodes) {
213		spin_lock(&sbinfo->stat_lock);
214		if (!sbinfo->free_inodes) {
215			spin_unlock(&sbinfo->stat_lock);
216			return -ENOSPC;
217		}
218		sbinfo->free_inodes--;
219		spin_unlock(&sbinfo->stat_lock);
220	}
221	return 0;
222}
223
224static void shmem_free_inode(struct super_block *sb)
225{
226	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
227	if (sbinfo->max_inodes) {
228		spin_lock(&sbinfo->stat_lock);
229		sbinfo->free_inodes++;
230		spin_unlock(&sbinfo->stat_lock);
231	}
232}
233
234/*
235 * shmem_recalc_inode - recalculate the size of an inode
236 *
237 * @inode: inode to recalc
238 *
239 * We have to calculate the free blocks since the mm can drop
240 * undirtied hole pages behind our back.
241 *
242 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
243 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
244 *
245 * It has to be called with the spinlock held.
246 */
247static void shmem_recalc_inode(struct inode *inode)
248{
249	struct shmem_inode_info *info = SHMEM_I(inode);
250	long freed;
251
252	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
253	if (freed > 0) {
254		info->alloced -= freed;
255		shmem_unacct_blocks(info->flags, freed);
256		shmem_free_blocks(inode, freed);
257	}
258}
259
260/*
261 * shmem_swp_entry - find the swap vector position in the info structure
262 *
263 * @info:  info structure for the inode
264 * @index: index of the page to find
265 * @page:  optional page to add to the structure. Has to be preset to
266 *         all zeros
267 *
268 * If there is no space allocated yet it will return NULL when
269 * page is NULL, else it will use the page for the needed block,
270 * setting it to NULL on return to indicate that it has been used.
271 *
272 * The swap vector is organized the following way:
273 *
274 * There are SHMEM_NR_DIRECT entries directly stored in the
275 * shmem_inode_info structure. So small files do not need an addional
276 * allocation.
277 *
278 * For pages with index > SHMEM_NR_DIRECT there is the pointer
279 * i_indirect which points to a page which holds in the first half
280 * doubly indirect blocks, in the second half triple indirect blocks:
281 *
282 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
283 * following layout (for SHMEM_NR_DIRECT == 16):
284 *
285 * i_indirect -> dir --> 16-19
286 * 	      |	     +-> 20-23
287 * 	      |
288 * 	      +-->dir2 --> 24-27
289 * 	      |	       +-> 28-31
290 * 	      |	       +-> 32-35
291 * 	      |	       +-> 36-39
292 * 	      |
293 * 	      +-->dir3 --> 40-43
294 * 	       	       +-> 44-47
295 * 	      	       +-> 48-51
296 * 	      	       +-> 52-55
297 */
298static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
299{
300	unsigned long offset;
301	struct page **dir;
302	struct page *subdir;
303
304	if (index < SHMEM_NR_DIRECT) {
305		shmem_swp_balance_unmap();
306		return info->i_direct+index;
307	}
308	if (!info->i_indirect) {
309		if (page) {
310			info->i_indirect = *page;
311			*page = NULL;
312		}
313		return NULL;			/* need another page */
314	}
315
316	index -= SHMEM_NR_DIRECT;
317	offset = index % ENTRIES_PER_PAGE;
318	index /= ENTRIES_PER_PAGE;
319	dir = shmem_dir_map(info->i_indirect);
320
321	if (index >= ENTRIES_PER_PAGE/2) {
322		index -= ENTRIES_PER_PAGE/2;
323		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
324		index %= ENTRIES_PER_PAGE;
325		subdir = *dir;
326		if (!subdir) {
327			if (page) {
328				*dir = *page;
329				*page = NULL;
330			}
331			shmem_dir_unmap(dir);
332			return NULL;		/* need another page */
333		}
334		shmem_dir_unmap(dir);
335		dir = shmem_dir_map(subdir);
336	}
337
338	dir += index;
339	subdir = *dir;
340	if (!subdir) {
341		if (!page || !(subdir = *page)) {
342			shmem_dir_unmap(dir);
343			return NULL;		/* need a page */
344		}
345		*dir = subdir;
346		*page = NULL;
347	}
348	shmem_dir_unmap(dir);
349	return shmem_swp_map(subdir) + offset;
350}
351
352static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
353{
354	long incdec = value? 1: -1;
355
356	entry->val = value;
357	info->swapped += incdec;
358	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
359		struct page *page = kmap_atomic_to_page(entry);
360		set_page_private(page, page_private(page) + incdec);
361	}
362}
363
364/*
365 * shmem_swp_alloc - get the position of the swap entry for the page.
366 *                   If it does not exist allocate the entry.
367 *
368 * @info:	info structure for the inode
369 * @index:	index of the page to find
370 * @sgp:	check and recheck i_size? skip allocation?
371 */
372static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
373{
374	struct inode *inode = &info->vfs_inode;
375	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
376	struct page *page = NULL;
377	swp_entry_t *entry;
378
379	if (sgp != SGP_WRITE &&
380	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
381		return ERR_PTR(-EINVAL);
382
383	while (!(entry = shmem_swp_entry(info, index, &page))) {
384		if (sgp == SGP_READ)
385			return shmem_swp_map(ZERO_PAGE(0));
386		/*
387		 * Test free_blocks against 1 not 0, since we have 1 data
388		 * page (and perhaps indirect index pages) yet to allocate:
389		 * a waste to allocate index if we cannot allocate data.
390		 */
391		if (sbinfo->max_blocks) {
392			spin_lock(&sbinfo->stat_lock);
393			if (sbinfo->free_blocks <= 1) {
394				spin_unlock(&sbinfo->stat_lock);
395				return ERR_PTR(-ENOSPC);
396			}
397			sbinfo->free_blocks--;
398			inode->i_blocks += BLOCKS_PER_PAGE;
399			spin_unlock(&sbinfo->stat_lock);
400		}
401
402		spin_unlock(&info->lock);
403		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
404		if (page)
405			set_page_private(page, 0);
406		spin_lock(&info->lock);
407
408		if (!page) {
409			shmem_free_blocks(inode, 1);
410			return ERR_PTR(-ENOMEM);
411		}
412		if (sgp != SGP_WRITE &&
413		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
414			entry = ERR_PTR(-EINVAL);
415			break;
416		}
417		if (info->next_index <= index)
418			info->next_index = index + 1;
419	}
420	if (page) {
421		/* another task gave its page, or truncated the file */
422		shmem_free_blocks(inode, 1);
423		shmem_dir_free(page);
424	}
425	if (info->next_index <= index && !IS_ERR(entry))
426		info->next_index = index + 1;
427	return entry;
428}
429
430/*
431 * shmem_free_swp - free some swap entries in a directory
432 *
433 * @dir:        pointer to the directory
434 * @edir:       pointer after last entry of the directory
435 * @punch_lock: pointer to spinlock when needed for the holepunch case
436 */
437static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
438						spinlock_t *punch_lock)
439{
440	spinlock_t *punch_unlock = NULL;
441	swp_entry_t *ptr;
442	int freed = 0;
443
444	for (ptr = dir; ptr < edir; ptr++) {
445		if (ptr->val) {
446			if (unlikely(punch_lock)) {
447				punch_unlock = punch_lock;
448				punch_lock = NULL;
449				spin_lock(punch_unlock);
450				if (!ptr->val)
451					continue;
452			}
453			free_swap_and_cache(*ptr);
454			*ptr = (swp_entry_t){0};
455			freed++;
456		}
457	}
458	if (punch_unlock)
459		spin_unlock(punch_unlock);
460	return freed;
461}
462
463static int shmem_map_and_free_swp(struct page *subdir, int offset,
464		int limit, struct page ***dir, spinlock_t *punch_lock)
465{
466	swp_entry_t *ptr;
467	int freed = 0;
468
469	ptr = shmem_swp_map(subdir);
470	for (; offset < limit; offset += LATENCY_LIMIT) {
471		int size = limit - offset;
472		if (size > LATENCY_LIMIT)
473			size = LATENCY_LIMIT;
474		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
475							punch_lock);
476		if (need_resched()) {
477			shmem_swp_unmap(ptr);
478			if (*dir) {
479				shmem_dir_unmap(*dir);
480				*dir = NULL;
481			}
482			cond_resched();
483			ptr = shmem_swp_map(subdir);
484		}
485	}
486	shmem_swp_unmap(ptr);
487	return freed;
488}
489
490static void shmem_free_pages(struct list_head *next)
491{
492	struct page *page;
493	int freed = 0;
494
495	do {
496		page = container_of(next, struct page, lru);
497		next = next->next;
498		shmem_dir_free(page);
499		freed++;
500		if (freed >= LATENCY_LIMIT) {
501			cond_resched();
502			freed = 0;
503		}
504	} while (next);
505}
506
507static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
508{
509	struct shmem_inode_info *info = SHMEM_I(inode);
510	unsigned long idx;
511	unsigned long size;
512	unsigned long limit;
513	unsigned long stage;
514	unsigned long diroff;
515	struct page **dir;
516	struct page *topdir;
517	struct page *middir;
518	struct page *subdir;
519	swp_entry_t *ptr;
520	LIST_HEAD(pages_to_free);
521	long nr_pages_to_free = 0;
522	long nr_swaps_freed = 0;
523	int offset;
524	int freed;
525	int punch_hole;
526	spinlock_t *needs_lock;
527	spinlock_t *punch_lock;
528	unsigned long upper_limit;
529
530	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
531	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
532	if (idx >= info->next_index)
533		return;
534
535	spin_lock(&info->lock);
536	info->flags |= SHMEM_TRUNCATE;
537	if (likely(end == (loff_t) -1)) {
538		limit = info->next_index;
539		upper_limit = SHMEM_MAX_INDEX;
540		info->next_index = idx;
541		needs_lock = NULL;
542		punch_hole = 0;
543	} else {
544		if (end + 1 >= inode->i_size) {	/* we may free a little more */
545			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
546							PAGE_CACHE_SHIFT;
547			upper_limit = SHMEM_MAX_INDEX;
548		} else {
549			limit = (end + 1) >> PAGE_CACHE_SHIFT;
550			upper_limit = limit;
551		}
552		needs_lock = &info->lock;
553		punch_hole = 1;
554	}
555
556	topdir = info->i_indirect;
557	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
558		info->i_indirect = NULL;
559		nr_pages_to_free++;
560		list_add(&topdir->lru, &pages_to_free);
561	}
562	spin_unlock(&info->lock);
563
564	if (info->swapped && idx < SHMEM_NR_DIRECT) {
565		ptr = info->i_direct;
566		size = limit;
567		if (size > SHMEM_NR_DIRECT)
568			size = SHMEM_NR_DIRECT;
569		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
570	}
571
572	/*
573	 * If there are no indirect blocks or we are punching a hole
574	 * below indirect blocks, nothing to be done.
575	 */
576	if (!topdir || limit <= SHMEM_NR_DIRECT)
577		goto done2;
578
579	/*
580	 * The truncation case has already dropped info->lock, and we're safe
581	 * because i_size and next_index have already been lowered, preventing
582	 * access beyond.  But in the punch_hole case, we still need to take
583	 * the lock when updating the swap directory, because there might be
584	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
585	 * shmem_writepage.  However, whenever we find we can remove a whole
586	 * directory page (not at the misaligned start or end of the range),
587	 * we first NULLify its pointer in the level above, and then have no
588	 * need to take the lock when updating its contents: needs_lock and
589	 * punch_lock (either pointing to info->lock or NULL) manage this.
590	 */
591
592	upper_limit -= SHMEM_NR_DIRECT;
593	limit -= SHMEM_NR_DIRECT;
594	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
595	offset = idx % ENTRIES_PER_PAGE;
596	idx -= offset;
597
598	dir = shmem_dir_map(topdir);
599	stage = ENTRIES_PER_PAGEPAGE/2;
600	if (idx < ENTRIES_PER_PAGEPAGE/2) {
601		middir = topdir;
602		diroff = idx/ENTRIES_PER_PAGE;
603	} else {
604		dir += ENTRIES_PER_PAGE/2;
605		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
606		while (stage <= idx)
607			stage += ENTRIES_PER_PAGEPAGE;
608		middir = *dir;
609		if (*dir) {
610			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
611				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
612			if (!diroff && !offset && upper_limit >= stage) {
613				if (needs_lock) {
614					spin_lock(needs_lock);
615					*dir = NULL;
616					spin_unlock(needs_lock);
617					needs_lock = NULL;
618				} else
619					*dir = NULL;
620				nr_pages_to_free++;
621				list_add(&middir->lru, &pages_to_free);
622			}
623			shmem_dir_unmap(dir);
624			dir = shmem_dir_map(middir);
625		} else {
626			diroff = 0;
627			offset = 0;
628			idx = stage;
629		}
630	}
631
632	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
633		if (unlikely(idx == stage)) {
634			shmem_dir_unmap(dir);
635			dir = shmem_dir_map(topdir) +
636			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
637			while (!*dir) {
638				dir++;
639				idx += ENTRIES_PER_PAGEPAGE;
640				if (idx >= limit)
641					goto done1;
642			}
643			stage = idx + ENTRIES_PER_PAGEPAGE;
644			middir = *dir;
645			if (punch_hole)
646				needs_lock = &info->lock;
647			if (upper_limit >= stage) {
648				if (needs_lock) {
649					spin_lock(needs_lock);
650					*dir = NULL;
651					spin_unlock(needs_lock);
652					needs_lock = NULL;
653				} else
654					*dir = NULL;
655				nr_pages_to_free++;
656				list_add(&middir->lru, &pages_to_free);
657			}
658			shmem_dir_unmap(dir);
659			cond_resched();
660			dir = shmem_dir_map(middir);
661			diroff = 0;
662		}
663		punch_lock = needs_lock;
664		subdir = dir[diroff];
665		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
666			if (needs_lock) {
667				spin_lock(needs_lock);
668				dir[diroff] = NULL;
669				spin_unlock(needs_lock);
670				punch_lock = NULL;
671			} else
672				dir[diroff] = NULL;
673			nr_pages_to_free++;
674			list_add(&subdir->lru, &pages_to_free);
675		}
676		if (subdir && page_private(subdir) /* has swap entries */) {
677			size = limit - idx;
678			if (size > ENTRIES_PER_PAGE)
679				size = ENTRIES_PER_PAGE;
680			freed = shmem_map_and_free_swp(subdir,
681					offset, size, &dir, punch_lock);
682			if (!dir)
683				dir = shmem_dir_map(middir);
684			nr_swaps_freed += freed;
685			if (offset || punch_lock) {
686				spin_lock(&info->lock);
687				set_page_private(subdir,
688					page_private(subdir) - freed);
689				spin_unlock(&info->lock);
690			} else
691				BUG_ON(page_private(subdir) != freed);
692		}
693		offset = 0;
694	}
695done1:
696	shmem_dir_unmap(dir);
697done2:
698	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
699		/*
700		 * Call truncate_inode_pages again: racing shmem_unuse_inode
701		 * may have swizzled a page in from swap since vmtruncate or
702		 * generic_delete_inode did it, before we lowered next_index.
703		 * Also, though shmem_getpage checks i_size before adding to
704		 * cache, no recheck after: so fix the narrow window there too.
705		 *
706		 * Recalling truncate_inode_pages_range and unmap_mapping_range
707		 * every time for punch_hole (which never got a chance to clear
708		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
709		 * yet hardly ever necessary: try to optimize them out later.
710		 */
711		truncate_inode_pages_range(inode->i_mapping, start, end);
712		if (punch_hole)
713			unmap_mapping_range(inode->i_mapping, start,
714							end - start, 1);
715	}
716
717	spin_lock(&info->lock);
718	info->flags &= ~SHMEM_TRUNCATE;
719	info->swapped -= nr_swaps_freed;
720	if (nr_pages_to_free)
721		shmem_free_blocks(inode, nr_pages_to_free);
722	shmem_recalc_inode(inode);
723	spin_unlock(&info->lock);
724
725	/*
726	 * Empty swap vector directory pages to be freed?
727	 */
728	if (!list_empty(&pages_to_free)) {
729		pages_to_free.prev->next = NULL;
730		shmem_free_pages(pages_to_free.next);
731	}
732}
733
734static void shmem_truncate(struct inode *inode)
735{
736	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
737}
738
739static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
740{
741	struct inode *inode = dentry->d_inode;
742	struct page *page = NULL;
743	int error;
744
745	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
746		if (attr->ia_size < inode->i_size) {
747			/*
748			 * If truncating down to a partial page, then
749			 * if that page is already allocated, hold it
750			 * in memory until the truncation is over, so
751			 * truncate_partial_page cannnot miss it were
752			 * it assigned to swap.
753			 */
754			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
755				(void) shmem_getpage(inode,
756					attr->ia_size>>PAGE_CACHE_SHIFT,
757						&page, SGP_READ, NULL);
758				if (page)
759					unlock_page(page);
760			}
761			/*
762			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
763			 * detect if any pages might have been added to cache
764			 * after truncate_inode_pages.  But we needn't bother
765			 * if it's being fully truncated to zero-length: the
766			 * nrpages check is efficient enough in that case.
767			 */
768			if (attr->ia_size) {
769				struct shmem_inode_info *info = SHMEM_I(inode);
770				spin_lock(&info->lock);
771				info->flags &= ~SHMEM_PAGEIN;
772				spin_unlock(&info->lock);
773			}
774		}
775	}
776
777	error = inode_change_ok(inode, attr);
778	if (!error)
779		error = inode_setattr(inode, attr);
780#ifdef CONFIG_TMPFS_POSIX_ACL
781	if (!error && (attr->ia_valid & ATTR_MODE))
782		error = generic_acl_chmod(inode, &shmem_acl_ops);
783#endif
784	if (page)
785		page_cache_release(page);
786	return error;
787}
788
789static void shmem_delete_inode(struct inode *inode)
790{
791	struct shmem_inode_info *info = SHMEM_I(inode);
792
793	if (inode->i_op->truncate == shmem_truncate) {
794		truncate_inode_pages(inode->i_mapping, 0);
795		shmem_unacct_size(info->flags, inode->i_size);
796		inode->i_size = 0;
797		shmem_truncate(inode);
798		if (!list_empty(&info->swaplist)) {
799			mutex_lock(&shmem_swaplist_mutex);
800			list_del_init(&info->swaplist);
801			mutex_unlock(&shmem_swaplist_mutex);
802		}
803	}
804	BUG_ON(inode->i_blocks);
805	shmem_free_inode(inode->i_sb);
806	clear_inode(inode);
807}
808
809static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
810{
811	swp_entry_t *ptr;
812
813	for (ptr = dir; ptr < edir; ptr++) {
814		if (ptr->val == entry.val)
815			return ptr - dir;
816	}
817	return -1;
818}
819
820static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
821{
822	struct inode *inode;
823	unsigned long idx;
824	unsigned long size;
825	unsigned long limit;
826	unsigned long stage;
827	struct page **dir;
828	struct page *subdir;
829	swp_entry_t *ptr;
830	int offset;
831	int error;
832
833	idx = 0;
834	ptr = info->i_direct;
835	spin_lock(&info->lock);
836	if (!info->swapped) {
837		list_del_init(&info->swaplist);
838		goto lost2;
839	}
840	limit = info->next_index;
841	size = limit;
842	if (size > SHMEM_NR_DIRECT)
843		size = SHMEM_NR_DIRECT;
844	offset = shmem_find_swp(entry, ptr, ptr+size);
845	if (offset >= 0)
846		goto found;
847	if (!info->i_indirect)
848		goto lost2;
849
850	dir = shmem_dir_map(info->i_indirect);
851	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
852
853	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
854		if (unlikely(idx == stage)) {
855			shmem_dir_unmap(dir-1);
856			if (cond_resched_lock(&info->lock)) {
857				/* check it has not been truncated */
858				if (limit > info->next_index) {
859					limit = info->next_index;
860					if (idx >= limit)
861						goto lost2;
862				}
863			}
864			dir = shmem_dir_map(info->i_indirect) +
865			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
866			while (!*dir) {
867				dir++;
868				idx += ENTRIES_PER_PAGEPAGE;
869				if (idx >= limit)
870					goto lost1;
871			}
872			stage = idx + ENTRIES_PER_PAGEPAGE;
873			subdir = *dir;
874			shmem_dir_unmap(dir);
875			dir = shmem_dir_map(subdir);
876		}
877		subdir = *dir;
878		if (subdir && page_private(subdir)) {
879			ptr = shmem_swp_map(subdir);
880			size = limit - idx;
881			if (size > ENTRIES_PER_PAGE)
882				size = ENTRIES_PER_PAGE;
883			offset = shmem_find_swp(entry, ptr, ptr+size);
884			shmem_swp_unmap(ptr);
885			if (offset >= 0) {
886				shmem_dir_unmap(dir);
887				goto found;
888			}
889		}
890	}
891lost1:
892	shmem_dir_unmap(dir-1);
893lost2:
894	spin_unlock(&info->lock);
895	return 0;
896found:
897	idx += offset;
898	inode = igrab(&info->vfs_inode);
899	spin_unlock(&info->lock);
900
901	/*
902	 * Move _head_ to start search for next from here.
903	 * But be careful: shmem_delete_inode checks list_empty without taking
904	 * mutex, and there's an instant in list_move_tail when info->swaplist
905	 * would appear empty, if it were the only one on shmem_swaplist.  We
906	 * could avoid doing it if inode NULL; or use this minor optimization.
907	 */
908	if (shmem_swaplist.next != &info->swaplist)
909		list_move_tail(&shmem_swaplist, &info->swaplist);
910	mutex_unlock(&shmem_swaplist_mutex);
911
912	error = 1;
913	if (!inode)
914		goto out;
915	/* Precharge page while we can wait, compensate afterwards */
916	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
917	if (error)
918		goto out;
919	error = radix_tree_preload(GFP_KERNEL);
920	if (error)
921		goto uncharge;
922	error = 1;
923
924	spin_lock(&info->lock);
925	ptr = shmem_swp_entry(info, idx, NULL);
926	if (ptr && ptr->val == entry.val)
927		error = add_to_page_cache(page, inode->i_mapping,
928						idx, GFP_NOWAIT);
929	if (error == -EEXIST) {
930		struct page *filepage = find_get_page(inode->i_mapping, idx);
931		error = 1;
932		if (filepage) {
933			/*
934			 * There might be a more uptodate page coming down
935			 * from a stacked writepage: forget our swappage if so.
936			 */
937			if (PageUptodate(filepage))
938				error = 0;
939			page_cache_release(filepage);
940		}
941	}
942	if (!error) {
943		delete_from_swap_cache(page);
944		set_page_dirty(page);
945		info->flags |= SHMEM_PAGEIN;
946		shmem_swp_set(info, ptr, 0);
947		swap_free(entry);
948		error = 1;	/* not an error, but entry was found */
949	}
950	if (ptr)
951		shmem_swp_unmap(ptr);
952	spin_unlock(&info->lock);
953	radix_tree_preload_end();
954uncharge:
955	mem_cgroup_uncharge_page(page);
956out:
957	unlock_page(page);
958	page_cache_release(page);
959	iput(inode);		/* allows for NULL */
960	return error;
961}
962
963/*
964 * shmem_unuse() search for an eventually swapped out shmem page.
965 */
966int shmem_unuse(swp_entry_t entry, struct page *page)
967{
968	struct list_head *p, *next;
969	struct shmem_inode_info *info;
970	int found = 0;
971
972	mutex_lock(&shmem_swaplist_mutex);
973	list_for_each_safe(p, next, &shmem_swaplist) {
974		info = list_entry(p, struct shmem_inode_info, swaplist);
975		found = shmem_unuse_inode(info, entry, page);
976		cond_resched();
977		if (found)
978			goto out;
979	}
980	mutex_unlock(&shmem_swaplist_mutex);
981out:	return found;	/* 0 or 1 or -ENOMEM */
982}
983
984/*
985 * Move the page from the page cache to the swap cache.
986 */
987static int shmem_writepage(struct page *page, struct writeback_control *wbc)
988{
989	struct shmem_inode_info *info;
990	swp_entry_t *entry, swap;
991	struct address_space *mapping;
992	unsigned long index;
993	struct inode *inode;
994
995	BUG_ON(!PageLocked(page));
996	mapping = page->mapping;
997	index = page->index;
998	inode = mapping->host;
999	info = SHMEM_I(inode);
1000	if (info->flags & VM_LOCKED)
1001		goto redirty;
1002	if (!total_swap_pages)
1003		goto redirty;
1004
1005	/*
1006	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1007	 * sync from ever calling shmem_writepage; but a stacking filesystem
1008	 * may use the ->writepage of its underlying filesystem, in which case
1009	 * tmpfs should write out to swap only in response to memory pressure,
1010	 * and not for pdflush or sync.  However, in those cases, we do still
1011	 * want to check if there's a redundant swappage to be discarded.
1012	 */
1013	if (wbc->for_reclaim)
1014		swap = get_swap_page();
1015	else
1016		swap.val = 0;
1017
1018	spin_lock(&info->lock);
1019	if (index >= info->next_index) {
1020		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1021		goto unlock;
1022	}
1023	entry = shmem_swp_entry(info, index, NULL);
1024	if (entry->val) {
1025		/*
1026		 * The more uptodate page coming down from a stacked
1027		 * writepage should replace our old swappage.
1028		 */
1029		free_swap_and_cache(*entry);
1030		shmem_swp_set(info, entry, 0);
1031	}
1032	shmem_recalc_inode(inode);
1033
1034	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1035		remove_from_page_cache(page);
1036		shmem_swp_set(info, entry, swap.val);
1037		shmem_swp_unmap(entry);
1038		if (list_empty(&info->swaplist))
1039			inode = igrab(inode);
1040		else
1041			inode = NULL;
1042		spin_unlock(&info->lock);
1043		swap_duplicate(swap);
1044		BUG_ON(page_mapped(page));
1045		page_cache_release(page);	/* pagecache ref */
1046		set_page_dirty(page);
1047		unlock_page(page);
1048		if (inode) {
1049			mutex_lock(&shmem_swaplist_mutex);
1050			/* move instead of add in case we're racing */
1051			list_move_tail(&info->swaplist, &shmem_swaplist);
1052			mutex_unlock(&shmem_swaplist_mutex);
1053			iput(inode);
1054		}
1055		return 0;
1056	}
1057
1058	shmem_swp_unmap(entry);
1059unlock:
1060	spin_unlock(&info->lock);
1061	swap_free(swap);
1062redirty:
1063	set_page_dirty(page);
1064	if (wbc->for_reclaim)
1065		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1066	unlock_page(page);
1067	return 0;
1068}
1069
1070#ifdef CONFIG_NUMA
1071static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1072{
1073	char *nodelist = strchr(value, ':');
1074	int err = 1;
1075
1076	if (nodelist) {
1077		/* NUL-terminate policy string */
1078		*nodelist++ = '\0';
1079		if (nodelist_parse(nodelist, *policy_nodes))
1080			goto out;
1081		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1082			goto out;
1083	}
1084	if (!strcmp(value, "default")) {
1085		*policy = MPOL_DEFAULT;
1086		/* Don't allow a nodelist */
1087		if (!nodelist)
1088			err = 0;
1089	} else if (!strcmp(value, "prefer")) {
1090		*policy = MPOL_PREFERRED;
1091		/* Insist on a nodelist of one node only */
1092		if (nodelist) {
1093			char *rest = nodelist;
1094			while (isdigit(*rest))
1095				rest++;
1096			if (!*rest)
1097				err = 0;
1098		}
1099	} else if (!strcmp(value, "bind")) {
1100		*policy = MPOL_BIND;
1101		/* Insist on a nodelist */
1102		if (nodelist)
1103			err = 0;
1104	} else if (!strcmp(value, "interleave")) {
1105		*policy = MPOL_INTERLEAVE;
1106		/*
1107		 * Default to online nodes with memory if no nodelist
1108		 */
1109		if (!nodelist)
1110			*policy_nodes = node_states[N_HIGH_MEMORY];
1111		err = 0;
1112	}
1113out:
1114	/* Restore string for error message */
1115	if (nodelist)
1116		*--nodelist = ':';
1117	return err;
1118}
1119
1120static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1121			struct shmem_inode_info *info, unsigned long idx)
1122{
1123	struct vm_area_struct pvma;
1124	struct page *page;
1125
1126	/* Create a pseudo vma that just contains the policy */
1127	pvma.vm_start = 0;
1128	pvma.vm_pgoff = idx;
1129	pvma.vm_ops = NULL;
1130	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1131	page = swapin_readahead(entry, gfp, &pvma, 0);
1132	mpol_free(pvma.vm_policy);
1133	return page;
1134}
1135
1136static struct page *shmem_alloc_page(gfp_t gfp,
1137			struct shmem_inode_info *info, unsigned long idx)
1138{
1139	struct vm_area_struct pvma;
1140	struct page *page;
1141
1142	/* Create a pseudo vma that just contains the policy */
1143	pvma.vm_start = 0;
1144	pvma.vm_pgoff = idx;
1145	pvma.vm_ops = NULL;
1146	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1147	page = alloc_page_vma(gfp, &pvma, 0);
1148	mpol_free(pvma.vm_policy);
1149	return page;
1150}
1151#else
1152static inline int shmem_parse_mpol(char *value, int *policy,
1153						nodemask_t *policy_nodes)
1154{
1155	return 1;
1156}
1157
1158static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1159			struct shmem_inode_info *info, unsigned long idx)
1160{
1161	return swapin_readahead(entry, gfp, NULL, 0);
1162}
1163
1164static inline struct page *shmem_alloc_page(gfp_t gfp,
1165			struct shmem_inode_info *info, unsigned long idx)
1166{
1167	return alloc_page(gfp);
1168}
1169#endif
1170
1171/*
1172 * shmem_getpage - either get the page from swap or allocate a new one
1173 *
1174 * If we allocate a new one we do not mark it dirty. That's up to the
1175 * vm. If we swap it in we mark it dirty since we also free the swap
1176 * entry since a page cannot live in both the swap and page cache
1177 */
1178static int shmem_getpage(struct inode *inode, unsigned long idx,
1179			struct page **pagep, enum sgp_type sgp, int *type)
1180{
1181	struct address_space *mapping = inode->i_mapping;
1182	struct shmem_inode_info *info = SHMEM_I(inode);
1183	struct shmem_sb_info *sbinfo;
1184	struct page *filepage = *pagep;
1185	struct page *swappage;
1186	swp_entry_t *entry;
1187	swp_entry_t swap;
1188	gfp_t gfp;
1189	int error;
1190
1191	if (idx >= SHMEM_MAX_INDEX)
1192		return -EFBIG;
1193
1194	if (type)
1195		*type = 0;
1196
1197	/*
1198	 * Normally, filepage is NULL on entry, and either found
1199	 * uptodate immediately, or allocated and zeroed, or read
1200	 * in under swappage, which is then assigned to filepage.
1201	 * But shmem_readpage (required for splice) passes in a locked
1202	 * filepage, which may be found not uptodate by other callers
1203	 * too, and may need to be copied from the swappage read in.
1204	 */
1205repeat:
1206	if (!filepage)
1207		filepage = find_lock_page(mapping, idx);
1208	if (filepage && PageUptodate(filepage))
1209		goto done;
1210	error = 0;
1211	gfp = mapping_gfp_mask(mapping);
1212	if (!filepage) {
1213		/*
1214		 * Try to preload while we can wait, to not make a habit of
1215		 * draining atomic reserves; but don't latch on to this cpu.
1216		 */
1217		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1218		if (error)
1219			goto failed;
1220		radix_tree_preload_end();
1221	}
1222
1223	spin_lock(&info->lock);
1224	shmem_recalc_inode(inode);
1225	entry = shmem_swp_alloc(info, idx, sgp);
1226	if (IS_ERR(entry)) {
1227		spin_unlock(&info->lock);
1228		error = PTR_ERR(entry);
1229		goto failed;
1230	}
1231	swap = *entry;
1232
1233	if (swap.val) {
1234		/* Look it up and read it in.. */
1235		swappage = lookup_swap_cache(swap);
1236		if (!swappage) {
1237			shmem_swp_unmap(entry);
1238			/* here we actually do the io */
1239			if (type && !(*type & VM_FAULT_MAJOR)) {
1240				__count_vm_event(PGMAJFAULT);
1241				*type |= VM_FAULT_MAJOR;
1242			}
1243			spin_unlock(&info->lock);
1244			swappage = shmem_swapin(swap, gfp, info, idx);
1245			if (!swappage) {
1246				spin_lock(&info->lock);
1247				entry = shmem_swp_alloc(info, idx, sgp);
1248				if (IS_ERR(entry))
1249					error = PTR_ERR(entry);
1250				else {
1251					if (entry->val == swap.val)
1252						error = -ENOMEM;
1253					shmem_swp_unmap(entry);
1254				}
1255				spin_unlock(&info->lock);
1256				if (error)
1257					goto failed;
1258				goto repeat;
1259			}
1260			wait_on_page_locked(swappage);
1261			page_cache_release(swappage);
1262			goto repeat;
1263		}
1264
1265		/* We have to do this with page locked to prevent races */
1266		if (TestSetPageLocked(swappage)) {
1267			shmem_swp_unmap(entry);
1268			spin_unlock(&info->lock);
1269			wait_on_page_locked(swappage);
1270			page_cache_release(swappage);
1271			goto repeat;
1272		}
1273		if (PageWriteback(swappage)) {
1274			shmem_swp_unmap(entry);
1275			spin_unlock(&info->lock);
1276			wait_on_page_writeback(swappage);
1277			unlock_page(swappage);
1278			page_cache_release(swappage);
1279			goto repeat;
1280		}
1281		if (!PageUptodate(swappage)) {
1282			shmem_swp_unmap(entry);
1283			spin_unlock(&info->lock);
1284			unlock_page(swappage);
1285			page_cache_release(swappage);
1286			error = -EIO;
1287			goto failed;
1288		}
1289
1290		if (filepage) {
1291			shmem_swp_set(info, entry, 0);
1292			shmem_swp_unmap(entry);
1293			delete_from_swap_cache(swappage);
1294			spin_unlock(&info->lock);
1295			copy_highpage(filepage, swappage);
1296			unlock_page(swappage);
1297			page_cache_release(swappage);
1298			flush_dcache_page(filepage);
1299			SetPageUptodate(filepage);
1300			set_page_dirty(filepage);
1301			swap_free(swap);
1302		} else if (!(error = add_to_page_cache(
1303				swappage, mapping, idx, GFP_NOWAIT))) {
1304			info->flags |= SHMEM_PAGEIN;
1305			shmem_swp_set(info, entry, 0);
1306			shmem_swp_unmap(entry);
1307			delete_from_swap_cache(swappage);
1308			spin_unlock(&info->lock);
1309			filepage = swappage;
1310			set_page_dirty(filepage);
1311			swap_free(swap);
1312		} else {
1313			shmem_swp_unmap(entry);
1314			spin_unlock(&info->lock);
1315			unlock_page(swappage);
1316			page_cache_release(swappage);
1317			if (error == -ENOMEM) {
1318				/* allow reclaim from this memory cgroup */
1319				error = mem_cgroup_cache_charge(NULL,
1320					current->mm, gfp & ~__GFP_HIGHMEM);
1321				if (error)
1322					goto failed;
1323			}
1324			goto repeat;
1325		}
1326	} else if (sgp == SGP_READ && !filepage) {
1327		shmem_swp_unmap(entry);
1328		filepage = find_get_page(mapping, idx);
1329		if (filepage &&
1330		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1331			spin_unlock(&info->lock);
1332			wait_on_page_locked(filepage);
1333			page_cache_release(filepage);
1334			filepage = NULL;
1335			goto repeat;
1336		}
1337		spin_unlock(&info->lock);
1338	} else {
1339		shmem_swp_unmap(entry);
1340		sbinfo = SHMEM_SB(inode->i_sb);
1341		if (sbinfo->max_blocks) {
1342			spin_lock(&sbinfo->stat_lock);
1343			if (sbinfo->free_blocks == 0 ||
1344			    shmem_acct_block(info->flags)) {
1345				spin_unlock(&sbinfo->stat_lock);
1346				spin_unlock(&info->lock);
1347				error = -ENOSPC;
1348				goto failed;
1349			}
1350			sbinfo->free_blocks--;
1351			inode->i_blocks += BLOCKS_PER_PAGE;
1352			spin_unlock(&sbinfo->stat_lock);
1353		} else if (shmem_acct_block(info->flags)) {
1354			spin_unlock(&info->lock);
1355			error = -ENOSPC;
1356			goto failed;
1357		}
1358
1359		if (!filepage) {
1360			spin_unlock(&info->lock);
1361			filepage = shmem_alloc_page(gfp, info, idx);
1362			if (!filepage) {
1363				shmem_unacct_blocks(info->flags, 1);
1364				shmem_free_blocks(inode, 1);
1365				error = -ENOMEM;
1366				goto failed;
1367			}
1368
1369			/* Precharge page while we can wait, compensate after */
1370			error = mem_cgroup_cache_charge(filepage, current->mm,
1371							gfp & ~__GFP_HIGHMEM);
1372			if (error) {
1373				page_cache_release(filepage);
1374				shmem_unacct_blocks(info->flags, 1);
1375				shmem_free_blocks(inode, 1);
1376				filepage = NULL;
1377				goto failed;
1378			}
1379
1380			spin_lock(&info->lock);
1381			entry = shmem_swp_alloc(info, idx, sgp);
1382			if (IS_ERR(entry))
1383				error = PTR_ERR(entry);
1384			else {
1385				swap = *entry;
1386				shmem_swp_unmap(entry);
1387			}
1388			if (error || swap.val || 0 != add_to_page_cache_lru(
1389					filepage, mapping, idx, GFP_NOWAIT)) {
1390				spin_unlock(&info->lock);
1391				mem_cgroup_uncharge_page(filepage);
1392				page_cache_release(filepage);
1393				shmem_unacct_blocks(info->flags, 1);
1394				shmem_free_blocks(inode, 1);
1395				filepage = NULL;
1396				if (error)
1397					goto failed;
1398				goto repeat;
1399			}
1400			mem_cgroup_uncharge_page(filepage);
1401			info->flags |= SHMEM_PAGEIN;
1402		}
1403
1404		info->alloced++;
1405		spin_unlock(&info->lock);
1406		clear_highpage(filepage);
1407		flush_dcache_page(filepage);
1408		SetPageUptodate(filepage);
1409		if (sgp == SGP_DIRTY)
1410			set_page_dirty(filepage);
1411	}
1412done:
1413	*pagep = filepage;
1414	return 0;
1415
1416failed:
1417	if (*pagep != filepage) {
1418		unlock_page(filepage);
1419		page_cache_release(filepage);
1420	}
1421	return error;
1422}
1423
1424static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1425{
1426	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1427	int error;
1428	int ret;
1429
1430	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1431		return VM_FAULT_SIGBUS;
1432
1433	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1434	if (error)
1435		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1436
1437	mark_page_accessed(vmf->page);
1438	return ret | VM_FAULT_LOCKED;
1439}
1440
1441#ifdef CONFIG_NUMA
1442static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1443{
1444	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1445	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1446}
1447
1448static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1449					  unsigned long addr)
1450{
1451	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1452	unsigned long idx;
1453
1454	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1455	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1456}
1457#endif
1458
1459int shmem_lock(struct file *file, int lock, struct user_struct *user)
1460{
1461	struct inode *inode = file->f_path.dentry->d_inode;
1462	struct shmem_inode_info *info = SHMEM_I(inode);
1463	int retval = -ENOMEM;
1464
1465	spin_lock(&info->lock);
1466	if (lock && !(info->flags & VM_LOCKED)) {
1467		if (!user_shm_lock(inode->i_size, user))
1468			goto out_nomem;
1469		info->flags |= VM_LOCKED;
1470	}
1471	if (!lock && (info->flags & VM_LOCKED) && user) {
1472		user_shm_unlock(inode->i_size, user);
1473		info->flags &= ~VM_LOCKED;
1474	}
1475	retval = 0;
1476out_nomem:
1477	spin_unlock(&info->lock);
1478	return retval;
1479}
1480
1481static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1482{
1483	file_accessed(file);
1484	vma->vm_ops = &shmem_vm_ops;
1485	vma->vm_flags |= VM_CAN_NONLINEAR;
1486	return 0;
1487}
1488
1489static struct inode *
1490shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1491{
1492	struct inode *inode;
1493	struct shmem_inode_info *info;
1494	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1495
1496	if (shmem_reserve_inode(sb))
1497		return NULL;
1498
1499	inode = new_inode(sb);
1500	if (inode) {
1501		inode->i_mode = mode;
1502		inode->i_uid = current->fsuid;
1503		inode->i_gid = current->fsgid;
1504		inode->i_blocks = 0;
1505		inode->i_mapping->a_ops = &shmem_aops;
1506		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1507		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1508		inode->i_generation = get_seconds();
1509		info = SHMEM_I(inode);
1510		memset(info, 0, (char *)inode - (char *)info);
1511		spin_lock_init(&info->lock);
1512		INIT_LIST_HEAD(&info->swaplist);
1513
1514		switch (mode & S_IFMT) {
1515		default:
1516			inode->i_op = &shmem_special_inode_operations;
1517			init_special_inode(inode, mode, dev);
1518			break;
1519		case S_IFREG:
1520			inode->i_op = &shmem_inode_operations;
1521			inode->i_fop = &shmem_file_operations;
1522			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1523							&sbinfo->policy_nodes);
1524			break;
1525		case S_IFDIR:
1526			inc_nlink(inode);
1527			/* Some things misbehave if size == 0 on a directory */
1528			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1529			inode->i_op = &shmem_dir_inode_operations;
1530			inode->i_fop = &simple_dir_operations;
1531			break;
1532		case S_IFLNK:
1533			/*
1534			 * Must not load anything in the rbtree,
1535			 * mpol_free_shared_policy will not be called.
1536			 */
1537			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1538						NULL);
1539			break;
1540		}
1541	} else
1542		shmem_free_inode(sb);
1543	return inode;
1544}
1545
1546#ifdef CONFIG_TMPFS
1547static const struct inode_operations shmem_symlink_inode_operations;
1548static const struct inode_operations shmem_symlink_inline_operations;
1549
1550/*
1551 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1552 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1553 * below the loop driver, in the generic fashion that many filesystems support.
1554 */
1555static int shmem_readpage(struct file *file, struct page *page)
1556{
1557	struct inode *inode = page->mapping->host;
1558	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1559	unlock_page(page);
1560	return error;
1561}
1562
1563static int
1564shmem_write_begin(struct file *file, struct address_space *mapping,
1565			loff_t pos, unsigned len, unsigned flags,
1566			struct page **pagep, void **fsdata)
1567{
1568	struct inode *inode = mapping->host;
1569	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1570	*pagep = NULL;
1571	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1572}
1573
1574static int
1575shmem_write_end(struct file *file, struct address_space *mapping,
1576			loff_t pos, unsigned len, unsigned copied,
1577			struct page *page, void *fsdata)
1578{
1579	struct inode *inode = mapping->host;
1580
1581	if (pos + copied > inode->i_size)
1582		i_size_write(inode, pos + copied);
1583
1584	unlock_page(page);
1585	set_page_dirty(page);
1586	page_cache_release(page);
1587
1588	return copied;
1589}
1590
1591static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1592{
1593	struct inode *inode = filp->f_path.dentry->d_inode;
1594	struct address_space *mapping = inode->i_mapping;
1595	unsigned long index, offset;
1596	enum sgp_type sgp = SGP_READ;
1597
1598	/*
1599	 * Might this read be for a stacking filesystem?  Then when reading
1600	 * holes of a sparse file, we actually need to allocate those pages,
1601	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1602	 */
1603	if (segment_eq(get_fs(), KERNEL_DS))
1604		sgp = SGP_DIRTY;
1605
1606	index = *ppos >> PAGE_CACHE_SHIFT;
1607	offset = *ppos & ~PAGE_CACHE_MASK;
1608
1609	for (;;) {
1610		struct page *page = NULL;
1611		unsigned long end_index, nr, ret;
1612		loff_t i_size = i_size_read(inode);
1613
1614		end_index = i_size >> PAGE_CACHE_SHIFT;
1615		if (index > end_index)
1616			break;
1617		if (index == end_index) {
1618			nr = i_size & ~PAGE_CACHE_MASK;
1619			if (nr <= offset)
1620				break;
1621		}
1622
1623		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1624		if (desc->error) {
1625			if (desc->error == -EINVAL)
1626				desc->error = 0;
1627			break;
1628		}
1629		if (page)
1630			unlock_page(page);
1631
1632		/*
1633		 * We must evaluate after, since reads (unlike writes)
1634		 * are called without i_mutex protection against truncate
1635		 */
1636		nr = PAGE_CACHE_SIZE;
1637		i_size = i_size_read(inode);
1638		end_index = i_size >> PAGE_CACHE_SHIFT;
1639		if (index == end_index) {
1640			nr = i_size & ~PAGE_CACHE_MASK;
1641			if (nr <= offset) {
1642				if (page)
1643					page_cache_release(page);
1644				break;
1645			}
1646		}
1647		nr -= offset;
1648
1649		if (page) {
1650			/*
1651			 * If users can be writing to this page using arbitrary
1652			 * virtual addresses, take care about potential aliasing
1653			 * before reading the page on the kernel side.
1654			 */
1655			if (mapping_writably_mapped(mapping))
1656				flush_dcache_page(page);
1657			/*
1658			 * Mark the page accessed if we read the beginning.
1659			 */
1660			if (!offset)
1661				mark_page_accessed(page);
1662		} else {
1663			page = ZERO_PAGE(0);
1664			page_cache_get(page);
1665		}
1666
1667		/*
1668		 * Ok, we have the page, and it's up-to-date, so
1669		 * now we can copy it to user space...
1670		 *
1671		 * The actor routine returns how many bytes were actually used..
1672		 * NOTE! This may not be the same as how much of a user buffer
1673		 * we filled up (we may be padding etc), so we can only update
1674		 * "pos" here (the actor routine has to update the user buffer
1675		 * pointers and the remaining count).
1676		 */
1677		ret = actor(desc, page, offset, nr);
1678		offset += ret;
1679		index += offset >> PAGE_CACHE_SHIFT;
1680		offset &= ~PAGE_CACHE_MASK;
1681
1682		page_cache_release(page);
1683		if (ret != nr || !desc->count)
1684			break;
1685
1686		cond_resched();
1687	}
1688
1689	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1690	file_accessed(filp);
1691}
1692
1693static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1694{
1695	read_descriptor_t desc;
1696
1697	if ((ssize_t) count < 0)
1698		return -EINVAL;
1699	if (!access_ok(VERIFY_WRITE, buf, count))
1700		return -EFAULT;
1701	if (!count)
1702		return 0;
1703
1704	desc.written = 0;
1705	desc.count = count;
1706	desc.arg.buf = buf;
1707	desc.error = 0;
1708
1709	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1710	if (desc.written)
1711		return desc.written;
1712	return desc.error;
1713}
1714
1715static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1716{
1717	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1718
1719	buf->f_type = TMPFS_MAGIC;
1720	buf->f_bsize = PAGE_CACHE_SIZE;
1721	buf->f_namelen = NAME_MAX;
1722	spin_lock(&sbinfo->stat_lock);
1723	if (sbinfo->max_blocks) {
1724		buf->f_blocks = sbinfo->max_blocks;
1725		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1726	}
1727	if (sbinfo->max_inodes) {
1728		buf->f_files = sbinfo->max_inodes;
1729		buf->f_ffree = sbinfo->free_inodes;
1730	}
1731	/* else leave those fields 0 like simple_statfs */
1732	spin_unlock(&sbinfo->stat_lock);
1733	return 0;
1734}
1735
1736/*
1737 * File creation. Allocate an inode, and we're done..
1738 */
1739static int
1740shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1741{
1742	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1743	int error = -ENOSPC;
1744
1745	if (inode) {
1746		error = security_inode_init_security(inode, dir, NULL, NULL,
1747						     NULL);
1748		if (error) {
1749			if (error != -EOPNOTSUPP) {
1750				iput(inode);
1751				return error;
1752			}
1753		}
1754		error = shmem_acl_init(inode, dir);
1755		if (error) {
1756			iput(inode);
1757			return error;
1758		}
1759		if (dir->i_mode & S_ISGID) {
1760			inode->i_gid = dir->i_gid;
1761			if (S_ISDIR(mode))
1762				inode->i_mode |= S_ISGID;
1763		}
1764		dir->i_size += BOGO_DIRENT_SIZE;
1765		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1766		d_instantiate(dentry, inode);
1767		dget(dentry); /* Extra count - pin the dentry in core */
1768	}
1769	return error;
1770}
1771
1772static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1773{
1774	int error;
1775
1776	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1777		return error;
1778	inc_nlink(dir);
1779	return 0;
1780}
1781
1782static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1783		struct nameidata *nd)
1784{
1785	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1786}
1787
1788/*
1789 * Link a file..
1790 */
1791static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1792{
1793	struct inode *inode = old_dentry->d_inode;
1794	int ret;
1795
1796	/*
1797	 * No ordinary (disk based) filesystem counts links as inodes;
1798	 * but each new link needs a new dentry, pinning lowmem, and
1799	 * tmpfs dentries cannot be pruned until they are unlinked.
1800	 */
1801	ret = shmem_reserve_inode(inode->i_sb);
1802	if (ret)
1803		goto out;
1804
1805	dir->i_size += BOGO_DIRENT_SIZE;
1806	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1807	inc_nlink(inode);
1808	atomic_inc(&inode->i_count);	/* New dentry reference */
1809	dget(dentry);		/* Extra pinning count for the created dentry */
1810	d_instantiate(dentry, inode);
1811out:
1812	return ret;
1813}
1814
1815static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1816{
1817	struct inode *inode = dentry->d_inode;
1818
1819	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1820		shmem_free_inode(inode->i_sb);
1821
1822	dir->i_size -= BOGO_DIRENT_SIZE;
1823	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1824	drop_nlink(inode);
1825	dput(dentry);	/* Undo the count from "create" - this does all the work */
1826	return 0;
1827}
1828
1829static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1830{
1831	if (!simple_empty(dentry))
1832		return -ENOTEMPTY;
1833
1834	drop_nlink(dentry->d_inode);
1835	drop_nlink(dir);
1836	return shmem_unlink(dir, dentry);
1837}
1838
1839/*
1840 * The VFS layer already does all the dentry stuff for rename,
1841 * we just have to decrement the usage count for the target if
1842 * it exists so that the VFS layer correctly free's it when it
1843 * gets overwritten.
1844 */
1845static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1846{
1847	struct inode *inode = old_dentry->d_inode;
1848	int they_are_dirs = S_ISDIR(inode->i_mode);
1849
1850	if (!simple_empty(new_dentry))
1851		return -ENOTEMPTY;
1852
1853	if (new_dentry->d_inode) {
1854		(void) shmem_unlink(new_dir, new_dentry);
1855		if (they_are_dirs)
1856			drop_nlink(old_dir);
1857	} else if (they_are_dirs) {
1858		drop_nlink(old_dir);
1859		inc_nlink(new_dir);
1860	}
1861
1862	old_dir->i_size -= BOGO_DIRENT_SIZE;
1863	new_dir->i_size += BOGO_DIRENT_SIZE;
1864	old_dir->i_ctime = old_dir->i_mtime =
1865	new_dir->i_ctime = new_dir->i_mtime =
1866	inode->i_ctime = CURRENT_TIME;
1867	return 0;
1868}
1869
1870static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1871{
1872	int error;
1873	int len;
1874	struct inode *inode;
1875	struct page *page = NULL;
1876	char *kaddr;
1877	struct shmem_inode_info *info;
1878
1879	len = strlen(symname) + 1;
1880	if (len > PAGE_CACHE_SIZE)
1881		return -ENAMETOOLONG;
1882
1883	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1884	if (!inode)
1885		return -ENOSPC;
1886
1887	error = security_inode_init_security(inode, dir, NULL, NULL,
1888					     NULL);
1889	if (error) {
1890		if (error != -EOPNOTSUPP) {
1891			iput(inode);
1892			return error;
1893		}
1894		error = 0;
1895	}
1896
1897	info = SHMEM_I(inode);
1898	inode->i_size = len-1;
1899	if (len <= (char *)inode - (char *)info) {
1900		/* do it inline */
1901		memcpy(info, symname, len);
1902		inode->i_op = &shmem_symlink_inline_operations;
1903	} else {
1904		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1905		if (error) {
1906			iput(inode);
1907			return error;
1908		}
1909		unlock_page(page);
1910		inode->i_op = &shmem_symlink_inode_operations;
1911		kaddr = kmap_atomic(page, KM_USER0);
1912		memcpy(kaddr, symname, len);
1913		kunmap_atomic(kaddr, KM_USER0);
1914		set_page_dirty(page);
1915		page_cache_release(page);
1916	}
1917	if (dir->i_mode & S_ISGID)
1918		inode->i_gid = dir->i_gid;
1919	dir->i_size += BOGO_DIRENT_SIZE;
1920	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1921	d_instantiate(dentry, inode);
1922	dget(dentry);
1923	return 0;
1924}
1925
1926static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1927{
1928	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1929	return NULL;
1930}
1931
1932static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1933{
1934	struct page *page = NULL;
1935	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1936	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1937	if (page)
1938		unlock_page(page);
1939	return page;
1940}
1941
1942static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1943{
1944	if (!IS_ERR(nd_get_link(nd))) {
1945		struct page *page = cookie;
1946		kunmap(page);
1947		mark_page_accessed(page);
1948		page_cache_release(page);
1949	}
1950}
1951
1952static const struct inode_operations shmem_symlink_inline_operations = {
1953	.readlink	= generic_readlink,
1954	.follow_link	= shmem_follow_link_inline,
1955};
1956
1957static const struct inode_operations shmem_symlink_inode_operations = {
1958	.truncate	= shmem_truncate,
1959	.readlink	= generic_readlink,
1960	.follow_link	= shmem_follow_link,
1961	.put_link	= shmem_put_link,
1962};
1963
1964#ifdef CONFIG_TMPFS_POSIX_ACL
1965/**
1966 * Superblocks without xattr inode operations will get security.* xattr
1967 * support from the VFS "for free". As soon as we have any other xattrs
1968 * like ACLs, we also need to implement the security.* handlers at
1969 * filesystem level, though.
1970 */
1971
1972static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1973					size_t list_len, const char *name,
1974					size_t name_len)
1975{
1976	return security_inode_listsecurity(inode, list, list_len);
1977}
1978
1979static int shmem_xattr_security_get(struct inode *inode, const char *name,
1980				    void *buffer, size_t size)
1981{
1982	if (strcmp(name, "") == 0)
1983		return -EINVAL;
1984	return xattr_getsecurity(inode, name, buffer, size);
1985}
1986
1987static int shmem_xattr_security_set(struct inode *inode, const char *name,
1988				    const void *value, size_t size, int flags)
1989{
1990	if (strcmp(name, "") == 0)
1991		return -EINVAL;
1992	return security_inode_setsecurity(inode, name, value, size, flags);
1993}
1994
1995static struct xattr_handler shmem_xattr_security_handler = {
1996	.prefix = XATTR_SECURITY_PREFIX,
1997	.list   = shmem_xattr_security_list,
1998	.get    = shmem_xattr_security_get,
1999	.set    = shmem_xattr_security_set,
2000};
2001
2002static struct xattr_handler *shmem_xattr_handlers[] = {
2003	&shmem_xattr_acl_access_handler,
2004	&shmem_xattr_acl_default_handler,
2005	&shmem_xattr_security_handler,
2006	NULL
2007};
2008#endif
2009
2010static struct dentry *shmem_get_parent(struct dentry *child)
2011{
2012	return ERR_PTR(-ESTALE);
2013}
2014
2015static int shmem_match(struct inode *ino, void *vfh)
2016{
2017	__u32 *fh = vfh;
2018	__u64 inum = fh[2];
2019	inum = (inum << 32) | fh[1];
2020	return ino->i_ino == inum && fh[0] == ino->i_generation;
2021}
2022
2023static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2024		struct fid *fid, int fh_len, int fh_type)
2025{
2026	struct inode *inode;
2027	struct dentry *dentry = NULL;
2028	u64 inum = fid->raw[2];
2029	inum = (inum << 32) | fid->raw[1];
2030
2031	if (fh_len < 3)
2032		return NULL;
2033
2034	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2035			shmem_match, fid->raw);
2036	if (inode) {
2037		dentry = d_find_alias(inode);
2038		iput(inode);
2039	}
2040
2041	return dentry;
2042}
2043
2044static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2045				int connectable)
2046{
2047	struct inode *inode = dentry->d_inode;
2048
2049	if (*len < 3)
2050		return 255;
2051
2052	if (hlist_unhashed(&inode->i_hash)) {
2053		/* Unfortunately insert_inode_hash is not idempotent,
2054		 * so as we hash inodes here rather than at creation
2055		 * time, we need a lock to ensure we only try
2056		 * to do it once
2057		 */
2058		static DEFINE_SPINLOCK(lock);
2059		spin_lock(&lock);
2060		if (hlist_unhashed(&inode->i_hash))
2061			__insert_inode_hash(inode,
2062					    inode->i_ino + inode->i_generation);
2063		spin_unlock(&lock);
2064	}
2065
2066	fh[0] = inode->i_generation;
2067	fh[1] = inode->i_ino;
2068	fh[2] = ((__u64)inode->i_ino) >> 32;
2069
2070	*len = 3;
2071	return 1;
2072}
2073
2074static const struct export_operations shmem_export_ops = {
2075	.get_parent     = shmem_get_parent,
2076	.encode_fh      = shmem_encode_fh,
2077	.fh_to_dentry	= shmem_fh_to_dentry,
2078};
2079
2080static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2081	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2082	int *policy, nodemask_t *policy_nodes)
2083{
2084	char *this_char, *value, *rest;
2085
2086	while (options != NULL) {
2087		this_char = options;
2088		for (;;) {
2089			/*
2090			 * NUL-terminate this option: unfortunately,
2091			 * mount options form a comma-separated list,
2092			 * but mpol's nodelist may also contain commas.
2093			 */
2094			options = strchr(options, ',');
2095			if (options == NULL)
2096				break;
2097			options++;
2098			if (!isdigit(*options)) {
2099				options[-1] = '\0';
2100				break;
2101			}
2102		}
2103		if (!*this_char)
2104			continue;
2105		if ((value = strchr(this_char,'=')) != NULL) {
2106			*value++ = 0;
2107		} else {
2108			printk(KERN_ERR
2109			    "tmpfs: No value for mount option '%s'\n",
2110			    this_char);
2111			return 1;
2112		}
2113
2114		if (!strcmp(this_char,"size")) {
2115			unsigned long long size;
2116			size = memparse(value,&rest);
2117			if (*rest == '%') {
2118				size <<= PAGE_SHIFT;
2119				size *= totalram_pages;
2120				do_div(size, 100);
2121				rest++;
2122			}
2123			if (*rest)
2124				goto bad_val;
2125			*blocks = DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2126		} else if (!strcmp(this_char,"nr_blocks")) {
2127			*blocks = memparse(value,&rest);
2128			if (*rest)
2129				goto bad_val;
2130		} else if (!strcmp(this_char,"nr_inodes")) {
2131			*inodes = memparse(value,&rest);
2132			if (*rest)
2133				goto bad_val;
2134		} else if (!strcmp(this_char,"mode")) {
2135			if (!mode)
2136				continue;
2137			*mode = simple_strtoul(value,&rest,8);
2138			if (*rest)
2139				goto bad_val;
2140		} else if (!strcmp(this_char,"uid")) {
2141			if (!uid)
2142				continue;
2143			*uid = simple_strtoul(value,&rest,0);
2144			if (*rest)
2145				goto bad_val;
2146		} else if (!strcmp(this_char,"gid")) {
2147			if (!gid)
2148				continue;
2149			*gid = simple_strtoul(value,&rest,0);
2150			if (*rest)
2151				goto bad_val;
2152		} else if (!strcmp(this_char,"mpol")) {
2153			if (shmem_parse_mpol(value,policy,policy_nodes))
2154				goto bad_val;
2155		} else {
2156			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2157			       this_char);
2158			return 1;
2159		}
2160	}
2161	return 0;
2162
2163bad_val:
2164	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2165	       value, this_char);
2166	return 1;
2167
2168}
2169
2170static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2171{
2172	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2173	unsigned long max_blocks = sbinfo->max_blocks;
2174	unsigned long max_inodes = sbinfo->max_inodes;
2175	int policy = sbinfo->policy;
2176	nodemask_t policy_nodes = sbinfo->policy_nodes;
2177	unsigned long blocks;
2178	unsigned long inodes;
2179	int error = -EINVAL;
2180
2181	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2182				&max_inodes, &policy, &policy_nodes))
2183		return error;
2184
2185	spin_lock(&sbinfo->stat_lock);
2186	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2187	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2188	if (max_blocks < blocks)
2189		goto out;
2190	if (max_inodes < inodes)
2191		goto out;
2192	/*
2193	 * Those tests also disallow limited->unlimited while any are in
2194	 * use, so i_blocks will always be zero when max_blocks is zero;
2195	 * but we must separately disallow unlimited->limited, because
2196	 * in that case we have no record of how much is already in use.
2197	 */
2198	if (max_blocks && !sbinfo->max_blocks)
2199		goto out;
2200	if (max_inodes && !sbinfo->max_inodes)
2201		goto out;
2202
2203	error = 0;
2204	sbinfo->max_blocks  = max_blocks;
2205	sbinfo->free_blocks = max_blocks - blocks;
2206	sbinfo->max_inodes  = max_inodes;
2207	sbinfo->free_inodes = max_inodes - inodes;
2208	sbinfo->policy = policy;
2209	sbinfo->policy_nodes = policy_nodes;
2210out:
2211	spin_unlock(&sbinfo->stat_lock);
2212	return error;
2213}
2214#endif
2215
2216static void shmem_put_super(struct super_block *sb)
2217{
2218	kfree(sb->s_fs_info);
2219	sb->s_fs_info = NULL;
2220}
2221
2222static int shmem_fill_super(struct super_block *sb,
2223			    void *data, int silent)
2224{
2225	struct inode *inode;
2226	struct dentry *root;
2227	int mode   = S_IRWXUGO | S_ISVTX;
2228	uid_t uid = current->fsuid;
2229	gid_t gid = current->fsgid;
2230	int err = -ENOMEM;
2231	struct shmem_sb_info *sbinfo;
2232	unsigned long blocks = 0;
2233	unsigned long inodes = 0;
2234	int policy = MPOL_DEFAULT;
2235	nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2236
2237#ifdef CONFIG_TMPFS
2238	/*
2239	 * Per default we only allow half of the physical ram per
2240	 * tmpfs instance, limiting inodes to one per page of lowmem;
2241	 * but the internal instance is left unlimited.
2242	 */
2243	if (!(sb->s_flags & MS_NOUSER)) {
2244		blocks = totalram_pages / 2;
2245		inodes = totalram_pages - totalhigh_pages;
2246		if (inodes > blocks)
2247			inodes = blocks;
2248		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2249					&inodes, &policy, &policy_nodes))
2250			return -EINVAL;
2251	}
2252	sb->s_export_op = &shmem_export_ops;
2253#else
2254	sb->s_flags |= MS_NOUSER;
2255#endif
2256
2257	/* Round up to L1_CACHE_BYTES to resist false sharing */
2258	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2259				L1_CACHE_BYTES), GFP_KERNEL);
2260	if (!sbinfo)
2261		return -ENOMEM;
2262
2263	spin_lock_init(&sbinfo->stat_lock);
2264	sbinfo->max_blocks = blocks;
2265	sbinfo->free_blocks = blocks;
2266	sbinfo->max_inodes = inodes;
2267	sbinfo->free_inodes = inodes;
2268	sbinfo->policy = policy;
2269	sbinfo->policy_nodes = policy_nodes;
2270
2271	sb->s_fs_info = sbinfo;
2272	sb->s_maxbytes = SHMEM_MAX_BYTES;
2273	sb->s_blocksize = PAGE_CACHE_SIZE;
2274	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2275	sb->s_magic = TMPFS_MAGIC;
2276	sb->s_op = &shmem_ops;
2277	sb->s_time_gran = 1;
2278#ifdef CONFIG_TMPFS_POSIX_ACL
2279	sb->s_xattr = shmem_xattr_handlers;
2280	sb->s_flags |= MS_POSIXACL;
2281#endif
2282
2283	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2284	if (!inode)
2285		goto failed;
2286	inode->i_uid = uid;
2287	inode->i_gid = gid;
2288	root = d_alloc_root(inode);
2289	if (!root)
2290		goto failed_iput;
2291	sb->s_root = root;
2292	return 0;
2293
2294failed_iput:
2295	iput(inode);
2296failed:
2297	shmem_put_super(sb);
2298	return err;
2299}
2300
2301static struct kmem_cache *shmem_inode_cachep;
2302
2303static struct inode *shmem_alloc_inode(struct super_block *sb)
2304{
2305	struct shmem_inode_info *p;
2306	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2307	if (!p)
2308		return NULL;
2309	return &p->vfs_inode;
2310}
2311
2312static void shmem_destroy_inode(struct inode *inode)
2313{
2314	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2315		/* only struct inode is valid if it's an inline symlink */
2316		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2317	}
2318	shmem_acl_destroy_inode(inode);
2319	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2320}
2321
2322static void init_once(struct kmem_cache *cachep, void *foo)
2323{
2324	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2325
2326	inode_init_once(&p->vfs_inode);
2327#ifdef CONFIG_TMPFS_POSIX_ACL
2328	p->i_acl = NULL;
2329	p->i_default_acl = NULL;
2330#endif
2331}
2332
2333static int init_inodecache(void)
2334{
2335	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2336				sizeof(struct shmem_inode_info),
2337				0, SLAB_PANIC, init_once);
2338	return 0;
2339}
2340
2341static void destroy_inodecache(void)
2342{
2343	kmem_cache_destroy(shmem_inode_cachep);
2344}
2345
2346static const struct address_space_operations shmem_aops = {
2347	.writepage	= shmem_writepage,
2348	.set_page_dirty	= __set_page_dirty_no_writeback,
2349#ifdef CONFIG_TMPFS
2350	.readpage	= shmem_readpage,
2351	.write_begin	= shmem_write_begin,
2352	.write_end	= shmem_write_end,
2353#endif
2354	.migratepage	= migrate_page,
2355};
2356
2357static const struct file_operations shmem_file_operations = {
2358	.mmap		= shmem_mmap,
2359#ifdef CONFIG_TMPFS
2360	.llseek		= generic_file_llseek,
2361	.read		= shmem_file_read,
2362	.write		= do_sync_write,
2363	.aio_write	= generic_file_aio_write,
2364	.fsync		= simple_sync_file,
2365	.splice_read	= generic_file_splice_read,
2366	.splice_write	= generic_file_splice_write,
2367#endif
2368};
2369
2370static const struct inode_operations shmem_inode_operations = {
2371	.truncate	= shmem_truncate,
2372	.setattr	= shmem_notify_change,
2373	.truncate_range	= shmem_truncate_range,
2374#ifdef CONFIG_TMPFS_POSIX_ACL
2375	.setxattr	= generic_setxattr,
2376	.getxattr	= generic_getxattr,
2377	.listxattr	= generic_listxattr,
2378	.removexattr	= generic_removexattr,
2379	.permission	= shmem_permission,
2380#endif
2381
2382};
2383
2384static const struct inode_operations shmem_dir_inode_operations = {
2385#ifdef CONFIG_TMPFS
2386	.create		= shmem_create,
2387	.lookup		= simple_lookup,
2388	.link		= shmem_link,
2389	.unlink		= shmem_unlink,
2390	.symlink	= shmem_symlink,
2391	.mkdir		= shmem_mkdir,
2392	.rmdir		= shmem_rmdir,
2393	.mknod		= shmem_mknod,
2394	.rename		= shmem_rename,
2395#endif
2396#ifdef CONFIG_TMPFS_POSIX_ACL
2397	.setattr	= shmem_notify_change,
2398	.setxattr	= generic_setxattr,
2399	.getxattr	= generic_getxattr,
2400	.listxattr	= generic_listxattr,
2401	.removexattr	= generic_removexattr,
2402	.permission	= shmem_permission,
2403#endif
2404};
2405
2406static const struct inode_operations shmem_special_inode_operations = {
2407#ifdef CONFIG_TMPFS_POSIX_ACL
2408	.setattr	= shmem_notify_change,
2409	.setxattr	= generic_setxattr,
2410	.getxattr	= generic_getxattr,
2411	.listxattr	= generic_listxattr,
2412	.removexattr	= generic_removexattr,
2413	.permission	= shmem_permission,
2414#endif
2415};
2416
2417static const struct super_operations shmem_ops = {
2418	.alloc_inode	= shmem_alloc_inode,
2419	.destroy_inode	= shmem_destroy_inode,
2420#ifdef CONFIG_TMPFS
2421	.statfs		= shmem_statfs,
2422	.remount_fs	= shmem_remount_fs,
2423#endif
2424	.delete_inode	= shmem_delete_inode,
2425	.drop_inode	= generic_delete_inode,
2426	.put_super	= shmem_put_super,
2427};
2428
2429static struct vm_operations_struct shmem_vm_ops = {
2430	.fault		= shmem_fault,
2431#ifdef CONFIG_NUMA
2432	.set_policy     = shmem_set_policy,
2433	.get_policy     = shmem_get_policy,
2434#endif
2435};
2436
2437
2438static int shmem_get_sb(struct file_system_type *fs_type,
2439	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2440{
2441	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2442}
2443
2444static struct file_system_type tmpfs_fs_type = {
2445	.owner		= THIS_MODULE,
2446	.name		= "tmpfs",
2447	.get_sb		= shmem_get_sb,
2448	.kill_sb	= kill_litter_super,
2449};
2450static struct vfsmount *shm_mnt;
2451
2452static int __init init_tmpfs(void)
2453{
2454	int error;
2455
2456	error = bdi_init(&shmem_backing_dev_info);
2457	if (error)
2458		goto out4;
2459
2460	error = init_inodecache();
2461	if (error)
2462		goto out3;
2463
2464	error = register_filesystem(&tmpfs_fs_type);
2465	if (error) {
2466		printk(KERN_ERR "Could not register tmpfs\n");
2467		goto out2;
2468	}
2469
2470	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2471				tmpfs_fs_type.name, NULL);
2472	if (IS_ERR(shm_mnt)) {
2473		error = PTR_ERR(shm_mnt);
2474		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2475		goto out1;
2476	}
2477	return 0;
2478
2479out1:
2480	unregister_filesystem(&tmpfs_fs_type);
2481out2:
2482	destroy_inodecache();
2483out3:
2484	bdi_destroy(&shmem_backing_dev_info);
2485out4:
2486	shm_mnt = ERR_PTR(error);
2487	return error;
2488}
2489module_init(init_tmpfs)
2490
2491/*
2492 * shmem_file_setup - get an unlinked file living in tmpfs
2493 *
2494 * @name: name for dentry (to be seen in /proc/<pid>/maps
2495 * @size: size to be set for the file
2496 *
2497 */
2498struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2499{
2500	int error;
2501	struct file *file;
2502	struct inode *inode;
2503	struct dentry *dentry, *root;
2504	struct qstr this;
2505
2506	if (IS_ERR(shm_mnt))
2507		return (void *)shm_mnt;
2508
2509	if (size < 0 || size > SHMEM_MAX_BYTES)
2510		return ERR_PTR(-EINVAL);
2511
2512	if (shmem_acct_size(flags, size))
2513		return ERR_PTR(-ENOMEM);
2514
2515	error = -ENOMEM;
2516	this.name = name;
2517	this.len = strlen(name);
2518	this.hash = 0; /* will go */
2519	root = shm_mnt->mnt_root;
2520	dentry = d_alloc(root, &this);
2521	if (!dentry)
2522		goto put_memory;
2523
2524	error = -ENFILE;
2525	file = get_empty_filp();
2526	if (!file)
2527		goto put_dentry;
2528
2529	error = -ENOSPC;
2530	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2531	if (!inode)
2532		goto close_file;
2533
2534	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2535	d_instantiate(dentry, inode);
2536	inode->i_size = size;
2537	inode->i_nlink = 0;	/* It is unlinked */
2538	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2539			&shmem_file_operations);
2540	return file;
2541
2542close_file:
2543	put_filp(file);
2544put_dentry:
2545	dput(dentry);
2546put_memory:
2547	shmem_unacct_size(flags, size);
2548	return ERR_PTR(error);
2549}
2550
2551/*
2552 * shmem_zero_setup - setup a shared anonymous mapping
2553 *
2554 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2555 */
2556int shmem_zero_setup(struct vm_area_struct *vma)
2557{
2558	struct file *file;
2559	loff_t size = vma->vm_end - vma->vm_start;
2560
2561	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2562	if (IS_ERR(file))
2563		return PTR_ERR(file);
2564
2565	if (vma->vm_file)
2566		fput(vma->vm_file);
2567	vma->vm_file = file;
2568	vma->vm_ops = &shmem_vm_ops;
2569	return 0;
2570}
2571