shmem.c revision 85046579bde15e532983438f86b36856e358f417
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/file.h>
30#include <linux/mm.h>
31#include <linux/export.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/pagevec.h>
55#include <linux/percpu_counter.h>
56#include <linux/splice.h>
57#include <linux/security.h>
58#include <linux/swapops.h>
59#include <linux/mempolicy.h>
60#include <linux/namei.h>
61#include <linux/ctype.h>
62#include <linux/migrate.h>
63#include <linux/highmem.h>
64#include <linux/seq_file.h>
65#include <linux/magic.h>
66
67#include <asm/uaccess.h>
68#include <asm/pgtable.h>
69
70#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72
73/* Pretend that each entry is of this size in directory's i_size */
74#define BOGO_DIRENT_SIZE 20
75
76/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77#define SHORT_SYMLINK_LEN 128
78
79struct shmem_xattr {
80	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
81	char *name;		/* xattr name */
82	size_t size;
83	char value[0];
84};
85
86/* Flag allocation requirements to shmem_getpage */
87enum sgp_type {
88	SGP_READ,	/* don't exceed i_size, don't allocate page */
89	SGP_CACHE,	/* don't exceed i_size, may allocate page */
90	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
91	SGP_WRITE,	/* may exceed i_size, may allocate page */
92};
93
94#ifdef CONFIG_TMPFS
95static unsigned long shmem_default_max_blocks(void)
96{
97	return totalram_pages / 2;
98}
99
100static unsigned long shmem_default_max_inodes(void)
101{
102	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103}
104#endif
105
106static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
108
109static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110	struct page **pagep, enum sgp_type sgp, int *fault_type)
111{
112	return shmem_getpage_gfp(inode, index, pagep, sgp,
113			mapping_gfp_mask(inode->i_mapping), fault_type);
114}
115
116static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
117{
118	return sb->s_fs_info;
119}
120
121/*
122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123 * for shared memory and for shared anonymous (/dev/zero) mappings
124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125 * consistent with the pre-accounting of private mappings ...
126 */
127static inline int shmem_acct_size(unsigned long flags, loff_t size)
128{
129	return (flags & VM_NORESERVE) ?
130		0 : security_vm_enough_memory_kern(VM_ACCT(size));
131}
132
133static inline void shmem_unacct_size(unsigned long flags, loff_t size)
134{
135	if (!(flags & VM_NORESERVE))
136		vm_unacct_memory(VM_ACCT(size));
137}
138
139/*
140 * ... whereas tmpfs objects are accounted incrementally as
141 * pages are allocated, in order to allow huge sparse files.
142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
144 */
145static inline int shmem_acct_block(unsigned long flags)
146{
147	return (flags & VM_NORESERVE) ?
148		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
149}
150
151static inline void shmem_unacct_blocks(unsigned long flags, long pages)
152{
153	if (flags & VM_NORESERVE)
154		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
155}
156
157static const struct super_operations shmem_ops;
158static const struct address_space_operations shmem_aops;
159static const struct file_operations shmem_file_operations;
160static const struct inode_operations shmem_inode_operations;
161static const struct inode_operations shmem_dir_inode_operations;
162static const struct inode_operations shmem_special_inode_operations;
163static const struct vm_operations_struct shmem_vm_ops;
164
165static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
166	.ra_pages	= 0,	/* No readahead */
167	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
168};
169
170static LIST_HEAD(shmem_swaplist);
171static DEFINE_MUTEX(shmem_swaplist_mutex);
172
173static int shmem_reserve_inode(struct super_block *sb)
174{
175	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176	if (sbinfo->max_inodes) {
177		spin_lock(&sbinfo->stat_lock);
178		if (!sbinfo->free_inodes) {
179			spin_unlock(&sbinfo->stat_lock);
180			return -ENOSPC;
181		}
182		sbinfo->free_inodes--;
183		spin_unlock(&sbinfo->stat_lock);
184	}
185	return 0;
186}
187
188static void shmem_free_inode(struct super_block *sb)
189{
190	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191	if (sbinfo->max_inodes) {
192		spin_lock(&sbinfo->stat_lock);
193		sbinfo->free_inodes++;
194		spin_unlock(&sbinfo->stat_lock);
195	}
196}
197
198/**
199 * shmem_recalc_inode - recalculate the block usage of an inode
200 * @inode: inode to recalc
201 *
202 * We have to calculate the free blocks since the mm can drop
203 * undirtied hole pages behind our back.
204 *
205 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
207 *
208 * It has to be called with the spinlock held.
209 */
210static void shmem_recalc_inode(struct inode *inode)
211{
212	struct shmem_inode_info *info = SHMEM_I(inode);
213	long freed;
214
215	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216	if (freed > 0) {
217		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218		if (sbinfo->max_blocks)
219			percpu_counter_add(&sbinfo->used_blocks, -freed);
220		info->alloced -= freed;
221		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222		shmem_unacct_blocks(info->flags, freed);
223	}
224}
225
226/*
227 * Replace item expected in radix tree by a new item, while holding tree lock.
228 */
229static int shmem_radix_tree_replace(struct address_space *mapping,
230			pgoff_t index, void *expected, void *replacement)
231{
232	void **pslot;
233	void *item = NULL;
234
235	VM_BUG_ON(!expected);
236	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237	if (pslot)
238		item = radix_tree_deref_slot_protected(pslot,
239							&mapping->tree_lock);
240	if (item != expected)
241		return -ENOENT;
242	if (replacement)
243		radix_tree_replace_slot(pslot, replacement);
244	else
245		radix_tree_delete(&mapping->page_tree, index);
246	return 0;
247}
248
249/*
250 * Like add_to_page_cache_locked, but error if expected item has gone.
251 */
252static int shmem_add_to_page_cache(struct page *page,
253				   struct address_space *mapping,
254				   pgoff_t index, gfp_t gfp, void *expected)
255{
256	int error = 0;
257
258	VM_BUG_ON(!PageLocked(page));
259	VM_BUG_ON(!PageSwapBacked(page));
260
261	if (!expected)
262		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263	if (!error) {
264		page_cache_get(page);
265		page->mapping = mapping;
266		page->index = index;
267
268		spin_lock_irq(&mapping->tree_lock);
269		if (!expected)
270			error = radix_tree_insert(&mapping->page_tree,
271							index, page);
272		else
273			error = shmem_radix_tree_replace(mapping, index,
274							expected, page);
275		if (!error) {
276			mapping->nrpages++;
277			__inc_zone_page_state(page, NR_FILE_PAGES);
278			__inc_zone_page_state(page, NR_SHMEM);
279			spin_unlock_irq(&mapping->tree_lock);
280		} else {
281			page->mapping = NULL;
282			spin_unlock_irq(&mapping->tree_lock);
283			page_cache_release(page);
284		}
285		if (!expected)
286			radix_tree_preload_end();
287	}
288	if (error)
289		mem_cgroup_uncharge_cache_page(page);
290	return error;
291}
292
293/*
294 * Like delete_from_page_cache, but substitutes swap for page.
295 */
296static void shmem_delete_from_page_cache(struct page *page, void *radswap)
297{
298	struct address_space *mapping = page->mapping;
299	int error;
300
301	spin_lock_irq(&mapping->tree_lock);
302	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303	page->mapping = NULL;
304	mapping->nrpages--;
305	__dec_zone_page_state(page, NR_FILE_PAGES);
306	__dec_zone_page_state(page, NR_SHMEM);
307	spin_unlock_irq(&mapping->tree_lock);
308	page_cache_release(page);
309	BUG_ON(error);
310}
311
312/*
313 * Like find_get_pages, but collecting swap entries as well as pages.
314 */
315static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316					pgoff_t start, unsigned int nr_pages,
317					struct page **pages, pgoff_t *indices)
318{
319	unsigned int i;
320	unsigned int ret;
321	unsigned int nr_found;
322
323	rcu_read_lock();
324restart:
325	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326				(void ***)pages, indices, start, nr_pages);
327	ret = 0;
328	for (i = 0; i < nr_found; i++) {
329		struct page *page;
330repeat:
331		page = radix_tree_deref_slot((void **)pages[i]);
332		if (unlikely(!page))
333			continue;
334		if (radix_tree_exception(page)) {
335			if (radix_tree_deref_retry(page))
336				goto restart;
337			/*
338			 * Otherwise, we must be storing a swap entry
339			 * here as an exceptional entry: so return it
340			 * without attempting to raise page count.
341			 */
342			goto export;
343		}
344		if (!page_cache_get_speculative(page))
345			goto repeat;
346
347		/* Has the page moved? */
348		if (unlikely(page != *((void **)pages[i]))) {
349			page_cache_release(page);
350			goto repeat;
351		}
352export:
353		indices[ret] = indices[i];
354		pages[ret] = page;
355		ret++;
356	}
357	if (unlikely(!ret && nr_found))
358		goto restart;
359	rcu_read_unlock();
360	return ret;
361}
362
363/*
364 * Remove swap entry from radix tree, free the swap and its page cache.
365 */
366static int shmem_free_swap(struct address_space *mapping,
367			   pgoff_t index, void *radswap)
368{
369	int error;
370
371	spin_lock_irq(&mapping->tree_lock);
372	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
373	spin_unlock_irq(&mapping->tree_lock);
374	if (!error)
375		free_swap_and_cache(radix_to_swp_entry(radswap));
376	return error;
377}
378
379/*
380 * Pagevec may contain swap entries, so shuffle up pages before releasing.
381 */
382static void shmem_pagevec_release(struct pagevec *pvec)
383{
384	int i, j;
385
386	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
387		struct page *page = pvec->pages[i];
388		if (!radix_tree_exceptional_entry(page))
389			pvec->pages[j++] = page;
390	}
391	pvec->nr = j;
392	pagevec_release(pvec);
393}
394
395/*
396 * Remove range of pages and swap entries from radix tree, and free them.
397 */
398void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
399{
400	struct address_space *mapping = inode->i_mapping;
401	struct shmem_inode_info *info = SHMEM_I(inode);
402	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
403	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
404	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
405	struct pagevec pvec;
406	pgoff_t indices[PAGEVEC_SIZE];
407	long nr_swaps_freed = 0;
408	pgoff_t index;
409	int i;
410
411	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
412
413	pagevec_init(&pvec, 0);
414	index = start;
415	while (index <= end) {
416		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
417			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
418							pvec.pages, indices);
419		if (!pvec.nr)
420			break;
421		mem_cgroup_uncharge_start();
422		for (i = 0; i < pagevec_count(&pvec); i++) {
423			struct page *page = pvec.pages[i];
424
425			index = indices[i];
426			if (index > end)
427				break;
428
429			if (radix_tree_exceptional_entry(page)) {
430				nr_swaps_freed += !shmem_free_swap(mapping,
431								index, page);
432				continue;
433			}
434
435			if (!trylock_page(page))
436				continue;
437			if (page->mapping == mapping) {
438				VM_BUG_ON(PageWriteback(page));
439				truncate_inode_page(mapping, page);
440			}
441			unlock_page(page);
442		}
443		shmem_pagevec_release(&pvec);
444		mem_cgroup_uncharge_end();
445		cond_resched();
446		index++;
447	}
448
449	if (partial) {
450		struct page *page = NULL;
451		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
452		if (page) {
453			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
454			set_page_dirty(page);
455			unlock_page(page);
456			page_cache_release(page);
457		}
458	}
459
460	index = start;
461	for ( ; ; ) {
462		cond_resched();
463		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
464			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
465							pvec.pages, indices);
466		if (!pvec.nr) {
467			if (index == start)
468				break;
469			index = start;
470			continue;
471		}
472		if (index == start && indices[0] > end) {
473			shmem_pagevec_release(&pvec);
474			break;
475		}
476		mem_cgroup_uncharge_start();
477		for (i = 0; i < pagevec_count(&pvec); i++) {
478			struct page *page = pvec.pages[i];
479
480			index = indices[i];
481			if (index > end)
482				break;
483
484			if (radix_tree_exceptional_entry(page)) {
485				nr_swaps_freed += !shmem_free_swap(mapping,
486								index, page);
487				continue;
488			}
489
490			lock_page(page);
491			if (page->mapping == mapping) {
492				VM_BUG_ON(PageWriteback(page));
493				truncate_inode_page(mapping, page);
494			}
495			unlock_page(page);
496		}
497		shmem_pagevec_release(&pvec);
498		mem_cgroup_uncharge_end();
499		index++;
500	}
501
502	spin_lock(&info->lock);
503	info->swapped -= nr_swaps_freed;
504	shmem_recalc_inode(inode);
505	spin_unlock(&info->lock);
506
507	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
508}
509EXPORT_SYMBOL_GPL(shmem_truncate_range);
510
511static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
512{
513	struct inode *inode = dentry->d_inode;
514	int error;
515
516	error = inode_change_ok(inode, attr);
517	if (error)
518		return error;
519
520	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
521		loff_t oldsize = inode->i_size;
522		loff_t newsize = attr->ia_size;
523
524		if (newsize != oldsize) {
525			i_size_write(inode, newsize);
526			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
527		}
528		if (newsize < oldsize) {
529			loff_t holebegin = round_up(newsize, PAGE_SIZE);
530			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
531			shmem_truncate_range(inode, newsize, (loff_t)-1);
532			/* unmap again to remove racily COWed private pages */
533			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
534		}
535	}
536
537	setattr_copy(inode, attr);
538#ifdef CONFIG_TMPFS_POSIX_ACL
539	if (attr->ia_valid & ATTR_MODE)
540		error = generic_acl_chmod(inode);
541#endif
542	return error;
543}
544
545static void shmem_evict_inode(struct inode *inode)
546{
547	struct shmem_inode_info *info = SHMEM_I(inode);
548	struct shmem_xattr *xattr, *nxattr;
549
550	if (inode->i_mapping->a_ops == &shmem_aops) {
551		shmem_unacct_size(info->flags, inode->i_size);
552		inode->i_size = 0;
553		shmem_truncate_range(inode, 0, (loff_t)-1);
554		if (!list_empty(&info->swaplist)) {
555			mutex_lock(&shmem_swaplist_mutex);
556			list_del_init(&info->swaplist);
557			mutex_unlock(&shmem_swaplist_mutex);
558		}
559	} else
560		kfree(info->symlink);
561
562	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
563		kfree(xattr->name);
564		kfree(xattr);
565	}
566	BUG_ON(inode->i_blocks);
567	shmem_free_inode(inode->i_sb);
568	end_writeback(inode);
569}
570
571/*
572 * If swap found in inode, free it and move page from swapcache to filecache.
573 */
574static int shmem_unuse_inode(struct shmem_inode_info *info,
575			     swp_entry_t swap, struct page *page)
576{
577	struct address_space *mapping = info->vfs_inode.i_mapping;
578	void *radswap;
579	pgoff_t index;
580	int error;
581
582	radswap = swp_to_radix_entry(swap);
583	index = radix_tree_locate_item(&mapping->page_tree, radswap);
584	if (index == -1)
585		return 0;
586
587	/*
588	 * Move _head_ to start search for next from here.
589	 * But be careful: shmem_evict_inode checks list_empty without taking
590	 * mutex, and there's an instant in list_move_tail when info->swaplist
591	 * would appear empty, if it were the only one on shmem_swaplist.
592	 */
593	if (shmem_swaplist.next != &info->swaplist)
594		list_move_tail(&shmem_swaplist, &info->swaplist);
595
596	/*
597	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
598	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
599	 * beneath us (pagelock doesn't help until the page is in pagecache).
600	 */
601	error = shmem_add_to_page_cache(page, mapping, index,
602						GFP_NOWAIT, radswap);
603	/* which does mem_cgroup_uncharge_cache_page on error */
604
605	if (error != -ENOMEM) {
606		/*
607		 * Truncation and eviction use free_swap_and_cache(), which
608		 * only does trylock page: if we raced, best clean up here.
609		 */
610		delete_from_swap_cache(page);
611		set_page_dirty(page);
612		if (!error) {
613			spin_lock(&info->lock);
614			info->swapped--;
615			spin_unlock(&info->lock);
616			swap_free(swap);
617		}
618		error = 1;	/* not an error, but entry was found */
619	}
620	return error;
621}
622
623/*
624 * Search through swapped inodes to find and replace swap by page.
625 */
626int shmem_unuse(swp_entry_t swap, struct page *page)
627{
628	struct list_head *this, *next;
629	struct shmem_inode_info *info;
630	int found = 0;
631	int error;
632
633	/*
634	 * Charge page using GFP_KERNEL while we can wait, before taking
635	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
636	 * Charged back to the user (not to caller) when swap account is used.
637	 */
638	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
639	if (error)
640		goto out;
641	/* No radix_tree_preload: swap entry keeps a place for page in tree */
642
643	mutex_lock(&shmem_swaplist_mutex);
644	list_for_each_safe(this, next, &shmem_swaplist) {
645		info = list_entry(this, struct shmem_inode_info, swaplist);
646		if (info->swapped)
647			found = shmem_unuse_inode(info, swap, page);
648		else
649			list_del_init(&info->swaplist);
650		cond_resched();
651		if (found)
652			break;
653	}
654	mutex_unlock(&shmem_swaplist_mutex);
655
656	if (!found)
657		mem_cgroup_uncharge_cache_page(page);
658	if (found < 0)
659		error = found;
660out:
661	unlock_page(page);
662	page_cache_release(page);
663	return error;
664}
665
666/*
667 * Move the page from the page cache to the swap cache.
668 */
669static int shmem_writepage(struct page *page, struct writeback_control *wbc)
670{
671	struct shmem_inode_info *info;
672	struct address_space *mapping;
673	struct inode *inode;
674	swp_entry_t swap;
675	pgoff_t index;
676
677	BUG_ON(!PageLocked(page));
678	mapping = page->mapping;
679	index = page->index;
680	inode = mapping->host;
681	info = SHMEM_I(inode);
682	if (info->flags & VM_LOCKED)
683		goto redirty;
684	if (!total_swap_pages)
685		goto redirty;
686
687	/*
688	 * shmem_backing_dev_info's capabilities prevent regular writeback or
689	 * sync from ever calling shmem_writepage; but a stacking filesystem
690	 * might use ->writepage of its underlying filesystem, in which case
691	 * tmpfs should write out to swap only in response to memory pressure,
692	 * and not for the writeback threads or sync.
693	 */
694	if (!wbc->for_reclaim) {
695		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
696		goto redirty;
697	}
698	swap = get_swap_page();
699	if (!swap.val)
700		goto redirty;
701
702	/*
703	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
704	 * if it's not already there.  Do it now before the page is
705	 * moved to swap cache, when its pagelock no longer protects
706	 * the inode from eviction.  But don't unlock the mutex until
707	 * we've incremented swapped, because shmem_unuse_inode() will
708	 * prune a !swapped inode from the swaplist under this mutex.
709	 */
710	mutex_lock(&shmem_swaplist_mutex);
711	if (list_empty(&info->swaplist))
712		list_add_tail(&info->swaplist, &shmem_swaplist);
713
714	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
715		swap_shmem_alloc(swap);
716		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
717
718		spin_lock(&info->lock);
719		info->swapped++;
720		shmem_recalc_inode(inode);
721		spin_unlock(&info->lock);
722
723		mutex_unlock(&shmem_swaplist_mutex);
724		BUG_ON(page_mapped(page));
725		swap_writepage(page, wbc);
726		return 0;
727	}
728
729	mutex_unlock(&shmem_swaplist_mutex);
730	swapcache_free(swap, NULL);
731redirty:
732	set_page_dirty(page);
733	if (wbc->for_reclaim)
734		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
735	unlock_page(page);
736	return 0;
737}
738
739#ifdef CONFIG_NUMA
740#ifdef CONFIG_TMPFS
741static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
742{
743	char buffer[64];
744
745	if (!mpol || mpol->mode == MPOL_DEFAULT)
746		return;		/* show nothing */
747
748	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
749
750	seq_printf(seq, ",mpol=%s", buffer);
751}
752
753static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
754{
755	struct mempolicy *mpol = NULL;
756	if (sbinfo->mpol) {
757		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
758		mpol = sbinfo->mpol;
759		mpol_get(mpol);
760		spin_unlock(&sbinfo->stat_lock);
761	}
762	return mpol;
763}
764#endif /* CONFIG_TMPFS */
765
766static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
767			struct shmem_inode_info *info, pgoff_t index)
768{
769	struct mempolicy mpol, *spol;
770	struct vm_area_struct pvma;
771
772	spol = mpol_cond_copy(&mpol,
773			mpol_shared_policy_lookup(&info->policy, index));
774
775	/* Create a pseudo vma that just contains the policy */
776	pvma.vm_start = 0;
777	pvma.vm_pgoff = index;
778	pvma.vm_ops = NULL;
779	pvma.vm_policy = spol;
780	return swapin_readahead(swap, gfp, &pvma, 0);
781}
782
783static struct page *shmem_alloc_page(gfp_t gfp,
784			struct shmem_inode_info *info, pgoff_t index)
785{
786	struct vm_area_struct pvma;
787
788	/* Create a pseudo vma that just contains the policy */
789	pvma.vm_start = 0;
790	pvma.vm_pgoff = index;
791	pvma.vm_ops = NULL;
792	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
793
794	/*
795	 * alloc_page_vma() will drop the shared policy reference
796	 */
797	return alloc_page_vma(gfp, &pvma, 0);
798}
799#else /* !CONFIG_NUMA */
800#ifdef CONFIG_TMPFS
801static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
802{
803}
804#endif /* CONFIG_TMPFS */
805
806static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
807			struct shmem_inode_info *info, pgoff_t index)
808{
809	return swapin_readahead(swap, gfp, NULL, 0);
810}
811
812static inline struct page *shmem_alloc_page(gfp_t gfp,
813			struct shmem_inode_info *info, pgoff_t index)
814{
815	return alloc_page(gfp);
816}
817#endif /* CONFIG_NUMA */
818
819#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
820static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
821{
822	return NULL;
823}
824#endif
825
826/*
827 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
828 *
829 * If we allocate a new one we do not mark it dirty. That's up to the
830 * vm. If we swap it in we mark it dirty since we also free the swap
831 * entry since a page cannot live in both the swap and page cache
832 */
833static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
834	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
835{
836	struct address_space *mapping = inode->i_mapping;
837	struct shmem_inode_info *info;
838	struct shmem_sb_info *sbinfo;
839	struct page *page;
840	swp_entry_t swap;
841	int error;
842	int once = 0;
843
844	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
845		return -EFBIG;
846repeat:
847	swap.val = 0;
848	page = find_lock_page(mapping, index);
849	if (radix_tree_exceptional_entry(page)) {
850		swap = radix_to_swp_entry(page);
851		page = NULL;
852	}
853
854	if (sgp != SGP_WRITE &&
855	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
856		error = -EINVAL;
857		goto failed;
858	}
859
860	if (page || (sgp == SGP_READ && !swap.val)) {
861		/*
862		 * Once we can get the page lock, it must be uptodate:
863		 * if there were an error in reading back from swap,
864		 * the page would not be inserted into the filecache.
865		 */
866		BUG_ON(page && !PageUptodate(page));
867		*pagep = page;
868		return 0;
869	}
870
871	/*
872	 * Fast cache lookup did not find it:
873	 * bring it back from swap or allocate.
874	 */
875	info = SHMEM_I(inode);
876	sbinfo = SHMEM_SB(inode->i_sb);
877
878	if (swap.val) {
879		/* Look it up and read it in.. */
880		page = lookup_swap_cache(swap);
881		if (!page) {
882			/* here we actually do the io */
883			if (fault_type)
884				*fault_type |= VM_FAULT_MAJOR;
885			page = shmem_swapin(swap, gfp, info, index);
886			if (!page) {
887				error = -ENOMEM;
888				goto failed;
889			}
890		}
891
892		/* We have to do this with page locked to prevent races */
893		lock_page(page);
894		if (!PageUptodate(page)) {
895			error = -EIO;
896			goto failed;
897		}
898		wait_on_page_writeback(page);
899
900		/* Someone may have already done it for us */
901		if (page->mapping) {
902			if (page->mapping == mapping &&
903			    page->index == index)
904				goto done;
905			error = -EEXIST;
906			goto failed;
907		}
908
909		error = mem_cgroup_cache_charge(page, current->mm,
910						gfp & GFP_RECLAIM_MASK);
911		if (!error)
912			error = shmem_add_to_page_cache(page, mapping, index,
913						gfp, swp_to_radix_entry(swap));
914		if (error)
915			goto failed;
916
917		spin_lock(&info->lock);
918		info->swapped--;
919		shmem_recalc_inode(inode);
920		spin_unlock(&info->lock);
921
922		delete_from_swap_cache(page);
923		set_page_dirty(page);
924		swap_free(swap);
925
926	} else {
927		if (shmem_acct_block(info->flags)) {
928			error = -ENOSPC;
929			goto failed;
930		}
931		if (sbinfo->max_blocks) {
932			if (percpu_counter_compare(&sbinfo->used_blocks,
933						sbinfo->max_blocks) >= 0) {
934				error = -ENOSPC;
935				goto unacct;
936			}
937			percpu_counter_inc(&sbinfo->used_blocks);
938		}
939
940		page = shmem_alloc_page(gfp, info, index);
941		if (!page) {
942			error = -ENOMEM;
943			goto decused;
944		}
945
946		SetPageSwapBacked(page);
947		__set_page_locked(page);
948		error = mem_cgroup_cache_charge(page, current->mm,
949						gfp & GFP_RECLAIM_MASK);
950		if (!error)
951			error = shmem_add_to_page_cache(page, mapping, index,
952						gfp, NULL);
953		if (error)
954			goto decused;
955		lru_cache_add_anon(page);
956
957		spin_lock(&info->lock);
958		info->alloced++;
959		inode->i_blocks += BLOCKS_PER_PAGE;
960		shmem_recalc_inode(inode);
961		spin_unlock(&info->lock);
962
963		clear_highpage(page);
964		flush_dcache_page(page);
965		SetPageUptodate(page);
966		if (sgp == SGP_DIRTY)
967			set_page_dirty(page);
968	}
969done:
970	/* Perhaps the file has been truncated since we checked */
971	if (sgp != SGP_WRITE &&
972	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
973		error = -EINVAL;
974		goto trunc;
975	}
976	*pagep = page;
977	return 0;
978
979	/*
980	 * Error recovery.
981	 */
982trunc:
983	ClearPageDirty(page);
984	delete_from_page_cache(page);
985	spin_lock(&info->lock);
986	info->alloced--;
987	inode->i_blocks -= BLOCKS_PER_PAGE;
988	spin_unlock(&info->lock);
989decused:
990	if (sbinfo->max_blocks)
991		percpu_counter_add(&sbinfo->used_blocks, -1);
992unacct:
993	shmem_unacct_blocks(info->flags, 1);
994failed:
995	if (swap.val && error != -EINVAL) {
996		struct page *test = find_get_page(mapping, index);
997		if (test && !radix_tree_exceptional_entry(test))
998			page_cache_release(test);
999		/* Have another try if the entry has changed */
1000		if (test != swp_to_radix_entry(swap))
1001			error = -EEXIST;
1002	}
1003	if (page) {
1004		unlock_page(page);
1005		page_cache_release(page);
1006	}
1007	if (error == -ENOSPC && !once++) {
1008		info = SHMEM_I(inode);
1009		spin_lock(&info->lock);
1010		shmem_recalc_inode(inode);
1011		spin_unlock(&info->lock);
1012		goto repeat;
1013	}
1014	if (error == -EEXIST)
1015		goto repeat;
1016	return error;
1017}
1018
1019static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020{
1021	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1022	int error;
1023	int ret = VM_FAULT_LOCKED;
1024
1025	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1026	if (error)
1027		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1028
1029	if (ret & VM_FAULT_MAJOR) {
1030		count_vm_event(PGMAJFAULT);
1031		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1032	}
1033	return ret;
1034}
1035
1036#ifdef CONFIG_NUMA
1037static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038{
1039	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041}
1042
1043static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044					  unsigned long addr)
1045{
1046	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047	pgoff_t index;
1048
1049	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051}
1052#endif
1053
1054int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055{
1056	struct inode *inode = file->f_path.dentry->d_inode;
1057	struct shmem_inode_info *info = SHMEM_I(inode);
1058	int retval = -ENOMEM;
1059
1060	spin_lock(&info->lock);
1061	if (lock && !(info->flags & VM_LOCKED)) {
1062		if (!user_shm_lock(inode->i_size, user))
1063			goto out_nomem;
1064		info->flags |= VM_LOCKED;
1065		mapping_set_unevictable(file->f_mapping);
1066	}
1067	if (!lock && (info->flags & VM_LOCKED) && user) {
1068		user_shm_unlock(inode->i_size, user);
1069		info->flags &= ~VM_LOCKED;
1070		mapping_clear_unevictable(file->f_mapping);
1071	}
1072	retval = 0;
1073
1074out_nomem:
1075	spin_unlock(&info->lock);
1076	return retval;
1077}
1078
1079static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1080{
1081	file_accessed(file);
1082	vma->vm_ops = &shmem_vm_ops;
1083	vma->vm_flags |= VM_CAN_NONLINEAR;
1084	return 0;
1085}
1086
1087static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1088				     umode_t mode, dev_t dev, unsigned long flags)
1089{
1090	struct inode *inode;
1091	struct shmem_inode_info *info;
1092	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1093
1094	if (shmem_reserve_inode(sb))
1095		return NULL;
1096
1097	inode = new_inode(sb);
1098	if (inode) {
1099		inode->i_ino = get_next_ino();
1100		inode_init_owner(inode, dir, mode);
1101		inode->i_blocks = 0;
1102		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1103		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1104		inode->i_generation = get_seconds();
1105		info = SHMEM_I(inode);
1106		memset(info, 0, (char *)inode - (char *)info);
1107		spin_lock_init(&info->lock);
1108		info->flags = flags & VM_NORESERVE;
1109		INIT_LIST_HEAD(&info->swaplist);
1110		INIT_LIST_HEAD(&info->xattr_list);
1111		cache_no_acl(inode);
1112
1113		switch (mode & S_IFMT) {
1114		default:
1115			inode->i_op = &shmem_special_inode_operations;
1116			init_special_inode(inode, mode, dev);
1117			break;
1118		case S_IFREG:
1119			inode->i_mapping->a_ops = &shmem_aops;
1120			inode->i_op = &shmem_inode_operations;
1121			inode->i_fop = &shmem_file_operations;
1122			mpol_shared_policy_init(&info->policy,
1123						 shmem_get_sbmpol(sbinfo));
1124			break;
1125		case S_IFDIR:
1126			inc_nlink(inode);
1127			/* Some things misbehave if size == 0 on a directory */
1128			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1129			inode->i_op = &shmem_dir_inode_operations;
1130			inode->i_fop = &simple_dir_operations;
1131			break;
1132		case S_IFLNK:
1133			/*
1134			 * Must not load anything in the rbtree,
1135			 * mpol_free_shared_policy will not be called.
1136			 */
1137			mpol_shared_policy_init(&info->policy, NULL);
1138			break;
1139		}
1140	} else
1141		shmem_free_inode(sb);
1142	return inode;
1143}
1144
1145#ifdef CONFIG_TMPFS
1146static const struct inode_operations shmem_symlink_inode_operations;
1147static const struct inode_operations shmem_short_symlink_operations;
1148
1149static int
1150shmem_write_begin(struct file *file, struct address_space *mapping,
1151			loff_t pos, unsigned len, unsigned flags,
1152			struct page **pagep, void **fsdata)
1153{
1154	struct inode *inode = mapping->host;
1155	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1156	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1157}
1158
1159static int
1160shmem_write_end(struct file *file, struct address_space *mapping,
1161			loff_t pos, unsigned len, unsigned copied,
1162			struct page *page, void *fsdata)
1163{
1164	struct inode *inode = mapping->host;
1165
1166	if (pos + copied > inode->i_size)
1167		i_size_write(inode, pos + copied);
1168
1169	set_page_dirty(page);
1170	unlock_page(page);
1171	page_cache_release(page);
1172
1173	return copied;
1174}
1175
1176static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1177{
1178	struct inode *inode = filp->f_path.dentry->d_inode;
1179	struct address_space *mapping = inode->i_mapping;
1180	pgoff_t index;
1181	unsigned long offset;
1182	enum sgp_type sgp = SGP_READ;
1183
1184	/*
1185	 * Might this read be for a stacking filesystem?  Then when reading
1186	 * holes of a sparse file, we actually need to allocate those pages,
1187	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1188	 */
1189	if (segment_eq(get_fs(), KERNEL_DS))
1190		sgp = SGP_DIRTY;
1191
1192	index = *ppos >> PAGE_CACHE_SHIFT;
1193	offset = *ppos & ~PAGE_CACHE_MASK;
1194
1195	for (;;) {
1196		struct page *page = NULL;
1197		pgoff_t end_index;
1198		unsigned long nr, ret;
1199		loff_t i_size = i_size_read(inode);
1200
1201		end_index = i_size >> PAGE_CACHE_SHIFT;
1202		if (index > end_index)
1203			break;
1204		if (index == end_index) {
1205			nr = i_size & ~PAGE_CACHE_MASK;
1206			if (nr <= offset)
1207				break;
1208		}
1209
1210		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1211		if (desc->error) {
1212			if (desc->error == -EINVAL)
1213				desc->error = 0;
1214			break;
1215		}
1216		if (page)
1217			unlock_page(page);
1218
1219		/*
1220		 * We must evaluate after, since reads (unlike writes)
1221		 * are called without i_mutex protection against truncate
1222		 */
1223		nr = PAGE_CACHE_SIZE;
1224		i_size = i_size_read(inode);
1225		end_index = i_size >> PAGE_CACHE_SHIFT;
1226		if (index == end_index) {
1227			nr = i_size & ~PAGE_CACHE_MASK;
1228			if (nr <= offset) {
1229				if (page)
1230					page_cache_release(page);
1231				break;
1232			}
1233		}
1234		nr -= offset;
1235
1236		if (page) {
1237			/*
1238			 * If users can be writing to this page using arbitrary
1239			 * virtual addresses, take care about potential aliasing
1240			 * before reading the page on the kernel side.
1241			 */
1242			if (mapping_writably_mapped(mapping))
1243				flush_dcache_page(page);
1244			/*
1245			 * Mark the page accessed if we read the beginning.
1246			 */
1247			if (!offset)
1248				mark_page_accessed(page);
1249		} else {
1250			page = ZERO_PAGE(0);
1251			page_cache_get(page);
1252		}
1253
1254		/*
1255		 * Ok, we have the page, and it's up-to-date, so
1256		 * now we can copy it to user space...
1257		 *
1258		 * The actor routine returns how many bytes were actually used..
1259		 * NOTE! This may not be the same as how much of a user buffer
1260		 * we filled up (we may be padding etc), so we can only update
1261		 * "pos" here (the actor routine has to update the user buffer
1262		 * pointers and the remaining count).
1263		 */
1264		ret = actor(desc, page, offset, nr);
1265		offset += ret;
1266		index += offset >> PAGE_CACHE_SHIFT;
1267		offset &= ~PAGE_CACHE_MASK;
1268
1269		page_cache_release(page);
1270		if (ret != nr || !desc->count)
1271			break;
1272
1273		cond_resched();
1274	}
1275
1276	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1277	file_accessed(filp);
1278}
1279
1280static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1281		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1282{
1283	struct file *filp = iocb->ki_filp;
1284	ssize_t retval;
1285	unsigned long seg;
1286	size_t count;
1287	loff_t *ppos = &iocb->ki_pos;
1288
1289	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1290	if (retval)
1291		return retval;
1292
1293	for (seg = 0; seg < nr_segs; seg++) {
1294		read_descriptor_t desc;
1295
1296		desc.written = 0;
1297		desc.arg.buf = iov[seg].iov_base;
1298		desc.count = iov[seg].iov_len;
1299		if (desc.count == 0)
1300			continue;
1301		desc.error = 0;
1302		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1303		retval += desc.written;
1304		if (desc.error) {
1305			retval = retval ?: desc.error;
1306			break;
1307		}
1308		if (desc.count > 0)
1309			break;
1310	}
1311	return retval;
1312}
1313
1314static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1315				struct pipe_inode_info *pipe, size_t len,
1316				unsigned int flags)
1317{
1318	struct address_space *mapping = in->f_mapping;
1319	struct inode *inode = mapping->host;
1320	unsigned int loff, nr_pages, req_pages;
1321	struct page *pages[PIPE_DEF_BUFFERS];
1322	struct partial_page partial[PIPE_DEF_BUFFERS];
1323	struct page *page;
1324	pgoff_t index, end_index;
1325	loff_t isize, left;
1326	int error, page_nr;
1327	struct splice_pipe_desc spd = {
1328		.pages = pages,
1329		.partial = partial,
1330		.flags = flags,
1331		.ops = &page_cache_pipe_buf_ops,
1332		.spd_release = spd_release_page,
1333	};
1334
1335	isize = i_size_read(inode);
1336	if (unlikely(*ppos >= isize))
1337		return 0;
1338
1339	left = isize - *ppos;
1340	if (unlikely(left < len))
1341		len = left;
1342
1343	if (splice_grow_spd(pipe, &spd))
1344		return -ENOMEM;
1345
1346	index = *ppos >> PAGE_CACHE_SHIFT;
1347	loff = *ppos & ~PAGE_CACHE_MASK;
1348	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1349	nr_pages = min(req_pages, pipe->buffers);
1350
1351	spd.nr_pages = find_get_pages_contig(mapping, index,
1352						nr_pages, spd.pages);
1353	index += spd.nr_pages;
1354	error = 0;
1355
1356	while (spd.nr_pages < nr_pages) {
1357		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1358		if (error)
1359			break;
1360		unlock_page(page);
1361		spd.pages[spd.nr_pages++] = page;
1362		index++;
1363	}
1364
1365	index = *ppos >> PAGE_CACHE_SHIFT;
1366	nr_pages = spd.nr_pages;
1367	spd.nr_pages = 0;
1368
1369	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1370		unsigned int this_len;
1371
1372		if (!len)
1373			break;
1374
1375		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1376		page = spd.pages[page_nr];
1377
1378		if (!PageUptodate(page) || page->mapping != mapping) {
1379			error = shmem_getpage(inode, index, &page,
1380							SGP_CACHE, NULL);
1381			if (error)
1382				break;
1383			unlock_page(page);
1384			page_cache_release(spd.pages[page_nr]);
1385			spd.pages[page_nr] = page;
1386		}
1387
1388		isize = i_size_read(inode);
1389		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1390		if (unlikely(!isize || index > end_index))
1391			break;
1392
1393		if (end_index == index) {
1394			unsigned int plen;
1395
1396			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1397			if (plen <= loff)
1398				break;
1399
1400			this_len = min(this_len, plen - loff);
1401			len = this_len;
1402		}
1403
1404		spd.partial[page_nr].offset = loff;
1405		spd.partial[page_nr].len = this_len;
1406		len -= this_len;
1407		loff = 0;
1408		spd.nr_pages++;
1409		index++;
1410	}
1411
1412	while (page_nr < nr_pages)
1413		page_cache_release(spd.pages[page_nr++]);
1414
1415	if (spd.nr_pages)
1416		error = splice_to_pipe(pipe, &spd);
1417
1418	splice_shrink_spd(pipe, &spd);
1419
1420	if (error > 0) {
1421		*ppos += error;
1422		file_accessed(in);
1423	}
1424	return error;
1425}
1426
1427static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1428{
1429	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1430
1431	buf->f_type = TMPFS_MAGIC;
1432	buf->f_bsize = PAGE_CACHE_SIZE;
1433	buf->f_namelen = NAME_MAX;
1434	if (sbinfo->max_blocks) {
1435		buf->f_blocks = sbinfo->max_blocks;
1436		buf->f_bavail =
1437		buf->f_bfree  = sbinfo->max_blocks -
1438				percpu_counter_sum(&sbinfo->used_blocks);
1439	}
1440	if (sbinfo->max_inodes) {
1441		buf->f_files = sbinfo->max_inodes;
1442		buf->f_ffree = sbinfo->free_inodes;
1443	}
1444	/* else leave those fields 0 like simple_statfs */
1445	return 0;
1446}
1447
1448/*
1449 * File creation. Allocate an inode, and we're done..
1450 */
1451static int
1452shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1453{
1454	struct inode *inode;
1455	int error = -ENOSPC;
1456
1457	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1458	if (inode) {
1459		error = security_inode_init_security(inode, dir,
1460						     &dentry->d_name,
1461						     NULL, NULL);
1462		if (error) {
1463			if (error != -EOPNOTSUPP) {
1464				iput(inode);
1465				return error;
1466			}
1467		}
1468#ifdef CONFIG_TMPFS_POSIX_ACL
1469		error = generic_acl_init(inode, dir);
1470		if (error) {
1471			iput(inode);
1472			return error;
1473		}
1474#else
1475		error = 0;
1476#endif
1477		dir->i_size += BOGO_DIRENT_SIZE;
1478		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1479		d_instantiate(dentry, inode);
1480		dget(dentry); /* Extra count - pin the dentry in core */
1481	}
1482	return error;
1483}
1484
1485static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1486{
1487	int error;
1488
1489	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1490		return error;
1491	inc_nlink(dir);
1492	return 0;
1493}
1494
1495static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1496		struct nameidata *nd)
1497{
1498	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1499}
1500
1501/*
1502 * Link a file..
1503 */
1504static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1505{
1506	struct inode *inode = old_dentry->d_inode;
1507	int ret;
1508
1509	/*
1510	 * No ordinary (disk based) filesystem counts links as inodes;
1511	 * but each new link needs a new dentry, pinning lowmem, and
1512	 * tmpfs dentries cannot be pruned until they are unlinked.
1513	 */
1514	ret = shmem_reserve_inode(inode->i_sb);
1515	if (ret)
1516		goto out;
1517
1518	dir->i_size += BOGO_DIRENT_SIZE;
1519	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1520	inc_nlink(inode);
1521	ihold(inode);	/* New dentry reference */
1522	dget(dentry);		/* Extra pinning count for the created dentry */
1523	d_instantiate(dentry, inode);
1524out:
1525	return ret;
1526}
1527
1528static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1529{
1530	struct inode *inode = dentry->d_inode;
1531
1532	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1533		shmem_free_inode(inode->i_sb);
1534
1535	dir->i_size -= BOGO_DIRENT_SIZE;
1536	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1537	drop_nlink(inode);
1538	dput(dentry);	/* Undo the count from "create" - this does all the work */
1539	return 0;
1540}
1541
1542static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1543{
1544	if (!simple_empty(dentry))
1545		return -ENOTEMPTY;
1546
1547	drop_nlink(dentry->d_inode);
1548	drop_nlink(dir);
1549	return shmem_unlink(dir, dentry);
1550}
1551
1552/*
1553 * The VFS layer already does all the dentry stuff for rename,
1554 * we just have to decrement the usage count for the target if
1555 * it exists so that the VFS layer correctly free's it when it
1556 * gets overwritten.
1557 */
1558static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1559{
1560	struct inode *inode = old_dentry->d_inode;
1561	int they_are_dirs = S_ISDIR(inode->i_mode);
1562
1563	if (!simple_empty(new_dentry))
1564		return -ENOTEMPTY;
1565
1566	if (new_dentry->d_inode) {
1567		(void) shmem_unlink(new_dir, new_dentry);
1568		if (they_are_dirs)
1569			drop_nlink(old_dir);
1570	} else if (they_are_dirs) {
1571		drop_nlink(old_dir);
1572		inc_nlink(new_dir);
1573	}
1574
1575	old_dir->i_size -= BOGO_DIRENT_SIZE;
1576	new_dir->i_size += BOGO_DIRENT_SIZE;
1577	old_dir->i_ctime = old_dir->i_mtime =
1578	new_dir->i_ctime = new_dir->i_mtime =
1579	inode->i_ctime = CURRENT_TIME;
1580	return 0;
1581}
1582
1583static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1584{
1585	int error;
1586	int len;
1587	struct inode *inode;
1588	struct page *page;
1589	char *kaddr;
1590	struct shmem_inode_info *info;
1591
1592	len = strlen(symname) + 1;
1593	if (len > PAGE_CACHE_SIZE)
1594		return -ENAMETOOLONG;
1595
1596	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1597	if (!inode)
1598		return -ENOSPC;
1599
1600	error = security_inode_init_security(inode, dir, &dentry->d_name,
1601					     NULL, NULL);
1602	if (error) {
1603		if (error != -EOPNOTSUPP) {
1604			iput(inode);
1605			return error;
1606		}
1607		error = 0;
1608	}
1609
1610	info = SHMEM_I(inode);
1611	inode->i_size = len-1;
1612	if (len <= SHORT_SYMLINK_LEN) {
1613		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1614		if (!info->symlink) {
1615			iput(inode);
1616			return -ENOMEM;
1617		}
1618		inode->i_op = &shmem_short_symlink_operations;
1619	} else {
1620		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1621		if (error) {
1622			iput(inode);
1623			return error;
1624		}
1625		inode->i_mapping->a_ops = &shmem_aops;
1626		inode->i_op = &shmem_symlink_inode_operations;
1627		kaddr = kmap_atomic(page, KM_USER0);
1628		memcpy(kaddr, symname, len);
1629		kunmap_atomic(kaddr, KM_USER0);
1630		set_page_dirty(page);
1631		unlock_page(page);
1632		page_cache_release(page);
1633	}
1634	dir->i_size += BOGO_DIRENT_SIZE;
1635	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1636	d_instantiate(dentry, inode);
1637	dget(dentry);
1638	return 0;
1639}
1640
1641static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1642{
1643	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1644	return NULL;
1645}
1646
1647static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1648{
1649	struct page *page = NULL;
1650	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1651	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1652	if (page)
1653		unlock_page(page);
1654	return page;
1655}
1656
1657static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1658{
1659	if (!IS_ERR(nd_get_link(nd))) {
1660		struct page *page = cookie;
1661		kunmap(page);
1662		mark_page_accessed(page);
1663		page_cache_release(page);
1664	}
1665}
1666
1667#ifdef CONFIG_TMPFS_XATTR
1668/*
1669 * Superblocks without xattr inode operations may get some security.* xattr
1670 * support from the LSM "for free". As soon as we have any other xattrs
1671 * like ACLs, we also need to implement the security.* handlers at
1672 * filesystem level, though.
1673 */
1674
1675static int shmem_xattr_get(struct dentry *dentry, const char *name,
1676			   void *buffer, size_t size)
1677{
1678	struct shmem_inode_info *info;
1679	struct shmem_xattr *xattr;
1680	int ret = -ENODATA;
1681
1682	info = SHMEM_I(dentry->d_inode);
1683
1684	spin_lock(&info->lock);
1685	list_for_each_entry(xattr, &info->xattr_list, list) {
1686		if (strcmp(name, xattr->name))
1687			continue;
1688
1689		ret = xattr->size;
1690		if (buffer) {
1691			if (size < xattr->size)
1692				ret = -ERANGE;
1693			else
1694				memcpy(buffer, xattr->value, xattr->size);
1695		}
1696		break;
1697	}
1698	spin_unlock(&info->lock);
1699	return ret;
1700}
1701
1702static int shmem_xattr_set(struct dentry *dentry, const char *name,
1703			   const void *value, size_t size, int flags)
1704{
1705	struct inode *inode = dentry->d_inode;
1706	struct shmem_inode_info *info = SHMEM_I(inode);
1707	struct shmem_xattr *xattr;
1708	struct shmem_xattr *new_xattr = NULL;
1709	size_t len;
1710	int err = 0;
1711
1712	/* value == NULL means remove */
1713	if (value) {
1714		/* wrap around? */
1715		len = sizeof(*new_xattr) + size;
1716		if (len <= sizeof(*new_xattr))
1717			return -ENOMEM;
1718
1719		new_xattr = kmalloc(len, GFP_KERNEL);
1720		if (!new_xattr)
1721			return -ENOMEM;
1722
1723		new_xattr->name = kstrdup(name, GFP_KERNEL);
1724		if (!new_xattr->name) {
1725			kfree(new_xattr);
1726			return -ENOMEM;
1727		}
1728
1729		new_xattr->size = size;
1730		memcpy(new_xattr->value, value, size);
1731	}
1732
1733	spin_lock(&info->lock);
1734	list_for_each_entry(xattr, &info->xattr_list, list) {
1735		if (!strcmp(name, xattr->name)) {
1736			if (flags & XATTR_CREATE) {
1737				xattr = new_xattr;
1738				err = -EEXIST;
1739			} else if (new_xattr) {
1740				list_replace(&xattr->list, &new_xattr->list);
1741			} else {
1742				list_del(&xattr->list);
1743			}
1744			goto out;
1745		}
1746	}
1747	if (flags & XATTR_REPLACE) {
1748		xattr = new_xattr;
1749		err = -ENODATA;
1750	} else {
1751		list_add(&new_xattr->list, &info->xattr_list);
1752		xattr = NULL;
1753	}
1754out:
1755	spin_unlock(&info->lock);
1756	if (xattr)
1757		kfree(xattr->name);
1758	kfree(xattr);
1759	return err;
1760}
1761
1762static const struct xattr_handler *shmem_xattr_handlers[] = {
1763#ifdef CONFIG_TMPFS_POSIX_ACL
1764	&generic_acl_access_handler,
1765	&generic_acl_default_handler,
1766#endif
1767	NULL
1768};
1769
1770static int shmem_xattr_validate(const char *name)
1771{
1772	struct { const char *prefix; size_t len; } arr[] = {
1773		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1774		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1775	};
1776	int i;
1777
1778	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1779		size_t preflen = arr[i].len;
1780		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1781			if (!name[preflen])
1782				return -EINVAL;
1783			return 0;
1784		}
1785	}
1786	return -EOPNOTSUPP;
1787}
1788
1789static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1790			      void *buffer, size_t size)
1791{
1792	int err;
1793
1794	/*
1795	 * If this is a request for a synthetic attribute in the system.*
1796	 * namespace use the generic infrastructure to resolve a handler
1797	 * for it via sb->s_xattr.
1798	 */
1799	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1800		return generic_getxattr(dentry, name, buffer, size);
1801
1802	err = shmem_xattr_validate(name);
1803	if (err)
1804		return err;
1805
1806	return shmem_xattr_get(dentry, name, buffer, size);
1807}
1808
1809static int shmem_setxattr(struct dentry *dentry, const char *name,
1810			  const void *value, size_t size, int flags)
1811{
1812	int err;
1813
1814	/*
1815	 * If this is a request for a synthetic attribute in the system.*
1816	 * namespace use the generic infrastructure to resolve a handler
1817	 * for it via sb->s_xattr.
1818	 */
1819	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1820		return generic_setxattr(dentry, name, value, size, flags);
1821
1822	err = shmem_xattr_validate(name);
1823	if (err)
1824		return err;
1825
1826	if (size == 0)
1827		value = "";  /* empty EA, do not remove */
1828
1829	return shmem_xattr_set(dentry, name, value, size, flags);
1830
1831}
1832
1833static int shmem_removexattr(struct dentry *dentry, const char *name)
1834{
1835	int err;
1836
1837	/*
1838	 * If this is a request for a synthetic attribute in the system.*
1839	 * namespace use the generic infrastructure to resolve a handler
1840	 * for it via sb->s_xattr.
1841	 */
1842	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1843		return generic_removexattr(dentry, name);
1844
1845	err = shmem_xattr_validate(name);
1846	if (err)
1847		return err;
1848
1849	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1850}
1851
1852static bool xattr_is_trusted(const char *name)
1853{
1854	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1855}
1856
1857static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1858{
1859	bool trusted = capable(CAP_SYS_ADMIN);
1860	struct shmem_xattr *xattr;
1861	struct shmem_inode_info *info;
1862	size_t used = 0;
1863
1864	info = SHMEM_I(dentry->d_inode);
1865
1866	spin_lock(&info->lock);
1867	list_for_each_entry(xattr, &info->xattr_list, list) {
1868		size_t len;
1869
1870		/* skip "trusted." attributes for unprivileged callers */
1871		if (!trusted && xattr_is_trusted(xattr->name))
1872			continue;
1873
1874		len = strlen(xattr->name) + 1;
1875		used += len;
1876		if (buffer) {
1877			if (size < used) {
1878				used = -ERANGE;
1879				break;
1880			}
1881			memcpy(buffer, xattr->name, len);
1882			buffer += len;
1883		}
1884	}
1885	spin_unlock(&info->lock);
1886
1887	return used;
1888}
1889#endif /* CONFIG_TMPFS_XATTR */
1890
1891static const struct inode_operations shmem_short_symlink_operations = {
1892	.readlink	= generic_readlink,
1893	.follow_link	= shmem_follow_short_symlink,
1894#ifdef CONFIG_TMPFS_XATTR
1895	.setxattr	= shmem_setxattr,
1896	.getxattr	= shmem_getxattr,
1897	.listxattr	= shmem_listxattr,
1898	.removexattr	= shmem_removexattr,
1899#endif
1900};
1901
1902static const struct inode_operations shmem_symlink_inode_operations = {
1903	.readlink	= generic_readlink,
1904	.follow_link	= shmem_follow_link,
1905	.put_link	= shmem_put_link,
1906#ifdef CONFIG_TMPFS_XATTR
1907	.setxattr	= shmem_setxattr,
1908	.getxattr	= shmem_getxattr,
1909	.listxattr	= shmem_listxattr,
1910	.removexattr	= shmem_removexattr,
1911#endif
1912};
1913
1914static struct dentry *shmem_get_parent(struct dentry *child)
1915{
1916	return ERR_PTR(-ESTALE);
1917}
1918
1919static int shmem_match(struct inode *ino, void *vfh)
1920{
1921	__u32 *fh = vfh;
1922	__u64 inum = fh[2];
1923	inum = (inum << 32) | fh[1];
1924	return ino->i_ino == inum && fh[0] == ino->i_generation;
1925}
1926
1927static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1928		struct fid *fid, int fh_len, int fh_type)
1929{
1930	struct inode *inode;
1931	struct dentry *dentry = NULL;
1932	u64 inum = fid->raw[2];
1933	inum = (inum << 32) | fid->raw[1];
1934
1935	if (fh_len < 3)
1936		return NULL;
1937
1938	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1939			shmem_match, fid->raw);
1940	if (inode) {
1941		dentry = d_find_alias(inode);
1942		iput(inode);
1943	}
1944
1945	return dentry;
1946}
1947
1948static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1949				int connectable)
1950{
1951	struct inode *inode = dentry->d_inode;
1952
1953	if (*len < 3) {
1954		*len = 3;
1955		return 255;
1956	}
1957
1958	if (inode_unhashed(inode)) {
1959		/* Unfortunately insert_inode_hash is not idempotent,
1960		 * so as we hash inodes here rather than at creation
1961		 * time, we need a lock to ensure we only try
1962		 * to do it once
1963		 */
1964		static DEFINE_SPINLOCK(lock);
1965		spin_lock(&lock);
1966		if (inode_unhashed(inode))
1967			__insert_inode_hash(inode,
1968					    inode->i_ino + inode->i_generation);
1969		spin_unlock(&lock);
1970	}
1971
1972	fh[0] = inode->i_generation;
1973	fh[1] = inode->i_ino;
1974	fh[2] = ((__u64)inode->i_ino) >> 32;
1975
1976	*len = 3;
1977	return 1;
1978}
1979
1980static const struct export_operations shmem_export_ops = {
1981	.get_parent     = shmem_get_parent,
1982	.encode_fh      = shmem_encode_fh,
1983	.fh_to_dentry	= shmem_fh_to_dentry,
1984};
1985
1986static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1987			       bool remount)
1988{
1989	char *this_char, *value, *rest;
1990
1991	while (options != NULL) {
1992		this_char = options;
1993		for (;;) {
1994			/*
1995			 * NUL-terminate this option: unfortunately,
1996			 * mount options form a comma-separated list,
1997			 * but mpol's nodelist may also contain commas.
1998			 */
1999			options = strchr(options, ',');
2000			if (options == NULL)
2001				break;
2002			options++;
2003			if (!isdigit(*options)) {
2004				options[-1] = '\0';
2005				break;
2006			}
2007		}
2008		if (!*this_char)
2009			continue;
2010		if ((value = strchr(this_char,'=')) != NULL) {
2011			*value++ = 0;
2012		} else {
2013			printk(KERN_ERR
2014			    "tmpfs: No value for mount option '%s'\n",
2015			    this_char);
2016			return 1;
2017		}
2018
2019		if (!strcmp(this_char,"size")) {
2020			unsigned long long size;
2021			size = memparse(value,&rest);
2022			if (*rest == '%') {
2023				size <<= PAGE_SHIFT;
2024				size *= totalram_pages;
2025				do_div(size, 100);
2026				rest++;
2027			}
2028			if (*rest)
2029				goto bad_val;
2030			sbinfo->max_blocks =
2031				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2032		} else if (!strcmp(this_char,"nr_blocks")) {
2033			sbinfo->max_blocks = memparse(value, &rest);
2034			if (*rest)
2035				goto bad_val;
2036		} else if (!strcmp(this_char,"nr_inodes")) {
2037			sbinfo->max_inodes = memparse(value, &rest);
2038			if (*rest)
2039				goto bad_val;
2040		} else if (!strcmp(this_char,"mode")) {
2041			if (remount)
2042				continue;
2043			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2044			if (*rest)
2045				goto bad_val;
2046		} else if (!strcmp(this_char,"uid")) {
2047			if (remount)
2048				continue;
2049			sbinfo->uid = simple_strtoul(value, &rest, 0);
2050			if (*rest)
2051				goto bad_val;
2052		} else if (!strcmp(this_char,"gid")) {
2053			if (remount)
2054				continue;
2055			sbinfo->gid = simple_strtoul(value, &rest, 0);
2056			if (*rest)
2057				goto bad_val;
2058		} else if (!strcmp(this_char,"mpol")) {
2059			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2060				goto bad_val;
2061		} else {
2062			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2063			       this_char);
2064			return 1;
2065		}
2066	}
2067	return 0;
2068
2069bad_val:
2070	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2071	       value, this_char);
2072	return 1;
2073
2074}
2075
2076static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2077{
2078	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2079	struct shmem_sb_info config = *sbinfo;
2080	unsigned long inodes;
2081	int error = -EINVAL;
2082
2083	if (shmem_parse_options(data, &config, true))
2084		return error;
2085
2086	spin_lock(&sbinfo->stat_lock);
2087	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2088	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2089		goto out;
2090	if (config.max_inodes < inodes)
2091		goto out;
2092	/*
2093	 * Those tests disallow limited->unlimited while any are in use;
2094	 * but we must separately disallow unlimited->limited, because
2095	 * in that case we have no record of how much is already in use.
2096	 */
2097	if (config.max_blocks && !sbinfo->max_blocks)
2098		goto out;
2099	if (config.max_inodes && !sbinfo->max_inodes)
2100		goto out;
2101
2102	error = 0;
2103	sbinfo->max_blocks  = config.max_blocks;
2104	sbinfo->max_inodes  = config.max_inodes;
2105	sbinfo->free_inodes = config.max_inodes - inodes;
2106
2107	mpol_put(sbinfo->mpol);
2108	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2109out:
2110	spin_unlock(&sbinfo->stat_lock);
2111	return error;
2112}
2113
2114static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2115{
2116	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2117
2118	if (sbinfo->max_blocks != shmem_default_max_blocks())
2119		seq_printf(seq, ",size=%luk",
2120			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2121	if (sbinfo->max_inodes != shmem_default_max_inodes())
2122		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2123	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2124		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2125	if (sbinfo->uid != 0)
2126		seq_printf(seq, ",uid=%u", sbinfo->uid);
2127	if (sbinfo->gid != 0)
2128		seq_printf(seq, ",gid=%u", sbinfo->gid);
2129	shmem_show_mpol(seq, sbinfo->mpol);
2130	return 0;
2131}
2132#endif /* CONFIG_TMPFS */
2133
2134static void shmem_put_super(struct super_block *sb)
2135{
2136	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2137
2138	percpu_counter_destroy(&sbinfo->used_blocks);
2139	kfree(sbinfo);
2140	sb->s_fs_info = NULL;
2141}
2142
2143int shmem_fill_super(struct super_block *sb, void *data, int silent)
2144{
2145	struct inode *inode;
2146	struct dentry *root;
2147	struct shmem_sb_info *sbinfo;
2148	int err = -ENOMEM;
2149
2150	/* Round up to L1_CACHE_BYTES to resist false sharing */
2151	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2152				L1_CACHE_BYTES), GFP_KERNEL);
2153	if (!sbinfo)
2154		return -ENOMEM;
2155
2156	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2157	sbinfo->uid = current_fsuid();
2158	sbinfo->gid = current_fsgid();
2159	sb->s_fs_info = sbinfo;
2160
2161#ifdef CONFIG_TMPFS
2162	/*
2163	 * Per default we only allow half of the physical ram per
2164	 * tmpfs instance, limiting inodes to one per page of lowmem;
2165	 * but the internal instance is left unlimited.
2166	 */
2167	if (!(sb->s_flags & MS_NOUSER)) {
2168		sbinfo->max_blocks = shmem_default_max_blocks();
2169		sbinfo->max_inodes = shmem_default_max_inodes();
2170		if (shmem_parse_options(data, sbinfo, false)) {
2171			err = -EINVAL;
2172			goto failed;
2173		}
2174	}
2175	sb->s_export_op = &shmem_export_ops;
2176#else
2177	sb->s_flags |= MS_NOUSER;
2178#endif
2179
2180	spin_lock_init(&sbinfo->stat_lock);
2181	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2182		goto failed;
2183	sbinfo->free_inodes = sbinfo->max_inodes;
2184
2185	sb->s_maxbytes = MAX_LFS_FILESIZE;
2186	sb->s_blocksize = PAGE_CACHE_SIZE;
2187	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2188	sb->s_magic = TMPFS_MAGIC;
2189	sb->s_op = &shmem_ops;
2190	sb->s_time_gran = 1;
2191#ifdef CONFIG_TMPFS_XATTR
2192	sb->s_xattr = shmem_xattr_handlers;
2193#endif
2194#ifdef CONFIG_TMPFS_POSIX_ACL
2195	sb->s_flags |= MS_POSIXACL;
2196#endif
2197
2198	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2199	if (!inode)
2200		goto failed;
2201	inode->i_uid = sbinfo->uid;
2202	inode->i_gid = sbinfo->gid;
2203	root = d_alloc_root(inode);
2204	if (!root)
2205		goto failed_iput;
2206	sb->s_root = root;
2207	return 0;
2208
2209failed_iput:
2210	iput(inode);
2211failed:
2212	shmem_put_super(sb);
2213	return err;
2214}
2215
2216static struct kmem_cache *shmem_inode_cachep;
2217
2218static struct inode *shmem_alloc_inode(struct super_block *sb)
2219{
2220	struct shmem_inode_info *info;
2221	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2222	if (!info)
2223		return NULL;
2224	return &info->vfs_inode;
2225}
2226
2227static void shmem_destroy_callback(struct rcu_head *head)
2228{
2229	struct inode *inode = container_of(head, struct inode, i_rcu);
2230	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2231}
2232
2233static void shmem_destroy_inode(struct inode *inode)
2234{
2235	if (S_ISREG(inode->i_mode))
2236		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2237	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2238}
2239
2240static void shmem_init_inode(void *foo)
2241{
2242	struct shmem_inode_info *info = foo;
2243	inode_init_once(&info->vfs_inode);
2244}
2245
2246static int shmem_init_inodecache(void)
2247{
2248	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2249				sizeof(struct shmem_inode_info),
2250				0, SLAB_PANIC, shmem_init_inode);
2251	return 0;
2252}
2253
2254static void shmem_destroy_inodecache(void)
2255{
2256	kmem_cache_destroy(shmem_inode_cachep);
2257}
2258
2259static const struct address_space_operations shmem_aops = {
2260	.writepage	= shmem_writepage,
2261	.set_page_dirty	= __set_page_dirty_no_writeback,
2262#ifdef CONFIG_TMPFS
2263	.write_begin	= shmem_write_begin,
2264	.write_end	= shmem_write_end,
2265#endif
2266	.migratepage	= migrate_page,
2267	.error_remove_page = generic_error_remove_page,
2268};
2269
2270static const struct file_operations shmem_file_operations = {
2271	.mmap		= shmem_mmap,
2272#ifdef CONFIG_TMPFS
2273	.llseek		= generic_file_llseek,
2274	.read		= do_sync_read,
2275	.write		= do_sync_write,
2276	.aio_read	= shmem_file_aio_read,
2277	.aio_write	= generic_file_aio_write,
2278	.fsync		= noop_fsync,
2279	.splice_read	= shmem_file_splice_read,
2280	.splice_write	= generic_file_splice_write,
2281#endif
2282};
2283
2284static const struct inode_operations shmem_inode_operations = {
2285	.setattr	= shmem_setattr,
2286	.truncate_range	= shmem_truncate_range,
2287#ifdef CONFIG_TMPFS_XATTR
2288	.setxattr	= shmem_setxattr,
2289	.getxattr	= shmem_getxattr,
2290	.listxattr	= shmem_listxattr,
2291	.removexattr	= shmem_removexattr,
2292#endif
2293};
2294
2295static const struct inode_operations shmem_dir_inode_operations = {
2296#ifdef CONFIG_TMPFS
2297	.create		= shmem_create,
2298	.lookup		= simple_lookup,
2299	.link		= shmem_link,
2300	.unlink		= shmem_unlink,
2301	.symlink	= shmem_symlink,
2302	.mkdir		= shmem_mkdir,
2303	.rmdir		= shmem_rmdir,
2304	.mknod		= shmem_mknod,
2305	.rename		= shmem_rename,
2306#endif
2307#ifdef CONFIG_TMPFS_XATTR
2308	.setxattr	= shmem_setxattr,
2309	.getxattr	= shmem_getxattr,
2310	.listxattr	= shmem_listxattr,
2311	.removexattr	= shmem_removexattr,
2312#endif
2313#ifdef CONFIG_TMPFS_POSIX_ACL
2314	.setattr	= shmem_setattr,
2315#endif
2316};
2317
2318static const struct inode_operations shmem_special_inode_operations = {
2319#ifdef CONFIG_TMPFS_XATTR
2320	.setxattr	= shmem_setxattr,
2321	.getxattr	= shmem_getxattr,
2322	.listxattr	= shmem_listxattr,
2323	.removexattr	= shmem_removexattr,
2324#endif
2325#ifdef CONFIG_TMPFS_POSIX_ACL
2326	.setattr	= shmem_setattr,
2327#endif
2328};
2329
2330static const struct super_operations shmem_ops = {
2331	.alloc_inode	= shmem_alloc_inode,
2332	.destroy_inode	= shmem_destroy_inode,
2333#ifdef CONFIG_TMPFS
2334	.statfs		= shmem_statfs,
2335	.remount_fs	= shmem_remount_fs,
2336	.show_options	= shmem_show_options,
2337#endif
2338	.evict_inode	= shmem_evict_inode,
2339	.drop_inode	= generic_delete_inode,
2340	.put_super	= shmem_put_super,
2341};
2342
2343static const struct vm_operations_struct shmem_vm_ops = {
2344	.fault		= shmem_fault,
2345#ifdef CONFIG_NUMA
2346	.set_policy     = shmem_set_policy,
2347	.get_policy     = shmem_get_policy,
2348#endif
2349};
2350
2351static struct dentry *shmem_mount(struct file_system_type *fs_type,
2352	int flags, const char *dev_name, void *data)
2353{
2354	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2355}
2356
2357static struct file_system_type shmem_fs_type = {
2358	.owner		= THIS_MODULE,
2359	.name		= "tmpfs",
2360	.mount		= shmem_mount,
2361	.kill_sb	= kill_litter_super,
2362};
2363
2364int __init shmem_init(void)
2365{
2366	int error;
2367
2368	error = bdi_init(&shmem_backing_dev_info);
2369	if (error)
2370		goto out4;
2371
2372	error = shmem_init_inodecache();
2373	if (error)
2374		goto out3;
2375
2376	error = register_filesystem(&shmem_fs_type);
2377	if (error) {
2378		printk(KERN_ERR "Could not register tmpfs\n");
2379		goto out2;
2380	}
2381
2382	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2383				 shmem_fs_type.name, NULL);
2384	if (IS_ERR(shm_mnt)) {
2385		error = PTR_ERR(shm_mnt);
2386		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2387		goto out1;
2388	}
2389	return 0;
2390
2391out1:
2392	unregister_filesystem(&shmem_fs_type);
2393out2:
2394	shmem_destroy_inodecache();
2395out3:
2396	bdi_destroy(&shmem_backing_dev_info);
2397out4:
2398	shm_mnt = ERR_PTR(error);
2399	return error;
2400}
2401
2402#else /* !CONFIG_SHMEM */
2403
2404/*
2405 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2406 *
2407 * This is intended for small system where the benefits of the full
2408 * shmem code (swap-backed and resource-limited) are outweighed by
2409 * their complexity. On systems without swap this code should be
2410 * effectively equivalent, but much lighter weight.
2411 */
2412
2413#include <linux/ramfs.h>
2414
2415static struct file_system_type shmem_fs_type = {
2416	.name		= "tmpfs",
2417	.mount		= ramfs_mount,
2418	.kill_sb	= kill_litter_super,
2419};
2420
2421int __init shmem_init(void)
2422{
2423	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2424
2425	shm_mnt = kern_mount(&shmem_fs_type);
2426	BUG_ON(IS_ERR(shm_mnt));
2427
2428	return 0;
2429}
2430
2431int shmem_unuse(swp_entry_t swap, struct page *page)
2432{
2433	return 0;
2434}
2435
2436int shmem_lock(struct file *file, int lock, struct user_struct *user)
2437{
2438	return 0;
2439}
2440
2441void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2442{
2443	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2444}
2445EXPORT_SYMBOL_GPL(shmem_truncate_range);
2446
2447#define shmem_vm_ops				generic_file_vm_ops
2448#define shmem_file_operations			ramfs_file_operations
2449#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2450#define shmem_acct_size(flags, size)		0
2451#define shmem_unacct_size(flags, size)		do {} while (0)
2452
2453#endif /* CONFIG_SHMEM */
2454
2455/* common code */
2456
2457/**
2458 * shmem_file_setup - get an unlinked file living in tmpfs
2459 * @name: name for dentry (to be seen in /proc/<pid>/maps
2460 * @size: size to be set for the file
2461 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2462 */
2463struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2464{
2465	int error;
2466	struct file *file;
2467	struct inode *inode;
2468	struct path path;
2469	struct dentry *root;
2470	struct qstr this;
2471
2472	if (IS_ERR(shm_mnt))
2473		return (void *)shm_mnt;
2474
2475	if (size < 0 || size > MAX_LFS_FILESIZE)
2476		return ERR_PTR(-EINVAL);
2477
2478	if (shmem_acct_size(flags, size))
2479		return ERR_PTR(-ENOMEM);
2480
2481	error = -ENOMEM;
2482	this.name = name;
2483	this.len = strlen(name);
2484	this.hash = 0; /* will go */
2485	root = shm_mnt->mnt_root;
2486	path.dentry = d_alloc(root, &this);
2487	if (!path.dentry)
2488		goto put_memory;
2489	path.mnt = mntget(shm_mnt);
2490
2491	error = -ENOSPC;
2492	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2493	if (!inode)
2494		goto put_dentry;
2495
2496	d_instantiate(path.dentry, inode);
2497	inode->i_size = size;
2498	clear_nlink(inode);	/* It is unlinked */
2499#ifndef CONFIG_MMU
2500	error = ramfs_nommu_expand_for_mapping(inode, size);
2501	if (error)
2502		goto put_dentry;
2503#endif
2504
2505	error = -ENFILE;
2506	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2507		  &shmem_file_operations);
2508	if (!file)
2509		goto put_dentry;
2510
2511	return file;
2512
2513put_dentry:
2514	path_put(&path);
2515put_memory:
2516	shmem_unacct_size(flags, size);
2517	return ERR_PTR(error);
2518}
2519EXPORT_SYMBOL_GPL(shmem_file_setup);
2520
2521/**
2522 * shmem_zero_setup - setup a shared anonymous mapping
2523 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2524 */
2525int shmem_zero_setup(struct vm_area_struct *vma)
2526{
2527	struct file *file;
2528	loff_t size = vma->vm_end - vma->vm_start;
2529
2530	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2531	if (IS_ERR(file))
2532		return PTR_ERR(file);
2533
2534	if (vma->vm_file)
2535		fput(vma->vm_file);
2536	vma->vm_file = file;
2537	vma->vm_ops = &shmem_vm_ops;
2538	vma->vm_flags |= VM_CAN_NONLINEAR;
2539	return 0;
2540}
2541
2542/**
2543 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2544 * @mapping:	the page's address_space
2545 * @index:	the page index
2546 * @gfp:	the page allocator flags to use if allocating
2547 *
2548 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2549 * with any new page allocations done using the specified allocation flags.
2550 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2551 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2552 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2553 *
2554 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2555 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2556 */
2557struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2558					 pgoff_t index, gfp_t gfp)
2559{
2560#ifdef CONFIG_SHMEM
2561	struct inode *inode = mapping->host;
2562	struct page *page;
2563	int error;
2564
2565	BUG_ON(mapping->a_ops != &shmem_aops);
2566	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2567	if (error)
2568		page = ERR_PTR(error);
2569	else
2570		unlock_page(page);
2571	return page;
2572#else
2573	/*
2574	 * The tiny !SHMEM case uses ramfs without swap
2575	 */
2576	return read_cache_page_gfp(mapping, index, gfp);
2577#endif
2578}
2579EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2580