shmem.c revision 8e205f779d1443a94b5ae81aa359cb535dd3021e
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/aio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69
70#include <asm/uaccess.h>
71#include <asm/pgtable.h>
72
73#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
82/*
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
86 */
87struct shmem_falloc {
88	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89	pgoff_t start;		/* start of range currently being fallocated */
90	pgoff_t next;		/* the next page offset to be fallocated */
91	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
92	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
93};
94
95/* Flag allocation requirements to shmem_getpage */
96enum sgp_type {
97	SGP_READ,	/* don't exceed i_size, don't allocate page */
98	SGP_CACHE,	/* don't exceed i_size, may allocate page */
99	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
100	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
101	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
102};
103
104#ifdef CONFIG_TMPFS
105static unsigned long shmem_default_max_blocks(void)
106{
107	return totalram_pages / 2;
108}
109
110static unsigned long shmem_default_max_inodes(void)
111{
112	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113}
114#endif
115
116static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118				struct shmem_inode_info *info, pgoff_t index);
119static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123	struct page **pagep, enum sgp_type sgp, int *fault_type)
124{
125	return shmem_getpage_gfp(inode, index, pagep, sgp,
126			mapping_gfp_mask(inode->i_mapping), fault_type);
127}
128
129static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130{
131	return sb->s_fs_info;
132}
133
134/*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140static inline int shmem_acct_size(unsigned long flags, loff_t size)
141{
142	return (flags & VM_NORESERVE) ?
143		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144}
145
146static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147{
148	if (!(flags & VM_NORESERVE))
149		vm_unacct_memory(VM_ACCT(size));
150}
151
152/*
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 */
158static inline int shmem_acct_block(unsigned long flags)
159{
160	return (flags & VM_NORESERVE) ?
161		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162}
163
164static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165{
166	if (flags & VM_NORESERVE)
167		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168}
169
170static const struct super_operations shmem_ops;
171static const struct address_space_operations shmem_aops;
172static const struct file_operations shmem_file_operations;
173static const struct inode_operations shmem_inode_operations;
174static const struct inode_operations shmem_dir_inode_operations;
175static const struct inode_operations shmem_special_inode_operations;
176static const struct vm_operations_struct shmem_vm_ops;
177
178static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179	.ra_pages	= 0,	/* No readahead */
180	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181};
182
183static LIST_HEAD(shmem_swaplist);
184static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186static int shmem_reserve_inode(struct super_block *sb)
187{
188	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189	if (sbinfo->max_inodes) {
190		spin_lock(&sbinfo->stat_lock);
191		if (!sbinfo->free_inodes) {
192			spin_unlock(&sbinfo->stat_lock);
193			return -ENOSPC;
194		}
195		sbinfo->free_inodes--;
196		spin_unlock(&sbinfo->stat_lock);
197	}
198	return 0;
199}
200
201static void shmem_free_inode(struct super_block *sb)
202{
203	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204	if (sbinfo->max_inodes) {
205		spin_lock(&sbinfo->stat_lock);
206		sbinfo->free_inodes++;
207		spin_unlock(&sbinfo->stat_lock);
208	}
209}
210
211/**
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223static void shmem_recalc_inode(struct inode *inode)
224{
225	struct shmem_inode_info *info = SHMEM_I(inode);
226	long freed;
227
228	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229	if (freed > 0) {
230		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231		if (sbinfo->max_blocks)
232			percpu_counter_add(&sbinfo->used_blocks, -freed);
233		info->alloced -= freed;
234		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235		shmem_unacct_blocks(info->flags, freed);
236	}
237}
238
239/*
240 * Replace item expected in radix tree by a new item, while holding tree lock.
241 */
242static int shmem_radix_tree_replace(struct address_space *mapping,
243			pgoff_t index, void *expected, void *replacement)
244{
245	void **pslot;
246	void *item;
247
248	VM_BUG_ON(!expected);
249	VM_BUG_ON(!replacement);
250	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251	if (!pslot)
252		return -ENOENT;
253	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254	if (item != expected)
255		return -ENOENT;
256	radix_tree_replace_slot(pslot, replacement);
257	return 0;
258}
259
260/*
261 * Sometimes, before we decide whether to proceed or to fail, we must check
262 * that an entry was not already brought back from swap by a racing thread.
263 *
264 * Checking page is not enough: by the time a SwapCache page is locked, it
265 * might be reused, and again be SwapCache, using the same swap as before.
266 */
267static bool shmem_confirm_swap(struct address_space *mapping,
268			       pgoff_t index, swp_entry_t swap)
269{
270	void *item;
271
272	rcu_read_lock();
273	item = radix_tree_lookup(&mapping->page_tree, index);
274	rcu_read_unlock();
275	return item == swp_to_radix_entry(swap);
276}
277
278/*
279 * Like add_to_page_cache_locked, but error if expected item has gone.
280 */
281static int shmem_add_to_page_cache(struct page *page,
282				   struct address_space *mapping,
283				   pgoff_t index, gfp_t gfp, void *expected)
284{
285	int error;
286
287	VM_BUG_ON_PAGE(!PageLocked(page), page);
288	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289
290	page_cache_get(page);
291	page->mapping = mapping;
292	page->index = index;
293
294	spin_lock_irq(&mapping->tree_lock);
295	if (!expected)
296		error = radix_tree_insert(&mapping->page_tree, index, page);
297	else
298		error = shmem_radix_tree_replace(mapping, index, expected,
299								 page);
300	if (!error) {
301		mapping->nrpages++;
302		__inc_zone_page_state(page, NR_FILE_PAGES);
303		__inc_zone_page_state(page, NR_SHMEM);
304		spin_unlock_irq(&mapping->tree_lock);
305	} else {
306		page->mapping = NULL;
307		spin_unlock_irq(&mapping->tree_lock);
308		page_cache_release(page);
309	}
310	return error;
311}
312
313/*
314 * Like delete_from_page_cache, but substitutes swap for page.
315 */
316static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317{
318	struct address_space *mapping = page->mapping;
319	int error;
320
321	spin_lock_irq(&mapping->tree_lock);
322	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323	page->mapping = NULL;
324	mapping->nrpages--;
325	__dec_zone_page_state(page, NR_FILE_PAGES);
326	__dec_zone_page_state(page, NR_SHMEM);
327	spin_unlock_irq(&mapping->tree_lock);
328	page_cache_release(page);
329	BUG_ON(error);
330}
331
332/*
333 * Remove swap entry from radix tree, free the swap and its page cache.
334 */
335static int shmem_free_swap(struct address_space *mapping,
336			   pgoff_t index, void *radswap)
337{
338	void *old;
339
340	spin_lock_irq(&mapping->tree_lock);
341	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342	spin_unlock_irq(&mapping->tree_lock);
343	if (old != radswap)
344		return -ENOENT;
345	free_swap_and_cache(radix_to_swp_entry(radswap));
346	return 0;
347}
348
349/*
350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351 */
352void shmem_unlock_mapping(struct address_space *mapping)
353{
354	struct pagevec pvec;
355	pgoff_t indices[PAGEVEC_SIZE];
356	pgoff_t index = 0;
357
358	pagevec_init(&pvec, 0);
359	/*
360	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361	 */
362	while (!mapping_unevictable(mapping)) {
363		/*
364		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366		 */
367		pvec.nr = find_get_entries(mapping, index,
368					   PAGEVEC_SIZE, pvec.pages, indices);
369		if (!pvec.nr)
370			break;
371		index = indices[pvec.nr - 1] + 1;
372		pagevec_remove_exceptionals(&pvec);
373		check_move_unevictable_pages(pvec.pages, pvec.nr);
374		pagevec_release(&pvec);
375		cond_resched();
376	}
377}
378
379/*
380 * Remove range of pages and swap entries from radix tree, and free them.
381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382 */
383static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384								 bool unfalloc)
385{
386	struct address_space *mapping = inode->i_mapping;
387	struct shmem_inode_info *info = SHMEM_I(inode);
388	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392	struct pagevec pvec;
393	pgoff_t indices[PAGEVEC_SIZE];
394	long nr_swaps_freed = 0;
395	pgoff_t index;
396	int i;
397
398	if (lend == -1)
399		end = -1;	/* unsigned, so actually very big */
400
401	pagevec_init(&pvec, 0);
402	index = start;
403	while (index < end) {
404		pvec.nr = find_get_entries(mapping, index,
405			min(end - index, (pgoff_t)PAGEVEC_SIZE),
406			pvec.pages, indices);
407		if (!pvec.nr)
408			break;
409		mem_cgroup_uncharge_start();
410		for (i = 0; i < pagevec_count(&pvec); i++) {
411			struct page *page = pvec.pages[i];
412
413			index = indices[i];
414			if (index >= end)
415				break;
416
417			if (radix_tree_exceptional_entry(page)) {
418				if (unfalloc)
419					continue;
420				nr_swaps_freed += !shmem_free_swap(mapping,
421								index, page);
422				continue;
423			}
424
425			if (!trylock_page(page))
426				continue;
427			if (!unfalloc || !PageUptodate(page)) {
428				if (page->mapping == mapping) {
429					VM_BUG_ON_PAGE(PageWriteback(page), page);
430					truncate_inode_page(mapping, page);
431				}
432			}
433			unlock_page(page);
434		}
435		pagevec_remove_exceptionals(&pvec);
436		pagevec_release(&pvec);
437		mem_cgroup_uncharge_end();
438		cond_resched();
439		index++;
440	}
441
442	if (partial_start) {
443		struct page *page = NULL;
444		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445		if (page) {
446			unsigned int top = PAGE_CACHE_SIZE;
447			if (start > end) {
448				top = partial_end;
449				partial_end = 0;
450			}
451			zero_user_segment(page, partial_start, top);
452			set_page_dirty(page);
453			unlock_page(page);
454			page_cache_release(page);
455		}
456	}
457	if (partial_end) {
458		struct page *page = NULL;
459		shmem_getpage(inode, end, &page, SGP_READ, NULL);
460		if (page) {
461			zero_user_segment(page, 0, partial_end);
462			set_page_dirty(page);
463			unlock_page(page);
464			page_cache_release(page);
465		}
466	}
467	if (start >= end)
468		return;
469
470	index = start;
471	for ( ; ; ) {
472		cond_resched();
473
474		pvec.nr = find_get_entries(mapping, index,
475				min(end - index, (pgoff_t)PAGEVEC_SIZE),
476				pvec.pages, indices);
477		if (!pvec.nr) {
478			if (index == start || unfalloc)
479				break;
480			index = start;
481			continue;
482		}
483		if ((index == start || unfalloc) && indices[0] >= end) {
484			pagevec_remove_exceptionals(&pvec);
485			pagevec_release(&pvec);
486			break;
487		}
488		mem_cgroup_uncharge_start();
489		for (i = 0; i < pagevec_count(&pvec); i++) {
490			struct page *page = pvec.pages[i];
491
492			index = indices[i];
493			if (index >= end)
494				break;
495
496			if (radix_tree_exceptional_entry(page)) {
497				if (unfalloc)
498					continue;
499				nr_swaps_freed += !shmem_free_swap(mapping,
500								index, page);
501				continue;
502			}
503
504			lock_page(page);
505			if (!unfalloc || !PageUptodate(page)) {
506				if (page->mapping == mapping) {
507					VM_BUG_ON_PAGE(PageWriteback(page), page);
508					truncate_inode_page(mapping, page);
509				}
510			}
511			unlock_page(page);
512		}
513		pagevec_remove_exceptionals(&pvec);
514		pagevec_release(&pvec);
515		mem_cgroup_uncharge_end();
516		index++;
517	}
518
519	spin_lock(&info->lock);
520	info->swapped -= nr_swaps_freed;
521	shmem_recalc_inode(inode);
522	spin_unlock(&info->lock);
523}
524
525void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
526{
527	shmem_undo_range(inode, lstart, lend, false);
528	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
529}
530EXPORT_SYMBOL_GPL(shmem_truncate_range);
531
532static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
533{
534	struct inode *inode = dentry->d_inode;
535	int error;
536
537	error = inode_change_ok(inode, attr);
538	if (error)
539		return error;
540
541	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
542		loff_t oldsize = inode->i_size;
543		loff_t newsize = attr->ia_size;
544
545		if (newsize != oldsize) {
546			i_size_write(inode, newsize);
547			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548		}
549		if (newsize < oldsize) {
550			loff_t holebegin = round_up(newsize, PAGE_SIZE);
551			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
552			shmem_truncate_range(inode, newsize, (loff_t)-1);
553			/* unmap again to remove racily COWed private pages */
554			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
555		}
556	}
557
558	setattr_copy(inode, attr);
559	if (attr->ia_valid & ATTR_MODE)
560		error = posix_acl_chmod(inode, inode->i_mode);
561	return error;
562}
563
564static void shmem_evict_inode(struct inode *inode)
565{
566	struct shmem_inode_info *info = SHMEM_I(inode);
567
568	if (inode->i_mapping->a_ops == &shmem_aops) {
569		shmem_unacct_size(info->flags, inode->i_size);
570		inode->i_size = 0;
571		shmem_truncate_range(inode, 0, (loff_t)-1);
572		if (!list_empty(&info->swaplist)) {
573			mutex_lock(&shmem_swaplist_mutex);
574			list_del_init(&info->swaplist);
575			mutex_unlock(&shmem_swaplist_mutex);
576		}
577	} else
578		kfree(info->symlink);
579
580	simple_xattrs_free(&info->xattrs);
581	WARN_ON(inode->i_blocks);
582	shmem_free_inode(inode->i_sb);
583	clear_inode(inode);
584}
585
586/*
587 * If swap found in inode, free it and move page from swapcache to filecache.
588 */
589static int shmem_unuse_inode(struct shmem_inode_info *info,
590			     swp_entry_t swap, struct page **pagep)
591{
592	struct address_space *mapping = info->vfs_inode.i_mapping;
593	void *radswap;
594	pgoff_t index;
595	gfp_t gfp;
596	int error = 0;
597
598	radswap = swp_to_radix_entry(swap);
599	index = radix_tree_locate_item(&mapping->page_tree, radswap);
600	if (index == -1)
601		return 0;
602
603	/*
604	 * Move _head_ to start search for next from here.
605	 * But be careful: shmem_evict_inode checks list_empty without taking
606	 * mutex, and there's an instant in list_move_tail when info->swaplist
607	 * would appear empty, if it were the only one on shmem_swaplist.
608	 */
609	if (shmem_swaplist.next != &info->swaplist)
610		list_move_tail(&shmem_swaplist, &info->swaplist);
611
612	gfp = mapping_gfp_mask(mapping);
613	if (shmem_should_replace_page(*pagep, gfp)) {
614		mutex_unlock(&shmem_swaplist_mutex);
615		error = shmem_replace_page(pagep, gfp, info, index);
616		mutex_lock(&shmem_swaplist_mutex);
617		/*
618		 * We needed to drop mutex to make that restrictive page
619		 * allocation, but the inode might have been freed while we
620		 * dropped it: although a racing shmem_evict_inode() cannot
621		 * complete without emptying the radix_tree, our page lock
622		 * on this swapcache page is not enough to prevent that -
623		 * free_swap_and_cache() of our swap entry will only
624		 * trylock_page(), removing swap from radix_tree whatever.
625		 *
626		 * We must not proceed to shmem_add_to_page_cache() if the
627		 * inode has been freed, but of course we cannot rely on
628		 * inode or mapping or info to check that.  However, we can
629		 * safely check if our swap entry is still in use (and here
630		 * it can't have got reused for another page): if it's still
631		 * in use, then the inode cannot have been freed yet, and we
632		 * can safely proceed (if it's no longer in use, that tells
633		 * nothing about the inode, but we don't need to unuse swap).
634		 */
635		if (!page_swapcount(*pagep))
636			error = -ENOENT;
637	}
638
639	/*
640	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
641	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
642	 * beneath us (pagelock doesn't help until the page is in pagecache).
643	 */
644	if (!error)
645		error = shmem_add_to_page_cache(*pagep, mapping, index,
646						GFP_NOWAIT, radswap);
647	if (error != -ENOMEM) {
648		/*
649		 * Truncation and eviction use free_swap_and_cache(), which
650		 * only does trylock page: if we raced, best clean up here.
651		 */
652		delete_from_swap_cache(*pagep);
653		set_page_dirty(*pagep);
654		if (!error) {
655			spin_lock(&info->lock);
656			info->swapped--;
657			spin_unlock(&info->lock);
658			swap_free(swap);
659		}
660		error = 1;	/* not an error, but entry was found */
661	}
662	return error;
663}
664
665/*
666 * Search through swapped inodes to find and replace swap by page.
667 */
668int shmem_unuse(swp_entry_t swap, struct page *page)
669{
670	struct list_head *this, *next;
671	struct shmem_inode_info *info;
672	int found = 0;
673	int error = 0;
674
675	/*
676	 * There's a faint possibility that swap page was replaced before
677	 * caller locked it: caller will come back later with the right page.
678	 */
679	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
680		goto out;
681
682	/*
683	 * Charge page using GFP_KERNEL while we can wait, before taking
684	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
685	 * Charged back to the user (not to caller) when swap account is used.
686	 */
687	error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
688	if (error)
689		goto out;
690	/* No radix_tree_preload: swap entry keeps a place for page in tree */
691
692	mutex_lock(&shmem_swaplist_mutex);
693	list_for_each_safe(this, next, &shmem_swaplist) {
694		info = list_entry(this, struct shmem_inode_info, swaplist);
695		if (info->swapped)
696			found = shmem_unuse_inode(info, swap, &page);
697		else
698			list_del_init(&info->swaplist);
699		cond_resched();
700		if (found)
701			break;
702	}
703	mutex_unlock(&shmem_swaplist_mutex);
704
705	if (found < 0)
706		error = found;
707out:
708	unlock_page(page);
709	page_cache_release(page);
710	return error;
711}
712
713/*
714 * Move the page from the page cache to the swap cache.
715 */
716static int shmem_writepage(struct page *page, struct writeback_control *wbc)
717{
718	struct shmem_inode_info *info;
719	struct address_space *mapping;
720	struct inode *inode;
721	swp_entry_t swap;
722	pgoff_t index;
723
724	BUG_ON(!PageLocked(page));
725	mapping = page->mapping;
726	index = page->index;
727	inode = mapping->host;
728	info = SHMEM_I(inode);
729	if (info->flags & VM_LOCKED)
730		goto redirty;
731	if (!total_swap_pages)
732		goto redirty;
733
734	/*
735	 * shmem_backing_dev_info's capabilities prevent regular writeback or
736	 * sync from ever calling shmem_writepage; but a stacking filesystem
737	 * might use ->writepage of its underlying filesystem, in which case
738	 * tmpfs should write out to swap only in response to memory pressure,
739	 * and not for the writeback threads or sync.
740	 */
741	if (!wbc->for_reclaim) {
742		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
743		goto redirty;
744	}
745
746	/*
747	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
748	 * value into swapfile.c, the only way we can correctly account for a
749	 * fallocated page arriving here is now to initialize it and write it.
750	 *
751	 * That's okay for a page already fallocated earlier, but if we have
752	 * not yet completed the fallocation, then (a) we want to keep track
753	 * of this page in case we have to undo it, and (b) it may not be a
754	 * good idea to continue anyway, once we're pushing into swap.  So
755	 * reactivate the page, and let shmem_fallocate() quit when too many.
756	 */
757	if (!PageUptodate(page)) {
758		if (inode->i_private) {
759			struct shmem_falloc *shmem_falloc;
760			spin_lock(&inode->i_lock);
761			shmem_falloc = inode->i_private;
762			if (shmem_falloc &&
763			    !shmem_falloc->waitq &&
764			    index >= shmem_falloc->start &&
765			    index < shmem_falloc->next)
766				shmem_falloc->nr_unswapped++;
767			else
768				shmem_falloc = NULL;
769			spin_unlock(&inode->i_lock);
770			if (shmem_falloc)
771				goto redirty;
772		}
773		clear_highpage(page);
774		flush_dcache_page(page);
775		SetPageUptodate(page);
776	}
777
778	swap = get_swap_page();
779	if (!swap.val)
780		goto redirty;
781
782	/*
783	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
784	 * if it's not already there.  Do it now before the page is
785	 * moved to swap cache, when its pagelock no longer protects
786	 * the inode from eviction.  But don't unlock the mutex until
787	 * we've incremented swapped, because shmem_unuse_inode() will
788	 * prune a !swapped inode from the swaplist under this mutex.
789	 */
790	mutex_lock(&shmem_swaplist_mutex);
791	if (list_empty(&info->swaplist))
792		list_add_tail(&info->swaplist, &shmem_swaplist);
793
794	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
795		swap_shmem_alloc(swap);
796		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
797
798		spin_lock(&info->lock);
799		info->swapped++;
800		shmem_recalc_inode(inode);
801		spin_unlock(&info->lock);
802
803		mutex_unlock(&shmem_swaplist_mutex);
804		BUG_ON(page_mapped(page));
805		swap_writepage(page, wbc);
806		return 0;
807	}
808
809	mutex_unlock(&shmem_swaplist_mutex);
810	swapcache_free(swap, NULL);
811redirty:
812	set_page_dirty(page);
813	if (wbc->for_reclaim)
814		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
815	unlock_page(page);
816	return 0;
817}
818
819#ifdef CONFIG_NUMA
820#ifdef CONFIG_TMPFS
821static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
822{
823	char buffer[64];
824
825	if (!mpol || mpol->mode == MPOL_DEFAULT)
826		return;		/* show nothing */
827
828	mpol_to_str(buffer, sizeof(buffer), mpol);
829
830	seq_printf(seq, ",mpol=%s", buffer);
831}
832
833static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
834{
835	struct mempolicy *mpol = NULL;
836	if (sbinfo->mpol) {
837		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
838		mpol = sbinfo->mpol;
839		mpol_get(mpol);
840		spin_unlock(&sbinfo->stat_lock);
841	}
842	return mpol;
843}
844#endif /* CONFIG_TMPFS */
845
846static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
847			struct shmem_inode_info *info, pgoff_t index)
848{
849	struct vm_area_struct pvma;
850	struct page *page;
851
852	/* Create a pseudo vma that just contains the policy */
853	pvma.vm_start = 0;
854	/* Bias interleave by inode number to distribute better across nodes */
855	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
856	pvma.vm_ops = NULL;
857	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
858
859	page = swapin_readahead(swap, gfp, &pvma, 0);
860
861	/* Drop reference taken by mpol_shared_policy_lookup() */
862	mpol_cond_put(pvma.vm_policy);
863
864	return page;
865}
866
867static struct page *shmem_alloc_page(gfp_t gfp,
868			struct shmem_inode_info *info, pgoff_t index)
869{
870	struct vm_area_struct pvma;
871	struct page *page;
872
873	/* Create a pseudo vma that just contains the policy */
874	pvma.vm_start = 0;
875	/* Bias interleave by inode number to distribute better across nodes */
876	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
877	pvma.vm_ops = NULL;
878	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
879
880	page = alloc_page_vma(gfp, &pvma, 0);
881
882	/* Drop reference taken by mpol_shared_policy_lookup() */
883	mpol_cond_put(pvma.vm_policy);
884
885	return page;
886}
887#else /* !CONFIG_NUMA */
888#ifdef CONFIG_TMPFS
889static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
890{
891}
892#endif /* CONFIG_TMPFS */
893
894static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
895			struct shmem_inode_info *info, pgoff_t index)
896{
897	return swapin_readahead(swap, gfp, NULL, 0);
898}
899
900static inline struct page *shmem_alloc_page(gfp_t gfp,
901			struct shmem_inode_info *info, pgoff_t index)
902{
903	return alloc_page(gfp);
904}
905#endif /* CONFIG_NUMA */
906
907#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
908static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909{
910	return NULL;
911}
912#endif
913
914/*
915 * When a page is moved from swapcache to shmem filecache (either by the
916 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
917 * shmem_unuse_inode()), it may have been read in earlier from swap, in
918 * ignorance of the mapping it belongs to.  If that mapping has special
919 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
920 * we may need to copy to a suitable page before moving to filecache.
921 *
922 * In a future release, this may well be extended to respect cpuset and
923 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
924 * but for now it is a simple matter of zone.
925 */
926static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
927{
928	return page_zonenum(page) > gfp_zone(gfp);
929}
930
931static int shmem_replace_page(struct page **pagep, gfp_t gfp,
932				struct shmem_inode_info *info, pgoff_t index)
933{
934	struct page *oldpage, *newpage;
935	struct address_space *swap_mapping;
936	pgoff_t swap_index;
937	int error;
938
939	oldpage = *pagep;
940	swap_index = page_private(oldpage);
941	swap_mapping = page_mapping(oldpage);
942
943	/*
944	 * We have arrived here because our zones are constrained, so don't
945	 * limit chance of success by further cpuset and node constraints.
946	 */
947	gfp &= ~GFP_CONSTRAINT_MASK;
948	newpage = shmem_alloc_page(gfp, info, index);
949	if (!newpage)
950		return -ENOMEM;
951
952	page_cache_get(newpage);
953	copy_highpage(newpage, oldpage);
954	flush_dcache_page(newpage);
955
956	__set_page_locked(newpage);
957	SetPageUptodate(newpage);
958	SetPageSwapBacked(newpage);
959	set_page_private(newpage, swap_index);
960	SetPageSwapCache(newpage);
961
962	/*
963	 * Our caller will very soon move newpage out of swapcache, but it's
964	 * a nice clean interface for us to replace oldpage by newpage there.
965	 */
966	spin_lock_irq(&swap_mapping->tree_lock);
967	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
968								   newpage);
969	if (!error) {
970		__inc_zone_page_state(newpage, NR_FILE_PAGES);
971		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
972	}
973	spin_unlock_irq(&swap_mapping->tree_lock);
974
975	if (unlikely(error)) {
976		/*
977		 * Is this possible?  I think not, now that our callers check
978		 * both PageSwapCache and page_private after getting page lock;
979		 * but be defensive.  Reverse old to newpage for clear and free.
980		 */
981		oldpage = newpage;
982	} else {
983		mem_cgroup_replace_page_cache(oldpage, newpage);
984		lru_cache_add_anon(newpage);
985		*pagep = newpage;
986	}
987
988	ClearPageSwapCache(oldpage);
989	set_page_private(oldpage, 0);
990
991	unlock_page(oldpage);
992	page_cache_release(oldpage);
993	page_cache_release(oldpage);
994	return error;
995}
996
997/*
998 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
999 *
1000 * If we allocate a new one we do not mark it dirty. That's up to the
1001 * vm. If we swap it in we mark it dirty since we also free the swap
1002 * entry since a page cannot live in both the swap and page cache
1003 */
1004static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1005	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1006{
1007	struct address_space *mapping = inode->i_mapping;
1008	struct shmem_inode_info *info;
1009	struct shmem_sb_info *sbinfo;
1010	struct page *page;
1011	swp_entry_t swap;
1012	int error;
1013	int once = 0;
1014	int alloced = 0;
1015
1016	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1017		return -EFBIG;
1018repeat:
1019	swap.val = 0;
1020	page = find_lock_entry(mapping, index);
1021	if (radix_tree_exceptional_entry(page)) {
1022		swap = radix_to_swp_entry(page);
1023		page = NULL;
1024	}
1025
1026	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1027	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1028		error = -EINVAL;
1029		goto failed;
1030	}
1031
1032	if (page && sgp == SGP_WRITE)
1033		mark_page_accessed(page);
1034
1035	/* fallocated page? */
1036	if (page && !PageUptodate(page)) {
1037		if (sgp != SGP_READ)
1038			goto clear;
1039		unlock_page(page);
1040		page_cache_release(page);
1041		page = NULL;
1042	}
1043	if (page || (sgp == SGP_READ && !swap.val)) {
1044		*pagep = page;
1045		return 0;
1046	}
1047
1048	/*
1049	 * Fast cache lookup did not find it:
1050	 * bring it back from swap or allocate.
1051	 */
1052	info = SHMEM_I(inode);
1053	sbinfo = SHMEM_SB(inode->i_sb);
1054
1055	if (swap.val) {
1056		/* Look it up and read it in.. */
1057		page = lookup_swap_cache(swap);
1058		if (!page) {
1059			/* here we actually do the io */
1060			if (fault_type)
1061				*fault_type |= VM_FAULT_MAJOR;
1062			page = shmem_swapin(swap, gfp, info, index);
1063			if (!page) {
1064				error = -ENOMEM;
1065				goto failed;
1066			}
1067		}
1068
1069		/* We have to do this with page locked to prevent races */
1070		lock_page(page);
1071		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1072		    !shmem_confirm_swap(mapping, index, swap)) {
1073			error = -EEXIST;	/* try again */
1074			goto unlock;
1075		}
1076		if (!PageUptodate(page)) {
1077			error = -EIO;
1078			goto failed;
1079		}
1080		wait_on_page_writeback(page);
1081
1082		if (shmem_should_replace_page(page, gfp)) {
1083			error = shmem_replace_page(&page, gfp, info, index);
1084			if (error)
1085				goto failed;
1086		}
1087
1088		error = mem_cgroup_charge_file(page, current->mm,
1089						gfp & GFP_RECLAIM_MASK);
1090		if (!error) {
1091			error = shmem_add_to_page_cache(page, mapping, index,
1092						gfp, swp_to_radix_entry(swap));
1093			/*
1094			 * We already confirmed swap under page lock, and make
1095			 * no memory allocation here, so usually no possibility
1096			 * of error; but free_swap_and_cache() only trylocks a
1097			 * page, so it is just possible that the entry has been
1098			 * truncated or holepunched since swap was confirmed.
1099			 * shmem_undo_range() will have done some of the
1100			 * unaccounting, now delete_from_swap_cache() will do
1101			 * the rest (including mem_cgroup_uncharge_swapcache).
1102			 * Reset swap.val? No, leave it so "failed" goes back to
1103			 * "repeat": reading a hole and writing should succeed.
1104			 */
1105			if (error)
1106				delete_from_swap_cache(page);
1107		}
1108		if (error)
1109			goto failed;
1110
1111		spin_lock(&info->lock);
1112		info->swapped--;
1113		shmem_recalc_inode(inode);
1114		spin_unlock(&info->lock);
1115
1116		if (sgp == SGP_WRITE)
1117			mark_page_accessed(page);
1118
1119		delete_from_swap_cache(page);
1120		set_page_dirty(page);
1121		swap_free(swap);
1122
1123	} else {
1124		if (shmem_acct_block(info->flags)) {
1125			error = -ENOSPC;
1126			goto failed;
1127		}
1128		if (sbinfo->max_blocks) {
1129			if (percpu_counter_compare(&sbinfo->used_blocks,
1130						sbinfo->max_blocks) >= 0) {
1131				error = -ENOSPC;
1132				goto unacct;
1133			}
1134			percpu_counter_inc(&sbinfo->used_blocks);
1135		}
1136
1137		page = shmem_alloc_page(gfp, info, index);
1138		if (!page) {
1139			error = -ENOMEM;
1140			goto decused;
1141		}
1142
1143		__SetPageSwapBacked(page);
1144		__set_page_locked(page);
1145		if (sgp == SGP_WRITE)
1146			init_page_accessed(page);
1147
1148		error = mem_cgroup_charge_file(page, current->mm,
1149						gfp & GFP_RECLAIM_MASK);
1150		if (error)
1151			goto decused;
1152		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1153		if (!error) {
1154			error = shmem_add_to_page_cache(page, mapping, index,
1155							gfp, NULL);
1156			radix_tree_preload_end();
1157		}
1158		if (error) {
1159			mem_cgroup_uncharge_cache_page(page);
1160			goto decused;
1161		}
1162		lru_cache_add_anon(page);
1163
1164		spin_lock(&info->lock);
1165		info->alloced++;
1166		inode->i_blocks += BLOCKS_PER_PAGE;
1167		shmem_recalc_inode(inode);
1168		spin_unlock(&info->lock);
1169		alloced = true;
1170
1171		/*
1172		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1173		 */
1174		if (sgp == SGP_FALLOC)
1175			sgp = SGP_WRITE;
1176clear:
1177		/*
1178		 * Let SGP_WRITE caller clear ends if write does not fill page;
1179		 * but SGP_FALLOC on a page fallocated earlier must initialize
1180		 * it now, lest undo on failure cancel our earlier guarantee.
1181		 */
1182		if (sgp != SGP_WRITE) {
1183			clear_highpage(page);
1184			flush_dcache_page(page);
1185			SetPageUptodate(page);
1186		}
1187		if (sgp == SGP_DIRTY)
1188			set_page_dirty(page);
1189	}
1190
1191	/* Perhaps the file has been truncated since we checked */
1192	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1193	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1194		error = -EINVAL;
1195		if (alloced)
1196			goto trunc;
1197		else
1198			goto failed;
1199	}
1200	*pagep = page;
1201	return 0;
1202
1203	/*
1204	 * Error recovery.
1205	 */
1206trunc:
1207	info = SHMEM_I(inode);
1208	ClearPageDirty(page);
1209	delete_from_page_cache(page);
1210	spin_lock(&info->lock);
1211	info->alloced--;
1212	inode->i_blocks -= BLOCKS_PER_PAGE;
1213	spin_unlock(&info->lock);
1214decused:
1215	sbinfo = SHMEM_SB(inode->i_sb);
1216	if (sbinfo->max_blocks)
1217		percpu_counter_add(&sbinfo->used_blocks, -1);
1218unacct:
1219	shmem_unacct_blocks(info->flags, 1);
1220failed:
1221	if (swap.val && error != -EINVAL &&
1222	    !shmem_confirm_swap(mapping, index, swap))
1223		error = -EEXIST;
1224unlock:
1225	if (page) {
1226		unlock_page(page);
1227		page_cache_release(page);
1228	}
1229	if (error == -ENOSPC && !once++) {
1230		info = SHMEM_I(inode);
1231		spin_lock(&info->lock);
1232		shmem_recalc_inode(inode);
1233		spin_unlock(&info->lock);
1234		goto repeat;
1235	}
1236	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1237		goto repeat;
1238	return error;
1239}
1240
1241static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1242{
1243	struct inode *inode = file_inode(vma->vm_file);
1244	int error;
1245	int ret = VM_FAULT_LOCKED;
1246
1247	/*
1248	 * Trinity finds that probing a hole which tmpfs is punching can
1249	 * prevent the hole-punch from ever completing: which in turn
1250	 * locks writers out with its hold on i_mutex.  So refrain from
1251	 * faulting pages into the hole while it's being punched.  Although
1252	 * shmem_undo_range() does remove the additions, it may be unable to
1253	 * keep up, as each new page needs its own unmap_mapping_range() call,
1254	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1255	 *
1256	 * It does not matter if we sometimes reach this check just before the
1257	 * hole-punch begins, so that one fault then races with the punch:
1258	 * we just need to make racing faults a rare case.
1259	 *
1260	 * The implementation below would be much simpler if we just used a
1261	 * standard mutex or completion: but we cannot take i_mutex in fault,
1262	 * and bloating every shmem inode for this unlikely case would be sad.
1263	 */
1264	if (unlikely(inode->i_private)) {
1265		struct shmem_falloc *shmem_falloc;
1266
1267		spin_lock(&inode->i_lock);
1268		shmem_falloc = inode->i_private;
1269		if (shmem_falloc &&
1270		    shmem_falloc->waitq &&
1271		    vmf->pgoff >= shmem_falloc->start &&
1272		    vmf->pgoff < shmem_falloc->next) {
1273			wait_queue_head_t *shmem_falloc_waitq;
1274			DEFINE_WAIT(shmem_fault_wait);
1275
1276			ret = VM_FAULT_NOPAGE;
1277			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1278			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1279				/* It's polite to up mmap_sem if we can */
1280				up_read(&vma->vm_mm->mmap_sem);
1281				ret = VM_FAULT_RETRY;
1282			}
1283
1284			shmem_falloc_waitq = shmem_falloc->waitq;
1285			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1286					TASK_UNINTERRUPTIBLE);
1287			spin_unlock(&inode->i_lock);
1288			schedule();
1289
1290			/*
1291			 * shmem_falloc_waitq points into the shmem_fallocate()
1292			 * stack of the hole-punching task: shmem_falloc_waitq
1293			 * is usually invalid by the time we reach here, but
1294			 * finish_wait() does not dereference it in that case;
1295			 * though i_lock needed lest racing with wake_up_all().
1296			 */
1297			spin_lock(&inode->i_lock);
1298			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1299			spin_unlock(&inode->i_lock);
1300			return ret;
1301		}
1302		spin_unlock(&inode->i_lock);
1303	}
1304
1305	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1306	if (error)
1307		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1308
1309	if (ret & VM_FAULT_MAJOR) {
1310		count_vm_event(PGMAJFAULT);
1311		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1312	}
1313	return ret;
1314}
1315
1316#ifdef CONFIG_NUMA
1317static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1318{
1319	struct inode *inode = file_inode(vma->vm_file);
1320	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1321}
1322
1323static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1324					  unsigned long addr)
1325{
1326	struct inode *inode = file_inode(vma->vm_file);
1327	pgoff_t index;
1328
1329	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1330	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1331}
1332#endif
1333
1334int shmem_lock(struct file *file, int lock, struct user_struct *user)
1335{
1336	struct inode *inode = file_inode(file);
1337	struct shmem_inode_info *info = SHMEM_I(inode);
1338	int retval = -ENOMEM;
1339
1340	spin_lock(&info->lock);
1341	if (lock && !(info->flags & VM_LOCKED)) {
1342		if (!user_shm_lock(inode->i_size, user))
1343			goto out_nomem;
1344		info->flags |= VM_LOCKED;
1345		mapping_set_unevictable(file->f_mapping);
1346	}
1347	if (!lock && (info->flags & VM_LOCKED) && user) {
1348		user_shm_unlock(inode->i_size, user);
1349		info->flags &= ~VM_LOCKED;
1350		mapping_clear_unevictable(file->f_mapping);
1351	}
1352	retval = 0;
1353
1354out_nomem:
1355	spin_unlock(&info->lock);
1356	return retval;
1357}
1358
1359static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1360{
1361	file_accessed(file);
1362	vma->vm_ops = &shmem_vm_ops;
1363	return 0;
1364}
1365
1366static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1367				     umode_t mode, dev_t dev, unsigned long flags)
1368{
1369	struct inode *inode;
1370	struct shmem_inode_info *info;
1371	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1372
1373	if (shmem_reserve_inode(sb))
1374		return NULL;
1375
1376	inode = new_inode(sb);
1377	if (inode) {
1378		inode->i_ino = get_next_ino();
1379		inode_init_owner(inode, dir, mode);
1380		inode->i_blocks = 0;
1381		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1382		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1383		inode->i_generation = get_seconds();
1384		info = SHMEM_I(inode);
1385		memset(info, 0, (char *)inode - (char *)info);
1386		spin_lock_init(&info->lock);
1387		info->flags = flags & VM_NORESERVE;
1388		INIT_LIST_HEAD(&info->swaplist);
1389		simple_xattrs_init(&info->xattrs);
1390		cache_no_acl(inode);
1391
1392		switch (mode & S_IFMT) {
1393		default:
1394			inode->i_op = &shmem_special_inode_operations;
1395			init_special_inode(inode, mode, dev);
1396			break;
1397		case S_IFREG:
1398			inode->i_mapping->a_ops = &shmem_aops;
1399			inode->i_op = &shmem_inode_operations;
1400			inode->i_fop = &shmem_file_operations;
1401			mpol_shared_policy_init(&info->policy,
1402						 shmem_get_sbmpol(sbinfo));
1403			break;
1404		case S_IFDIR:
1405			inc_nlink(inode);
1406			/* Some things misbehave if size == 0 on a directory */
1407			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1408			inode->i_op = &shmem_dir_inode_operations;
1409			inode->i_fop = &simple_dir_operations;
1410			break;
1411		case S_IFLNK:
1412			/*
1413			 * Must not load anything in the rbtree,
1414			 * mpol_free_shared_policy will not be called.
1415			 */
1416			mpol_shared_policy_init(&info->policy, NULL);
1417			break;
1418		}
1419	} else
1420		shmem_free_inode(sb);
1421	return inode;
1422}
1423
1424bool shmem_mapping(struct address_space *mapping)
1425{
1426	return mapping->backing_dev_info == &shmem_backing_dev_info;
1427}
1428
1429#ifdef CONFIG_TMPFS
1430static const struct inode_operations shmem_symlink_inode_operations;
1431static const struct inode_operations shmem_short_symlink_operations;
1432
1433#ifdef CONFIG_TMPFS_XATTR
1434static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1435#else
1436#define shmem_initxattrs NULL
1437#endif
1438
1439static int
1440shmem_write_begin(struct file *file, struct address_space *mapping,
1441			loff_t pos, unsigned len, unsigned flags,
1442			struct page **pagep, void **fsdata)
1443{
1444	struct inode *inode = mapping->host;
1445	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1446	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1447}
1448
1449static int
1450shmem_write_end(struct file *file, struct address_space *mapping,
1451			loff_t pos, unsigned len, unsigned copied,
1452			struct page *page, void *fsdata)
1453{
1454	struct inode *inode = mapping->host;
1455
1456	if (pos + copied > inode->i_size)
1457		i_size_write(inode, pos + copied);
1458
1459	if (!PageUptodate(page)) {
1460		if (copied < PAGE_CACHE_SIZE) {
1461			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1462			zero_user_segments(page, 0, from,
1463					from + copied, PAGE_CACHE_SIZE);
1464		}
1465		SetPageUptodate(page);
1466	}
1467	set_page_dirty(page);
1468	unlock_page(page);
1469	page_cache_release(page);
1470
1471	return copied;
1472}
1473
1474static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1475{
1476	struct file *file = iocb->ki_filp;
1477	struct inode *inode = file_inode(file);
1478	struct address_space *mapping = inode->i_mapping;
1479	pgoff_t index;
1480	unsigned long offset;
1481	enum sgp_type sgp = SGP_READ;
1482	int error = 0;
1483	ssize_t retval = 0;
1484	loff_t *ppos = &iocb->ki_pos;
1485
1486	/*
1487	 * Might this read be for a stacking filesystem?  Then when reading
1488	 * holes of a sparse file, we actually need to allocate those pages,
1489	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1490	 */
1491	if (segment_eq(get_fs(), KERNEL_DS))
1492		sgp = SGP_DIRTY;
1493
1494	index = *ppos >> PAGE_CACHE_SHIFT;
1495	offset = *ppos & ~PAGE_CACHE_MASK;
1496
1497	for (;;) {
1498		struct page *page = NULL;
1499		pgoff_t end_index;
1500		unsigned long nr, ret;
1501		loff_t i_size = i_size_read(inode);
1502
1503		end_index = i_size >> PAGE_CACHE_SHIFT;
1504		if (index > end_index)
1505			break;
1506		if (index == end_index) {
1507			nr = i_size & ~PAGE_CACHE_MASK;
1508			if (nr <= offset)
1509				break;
1510		}
1511
1512		error = shmem_getpage(inode, index, &page, sgp, NULL);
1513		if (error) {
1514			if (error == -EINVAL)
1515				error = 0;
1516			break;
1517		}
1518		if (page)
1519			unlock_page(page);
1520
1521		/*
1522		 * We must evaluate after, since reads (unlike writes)
1523		 * are called without i_mutex protection against truncate
1524		 */
1525		nr = PAGE_CACHE_SIZE;
1526		i_size = i_size_read(inode);
1527		end_index = i_size >> PAGE_CACHE_SHIFT;
1528		if (index == end_index) {
1529			nr = i_size & ~PAGE_CACHE_MASK;
1530			if (nr <= offset) {
1531				if (page)
1532					page_cache_release(page);
1533				break;
1534			}
1535		}
1536		nr -= offset;
1537
1538		if (page) {
1539			/*
1540			 * If users can be writing to this page using arbitrary
1541			 * virtual addresses, take care about potential aliasing
1542			 * before reading the page on the kernel side.
1543			 */
1544			if (mapping_writably_mapped(mapping))
1545				flush_dcache_page(page);
1546			/*
1547			 * Mark the page accessed if we read the beginning.
1548			 */
1549			if (!offset)
1550				mark_page_accessed(page);
1551		} else {
1552			page = ZERO_PAGE(0);
1553			page_cache_get(page);
1554		}
1555
1556		/*
1557		 * Ok, we have the page, and it's up-to-date, so
1558		 * now we can copy it to user space...
1559		 */
1560		ret = copy_page_to_iter(page, offset, nr, to);
1561		retval += ret;
1562		offset += ret;
1563		index += offset >> PAGE_CACHE_SHIFT;
1564		offset &= ~PAGE_CACHE_MASK;
1565
1566		page_cache_release(page);
1567		if (!iov_iter_count(to))
1568			break;
1569		if (ret < nr) {
1570			error = -EFAULT;
1571			break;
1572		}
1573		cond_resched();
1574	}
1575
1576	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1577	file_accessed(file);
1578	return retval ? retval : error;
1579}
1580
1581static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1582				struct pipe_inode_info *pipe, size_t len,
1583				unsigned int flags)
1584{
1585	struct address_space *mapping = in->f_mapping;
1586	struct inode *inode = mapping->host;
1587	unsigned int loff, nr_pages, req_pages;
1588	struct page *pages[PIPE_DEF_BUFFERS];
1589	struct partial_page partial[PIPE_DEF_BUFFERS];
1590	struct page *page;
1591	pgoff_t index, end_index;
1592	loff_t isize, left;
1593	int error, page_nr;
1594	struct splice_pipe_desc spd = {
1595		.pages = pages,
1596		.partial = partial,
1597		.nr_pages_max = PIPE_DEF_BUFFERS,
1598		.flags = flags,
1599		.ops = &page_cache_pipe_buf_ops,
1600		.spd_release = spd_release_page,
1601	};
1602
1603	isize = i_size_read(inode);
1604	if (unlikely(*ppos >= isize))
1605		return 0;
1606
1607	left = isize - *ppos;
1608	if (unlikely(left < len))
1609		len = left;
1610
1611	if (splice_grow_spd(pipe, &spd))
1612		return -ENOMEM;
1613
1614	index = *ppos >> PAGE_CACHE_SHIFT;
1615	loff = *ppos & ~PAGE_CACHE_MASK;
1616	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1617	nr_pages = min(req_pages, spd.nr_pages_max);
1618
1619	spd.nr_pages = find_get_pages_contig(mapping, index,
1620						nr_pages, spd.pages);
1621	index += spd.nr_pages;
1622	error = 0;
1623
1624	while (spd.nr_pages < nr_pages) {
1625		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1626		if (error)
1627			break;
1628		unlock_page(page);
1629		spd.pages[spd.nr_pages++] = page;
1630		index++;
1631	}
1632
1633	index = *ppos >> PAGE_CACHE_SHIFT;
1634	nr_pages = spd.nr_pages;
1635	spd.nr_pages = 0;
1636
1637	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1638		unsigned int this_len;
1639
1640		if (!len)
1641			break;
1642
1643		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1644		page = spd.pages[page_nr];
1645
1646		if (!PageUptodate(page) || page->mapping != mapping) {
1647			error = shmem_getpage(inode, index, &page,
1648							SGP_CACHE, NULL);
1649			if (error)
1650				break;
1651			unlock_page(page);
1652			page_cache_release(spd.pages[page_nr]);
1653			spd.pages[page_nr] = page;
1654		}
1655
1656		isize = i_size_read(inode);
1657		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1658		if (unlikely(!isize || index > end_index))
1659			break;
1660
1661		if (end_index == index) {
1662			unsigned int plen;
1663
1664			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1665			if (plen <= loff)
1666				break;
1667
1668			this_len = min(this_len, plen - loff);
1669			len = this_len;
1670		}
1671
1672		spd.partial[page_nr].offset = loff;
1673		spd.partial[page_nr].len = this_len;
1674		len -= this_len;
1675		loff = 0;
1676		spd.nr_pages++;
1677		index++;
1678	}
1679
1680	while (page_nr < nr_pages)
1681		page_cache_release(spd.pages[page_nr++]);
1682
1683	if (spd.nr_pages)
1684		error = splice_to_pipe(pipe, &spd);
1685
1686	splice_shrink_spd(&spd);
1687
1688	if (error > 0) {
1689		*ppos += error;
1690		file_accessed(in);
1691	}
1692	return error;
1693}
1694
1695/*
1696 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1697 */
1698static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1699				    pgoff_t index, pgoff_t end, int whence)
1700{
1701	struct page *page;
1702	struct pagevec pvec;
1703	pgoff_t indices[PAGEVEC_SIZE];
1704	bool done = false;
1705	int i;
1706
1707	pagevec_init(&pvec, 0);
1708	pvec.nr = 1;		/* start small: we may be there already */
1709	while (!done) {
1710		pvec.nr = find_get_entries(mapping, index,
1711					pvec.nr, pvec.pages, indices);
1712		if (!pvec.nr) {
1713			if (whence == SEEK_DATA)
1714				index = end;
1715			break;
1716		}
1717		for (i = 0; i < pvec.nr; i++, index++) {
1718			if (index < indices[i]) {
1719				if (whence == SEEK_HOLE) {
1720					done = true;
1721					break;
1722				}
1723				index = indices[i];
1724			}
1725			page = pvec.pages[i];
1726			if (page && !radix_tree_exceptional_entry(page)) {
1727				if (!PageUptodate(page))
1728					page = NULL;
1729			}
1730			if (index >= end ||
1731			    (page && whence == SEEK_DATA) ||
1732			    (!page && whence == SEEK_HOLE)) {
1733				done = true;
1734				break;
1735			}
1736		}
1737		pagevec_remove_exceptionals(&pvec);
1738		pagevec_release(&pvec);
1739		pvec.nr = PAGEVEC_SIZE;
1740		cond_resched();
1741	}
1742	return index;
1743}
1744
1745static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1746{
1747	struct address_space *mapping = file->f_mapping;
1748	struct inode *inode = mapping->host;
1749	pgoff_t start, end;
1750	loff_t new_offset;
1751
1752	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1753		return generic_file_llseek_size(file, offset, whence,
1754					MAX_LFS_FILESIZE, i_size_read(inode));
1755	mutex_lock(&inode->i_mutex);
1756	/* We're holding i_mutex so we can access i_size directly */
1757
1758	if (offset < 0)
1759		offset = -EINVAL;
1760	else if (offset >= inode->i_size)
1761		offset = -ENXIO;
1762	else {
1763		start = offset >> PAGE_CACHE_SHIFT;
1764		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1765		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1766		new_offset <<= PAGE_CACHE_SHIFT;
1767		if (new_offset > offset) {
1768			if (new_offset < inode->i_size)
1769				offset = new_offset;
1770			else if (whence == SEEK_DATA)
1771				offset = -ENXIO;
1772			else
1773				offset = inode->i_size;
1774		}
1775	}
1776
1777	if (offset >= 0)
1778		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1779	mutex_unlock(&inode->i_mutex);
1780	return offset;
1781}
1782
1783static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1784							 loff_t len)
1785{
1786	struct inode *inode = file_inode(file);
1787	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1788	struct shmem_falloc shmem_falloc;
1789	pgoff_t start, index, end;
1790	int error;
1791
1792	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1793		return -EOPNOTSUPP;
1794
1795	mutex_lock(&inode->i_mutex);
1796
1797	if (mode & FALLOC_FL_PUNCH_HOLE) {
1798		struct address_space *mapping = file->f_mapping;
1799		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1800		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1801		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1802
1803		shmem_falloc.waitq = &shmem_falloc_waitq;
1804		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1805		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1806		spin_lock(&inode->i_lock);
1807		inode->i_private = &shmem_falloc;
1808		spin_unlock(&inode->i_lock);
1809
1810		if ((u64)unmap_end > (u64)unmap_start)
1811			unmap_mapping_range(mapping, unmap_start,
1812					    1 + unmap_end - unmap_start, 0);
1813		shmem_truncate_range(inode, offset, offset + len - 1);
1814		/* No need to unmap again: hole-punching leaves COWed pages */
1815
1816		spin_lock(&inode->i_lock);
1817		inode->i_private = NULL;
1818		wake_up_all(&shmem_falloc_waitq);
1819		spin_unlock(&inode->i_lock);
1820		error = 0;
1821		goto out;
1822	}
1823
1824	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1825	error = inode_newsize_ok(inode, offset + len);
1826	if (error)
1827		goto out;
1828
1829	start = offset >> PAGE_CACHE_SHIFT;
1830	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1831	/* Try to avoid a swapstorm if len is impossible to satisfy */
1832	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1833		error = -ENOSPC;
1834		goto out;
1835	}
1836
1837	shmem_falloc.waitq = NULL;
1838	shmem_falloc.start = start;
1839	shmem_falloc.next  = start;
1840	shmem_falloc.nr_falloced = 0;
1841	shmem_falloc.nr_unswapped = 0;
1842	spin_lock(&inode->i_lock);
1843	inode->i_private = &shmem_falloc;
1844	spin_unlock(&inode->i_lock);
1845
1846	for (index = start; index < end; index++) {
1847		struct page *page;
1848
1849		/*
1850		 * Good, the fallocate(2) manpage permits EINTR: we may have
1851		 * been interrupted because we are using up too much memory.
1852		 */
1853		if (signal_pending(current))
1854			error = -EINTR;
1855		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1856			error = -ENOMEM;
1857		else
1858			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1859									NULL);
1860		if (error) {
1861			/* Remove the !PageUptodate pages we added */
1862			shmem_undo_range(inode,
1863				(loff_t)start << PAGE_CACHE_SHIFT,
1864				(loff_t)index << PAGE_CACHE_SHIFT, true);
1865			goto undone;
1866		}
1867
1868		/*
1869		 * Inform shmem_writepage() how far we have reached.
1870		 * No need for lock or barrier: we have the page lock.
1871		 */
1872		shmem_falloc.next++;
1873		if (!PageUptodate(page))
1874			shmem_falloc.nr_falloced++;
1875
1876		/*
1877		 * If !PageUptodate, leave it that way so that freeable pages
1878		 * can be recognized if we need to rollback on error later.
1879		 * But set_page_dirty so that memory pressure will swap rather
1880		 * than free the pages we are allocating (and SGP_CACHE pages
1881		 * might still be clean: we now need to mark those dirty too).
1882		 */
1883		set_page_dirty(page);
1884		unlock_page(page);
1885		page_cache_release(page);
1886		cond_resched();
1887	}
1888
1889	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1890		i_size_write(inode, offset + len);
1891	inode->i_ctime = CURRENT_TIME;
1892undone:
1893	spin_lock(&inode->i_lock);
1894	inode->i_private = NULL;
1895	spin_unlock(&inode->i_lock);
1896out:
1897	mutex_unlock(&inode->i_mutex);
1898	return error;
1899}
1900
1901static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1902{
1903	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1904
1905	buf->f_type = TMPFS_MAGIC;
1906	buf->f_bsize = PAGE_CACHE_SIZE;
1907	buf->f_namelen = NAME_MAX;
1908	if (sbinfo->max_blocks) {
1909		buf->f_blocks = sbinfo->max_blocks;
1910		buf->f_bavail =
1911		buf->f_bfree  = sbinfo->max_blocks -
1912				percpu_counter_sum(&sbinfo->used_blocks);
1913	}
1914	if (sbinfo->max_inodes) {
1915		buf->f_files = sbinfo->max_inodes;
1916		buf->f_ffree = sbinfo->free_inodes;
1917	}
1918	/* else leave those fields 0 like simple_statfs */
1919	return 0;
1920}
1921
1922/*
1923 * File creation. Allocate an inode, and we're done..
1924 */
1925static int
1926shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1927{
1928	struct inode *inode;
1929	int error = -ENOSPC;
1930
1931	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1932	if (inode) {
1933		error = simple_acl_create(dir, inode);
1934		if (error)
1935			goto out_iput;
1936		error = security_inode_init_security(inode, dir,
1937						     &dentry->d_name,
1938						     shmem_initxattrs, NULL);
1939		if (error && error != -EOPNOTSUPP)
1940			goto out_iput;
1941
1942		error = 0;
1943		dir->i_size += BOGO_DIRENT_SIZE;
1944		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1945		d_instantiate(dentry, inode);
1946		dget(dentry); /* Extra count - pin the dentry in core */
1947	}
1948	return error;
1949out_iput:
1950	iput(inode);
1951	return error;
1952}
1953
1954static int
1955shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1956{
1957	struct inode *inode;
1958	int error = -ENOSPC;
1959
1960	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1961	if (inode) {
1962		error = security_inode_init_security(inode, dir,
1963						     NULL,
1964						     shmem_initxattrs, NULL);
1965		if (error && error != -EOPNOTSUPP)
1966			goto out_iput;
1967		error = simple_acl_create(dir, inode);
1968		if (error)
1969			goto out_iput;
1970		d_tmpfile(dentry, inode);
1971	}
1972	return error;
1973out_iput:
1974	iput(inode);
1975	return error;
1976}
1977
1978static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1979{
1980	int error;
1981
1982	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1983		return error;
1984	inc_nlink(dir);
1985	return 0;
1986}
1987
1988static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1989		bool excl)
1990{
1991	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1992}
1993
1994/*
1995 * Link a file..
1996 */
1997static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1998{
1999	struct inode *inode = old_dentry->d_inode;
2000	int ret;
2001
2002	/*
2003	 * No ordinary (disk based) filesystem counts links as inodes;
2004	 * but each new link needs a new dentry, pinning lowmem, and
2005	 * tmpfs dentries cannot be pruned until they are unlinked.
2006	 */
2007	ret = shmem_reserve_inode(inode->i_sb);
2008	if (ret)
2009		goto out;
2010
2011	dir->i_size += BOGO_DIRENT_SIZE;
2012	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2013	inc_nlink(inode);
2014	ihold(inode);	/* New dentry reference */
2015	dget(dentry);		/* Extra pinning count for the created dentry */
2016	d_instantiate(dentry, inode);
2017out:
2018	return ret;
2019}
2020
2021static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2022{
2023	struct inode *inode = dentry->d_inode;
2024
2025	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2026		shmem_free_inode(inode->i_sb);
2027
2028	dir->i_size -= BOGO_DIRENT_SIZE;
2029	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2030	drop_nlink(inode);
2031	dput(dentry);	/* Undo the count from "create" - this does all the work */
2032	return 0;
2033}
2034
2035static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2036{
2037	if (!simple_empty(dentry))
2038		return -ENOTEMPTY;
2039
2040	drop_nlink(dentry->d_inode);
2041	drop_nlink(dir);
2042	return shmem_unlink(dir, dentry);
2043}
2044
2045/*
2046 * The VFS layer already does all the dentry stuff for rename,
2047 * we just have to decrement the usage count for the target if
2048 * it exists so that the VFS layer correctly free's it when it
2049 * gets overwritten.
2050 */
2051static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2052{
2053	struct inode *inode = old_dentry->d_inode;
2054	int they_are_dirs = S_ISDIR(inode->i_mode);
2055
2056	if (!simple_empty(new_dentry))
2057		return -ENOTEMPTY;
2058
2059	if (new_dentry->d_inode) {
2060		(void) shmem_unlink(new_dir, new_dentry);
2061		if (they_are_dirs)
2062			drop_nlink(old_dir);
2063	} else if (they_are_dirs) {
2064		drop_nlink(old_dir);
2065		inc_nlink(new_dir);
2066	}
2067
2068	old_dir->i_size -= BOGO_DIRENT_SIZE;
2069	new_dir->i_size += BOGO_DIRENT_SIZE;
2070	old_dir->i_ctime = old_dir->i_mtime =
2071	new_dir->i_ctime = new_dir->i_mtime =
2072	inode->i_ctime = CURRENT_TIME;
2073	return 0;
2074}
2075
2076static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2077{
2078	int error;
2079	int len;
2080	struct inode *inode;
2081	struct page *page;
2082	char *kaddr;
2083	struct shmem_inode_info *info;
2084
2085	len = strlen(symname) + 1;
2086	if (len > PAGE_CACHE_SIZE)
2087		return -ENAMETOOLONG;
2088
2089	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2090	if (!inode)
2091		return -ENOSPC;
2092
2093	error = security_inode_init_security(inode, dir, &dentry->d_name,
2094					     shmem_initxattrs, NULL);
2095	if (error) {
2096		if (error != -EOPNOTSUPP) {
2097			iput(inode);
2098			return error;
2099		}
2100		error = 0;
2101	}
2102
2103	info = SHMEM_I(inode);
2104	inode->i_size = len-1;
2105	if (len <= SHORT_SYMLINK_LEN) {
2106		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2107		if (!info->symlink) {
2108			iput(inode);
2109			return -ENOMEM;
2110		}
2111		inode->i_op = &shmem_short_symlink_operations;
2112	} else {
2113		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2114		if (error) {
2115			iput(inode);
2116			return error;
2117		}
2118		inode->i_mapping->a_ops = &shmem_aops;
2119		inode->i_op = &shmem_symlink_inode_operations;
2120		kaddr = kmap_atomic(page);
2121		memcpy(kaddr, symname, len);
2122		kunmap_atomic(kaddr);
2123		SetPageUptodate(page);
2124		set_page_dirty(page);
2125		unlock_page(page);
2126		page_cache_release(page);
2127	}
2128	dir->i_size += BOGO_DIRENT_SIZE;
2129	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2130	d_instantiate(dentry, inode);
2131	dget(dentry);
2132	return 0;
2133}
2134
2135static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2136{
2137	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2138	return NULL;
2139}
2140
2141static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2142{
2143	struct page *page = NULL;
2144	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2145	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2146	if (page)
2147		unlock_page(page);
2148	return page;
2149}
2150
2151static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2152{
2153	if (!IS_ERR(nd_get_link(nd))) {
2154		struct page *page = cookie;
2155		kunmap(page);
2156		mark_page_accessed(page);
2157		page_cache_release(page);
2158	}
2159}
2160
2161#ifdef CONFIG_TMPFS_XATTR
2162/*
2163 * Superblocks without xattr inode operations may get some security.* xattr
2164 * support from the LSM "for free". As soon as we have any other xattrs
2165 * like ACLs, we also need to implement the security.* handlers at
2166 * filesystem level, though.
2167 */
2168
2169/*
2170 * Callback for security_inode_init_security() for acquiring xattrs.
2171 */
2172static int shmem_initxattrs(struct inode *inode,
2173			    const struct xattr *xattr_array,
2174			    void *fs_info)
2175{
2176	struct shmem_inode_info *info = SHMEM_I(inode);
2177	const struct xattr *xattr;
2178	struct simple_xattr *new_xattr;
2179	size_t len;
2180
2181	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2182		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2183		if (!new_xattr)
2184			return -ENOMEM;
2185
2186		len = strlen(xattr->name) + 1;
2187		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2188					  GFP_KERNEL);
2189		if (!new_xattr->name) {
2190			kfree(new_xattr);
2191			return -ENOMEM;
2192		}
2193
2194		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2195		       XATTR_SECURITY_PREFIX_LEN);
2196		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2197		       xattr->name, len);
2198
2199		simple_xattr_list_add(&info->xattrs, new_xattr);
2200	}
2201
2202	return 0;
2203}
2204
2205static const struct xattr_handler *shmem_xattr_handlers[] = {
2206#ifdef CONFIG_TMPFS_POSIX_ACL
2207	&posix_acl_access_xattr_handler,
2208	&posix_acl_default_xattr_handler,
2209#endif
2210	NULL
2211};
2212
2213static int shmem_xattr_validate(const char *name)
2214{
2215	struct { const char *prefix; size_t len; } arr[] = {
2216		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2217		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2218	};
2219	int i;
2220
2221	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2222		size_t preflen = arr[i].len;
2223		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2224			if (!name[preflen])
2225				return -EINVAL;
2226			return 0;
2227		}
2228	}
2229	return -EOPNOTSUPP;
2230}
2231
2232static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2233			      void *buffer, size_t size)
2234{
2235	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2236	int err;
2237
2238	/*
2239	 * If this is a request for a synthetic attribute in the system.*
2240	 * namespace use the generic infrastructure to resolve a handler
2241	 * for it via sb->s_xattr.
2242	 */
2243	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2244		return generic_getxattr(dentry, name, buffer, size);
2245
2246	err = shmem_xattr_validate(name);
2247	if (err)
2248		return err;
2249
2250	return simple_xattr_get(&info->xattrs, name, buffer, size);
2251}
2252
2253static int shmem_setxattr(struct dentry *dentry, const char *name,
2254			  const void *value, size_t size, int flags)
2255{
2256	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2257	int err;
2258
2259	/*
2260	 * If this is a request for a synthetic attribute in the system.*
2261	 * namespace use the generic infrastructure to resolve a handler
2262	 * for it via sb->s_xattr.
2263	 */
2264	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2265		return generic_setxattr(dentry, name, value, size, flags);
2266
2267	err = shmem_xattr_validate(name);
2268	if (err)
2269		return err;
2270
2271	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2272}
2273
2274static int shmem_removexattr(struct dentry *dentry, const char *name)
2275{
2276	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2277	int err;
2278
2279	/*
2280	 * If this is a request for a synthetic attribute in the system.*
2281	 * namespace use the generic infrastructure to resolve a handler
2282	 * for it via sb->s_xattr.
2283	 */
2284	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2285		return generic_removexattr(dentry, name);
2286
2287	err = shmem_xattr_validate(name);
2288	if (err)
2289		return err;
2290
2291	return simple_xattr_remove(&info->xattrs, name);
2292}
2293
2294static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2295{
2296	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2297	return simple_xattr_list(&info->xattrs, buffer, size);
2298}
2299#endif /* CONFIG_TMPFS_XATTR */
2300
2301static const struct inode_operations shmem_short_symlink_operations = {
2302	.readlink	= generic_readlink,
2303	.follow_link	= shmem_follow_short_symlink,
2304#ifdef CONFIG_TMPFS_XATTR
2305	.setxattr	= shmem_setxattr,
2306	.getxattr	= shmem_getxattr,
2307	.listxattr	= shmem_listxattr,
2308	.removexattr	= shmem_removexattr,
2309#endif
2310};
2311
2312static const struct inode_operations shmem_symlink_inode_operations = {
2313	.readlink	= generic_readlink,
2314	.follow_link	= shmem_follow_link,
2315	.put_link	= shmem_put_link,
2316#ifdef CONFIG_TMPFS_XATTR
2317	.setxattr	= shmem_setxattr,
2318	.getxattr	= shmem_getxattr,
2319	.listxattr	= shmem_listxattr,
2320	.removexattr	= shmem_removexattr,
2321#endif
2322};
2323
2324static struct dentry *shmem_get_parent(struct dentry *child)
2325{
2326	return ERR_PTR(-ESTALE);
2327}
2328
2329static int shmem_match(struct inode *ino, void *vfh)
2330{
2331	__u32 *fh = vfh;
2332	__u64 inum = fh[2];
2333	inum = (inum << 32) | fh[1];
2334	return ino->i_ino == inum && fh[0] == ino->i_generation;
2335}
2336
2337static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2338		struct fid *fid, int fh_len, int fh_type)
2339{
2340	struct inode *inode;
2341	struct dentry *dentry = NULL;
2342	u64 inum;
2343
2344	if (fh_len < 3)
2345		return NULL;
2346
2347	inum = fid->raw[2];
2348	inum = (inum << 32) | fid->raw[1];
2349
2350	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2351			shmem_match, fid->raw);
2352	if (inode) {
2353		dentry = d_find_alias(inode);
2354		iput(inode);
2355	}
2356
2357	return dentry;
2358}
2359
2360static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2361				struct inode *parent)
2362{
2363	if (*len < 3) {
2364		*len = 3;
2365		return FILEID_INVALID;
2366	}
2367
2368	if (inode_unhashed(inode)) {
2369		/* Unfortunately insert_inode_hash is not idempotent,
2370		 * so as we hash inodes here rather than at creation
2371		 * time, we need a lock to ensure we only try
2372		 * to do it once
2373		 */
2374		static DEFINE_SPINLOCK(lock);
2375		spin_lock(&lock);
2376		if (inode_unhashed(inode))
2377			__insert_inode_hash(inode,
2378					    inode->i_ino + inode->i_generation);
2379		spin_unlock(&lock);
2380	}
2381
2382	fh[0] = inode->i_generation;
2383	fh[1] = inode->i_ino;
2384	fh[2] = ((__u64)inode->i_ino) >> 32;
2385
2386	*len = 3;
2387	return 1;
2388}
2389
2390static const struct export_operations shmem_export_ops = {
2391	.get_parent     = shmem_get_parent,
2392	.encode_fh      = shmem_encode_fh,
2393	.fh_to_dentry	= shmem_fh_to_dentry,
2394};
2395
2396static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2397			       bool remount)
2398{
2399	char *this_char, *value, *rest;
2400	struct mempolicy *mpol = NULL;
2401	uid_t uid;
2402	gid_t gid;
2403
2404	while (options != NULL) {
2405		this_char = options;
2406		for (;;) {
2407			/*
2408			 * NUL-terminate this option: unfortunately,
2409			 * mount options form a comma-separated list,
2410			 * but mpol's nodelist may also contain commas.
2411			 */
2412			options = strchr(options, ',');
2413			if (options == NULL)
2414				break;
2415			options++;
2416			if (!isdigit(*options)) {
2417				options[-1] = '\0';
2418				break;
2419			}
2420		}
2421		if (!*this_char)
2422			continue;
2423		if ((value = strchr(this_char,'=')) != NULL) {
2424			*value++ = 0;
2425		} else {
2426			printk(KERN_ERR
2427			    "tmpfs: No value for mount option '%s'\n",
2428			    this_char);
2429			goto error;
2430		}
2431
2432		if (!strcmp(this_char,"size")) {
2433			unsigned long long size;
2434			size = memparse(value,&rest);
2435			if (*rest == '%') {
2436				size <<= PAGE_SHIFT;
2437				size *= totalram_pages;
2438				do_div(size, 100);
2439				rest++;
2440			}
2441			if (*rest)
2442				goto bad_val;
2443			sbinfo->max_blocks =
2444				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2445		} else if (!strcmp(this_char,"nr_blocks")) {
2446			sbinfo->max_blocks = memparse(value, &rest);
2447			if (*rest)
2448				goto bad_val;
2449		} else if (!strcmp(this_char,"nr_inodes")) {
2450			sbinfo->max_inodes = memparse(value, &rest);
2451			if (*rest)
2452				goto bad_val;
2453		} else if (!strcmp(this_char,"mode")) {
2454			if (remount)
2455				continue;
2456			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2457			if (*rest)
2458				goto bad_val;
2459		} else if (!strcmp(this_char,"uid")) {
2460			if (remount)
2461				continue;
2462			uid = simple_strtoul(value, &rest, 0);
2463			if (*rest)
2464				goto bad_val;
2465			sbinfo->uid = make_kuid(current_user_ns(), uid);
2466			if (!uid_valid(sbinfo->uid))
2467				goto bad_val;
2468		} else if (!strcmp(this_char,"gid")) {
2469			if (remount)
2470				continue;
2471			gid = simple_strtoul(value, &rest, 0);
2472			if (*rest)
2473				goto bad_val;
2474			sbinfo->gid = make_kgid(current_user_ns(), gid);
2475			if (!gid_valid(sbinfo->gid))
2476				goto bad_val;
2477		} else if (!strcmp(this_char,"mpol")) {
2478			mpol_put(mpol);
2479			mpol = NULL;
2480			if (mpol_parse_str(value, &mpol))
2481				goto bad_val;
2482		} else {
2483			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2484			       this_char);
2485			goto error;
2486		}
2487	}
2488	sbinfo->mpol = mpol;
2489	return 0;
2490
2491bad_val:
2492	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2493	       value, this_char);
2494error:
2495	mpol_put(mpol);
2496	return 1;
2497
2498}
2499
2500static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2501{
2502	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2503	struct shmem_sb_info config = *sbinfo;
2504	unsigned long inodes;
2505	int error = -EINVAL;
2506
2507	config.mpol = NULL;
2508	if (shmem_parse_options(data, &config, true))
2509		return error;
2510
2511	spin_lock(&sbinfo->stat_lock);
2512	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2513	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2514		goto out;
2515	if (config.max_inodes < inodes)
2516		goto out;
2517	/*
2518	 * Those tests disallow limited->unlimited while any are in use;
2519	 * but we must separately disallow unlimited->limited, because
2520	 * in that case we have no record of how much is already in use.
2521	 */
2522	if (config.max_blocks && !sbinfo->max_blocks)
2523		goto out;
2524	if (config.max_inodes && !sbinfo->max_inodes)
2525		goto out;
2526
2527	error = 0;
2528	sbinfo->max_blocks  = config.max_blocks;
2529	sbinfo->max_inodes  = config.max_inodes;
2530	sbinfo->free_inodes = config.max_inodes - inodes;
2531
2532	/*
2533	 * Preserve previous mempolicy unless mpol remount option was specified.
2534	 */
2535	if (config.mpol) {
2536		mpol_put(sbinfo->mpol);
2537		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2538	}
2539out:
2540	spin_unlock(&sbinfo->stat_lock);
2541	return error;
2542}
2543
2544static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2545{
2546	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2547
2548	if (sbinfo->max_blocks != shmem_default_max_blocks())
2549		seq_printf(seq, ",size=%luk",
2550			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2551	if (sbinfo->max_inodes != shmem_default_max_inodes())
2552		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2553	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2554		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2555	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2556		seq_printf(seq, ",uid=%u",
2557				from_kuid_munged(&init_user_ns, sbinfo->uid));
2558	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2559		seq_printf(seq, ",gid=%u",
2560				from_kgid_munged(&init_user_ns, sbinfo->gid));
2561	shmem_show_mpol(seq, sbinfo->mpol);
2562	return 0;
2563}
2564#endif /* CONFIG_TMPFS */
2565
2566static void shmem_put_super(struct super_block *sb)
2567{
2568	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2569
2570	percpu_counter_destroy(&sbinfo->used_blocks);
2571	mpol_put(sbinfo->mpol);
2572	kfree(sbinfo);
2573	sb->s_fs_info = NULL;
2574}
2575
2576int shmem_fill_super(struct super_block *sb, void *data, int silent)
2577{
2578	struct inode *inode;
2579	struct shmem_sb_info *sbinfo;
2580	int err = -ENOMEM;
2581
2582	/* Round up to L1_CACHE_BYTES to resist false sharing */
2583	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2584				L1_CACHE_BYTES), GFP_KERNEL);
2585	if (!sbinfo)
2586		return -ENOMEM;
2587
2588	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2589	sbinfo->uid = current_fsuid();
2590	sbinfo->gid = current_fsgid();
2591	sb->s_fs_info = sbinfo;
2592
2593#ifdef CONFIG_TMPFS
2594	/*
2595	 * Per default we only allow half of the physical ram per
2596	 * tmpfs instance, limiting inodes to one per page of lowmem;
2597	 * but the internal instance is left unlimited.
2598	 */
2599	if (!(sb->s_flags & MS_KERNMOUNT)) {
2600		sbinfo->max_blocks = shmem_default_max_blocks();
2601		sbinfo->max_inodes = shmem_default_max_inodes();
2602		if (shmem_parse_options(data, sbinfo, false)) {
2603			err = -EINVAL;
2604			goto failed;
2605		}
2606	} else {
2607		sb->s_flags |= MS_NOUSER;
2608	}
2609	sb->s_export_op = &shmem_export_ops;
2610	sb->s_flags |= MS_NOSEC;
2611#else
2612	sb->s_flags |= MS_NOUSER;
2613#endif
2614
2615	spin_lock_init(&sbinfo->stat_lock);
2616	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2617		goto failed;
2618	sbinfo->free_inodes = sbinfo->max_inodes;
2619
2620	sb->s_maxbytes = MAX_LFS_FILESIZE;
2621	sb->s_blocksize = PAGE_CACHE_SIZE;
2622	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2623	sb->s_magic = TMPFS_MAGIC;
2624	sb->s_op = &shmem_ops;
2625	sb->s_time_gran = 1;
2626#ifdef CONFIG_TMPFS_XATTR
2627	sb->s_xattr = shmem_xattr_handlers;
2628#endif
2629#ifdef CONFIG_TMPFS_POSIX_ACL
2630	sb->s_flags |= MS_POSIXACL;
2631#endif
2632
2633	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2634	if (!inode)
2635		goto failed;
2636	inode->i_uid = sbinfo->uid;
2637	inode->i_gid = sbinfo->gid;
2638	sb->s_root = d_make_root(inode);
2639	if (!sb->s_root)
2640		goto failed;
2641	return 0;
2642
2643failed:
2644	shmem_put_super(sb);
2645	return err;
2646}
2647
2648static struct kmem_cache *shmem_inode_cachep;
2649
2650static struct inode *shmem_alloc_inode(struct super_block *sb)
2651{
2652	struct shmem_inode_info *info;
2653	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2654	if (!info)
2655		return NULL;
2656	return &info->vfs_inode;
2657}
2658
2659static void shmem_destroy_callback(struct rcu_head *head)
2660{
2661	struct inode *inode = container_of(head, struct inode, i_rcu);
2662	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2663}
2664
2665static void shmem_destroy_inode(struct inode *inode)
2666{
2667	if (S_ISREG(inode->i_mode))
2668		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2669	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2670}
2671
2672static void shmem_init_inode(void *foo)
2673{
2674	struct shmem_inode_info *info = foo;
2675	inode_init_once(&info->vfs_inode);
2676}
2677
2678static int shmem_init_inodecache(void)
2679{
2680	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2681				sizeof(struct shmem_inode_info),
2682				0, SLAB_PANIC, shmem_init_inode);
2683	return 0;
2684}
2685
2686static void shmem_destroy_inodecache(void)
2687{
2688	kmem_cache_destroy(shmem_inode_cachep);
2689}
2690
2691static const struct address_space_operations shmem_aops = {
2692	.writepage	= shmem_writepage,
2693	.set_page_dirty	= __set_page_dirty_no_writeback,
2694#ifdef CONFIG_TMPFS
2695	.write_begin	= shmem_write_begin,
2696	.write_end	= shmem_write_end,
2697#endif
2698	.migratepage	= migrate_page,
2699	.error_remove_page = generic_error_remove_page,
2700};
2701
2702static const struct file_operations shmem_file_operations = {
2703	.mmap		= shmem_mmap,
2704#ifdef CONFIG_TMPFS
2705	.llseek		= shmem_file_llseek,
2706	.read		= new_sync_read,
2707	.write		= new_sync_write,
2708	.read_iter	= shmem_file_read_iter,
2709	.write_iter	= generic_file_write_iter,
2710	.fsync		= noop_fsync,
2711	.splice_read	= shmem_file_splice_read,
2712	.splice_write	= iter_file_splice_write,
2713	.fallocate	= shmem_fallocate,
2714#endif
2715};
2716
2717static const struct inode_operations shmem_inode_operations = {
2718	.setattr	= shmem_setattr,
2719#ifdef CONFIG_TMPFS_XATTR
2720	.setxattr	= shmem_setxattr,
2721	.getxattr	= shmem_getxattr,
2722	.listxattr	= shmem_listxattr,
2723	.removexattr	= shmem_removexattr,
2724	.set_acl	= simple_set_acl,
2725#endif
2726};
2727
2728static const struct inode_operations shmem_dir_inode_operations = {
2729#ifdef CONFIG_TMPFS
2730	.create		= shmem_create,
2731	.lookup		= simple_lookup,
2732	.link		= shmem_link,
2733	.unlink		= shmem_unlink,
2734	.symlink	= shmem_symlink,
2735	.mkdir		= shmem_mkdir,
2736	.rmdir		= shmem_rmdir,
2737	.mknod		= shmem_mknod,
2738	.rename		= shmem_rename,
2739	.tmpfile	= shmem_tmpfile,
2740#endif
2741#ifdef CONFIG_TMPFS_XATTR
2742	.setxattr	= shmem_setxattr,
2743	.getxattr	= shmem_getxattr,
2744	.listxattr	= shmem_listxattr,
2745	.removexattr	= shmem_removexattr,
2746#endif
2747#ifdef CONFIG_TMPFS_POSIX_ACL
2748	.setattr	= shmem_setattr,
2749	.set_acl	= simple_set_acl,
2750#endif
2751};
2752
2753static const struct inode_operations shmem_special_inode_operations = {
2754#ifdef CONFIG_TMPFS_XATTR
2755	.setxattr	= shmem_setxattr,
2756	.getxattr	= shmem_getxattr,
2757	.listxattr	= shmem_listxattr,
2758	.removexattr	= shmem_removexattr,
2759#endif
2760#ifdef CONFIG_TMPFS_POSIX_ACL
2761	.setattr	= shmem_setattr,
2762	.set_acl	= simple_set_acl,
2763#endif
2764};
2765
2766static const struct super_operations shmem_ops = {
2767	.alloc_inode	= shmem_alloc_inode,
2768	.destroy_inode	= shmem_destroy_inode,
2769#ifdef CONFIG_TMPFS
2770	.statfs		= shmem_statfs,
2771	.remount_fs	= shmem_remount_fs,
2772	.show_options	= shmem_show_options,
2773#endif
2774	.evict_inode	= shmem_evict_inode,
2775	.drop_inode	= generic_delete_inode,
2776	.put_super	= shmem_put_super,
2777};
2778
2779static const struct vm_operations_struct shmem_vm_ops = {
2780	.fault		= shmem_fault,
2781	.map_pages	= filemap_map_pages,
2782#ifdef CONFIG_NUMA
2783	.set_policy     = shmem_set_policy,
2784	.get_policy     = shmem_get_policy,
2785#endif
2786	.remap_pages	= generic_file_remap_pages,
2787};
2788
2789static struct dentry *shmem_mount(struct file_system_type *fs_type,
2790	int flags, const char *dev_name, void *data)
2791{
2792	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2793}
2794
2795static struct file_system_type shmem_fs_type = {
2796	.owner		= THIS_MODULE,
2797	.name		= "tmpfs",
2798	.mount		= shmem_mount,
2799	.kill_sb	= kill_litter_super,
2800	.fs_flags	= FS_USERNS_MOUNT,
2801};
2802
2803int __init shmem_init(void)
2804{
2805	int error;
2806
2807	/* If rootfs called this, don't re-init */
2808	if (shmem_inode_cachep)
2809		return 0;
2810
2811	error = bdi_init(&shmem_backing_dev_info);
2812	if (error)
2813		goto out4;
2814
2815	error = shmem_init_inodecache();
2816	if (error)
2817		goto out3;
2818
2819	error = register_filesystem(&shmem_fs_type);
2820	if (error) {
2821		printk(KERN_ERR "Could not register tmpfs\n");
2822		goto out2;
2823	}
2824
2825	shm_mnt = kern_mount(&shmem_fs_type);
2826	if (IS_ERR(shm_mnt)) {
2827		error = PTR_ERR(shm_mnt);
2828		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2829		goto out1;
2830	}
2831	return 0;
2832
2833out1:
2834	unregister_filesystem(&shmem_fs_type);
2835out2:
2836	shmem_destroy_inodecache();
2837out3:
2838	bdi_destroy(&shmem_backing_dev_info);
2839out4:
2840	shm_mnt = ERR_PTR(error);
2841	return error;
2842}
2843
2844#else /* !CONFIG_SHMEM */
2845
2846/*
2847 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2848 *
2849 * This is intended for small system where the benefits of the full
2850 * shmem code (swap-backed and resource-limited) are outweighed by
2851 * their complexity. On systems without swap this code should be
2852 * effectively equivalent, but much lighter weight.
2853 */
2854
2855static struct file_system_type shmem_fs_type = {
2856	.name		= "tmpfs",
2857	.mount		= ramfs_mount,
2858	.kill_sb	= kill_litter_super,
2859	.fs_flags	= FS_USERNS_MOUNT,
2860};
2861
2862int __init shmem_init(void)
2863{
2864	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2865
2866	shm_mnt = kern_mount(&shmem_fs_type);
2867	BUG_ON(IS_ERR(shm_mnt));
2868
2869	return 0;
2870}
2871
2872int shmem_unuse(swp_entry_t swap, struct page *page)
2873{
2874	return 0;
2875}
2876
2877int shmem_lock(struct file *file, int lock, struct user_struct *user)
2878{
2879	return 0;
2880}
2881
2882void shmem_unlock_mapping(struct address_space *mapping)
2883{
2884}
2885
2886void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2887{
2888	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2889}
2890EXPORT_SYMBOL_GPL(shmem_truncate_range);
2891
2892#define shmem_vm_ops				generic_file_vm_ops
2893#define shmem_file_operations			ramfs_file_operations
2894#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2895#define shmem_acct_size(flags, size)		0
2896#define shmem_unacct_size(flags, size)		do {} while (0)
2897
2898#endif /* CONFIG_SHMEM */
2899
2900/* common code */
2901
2902static struct dentry_operations anon_ops = {
2903	.d_dname = simple_dname
2904};
2905
2906static struct file *__shmem_file_setup(const char *name, loff_t size,
2907				       unsigned long flags, unsigned int i_flags)
2908{
2909	struct file *res;
2910	struct inode *inode;
2911	struct path path;
2912	struct super_block *sb;
2913	struct qstr this;
2914
2915	if (IS_ERR(shm_mnt))
2916		return ERR_CAST(shm_mnt);
2917
2918	if (size < 0 || size > MAX_LFS_FILESIZE)
2919		return ERR_PTR(-EINVAL);
2920
2921	if (shmem_acct_size(flags, size))
2922		return ERR_PTR(-ENOMEM);
2923
2924	res = ERR_PTR(-ENOMEM);
2925	this.name = name;
2926	this.len = strlen(name);
2927	this.hash = 0; /* will go */
2928	sb = shm_mnt->mnt_sb;
2929	path.dentry = d_alloc_pseudo(sb, &this);
2930	if (!path.dentry)
2931		goto put_memory;
2932	d_set_d_op(path.dentry, &anon_ops);
2933	path.mnt = mntget(shm_mnt);
2934
2935	res = ERR_PTR(-ENOSPC);
2936	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2937	if (!inode)
2938		goto put_dentry;
2939
2940	inode->i_flags |= i_flags;
2941	d_instantiate(path.dentry, inode);
2942	inode->i_size = size;
2943	clear_nlink(inode);	/* It is unlinked */
2944	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2945	if (IS_ERR(res))
2946		goto put_dentry;
2947
2948	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2949		  &shmem_file_operations);
2950	if (IS_ERR(res))
2951		goto put_dentry;
2952
2953	return res;
2954
2955put_dentry:
2956	path_put(&path);
2957put_memory:
2958	shmem_unacct_size(flags, size);
2959	return res;
2960}
2961
2962/**
2963 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2964 * 	kernel internal.  There will be NO LSM permission checks against the
2965 * 	underlying inode.  So users of this interface must do LSM checks at a
2966 * 	higher layer.  The one user is the big_key implementation.  LSM checks
2967 * 	are provided at the key level rather than the inode level.
2968 * @name: name for dentry (to be seen in /proc/<pid>/maps
2969 * @size: size to be set for the file
2970 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2971 */
2972struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2973{
2974	return __shmem_file_setup(name, size, flags, S_PRIVATE);
2975}
2976
2977/**
2978 * shmem_file_setup - get an unlinked file living in tmpfs
2979 * @name: name for dentry (to be seen in /proc/<pid>/maps
2980 * @size: size to be set for the file
2981 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2982 */
2983struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2984{
2985	return __shmem_file_setup(name, size, flags, 0);
2986}
2987EXPORT_SYMBOL_GPL(shmem_file_setup);
2988
2989/**
2990 * shmem_zero_setup - setup a shared anonymous mapping
2991 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2992 */
2993int shmem_zero_setup(struct vm_area_struct *vma)
2994{
2995	struct file *file;
2996	loff_t size = vma->vm_end - vma->vm_start;
2997
2998	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2999	if (IS_ERR(file))
3000		return PTR_ERR(file);
3001
3002	if (vma->vm_file)
3003		fput(vma->vm_file);
3004	vma->vm_file = file;
3005	vma->vm_ops = &shmem_vm_ops;
3006	return 0;
3007}
3008
3009/**
3010 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3011 * @mapping:	the page's address_space
3012 * @index:	the page index
3013 * @gfp:	the page allocator flags to use if allocating
3014 *
3015 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3016 * with any new page allocations done using the specified allocation flags.
3017 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3018 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3019 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3020 *
3021 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3022 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3023 */
3024struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3025					 pgoff_t index, gfp_t gfp)
3026{
3027#ifdef CONFIG_SHMEM
3028	struct inode *inode = mapping->host;
3029	struct page *page;
3030	int error;
3031
3032	BUG_ON(mapping->a_ops != &shmem_aops);
3033	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3034	if (error)
3035		page = ERR_PTR(error);
3036	else
3037		unlock_page(page);
3038	return page;
3039#else
3040	/*
3041	 * The tiny !SHMEM case uses ramfs without swap
3042	 */
3043	return read_cache_page_gfp(mapping, index, gfp);
3044#endif
3045}
3046EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3047