shmem.c revision 9183df25fe7b194563db3fec6dc3202a5855839c
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/aio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69#include <linux/syscalls.h>
70#include <linux/fcntl.h>
71#include <uapi/linux/memfd.h>
72
73#include <asm/uaccess.h>
74#include <asm/pgtable.h>
75
76#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
77#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78
79/* Pretend that each entry is of this size in directory's i_size */
80#define BOGO_DIRENT_SIZE 20
81
82/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83#define SHORT_SYMLINK_LEN 128
84
85/*
86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87 * inode->i_private (with i_mutex making sure that it has only one user at
88 * a time): we would prefer not to enlarge the shmem inode just for that.
89 */
90struct shmem_falloc {
91	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92	pgoff_t start;		/* start of range currently being fallocated */
93	pgoff_t next;		/* the next page offset to be fallocated */
94	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
95	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
96};
97
98/* Flag allocation requirements to shmem_getpage */
99enum sgp_type {
100	SGP_READ,	/* don't exceed i_size, don't allocate page */
101	SGP_CACHE,	/* don't exceed i_size, may allocate page */
102	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
103	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
104	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
105};
106
107#ifdef CONFIG_TMPFS
108static unsigned long shmem_default_max_blocks(void)
109{
110	return totalram_pages / 2;
111}
112
113static unsigned long shmem_default_max_inodes(void)
114{
115	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116}
117#endif
118
119static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121				struct shmem_inode_info *info, pgoff_t index);
122static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124
125static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126	struct page **pagep, enum sgp_type sgp, int *fault_type)
127{
128	return shmem_getpage_gfp(inode, index, pagep, sgp,
129			mapping_gfp_mask(inode->i_mapping), fault_type);
130}
131
132static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133{
134	return sb->s_fs_info;
135}
136
137/*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143static inline int shmem_acct_size(unsigned long flags, loff_t size)
144{
145	return (flags & VM_NORESERVE) ?
146		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147}
148
149static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150{
151	if (!(flags & VM_NORESERVE))
152		vm_unacct_memory(VM_ACCT(size));
153}
154
155static inline int shmem_reacct_size(unsigned long flags,
156		loff_t oldsize, loff_t newsize)
157{
158	if (!(flags & VM_NORESERVE)) {
159		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160			return security_vm_enough_memory_mm(current->mm,
161					VM_ACCT(newsize) - VM_ACCT(oldsize));
162		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164	}
165	return 0;
166}
167
168/*
169 * ... whereas tmpfs objects are accounted incrementally as
170 * pages are allocated, in order to allow huge sparse files.
171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173 */
174static inline int shmem_acct_block(unsigned long flags)
175{
176	return (flags & VM_NORESERVE) ?
177		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178}
179
180static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181{
182	if (flags & VM_NORESERVE)
183		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184}
185
186static const struct super_operations shmem_ops;
187static const struct address_space_operations shmem_aops;
188static const struct file_operations shmem_file_operations;
189static const struct inode_operations shmem_inode_operations;
190static const struct inode_operations shmem_dir_inode_operations;
191static const struct inode_operations shmem_special_inode_operations;
192static const struct vm_operations_struct shmem_vm_ops;
193
194static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
195	.ra_pages	= 0,	/* No readahead */
196	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
197};
198
199static LIST_HEAD(shmem_swaplist);
200static DEFINE_MUTEX(shmem_swaplist_mutex);
201
202static int shmem_reserve_inode(struct super_block *sb)
203{
204	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
205	if (sbinfo->max_inodes) {
206		spin_lock(&sbinfo->stat_lock);
207		if (!sbinfo->free_inodes) {
208			spin_unlock(&sbinfo->stat_lock);
209			return -ENOSPC;
210		}
211		sbinfo->free_inodes--;
212		spin_unlock(&sbinfo->stat_lock);
213	}
214	return 0;
215}
216
217static void shmem_free_inode(struct super_block *sb)
218{
219	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
220	if (sbinfo->max_inodes) {
221		spin_lock(&sbinfo->stat_lock);
222		sbinfo->free_inodes++;
223		spin_unlock(&sbinfo->stat_lock);
224	}
225}
226
227/**
228 * shmem_recalc_inode - recalculate the block usage of an inode
229 * @inode: inode to recalc
230 *
231 * We have to calculate the free blocks since the mm can drop
232 * undirtied hole pages behind our back.
233 *
234 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
235 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
236 *
237 * It has to be called with the spinlock held.
238 */
239static void shmem_recalc_inode(struct inode *inode)
240{
241	struct shmem_inode_info *info = SHMEM_I(inode);
242	long freed;
243
244	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
245	if (freed > 0) {
246		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247		if (sbinfo->max_blocks)
248			percpu_counter_add(&sbinfo->used_blocks, -freed);
249		info->alloced -= freed;
250		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
251		shmem_unacct_blocks(info->flags, freed);
252	}
253}
254
255/*
256 * Replace item expected in radix tree by a new item, while holding tree lock.
257 */
258static int shmem_radix_tree_replace(struct address_space *mapping,
259			pgoff_t index, void *expected, void *replacement)
260{
261	void **pslot;
262	void *item;
263
264	VM_BUG_ON(!expected);
265	VM_BUG_ON(!replacement);
266	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
267	if (!pslot)
268		return -ENOENT;
269	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
270	if (item != expected)
271		return -ENOENT;
272	radix_tree_replace_slot(pslot, replacement);
273	return 0;
274}
275
276/*
277 * Sometimes, before we decide whether to proceed or to fail, we must check
278 * that an entry was not already brought back from swap by a racing thread.
279 *
280 * Checking page is not enough: by the time a SwapCache page is locked, it
281 * might be reused, and again be SwapCache, using the same swap as before.
282 */
283static bool shmem_confirm_swap(struct address_space *mapping,
284			       pgoff_t index, swp_entry_t swap)
285{
286	void *item;
287
288	rcu_read_lock();
289	item = radix_tree_lookup(&mapping->page_tree, index);
290	rcu_read_unlock();
291	return item == swp_to_radix_entry(swap);
292}
293
294/*
295 * Like add_to_page_cache_locked, but error if expected item has gone.
296 */
297static int shmem_add_to_page_cache(struct page *page,
298				   struct address_space *mapping,
299				   pgoff_t index, void *expected)
300{
301	int error;
302
303	VM_BUG_ON_PAGE(!PageLocked(page), page);
304	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
305
306	page_cache_get(page);
307	page->mapping = mapping;
308	page->index = index;
309
310	spin_lock_irq(&mapping->tree_lock);
311	if (!expected)
312		error = radix_tree_insert(&mapping->page_tree, index, page);
313	else
314		error = shmem_radix_tree_replace(mapping, index, expected,
315								 page);
316	if (!error) {
317		mapping->nrpages++;
318		__inc_zone_page_state(page, NR_FILE_PAGES);
319		__inc_zone_page_state(page, NR_SHMEM);
320		spin_unlock_irq(&mapping->tree_lock);
321	} else {
322		page->mapping = NULL;
323		spin_unlock_irq(&mapping->tree_lock);
324		page_cache_release(page);
325	}
326	return error;
327}
328
329/*
330 * Like delete_from_page_cache, but substitutes swap for page.
331 */
332static void shmem_delete_from_page_cache(struct page *page, void *radswap)
333{
334	struct address_space *mapping = page->mapping;
335	int error;
336
337	spin_lock_irq(&mapping->tree_lock);
338	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
339	page->mapping = NULL;
340	mapping->nrpages--;
341	__dec_zone_page_state(page, NR_FILE_PAGES);
342	__dec_zone_page_state(page, NR_SHMEM);
343	spin_unlock_irq(&mapping->tree_lock);
344	page_cache_release(page);
345	BUG_ON(error);
346}
347
348/*
349 * Remove swap entry from radix tree, free the swap and its page cache.
350 */
351static int shmem_free_swap(struct address_space *mapping,
352			   pgoff_t index, void *radswap)
353{
354	void *old;
355
356	spin_lock_irq(&mapping->tree_lock);
357	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
358	spin_unlock_irq(&mapping->tree_lock);
359	if (old != radswap)
360		return -ENOENT;
361	free_swap_and_cache(radix_to_swp_entry(radswap));
362	return 0;
363}
364
365/*
366 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
367 */
368void shmem_unlock_mapping(struct address_space *mapping)
369{
370	struct pagevec pvec;
371	pgoff_t indices[PAGEVEC_SIZE];
372	pgoff_t index = 0;
373
374	pagevec_init(&pvec, 0);
375	/*
376	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
377	 */
378	while (!mapping_unevictable(mapping)) {
379		/*
380		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
381		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
382		 */
383		pvec.nr = find_get_entries(mapping, index,
384					   PAGEVEC_SIZE, pvec.pages, indices);
385		if (!pvec.nr)
386			break;
387		index = indices[pvec.nr - 1] + 1;
388		pagevec_remove_exceptionals(&pvec);
389		check_move_unevictable_pages(pvec.pages, pvec.nr);
390		pagevec_release(&pvec);
391		cond_resched();
392	}
393}
394
395/*
396 * Remove range of pages and swap entries from radix tree, and free them.
397 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
398 */
399static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
400								 bool unfalloc)
401{
402	struct address_space *mapping = inode->i_mapping;
403	struct shmem_inode_info *info = SHMEM_I(inode);
404	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
405	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
406	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
407	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
408	struct pagevec pvec;
409	pgoff_t indices[PAGEVEC_SIZE];
410	long nr_swaps_freed = 0;
411	pgoff_t index;
412	int i;
413
414	if (lend == -1)
415		end = -1;	/* unsigned, so actually very big */
416
417	pagevec_init(&pvec, 0);
418	index = start;
419	while (index < end) {
420		pvec.nr = find_get_entries(mapping, index,
421			min(end - index, (pgoff_t)PAGEVEC_SIZE),
422			pvec.pages, indices);
423		if (!pvec.nr)
424			break;
425		for (i = 0; i < pagevec_count(&pvec); i++) {
426			struct page *page = pvec.pages[i];
427
428			index = indices[i];
429			if (index >= end)
430				break;
431
432			if (radix_tree_exceptional_entry(page)) {
433				if (unfalloc)
434					continue;
435				nr_swaps_freed += !shmem_free_swap(mapping,
436								index, page);
437				continue;
438			}
439
440			if (!trylock_page(page))
441				continue;
442			if (!unfalloc || !PageUptodate(page)) {
443				if (page->mapping == mapping) {
444					VM_BUG_ON_PAGE(PageWriteback(page), page);
445					truncate_inode_page(mapping, page);
446				}
447			}
448			unlock_page(page);
449		}
450		pagevec_remove_exceptionals(&pvec);
451		pagevec_release(&pvec);
452		cond_resched();
453		index++;
454	}
455
456	if (partial_start) {
457		struct page *page = NULL;
458		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
459		if (page) {
460			unsigned int top = PAGE_CACHE_SIZE;
461			if (start > end) {
462				top = partial_end;
463				partial_end = 0;
464			}
465			zero_user_segment(page, partial_start, top);
466			set_page_dirty(page);
467			unlock_page(page);
468			page_cache_release(page);
469		}
470	}
471	if (partial_end) {
472		struct page *page = NULL;
473		shmem_getpage(inode, end, &page, SGP_READ, NULL);
474		if (page) {
475			zero_user_segment(page, 0, partial_end);
476			set_page_dirty(page);
477			unlock_page(page);
478			page_cache_release(page);
479		}
480	}
481	if (start >= end)
482		return;
483
484	index = start;
485	while (index < end) {
486		cond_resched();
487
488		pvec.nr = find_get_entries(mapping, index,
489				min(end - index, (pgoff_t)PAGEVEC_SIZE),
490				pvec.pages, indices);
491		if (!pvec.nr) {
492			/* If all gone or hole-punch or unfalloc, we're done */
493			if (index == start || end != -1)
494				break;
495			/* But if truncating, restart to make sure all gone */
496			index = start;
497			continue;
498		}
499		for (i = 0; i < pagevec_count(&pvec); i++) {
500			struct page *page = pvec.pages[i];
501
502			index = indices[i];
503			if (index >= end)
504				break;
505
506			if (radix_tree_exceptional_entry(page)) {
507				if (unfalloc)
508					continue;
509				if (shmem_free_swap(mapping, index, page)) {
510					/* Swap was replaced by page: retry */
511					index--;
512					break;
513				}
514				nr_swaps_freed++;
515				continue;
516			}
517
518			lock_page(page);
519			if (!unfalloc || !PageUptodate(page)) {
520				if (page->mapping == mapping) {
521					VM_BUG_ON_PAGE(PageWriteback(page), page);
522					truncate_inode_page(mapping, page);
523				} else {
524					/* Page was replaced by swap: retry */
525					unlock_page(page);
526					index--;
527					break;
528				}
529			}
530			unlock_page(page);
531		}
532		pagevec_remove_exceptionals(&pvec);
533		pagevec_release(&pvec);
534		index++;
535	}
536
537	spin_lock(&info->lock);
538	info->swapped -= nr_swaps_freed;
539	shmem_recalc_inode(inode);
540	spin_unlock(&info->lock);
541}
542
543void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
544{
545	shmem_undo_range(inode, lstart, lend, false);
546	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547}
548EXPORT_SYMBOL_GPL(shmem_truncate_range);
549
550static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
551{
552	struct inode *inode = dentry->d_inode;
553	struct shmem_inode_info *info = SHMEM_I(inode);
554	int error;
555
556	error = inode_change_ok(inode, attr);
557	if (error)
558		return error;
559
560	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
561		loff_t oldsize = inode->i_size;
562		loff_t newsize = attr->ia_size;
563
564		/* protected by i_mutex */
565		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
566		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
567			return -EPERM;
568
569		if (newsize != oldsize) {
570			error = shmem_reacct_size(SHMEM_I(inode)->flags,
571					oldsize, newsize);
572			if (error)
573				return error;
574			i_size_write(inode, newsize);
575			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
576		}
577		if (newsize < oldsize) {
578			loff_t holebegin = round_up(newsize, PAGE_SIZE);
579			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
580			shmem_truncate_range(inode, newsize, (loff_t)-1);
581			/* unmap again to remove racily COWed private pages */
582			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
583		}
584	}
585
586	setattr_copy(inode, attr);
587	if (attr->ia_valid & ATTR_MODE)
588		error = posix_acl_chmod(inode, inode->i_mode);
589	return error;
590}
591
592static void shmem_evict_inode(struct inode *inode)
593{
594	struct shmem_inode_info *info = SHMEM_I(inode);
595
596	if (inode->i_mapping->a_ops == &shmem_aops) {
597		shmem_unacct_size(info->flags, inode->i_size);
598		inode->i_size = 0;
599		shmem_truncate_range(inode, 0, (loff_t)-1);
600		if (!list_empty(&info->swaplist)) {
601			mutex_lock(&shmem_swaplist_mutex);
602			list_del_init(&info->swaplist);
603			mutex_unlock(&shmem_swaplist_mutex);
604		}
605	} else
606		kfree(info->symlink);
607
608	simple_xattrs_free(&info->xattrs);
609	WARN_ON(inode->i_blocks);
610	shmem_free_inode(inode->i_sb);
611	clear_inode(inode);
612}
613
614/*
615 * If swap found in inode, free it and move page from swapcache to filecache.
616 */
617static int shmem_unuse_inode(struct shmem_inode_info *info,
618			     swp_entry_t swap, struct page **pagep)
619{
620	struct address_space *mapping = info->vfs_inode.i_mapping;
621	void *radswap;
622	pgoff_t index;
623	gfp_t gfp;
624	int error = 0;
625
626	radswap = swp_to_radix_entry(swap);
627	index = radix_tree_locate_item(&mapping->page_tree, radswap);
628	if (index == -1)
629		return -EAGAIN;	/* tell shmem_unuse we found nothing */
630
631	/*
632	 * Move _head_ to start search for next from here.
633	 * But be careful: shmem_evict_inode checks list_empty without taking
634	 * mutex, and there's an instant in list_move_tail when info->swaplist
635	 * would appear empty, if it were the only one on shmem_swaplist.
636	 */
637	if (shmem_swaplist.next != &info->swaplist)
638		list_move_tail(&shmem_swaplist, &info->swaplist);
639
640	gfp = mapping_gfp_mask(mapping);
641	if (shmem_should_replace_page(*pagep, gfp)) {
642		mutex_unlock(&shmem_swaplist_mutex);
643		error = shmem_replace_page(pagep, gfp, info, index);
644		mutex_lock(&shmem_swaplist_mutex);
645		/*
646		 * We needed to drop mutex to make that restrictive page
647		 * allocation, but the inode might have been freed while we
648		 * dropped it: although a racing shmem_evict_inode() cannot
649		 * complete without emptying the radix_tree, our page lock
650		 * on this swapcache page is not enough to prevent that -
651		 * free_swap_and_cache() of our swap entry will only
652		 * trylock_page(), removing swap from radix_tree whatever.
653		 *
654		 * We must not proceed to shmem_add_to_page_cache() if the
655		 * inode has been freed, but of course we cannot rely on
656		 * inode or mapping or info to check that.  However, we can
657		 * safely check if our swap entry is still in use (and here
658		 * it can't have got reused for another page): if it's still
659		 * in use, then the inode cannot have been freed yet, and we
660		 * can safely proceed (if it's no longer in use, that tells
661		 * nothing about the inode, but we don't need to unuse swap).
662		 */
663		if (!page_swapcount(*pagep))
664			error = -ENOENT;
665	}
666
667	/*
668	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
669	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
670	 * beneath us (pagelock doesn't help until the page is in pagecache).
671	 */
672	if (!error)
673		error = shmem_add_to_page_cache(*pagep, mapping, index,
674						radswap);
675	if (error != -ENOMEM) {
676		/*
677		 * Truncation and eviction use free_swap_and_cache(), which
678		 * only does trylock page: if we raced, best clean up here.
679		 */
680		delete_from_swap_cache(*pagep);
681		set_page_dirty(*pagep);
682		if (!error) {
683			spin_lock(&info->lock);
684			info->swapped--;
685			spin_unlock(&info->lock);
686			swap_free(swap);
687		}
688	}
689	return error;
690}
691
692/*
693 * Search through swapped inodes to find and replace swap by page.
694 */
695int shmem_unuse(swp_entry_t swap, struct page *page)
696{
697	struct list_head *this, *next;
698	struct shmem_inode_info *info;
699	struct mem_cgroup *memcg;
700	int error = 0;
701
702	/*
703	 * There's a faint possibility that swap page was replaced before
704	 * caller locked it: caller will come back later with the right page.
705	 */
706	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
707		goto out;
708
709	/*
710	 * Charge page using GFP_KERNEL while we can wait, before taking
711	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
712	 * Charged back to the user (not to caller) when swap account is used.
713	 */
714	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
715	if (error)
716		goto out;
717	/* No radix_tree_preload: swap entry keeps a place for page in tree */
718	error = -EAGAIN;
719
720	mutex_lock(&shmem_swaplist_mutex);
721	list_for_each_safe(this, next, &shmem_swaplist) {
722		info = list_entry(this, struct shmem_inode_info, swaplist);
723		if (info->swapped)
724			error = shmem_unuse_inode(info, swap, &page);
725		else
726			list_del_init(&info->swaplist);
727		cond_resched();
728		if (error != -EAGAIN)
729			break;
730		/* found nothing in this: move on to search the next */
731	}
732	mutex_unlock(&shmem_swaplist_mutex);
733
734	if (error) {
735		if (error != -ENOMEM)
736			error = 0;
737		mem_cgroup_cancel_charge(page, memcg);
738	} else
739		mem_cgroup_commit_charge(page, memcg, true);
740out:
741	unlock_page(page);
742	page_cache_release(page);
743	return error;
744}
745
746/*
747 * Move the page from the page cache to the swap cache.
748 */
749static int shmem_writepage(struct page *page, struct writeback_control *wbc)
750{
751	struct shmem_inode_info *info;
752	struct address_space *mapping;
753	struct inode *inode;
754	swp_entry_t swap;
755	pgoff_t index;
756
757	BUG_ON(!PageLocked(page));
758	mapping = page->mapping;
759	index = page->index;
760	inode = mapping->host;
761	info = SHMEM_I(inode);
762	if (info->flags & VM_LOCKED)
763		goto redirty;
764	if (!total_swap_pages)
765		goto redirty;
766
767	/*
768	 * shmem_backing_dev_info's capabilities prevent regular writeback or
769	 * sync from ever calling shmem_writepage; but a stacking filesystem
770	 * might use ->writepage of its underlying filesystem, in which case
771	 * tmpfs should write out to swap only in response to memory pressure,
772	 * and not for the writeback threads or sync.
773	 */
774	if (!wbc->for_reclaim) {
775		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
776		goto redirty;
777	}
778
779	/*
780	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
781	 * value into swapfile.c, the only way we can correctly account for a
782	 * fallocated page arriving here is now to initialize it and write it.
783	 *
784	 * That's okay for a page already fallocated earlier, but if we have
785	 * not yet completed the fallocation, then (a) we want to keep track
786	 * of this page in case we have to undo it, and (b) it may not be a
787	 * good idea to continue anyway, once we're pushing into swap.  So
788	 * reactivate the page, and let shmem_fallocate() quit when too many.
789	 */
790	if (!PageUptodate(page)) {
791		if (inode->i_private) {
792			struct shmem_falloc *shmem_falloc;
793			spin_lock(&inode->i_lock);
794			shmem_falloc = inode->i_private;
795			if (shmem_falloc &&
796			    !shmem_falloc->waitq &&
797			    index >= shmem_falloc->start &&
798			    index < shmem_falloc->next)
799				shmem_falloc->nr_unswapped++;
800			else
801				shmem_falloc = NULL;
802			spin_unlock(&inode->i_lock);
803			if (shmem_falloc)
804				goto redirty;
805		}
806		clear_highpage(page);
807		flush_dcache_page(page);
808		SetPageUptodate(page);
809	}
810
811	swap = get_swap_page();
812	if (!swap.val)
813		goto redirty;
814
815	/*
816	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
817	 * if it's not already there.  Do it now before the page is
818	 * moved to swap cache, when its pagelock no longer protects
819	 * the inode from eviction.  But don't unlock the mutex until
820	 * we've incremented swapped, because shmem_unuse_inode() will
821	 * prune a !swapped inode from the swaplist under this mutex.
822	 */
823	mutex_lock(&shmem_swaplist_mutex);
824	if (list_empty(&info->swaplist))
825		list_add_tail(&info->swaplist, &shmem_swaplist);
826
827	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
828		swap_shmem_alloc(swap);
829		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
830
831		spin_lock(&info->lock);
832		info->swapped++;
833		shmem_recalc_inode(inode);
834		spin_unlock(&info->lock);
835
836		mutex_unlock(&shmem_swaplist_mutex);
837		BUG_ON(page_mapped(page));
838		swap_writepage(page, wbc);
839		return 0;
840	}
841
842	mutex_unlock(&shmem_swaplist_mutex);
843	swapcache_free(swap);
844redirty:
845	set_page_dirty(page);
846	if (wbc->for_reclaim)
847		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
848	unlock_page(page);
849	return 0;
850}
851
852#ifdef CONFIG_NUMA
853#ifdef CONFIG_TMPFS
854static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
855{
856	char buffer[64];
857
858	if (!mpol || mpol->mode == MPOL_DEFAULT)
859		return;		/* show nothing */
860
861	mpol_to_str(buffer, sizeof(buffer), mpol);
862
863	seq_printf(seq, ",mpol=%s", buffer);
864}
865
866static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
867{
868	struct mempolicy *mpol = NULL;
869	if (sbinfo->mpol) {
870		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
871		mpol = sbinfo->mpol;
872		mpol_get(mpol);
873		spin_unlock(&sbinfo->stat_lock);
874	}
875	return mpol;
876}
877#endif /* CONFIG_TMPFS */
878
879static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
880			struct shmem_inode_info *info, pgoff_t index)
881{
882	struct vm_area_struct pvma;
883	struct page *page;
884
885	/* Create a pseudo vma that just contains the policy */
886	pvma.vm_start = 0;
887	/* Bias interleave by inode number to distribute better across nodes */
888	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
889	pvma.vm_ops = NULL;
890	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
891
892	page = swapin_readahead(swap, gfp, &pvma, 0);
893
894	/* Drop reference taken by mpol_shared_policy_lookup() */
895	mpol_cond_put(pvma.vm_policy);
896
897	return page;
898}
899
900static struct page *shmem_alloc_page(gfp_t gfp,
901			struct shmem_inode_info *info, pgoff_t index)
902{
903	struct vm_area_struct pvma;
904	struct page *page;
905
906	/* Create a pseudo vma that just contains the policy */
907	pvma.vm_start = 0;
908	/* Bias interleave by inode number to distribute better across nodes */
909	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
910	pvma.vm_ops = NULL;
911	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
912
913	page = alloc_page_vma(gfp, &pvma, 0);
914
915	/* Drop reference taken by mpol_shared_policy_lookup() */
916	mpol_cond_put(pvma.vm_policy);
917
918	return page;
919}
920#else /* !CONFIG_NUMA */
921#ifdef CONFIG_TMPFS
922static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
923{
924}
925#endif /* CONFIG_TMPFS */
926
927static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
928			struct shmem_inode_info *info, pgoff_t index)
929{
930	return swapin_readahead(swap, gfp, NULL, 0);
931}
932
933static inline struct page *shmem_alloc_page(gfp_t gfp,
934			struct shmem_inode_info *info, pgoff_t index)
935{
936	return alloc_page(gfp);
937}
938#endif /* CONFIG_NUMA */
939
940#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
941static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
942{
943	return NULL;
944}
945#endif
946
947/*
948 * When a page is moved from swapcache to shmem filecache (either by the
949 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
950 * shmem_unuse_inode()), it may have been read in earlier from swap, in
951 * ignorance of the mapping it belongs to.  If that mapping has special
952 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
953 * we may need to copy to a suitable page before moving to filecache.
954 *
955 * In a future release, this may well be extended to respect cpuset and
956 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
957 * but for now it is a simple matter of zone.
958 */
959static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
960{
961	return page_zonenum(page) > gfp_zone(gfp);
962}
963
964static int shmem_replace_page(struct page **pagep, gfp_t gfp,
965				struct shmem_inode_info *info, pgoff_t index)
966{
967	struct page *oldpage, *newpage;
968	struct address_space *swap_mapping;
969	pgoff_t swap_index;
970	int error;
971
972	oldpage = *pagep;
973	swap_index = page_private(oldpage);
974	swap_mapping = page_mapping(oldpage);
975
976	/*
977	 * We have arrived here because our zones are constrained, so don't
978	 * limit chance of success by further cpuset and node constraints.
979	 */
980	gfp &= ~GFP_CONSTRAINT_MASK;
981	newpage = shmem_alloc_page(gfp, info, index);
982	if (!newpage)
983		return -ENOMEM;
984
985	page_cache_get(newpage);
986	copy_highpage(newpage, oldpage);
987	flush_dcache_page(newpage);
988
989	__set_page_locked(newpage);
990	SetPageUptodate(newpage);
991	SetPageSwapBacked(newpage);
992	set_page_private(newpage, swap_index);
993	SetPageSwapCache(newpage);
994
995	/*
996	 * Our caller will very soon move newpage out of swapcache, but it's
997	 * a nice clean interface for us to replace oldpage by newpage there.
998	 */
999	spin_lock_irq(&swap_mapping->tree_lock);
1000	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1001								   newpage);
1002	if (!error) {
1003		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1004		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1005	}
1006	spin_unlock_irq(&swap_mapping->tree_lock);
1007
1008	if (unlikely(error)) {
1009		/*
1010		 * Is this possible?  I think not, now that our callers check
1011		 * both PageSwapCache and page_private after getting page lock;
1012		 * but be defensive.  Reverse old to newpage for clear and free.
1013		 */
1014		oldpage = newpage;
1015	} else {
1016		mem_cgroup_migrate(oldpage, newpage, false);
1017		lru_cache_add_anon(newpage);
1018		*pagep = newpage;
1019	}
1020
1021	ClearPageSwapCache(oldpage);
1022	set_page_private(oldpage, 0);
1023
1024	unlock_page(oldpage);
1025	page_cache_release(oldpage);
1026	page_cache_release(oldpage);
1027	return error;
1028}
1029
1030/*
1031 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1032 *
1033 * If we allocate a new one we do not mark it dirty. That's up to the
1034 * vm. If we swap it in we mark it dirty since we also free the swap
1035 * entry since a page cannot live in both the swap and page cache
1036 */
1037static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1038	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1039{
1040	struct address_space *mapping = inode->i_mapping;
1041	struct shmem_inode_info *info;
1042	struct shmem_sb_info *sbinfo;
1043	struct mem_cgroup *memcg;
1044	struct page *page;
1045	swp_entry_t swap;
1046	int error;
1047	int once = 0;
1048	int alloced = 0;
1049
1050	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1051		return -EFBIG;
1052repeat:
1053	swap.val = 0;
1054	page = find_lock_entry(mapping, index);
1055	if (radix_tree_exceptional_entry(page)) {
1056		swap = radix_to_swp_entry(page);
1057		page = NULL;
1058	}
1059
1060	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1061	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1062		error = -EINVAL;
1063		goto failed;
1064	}
1065
1066	if (page && sgp == SGP_WRITE)
1067		mark_page_accessed(page);
1068
1069	/* fallocated page? */
1070	if (page && !PageUptodate(page)) {
1071		if (sgp != SGP_READ)
1072			goto clear;
1073		unlock_page(page);
1074		page_cache_release(page);
1075		page = NULL;
1076	}
1077	if (page || (sgp == SGP_READ && !swap.val)) {
1078		*pagep = page;
1079		return 0;
1080	}
1081
1082	/*
1083	 * Fast cache lookup did not find it:
1084	 * bring it back from swap or allocate.
1085	 */
1086	info = SHMEM_I(inode);
1087	sbinfo = SHMEM_SB(inode->i_sb);
1088
1089	if (swap.val) {
1090		/* Look it up and read it in.. */
1091		page = lookup_swap_cache(swap);
1092		if (!page) {
1093			/* here we actually do the io */
1094			if (fault_type)
1095				*fault_type |= VM_FAULT_MAJOR;
1096			page = shmem_swapin(swap, gfp, info, index);
1097			if (!page) {
1098				error = -ENOMEM;
1099				goto failed;
1100			}
1101		}
1102
1103		/* We have to do this with page locked to prevent races */
1104		lock_page(page);
1105		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1106		    !shmem_confirm_swap(mapping, index, swap)) {
1107			error = -EEXIST;	/* try again */
1108			goto unlock;
1109		}
1110		if (!PageUptodate(page)) {
1111			error = -EIO;
1112			goto failed;
1113		}
1114		wait_on_page_writeback(page);
1115
1116		if (shmem_should_replace_page(page, gfp)) {
1117			error = shmem_replace_page(&page, gfp, info, index);
1118			if (error)
1119				goto failed;
1120		}
1121
1122		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1123		if (!error) {
1124			error = shmem_add_to_page_cache(page, mapping, index,
1125						swp_to_radix_entry(swap));
1126			/*
1127			 * We already confirmed swap under page lock, and make
1128			 * no memory allocation here, so usually no possibility
1129			 * of error; but free_swap_and_cache() only trylocks a
1130			 * page, so it is just possible that the entry has been
1131			 * truncated or holepunched since swap was confirmed.
1132			 * shmem_undo_range() will have done some of the
1133			 * unaccounting, now delete_from_swap_cache() will do
1134			 * the rest (including mem_cgroup_uncharge_swapcache).
1135			 * Reset swap.val? No, leave it so "failed" goes back to
1136			 * "repeat": reading a hole and writing should succeed.
1137			 */
1138			if (error) {
1139				mem_cgroup_cancel_charge(page, memcg);
1140				delete_from_swap_cache(page);
1141			}
1142		}
1143		if (error)
1144			goto failed;
1145
1146		mem_cgroup_commit_charge(page, memcg, true);
1147
1148		spin_lock(&info->lock);
1149		info->swapped--;
1150		shmem_recalc_inode(inode);
1151		spin_unlock(&info->lock);
1152
1153		if (sgp == SGP_WRITE)
1154			mark_page_accessed(page);
1155
1156		delete_from_swap_cache(page);
1157		set_page_dirty(page);
1158		swap_free(swap);
1159
1160	} else {
1161		if (shmem_acct_block(info->flags)) {
1162			error = -ENOSPC;
1163			goto failed;
1164		}
1165		if (sbinfo->max_blocks) {
1166			if (percpu_counter_compare(&sbinfo->used_blocks,
1167						sbinfo->max_blocks) >= 0) {
1168				error = -ENOSPC;
1169				goto unacct;
1170			}
1171			percpu_counter_inc(&sbinfo->used_blocks);
1172		}
1173
1174		page = shmem_alloc_page(gfp, info, index);
1175		if (!page) {
1176			error = -ENOMEM;
1177			goto decused;
1178		}
1179
1180		__SetPageSwapBacked(page);
1181		__set_page_locked(page);
1182		if (sgp == SGP_WRITE)
1183			__SetPageReferenced(page);
1184
1185		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1186		if (error)
1187			goto decused;
1188		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1189		if (!error) {
1190			error = shmem_add_to_page_cache(page, mapping, index,
1191							NULL);
1192			radix_tree_preload_end();
1193		}
1194		if (error) {
1195			mem_cgroup_cancel_charge(page, memcg);
1196			goto decused;
1197		}
1198		mem_cgroup_commit_charge(page, memcg, false);
1199		lru_cache_add_anon(page);
1200
1201		spin_lock(&info->lock);
1202		info->alloced++;
1203		inode->i_blocks += BLOCKS_PER_PAGE;
1204		shmem_recalc_inode(inode);
1205		spin_unlock(&info->lock);
1206		alloced = true;
1207
1208		/*
1209		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1210		 */
1211		if (sgp == SGP_FALLOC)
1212			sgp = SGP_WRITE;
1213clear:
1214		/*
1215		 * Let SGP_WRITE caller clear ends if write does not fill page;
1216		 * but SGP_FALLOC on a page fallocated earlier must initialize
1217		 * it now, lest undo on failure cancel our earlier guarantee.
1218		 */
1219		if (sgp != SGP_WRITE) {
1220			clear_highpage(page);
1221			flush_dcache_page(page);
1222			SetPageUptodate(page);
1223		}
1224		if (sgp == SGP_DIRTY)
1225			set_page_dirty(page);
1226	}
1227
1228	/* Perhaps the file has been truncated since we checked */
1229	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1230	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231		error = -EINVAL;
1232		if (alloced)
1233			goto trunc;
1234		else
1235			goto failed;
1236	}
1237	*pagep = page;
1238	return 0;
1239
1240	/*
1241	 * Error recovery.
1242	 */
1243trunc:
1244	info = SHMEM_I(inode);
1245	ClearPageDirty(page);
1246	delete_from_page_cache(page);
1247	spin_lock(&info->lock);
1248	info->alloced--;
1249	inode->i_blocks -= BLOCKS_PER_PAGE;
1250	spin_unlock(&info->lock);
1251decused:
1252	sbinfo = SHMEM_SB(inode->i_sb);
1253	if (sbinfo->max_blocks)
1254		percpu_counter_add(&sbinfo->used_blocks, -1);
1255unacct:
1256	shmem_unacct_blocks(info->flags, 1);
1257failed:
1258	if (swap.val && error != -EINVAL &&
1259	    !shmem_confirm_swap(mapping, index, swap))
1260		error = -EEXIST;
1261unlock:
1262	if (page) {
1263		unlock_page(page);
1264		page_cache_release(page);
1265	}
1266	if (error == -ENOSPC && !once++) {
1267		info = SHMEM_I(inode);
1268		spin_lock(&info->lock);
1269		shmem_recalc_inode(inode);
1270		spin_unlock(&info->lock);
1271		goto repeat;
1272	}
1273	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1274		goto repeat;
1275	return error;
1276}
1277
1278static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1279{
1280	struct inode *inode = file_inode(vma->vm_file);
1281	int error;
1282	int ret = VM_FAULT_LOCKED;
1283
1284	/*
1285	 * Trinity finds that probing a hole which tmpfs is punching can
1286	 * prevent the hole-punch from ever completing: which in turn
1287	 * locks writers out with its hold on i_mutex.  So refrain from
1288	 * faulting pages into the hole while it's being punched.  Although
1289	 * shmem_undo_range() does remove the additions, it may be unable to
1290	 * keep up, as each new page needs its own unmap_mapping_range() call,
1291	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1292	 *
1293	 * It does not matter if we sometimes reach this check just before the
1294	 * hole-punch begins, so that one fault then races with the punch:
1295	 * we just need to make racing faults a rare case.
1296	 *
1297	 * The implementation below would be much simpler if we just used a
1298	 * standard mutex or completion: but we cannot take i_mutex in fault,
1299	 * and bloating every shmem inode for this unlikely case would be sad.
1300	 */
1301	if (unlikely(inode->i_private)) {
1302		struct shmem_falloc *shmem_falloc;
1303
1304		spin_lock(&inode->i_lock);
1305		shmem_falloc = inode->i_private;
1306		if (shmem_falloc &&
1307		    shmem_falloc->waitq &&
1308		    vmf->pgoff >= shmem_falloc->start &&
1309		    vmf->pgoff < shmem_falloc->next) {
1310			wait_queue_head_t *shmem_falloc_waitq;
1311			DEFINE_WAIT(shmem_fault_wait);
1312
1313			ret = VM_FAULT_NOPAGE;
1314			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1315			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1316				/* It's polite to up mmap_sem if we can */
1317				up_read(&vma->vm_mm->mmap_sem);
1318				ret = VM_FAULT_RETRY;
1319			}
1320
1321			shmem_falloc_waitq = shmem_falloc->waitq;
1322			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1323					TASK_UNINTERRUPTIBLE);
1324			spin_unlock(&inode->i_lock);
1325			schedule();
1326
1327			/*
1328			 * shmem_falloc_waitq points into the shmem_fallocate()
1329			 * stack of the hole-punching task: shmem_falloc_waitq
1330			 * is usually invalid by the time we reach here, but
1331			 * finish_wait() does not dereference it in that case;
1332			 * though i_lock needed lest racing with wake_up_all().
1333			 */
1334			spin_lock(&inode->i_lock);
1335			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1336			spin_unlock(&inode->i_lock);
1337			return ret;
1338		}
1339		spin_unlock(&inode->i_lock);
1340	}
1341
1342	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1343	if (error)
1344		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1345
1346	if (ret & VM_FAULT_MAJOR) {
1347		count_vm_event(PGMAJFAULT);
1348		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1349	}
1350	return ret;
1351}
1352
1353#ifdef CONFIG_NUMA
1354static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1355{
1356	struct inode *inode = file_inode(vma->vm_file);
1357	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1358}
1359
1360static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1361					  unsigned long addr)
1362{
1363	struct inode *inode = file_inode(vma->vm_file);
1364	pgoff_t index;
1365
1366	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1367	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1368}
1369#endif
1370
1371int shmem_lock(struct file *file, int lock, struct user_struct *user)
1372{
1373	struct inode *inode = file_inode(file);
1374	struct shmem_inode_info *info = SHMEM_I(inode);
1375	int retval = -ENOMEM;
1376
1377	spin_lock(&info->lock);
1378	if (lock && !(info->flags & VM_LOCKED)) {
1379		if (!user_shm_lock(inode->i_size, user))
1380			goto out_nomem;
1381		info->flags |= VM_LOCKED;
1382		mapping_set_unevictable(file->f_mapping);
1383	}
1384	if (!lock && (info->flags & VM_LOCKED) && user) {
1385		user_shm_unlock(inode->i_size, user);
1386		info->flags &= ~VM_LOCKED;
1387		mapping_clear_unevictable(file->f_mapping);
1388	}
1389	retval = 0;
1390
1391out_nomem:
1392	spin_unlock(&info->lock);
1393	return retval;
1394}
1395
1396static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1397{
1398	file_accessed(file);
1399	vma->vm_ops = &shmem_vm_ops;
1400	return 0;
1401}
1402
1403static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1404				     umode_t mode, dev_t dev, unsigned long flags)
1405{
1406	struct inode *inode;
1407	struct shmem_inode_info *info;
1408	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1409
1410	if (shmem_reserve_inode(sb))
1411		return NULL;
1412
1413	inode = new_inode(sb);
1414	if (inode) {
1415		inode->i_ino = get_next_ino();
1416		inode_init_owner(inode, dir, mode);
1417		inode->i_blocks = 0;
1418		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1419		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1420		inode->i_generation = get_seconds();
1421		info = SHMEM_I(inode);
1422		memset(info, 0, (char *)inode - (char *)info);
1423		spin_lock_init(&info->lock);
1424		info->seals = F_SEAL_SEAL;
1425		info->flags = flags & VM_NORESERVE;
1426		INIT_LIST_HEAD(&info->swaplist);
1427		simple_xattrs_init(&info->xattrs);
1428		cache_no_acl(inode);
1429
1430		switch (mode & S_IFMT) {
1431		default:
1432			inode->i_op = &shmem_special_inode_operations;
1433			init_special_inode(inode, mode, dev);
1434			break;
1435		case S_IFREG:
1436			inode->i_mapping->a_ops = &shmem_aops;
1437			inode->i_op = &shmem_inode_operations;
1438			inode->i_fop = &shmem_file_operations;
1439			mpol_shared_policy_init(&info->policy,
1440						 shmem_get_sbmpol(sbinfo));
1441			break;
1442		case S_IFDIR:
1443			inc_nlink(inode);
1444			/* Some things misbehave if size == 0 on a directory */
1445			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1446			inode->i_op = &shmem_dir_inode_operations;
1447			inode->i_fop = &simple_dir_operations;
1448			break;
1449		case S_IFLNK:
1450			/*
1451			 * Must not load anything in the rbtree,
1452			 * mpol_free_shared_policy will not be called.
1453			 */
1454			mpol_shared_policy_init(&info->policy, NULL);
1455			break;
1456		}
1457	} else
1458		shmem_free_inode(sb);
1459	return inode;
1460}
1461
1462bool shmem_mapping(struct address_space *mapping)
1463{
1464	return mapping->backing_dev_info == &shmem_backing_dev_info;
1465}
1466
1467#ifdef CONFIG_TMPFS
1468static const struct inode_operations shmem_symlink_inode_operations;
1469static const struct inode_operations shmem_short_symlink_operations;
1470
1471#ifdef CONFIG_TMPFS_XATTR
1472static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1473#else
1474#define shmem_initxattrs NULL
1475#endif
1476
1477static int
1478shmem_write_begin(struct file *file, struct address_space *mapping,
1479			loff_t pos, unsigned len, unsigned flags,
1480			struct page **pagep, void **fsdata)
1481{
1482	struct inode *inode = mapping->host;
1483	struct shmem_inode_info *info = SHMEM_I(inode);
1484	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1485
1486	/* i_mutex is held by caller */
1487	if (unlikely(info->seals)) {
1488		if (info->seals & F_SEAL_WRITE)
1489			return -EPERM;
1490		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1491			return -EPERM;
1492	}
1493
1494	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1495}
1496
1497static int
1498shmem_write_end(struct file *file, struct address_space *mapping,
1499			loff_t pos, unsigned len, unsigned copied,
1500			struct page *page, void *fsdata)
1501{
1502	struct inode *inode = mapping->host;
1503
1504	if (pos + copied > inode->i_size)
1505		i_size_write(inode, pos + copied);
1506
1507	if (!PageUptodate(page)) {
1508		if (copied < PAGE_CACHE_SIZE) {
1509			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1510			zero_user_segments(page, 0, from,
1511					from + copied, PAGE_CACHE_SIZE);
1512		}
1513		SetPageUptodate(page);
1514	}
1515	set_page_dirty(page);
1516	unlock_page(page);
1517	page_cache_release(page);
1518
1519	return copied;
1520}
1521
1522static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1523{
1524	struct file *file = iocb->ki_filp;
1525	struct inode *inode = file_inode(file);
1526	struct address_space *mapping = inode->i_mapping;
1527	pgoff_t index;
1528	unsigned long offset;
1529	enum sgp_type sgp = SGP_READ;
1530	int error = 0;
1531	ssize_t retval = 0;
1532	loff_t *ppos = &iocb->ki_pos;
1533
1534	/*
1535	 * Might this read be for a stacking filesystem?  Then when reading
1536	 * holes of a sparse file, we actually need to allocate those pages,
1537	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1538	 */
1539	if (segment_eq(get_fs(), KERNEL_DS))
1540		sgp = SGP_DIRTY;
1541
1542	index = *ppos >> PAGE_CACHE_SHIFT;
1543	offset = *ppos & ~PAGE_CACHE_MASK;
1544
1545	for (;;) {
1546		struct page *page = NULL;
1547		pgoff_t end_index;
1548		unsigned long nr, ret;
1549		loff_t i_size = i_size_read(inode);
1550
1551		end_index = i_size >> PAGE_CACHE_SHIFT;
1552		if (index > end_index)
1553			break;
1554		if (index == end_index) {
1555			nr = i_size & ~PAGE_CACHE_MASK;
1556			if (nr <= offset)
1557				break;
1558		}
1559
1560		error = shmem_getpage(inode, index, &page, sgp, NULL);
1561		if (error) {
1562			if (error == -EINVAL)
1563				error = 0;
1564			break;
1565		}
1566		if (page)
1567			unlock_page(page);
1568
1569		/*
1570		 * We must evaluate after, since reads (unlike writes)
1571		 * are called without i_mutex protection against truncate
1572		 */
1573		nr = PAGE_CACHE_SIZE;
1574		i_size = i_size_read(inode);
1575		end_index = i_size >> PAGE_CACHE_SHIFT;
1576		if (index == end_index) {
1577			nr = i_size & ~PAGE_CACHE_MASK;
1578			if (nr <= offset) {
1579				if (page)
1580					page_cache_release(page);
1581				break;
1582			}
1583		}
1584		nr -= offset;
1585
1586		if (page) {
1587			/*
1588			 * If users can be writing to this page using arbitrary
1589			 * virtual addresses, take care about potential aliasing
1590			 * before reading the page on the kernel side.
1591			 */
1592			if (mapping_writably_mapped(mapping))
1593				flush_dcache_page(page);
1594			/*
1595			 * Mark the page accessed if we read the beginning.
1596			 */
1597			if (!offset)
1598				mark_page_accessed(page);
1599		} else {
1600			page = ZERO_PAGE(0);
1601			page_cache_get(page);
1602		}
1603
1604		/*
1605		 * Ok, we have the page, and it's up-to-date, so
1606		 * now we can copy it to user space...
1607		 */
1608		ret = copy_page_to_iter(page, offset, nr, to);
1609		retval += ret;
1610		offset += ret;
1611		index += offset >> PAGE_CACHE_SHIFT;
1612		offset &= ~PAGE_CACHE_MASK;
1613
1614		page_cache_release(page);
1615		if (!iov_iter_count(to))
1616			break;
1617		if (ret < nr) {
1618			error = -EFAULT;
1619			break;
1620		}
1621		cond_resched();
1622	}
1623
1624	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1625	file_accessed(file);
1626	return retval ? retval : error;
1627}
1628
1629static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1630				struct pipe_inode_info *pipe, size_t len,
1631				unsigned int flags)
1632{
1633	struct address_space *mapping = in->f_mapping;
1634	struct inode *inode = mapping->host;
1635	unsigned int loff, nr_pages, req_pages;
1636	struct page *pages[PIPE_DEF_BUFFERS];
1637	struct partial_page partial[PIPE_DEF_BUFFERS];
1638	struct page *page;
1639	pgoff_t index, end_index;
1640	loff_t isize, left;
1641	int error, page_nr;
1642	struct splice_pipe_desc spd = {
1643		.pages = pages,
1644		.partial = partial,
1645		.nr_pages_max = PIPE_DEF_BUFFERS,
1646		.flags = flags,
1647		.ops = &page_cache_pipe_buf_ops,
1648		.spd_release = spd_release_page,
1649	};
1650
1651	isize = i_size_read(inode);
1652	if (unlikely(*ppos >= isize))
1653		return 0;
1654
1655	left = isize - *ppos;
1656	if (unlikely(left < len))
1657		len = left;
1658
1659	if (splice_grow_spd(pipe, &spd))
1660		return -ENOMEM;
1661
1662	index = *ppos >> PAGE_CACHE_SHIFT;
1663	loff = *ppos & ~PAGE_CACHE_MASK;
1664	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1665	nr_pages = min(req_pages, spd.nr_pages_max);
1666
1667	spd.nr_pages = find_get_pages_contig(mapping, index,
1668						nr_pages, spd.pages);
1669	index += spd.nr_pages;
1670	error = 0;
1671
1672	while (spd.nr_pages < nr_pages) {
1673		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1674		if (error)
1675			break;
1676		unlock_page(page);
1677		spd.pages[spd.nr_pages++] = page;
1678		index++;
1679	}
1680
1681	index = *ppos >> PAGE_CACHE_SHIFT;
1682	nr_pages = spd.nr_pages;
1683	spd.nr_pages = 0;
1684
1685	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1686		unsigned int this_len;
1687
1688		if (!len)
1689			break;
1690
1691		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1692		page = spd.pages[page_nr];
1693
1694		if (!PageUptodate(page) || page->mapping != mapping) {
1695			error = shmem_getpage(inode, index, &page,
1696							SGP_CACHE, NULL);
1697			if (error)
1698				break;
1699			unlock_page(page);
1700			page_cache_release(spd.pages[page_nr]);
1701			spd.pages[page_nr] = page;
1702		}
1703
1704		isize = i_size_read(inode);
1705		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1706		if (unlikely(!isize || index > end_index))
1707			break;
1708
1709		if (end_index == index) {
1710			unsigned int plen;
1711
1712			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1713			if (plen <= loff)
1714				break;
1715
1716			this_len = min(this_len, plen - loff);
1717			len = this_len;
1718		}
1719
1720		spd.partial[page_nr].offset = loff;
1721		spd.partial[page_nr].len = this_len;
1722		len -= this_len;
1723		loff = 0;
1724		spd.nr_pages++;
1725		index++;
1726	}
1727
1728	while (page_nr < nr_pages)
1729		page_cache_release(spd.pages[page_nr++]);
1730
1731	if (spd.nr_pages)
1732		error = splice_to_pipe(pipe, &spd);
1733
1734	splice_shrink_spd(&spd);
1735
1736	if (error > 0) {
1737		*ppos += error;
1738		file_accessed(in);
1739	}
1740	return error;
1741}
1742
1743/*
1744 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1745 */
1746static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1747				    pgoff_t index, pgoff_t end, int whence)
1748{
1749	struct page *page;
1750	struct pagevec pvec;
1751	pgoff_t indices[PAGEVEC_SIZE];
1752	bool done = false;
1753	int i;
1754
1755	pagevec_init(&pvec, 0);
1756	pvec.nr = 1;		/* start small: we may be there already */
1757	while (!done) {
1758		pvec.nr = find_get_entries(mapping, index,
1759					pvec.nr, pvec.pages, indices);
1760		if (!pvec.nr) {
1761			if (whence == SEEK_DATA)
1762				index = end;
1763			break;
1764		}
1765		for (i = 0; i < pvec.nr; i++, index++) {
1766			if (index < indices[i]) {
1767				if (whence == SEEK_HOLE) {
1768					done = true;
1769					break;
1770				}
1771				index = indices[i];
1772			}
1773			page = pvec.pages[i];
1774			if (page && !radix_tree_exceptional_entry(page)) {
1775				if (!PageUptodate(page))
1776					page = NULL;
1777			}
1778			if (index >= end ||
1779			    (page && whence == SEEK_DATA) ||
1780			    (!page && whence == SEEK_HOLE)) {
1781				done = true;
1782				break;
1783			}
1784		}
1785		pagevec_remove_exceptionals(&pvec);
1786		pagevec_release(&pvec);
1787		pvec.nr = PAGEVEC_SIZE;
1788		cond_resched();
1789	}
1790	return index;
1791}
1792
1793static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1794{
1795	struct address_space *mapping = file->f_mapping;
1796	struct inode *inode = mapping->host;
1797	pgoff_t start, end;
1798	loff_t new_offset;
1799
1800	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1801		return generic_file_llseek_size(file, offset, whence,
1802					MAX_LFS_FILESIZE, i_size_read(inode));
1803	mutex_lock(&inode->i_mutex);
1804	/* We're holding i_mutex so we can access i_size directly */
1805
1806	if (offset < 0)
1807		offset = -EINVAL;
1808	else if (offset >= inode->i_size)
1809		offset = -ENXIO;
1810	else {
1811		start = offset >> PAGE_CACHE_SHIFT;
1812		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1813		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1814		new_offset <<= PAGE_CACHE_SHIFT;
1815		if (new_offset > offset) {
1816			if (new_offset < inode->i_size)
1817				offset = new_offset;
1818			else if (whence == SEEK_DATA)
1819				offset = -ENXIO;
1820			else
1821				offset = inode->i_size;
1822		}
1823	}
1824
1825	if (offset >= 0)
1826		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1827	mutex_unlock(&inode->i_mutex);
1828	return offset;
1829}
1830
1831static int shmem_wait_for_pins(struct address_space *mapping)
1832{
1833	return 0;
1834}
1835
1836#define F_ALL_SEALS (F_SEAL_SEAL | \
1837		     F_SEAL_SHRINK | \
1838		     F_SEAL_GROW | \
1839		     F_SEAL_WRITE)
1840
1841int shmem_add_seals(struct file *file, unsigned int seals)
1842{
1843	struct inode *inode = file_inode(file);
1844	struct shmem_inode_info *info = SHMEM_I(inode);
1845	int error;
1846
1847	/*
1848	 * SEALING
1849	 * Sealing allows multiple parties to share a shmem-file but restrict
1850	 * access to a specific subset of file operations. Seals can only be
1851	 * added, but never removed. This way, mutually untrusted parties can
1852	 * share common memory regions with a well-defined policy. A malicious
1853	 * peer can thus never perform unwanted operations on a shared object.
1854	 *
1855	 * Seals are only supported on special shmem-files and always affect
1856	 * the whole underlying inode. Once a seal is set, it may prevent some
1857	 * kinds of access to the file. Currently, the following seals are
1858	 * defined:
1859	 *   SEAL_SEAL: Prevent further seals from being set on this file
1860	 *   SEAL_SHRINK: Prevent the file from shrinking
1861	 *   SEAL_GROW: Prevent the file from growing
1862	 *   SEAL_WRITE: Prevent write access to the file
1863	 *
1864	 * As we don't require any trust relationship between two parties, we
1865	 * must prevent seals from being removed. Therefore, sealing a file
1866	 * only adds a given set of seals to the file, it never touches
1867	 * existing seals. Furthermore, the "setting seals"-operation can be
1868	 * sealed itself, which basically prevents any further seal from being
1869	 * added.
1870	 *
1871	 * Semantics of sealing are only defined on volatile files. Only
1872	 * anonymous shmem files support sealing. More importantly, seals are
1873	 * never written to disk. Therefore, there's no plan to support it on
1874	 * other file types.
1875	 */
1876
1877	if (file->f_op != &shmem_file_operations)
1878		return -EINVAL;
1879	if (!(file->f_mode & FMODE_WRITE))
1880		return -EPERM;
1881	if (seals & ~(unsigned int)F_ALL_SEALS)
1882		return -EINVAL;
1883
1884	mutex_lock(&inode->i_mutex);
1885
1886	if (info->seals & F_SEAL_SEAL) {
1887		error = -EPERM;
1888		goto unlock;
1889	}
1890
1891	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
1892		error = mapping_deny_writable(file->f_mapping);
1893		if (error)
1894			goto unlock;
1895
1896		error = shmem_wait_for_pins(file->f_mapping);
1897		if (error) {
1898			mapping_allow_writable(file->f_mapping);
1899			goto unlock;
1900		}
1901	}
1902
1903	info->seals |= seals;
1904	error = 0;
1905
1906unlock:
1907	mutex_unlock(&inode->i_mutex);
1908	return error;
1909}
1910EXPORT_SYMBOL_GPL(shmem_add_seals);
1911
1912int shmem_get_seals(struct file *file)
1913{
1914	if (file->f_op != &shmem_file_operations)
1915		return -EINVAL;
1916
1917	return SHMEM_I(file_inode(file))->seals;
1918}
1919EXPORT_SYMBOL_GPL(shmem_get_seals);
1920
1921long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1922{
1923	long error;
1924
1925	switch (cmd) {
1926	case F_ADD_SEALS:
1927		/* disallow upper 32bit */
1928		if (arg > UINT_MAX)
1929			return -EINVAL;
1930
1931		error = shmem_add_seals(file, arg);
1932		break;
1933	case F_GET_SEALS:
1934		error = shmem_get_seals(file);
1935		break;
1936	default:
1937		error = -EINVAL;
1938		break;
1939	}
1940
1941	return error;
1942}
1943
1944static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1945							 loff_t len)
1946{
1947	struct inode *inode = file_inode(file);
1948	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1949	struct shmem_inode_info *info = SHMEM_I(inode);
1950	struct shmem_falloc shmem_falloc;
1951	pgoff_t start, index, end;
1952	int error;
1953
1954	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1955		return -EOPNOTSUPP;
1956
1957	mutex_lock(&inode->i_mutex);
1958
1959	if (mode & FALLOC_FL_PUNCH_HOLE) {
1960		struct address_space *mapping = file->f_mapping;
1961		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1962		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1963		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1964
1965		/* protected by i_mutex */
1966		if (info->seals & F_SEAL_WRITE) {
1967			error = -EPERM;
1968			goto out;
1969		}
1970
1971		shmem_falloc.waitq = &shmem_falloc_waitq;
1972		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1973		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1974		spin_lock(&inode->i_lock);
1975		inode->i_private = &shmem_falloc;
1976		spin_unlock(&inode->i_lock);
1977
1978		if ((u64)unmap_end > (u64)unmap_start)
1979			unmap_mapping_range(mapping, unmap_start,
1980					    1 + unmap_end - unmap_start, 0);
1981		shmem_truncate_range(inode, offset, offset + len - 1);
1982		/* No need to unmap again: hole-punching leaves COWed pages */
1983
1984		spin_lock(&inode->i_lock);
1985		inode->i_private = NULL;
1986		wake_up_all(&shmem_falloc_waitq);
1987		spin_unlock(&inode->i_lock);
1988		error = 0;
1989		goto out;
1990	}
1991
1992	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1993	error = inode_newsize_ok(inode, offset + len);
1994	if (error)
1995		goto out;
1996
1997	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
1998		error = -EPERM;
1999		goto out;
2000	}
2001
2002	start = offset >> PAGE_CACHE_SHIFT;
2003	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2004	/* Try to avoid a swapstorm if len is impossible to satisfy */
2005	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2006		error = -ENOSPC;
2007		goto out;
2008	}
2009
2010	shmem_falloc.waitq = NULL;
2011	shmem_falloc.start = start;
2012	shmem_falloc.next  = start;
2013	shmem_falloc.nr_falloced = 0;
2014	shmem_falloc.nr_unswapped = 0;
2015	spin_lock(&inode->i_lock);
2016	inode->i_private = &shmem_falloc;
2017	spin_unlock(&inode->i_lock);
2018
2019	for (index = start; index < end; index++) {
2020		struct page *page;
2021
2022		/*
2023		 * Good, the fallocate(2) manpage permits EINTR: we may have
2024		 * been interrupted because we are using up too much memory.
2025		 */
2026		if (signal_pending(current))
2027			error = -EINTR;
2028		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2029			error = -ENOMEM;
2030		else
2031			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2032									NULL);
2033		if (error) {
2034			/* Remove the !PageUptodate pages we added */
2035			shmem_undo_range(inode,
2036				(loff_t)start << PAGE_CACHE_SHIFT,
2037				(loff_t)index << PAGE_CACHE_SHIFT, true);
2038			goto undone;
2039		}
2040
2041		/*
2042		 * Inform shmem_writepage() how far we have reached.
2043		 * No need for lock or barrier: we have the page lock.
2044		 */
2045		shmem_falloc.next++;
2046		if (!PageUptodate(page))
2047			shmem_falloc.nr_falloced++;
2048
2049		/*
2050		 * If !PageUptodate, leave it that way so that freeable pages
2051		 * can be recognized if we need to rollback on error later.
2052		 * But set_page_dirty so that memory pressure will swap rather
2053		 * than free the pages we are allocating (and SGP_CACHE pages
2054		 * might still be clean: we now need to mark those dirty too).
2055		 */
2056		set_page_dirty(page);
2057		unlock_page(page);
2058		page_cache_release(page);
2059		cond_resched();
2060	}
2061
2062	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2063		i_size_write(inode, offset + len);
2064	inode->i_ctime = CURRENT_TIME;
2065undone:
2066	spin_lock(&inode->i_lock);
2067	inode->i_private = NULL;
2068	spin_unlock(&inode->i_lock);
2069out:
2070	mutex_unlock(&inode->i_mutex);
2071	return error;
2072}
2073
2074static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2075{
2076	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2077
2078	buf->f_type = TMPFS_MAGIC;
2079	buf->f_bsize = PAGE_CACHE_SIZE;
2080	buf->f_namelen = NAME_MAX;
2081	if (sbinfo->max_blocks) {
2082		buf->f_blocks = sbinfo->max_blocks;
2083		buf->f_bavail =
2084		buf->f_bfree  = sbinfo->max_blocks -
2085				percpu_counter_sum(&sbinfo->used_blocks);
2086	}
2087	if (sbinfo->max_inodes) {
2088		buf->f_files = sbinfo->max_inodes;
2089		buf->f_ffree = sbinfo->free_inodes;
2090	}
2091	/* else leave those fields 0 like simple_statfs */
2092	return 0;
2093}
2094
2095/*
2096 * File creation. Allocate an inode, and we're done..
2097 */
2098static int
2099shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2100{
2101	struct inode *inode;
2102	int error = -ENOSPC;
2103
2104	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2105	if (inode) {
2106		error = simple_acl_create(dir, inode);
2107		if (error)
2108			goto out_iput;
2109		error = security_inode_init_security(inode, dir,
2110						     &dentry->d_name,
2111						     shmem_initxattrs, NULL);
2112		if (error && error != -EOPNOTSUPP)
2113			goto out_iput;
2114
2115		error = 0;
2116		dir->i_size += BOGO_DIRENT_SIZE;
2117		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2118		d_instantiate(dentry, inode);
2119		dget(dentry); /* Extra count - pin the dentry in core */
2120	}
2121	return error;
2122out_iput:
2123	iput(inode);
2124	return error;
2125}
2126
2127static int
2128shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2129{
2130	struct inode *inode;
2131	int error = -ENOSPC;
2132
2133	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2134	if (inode) {
2135		error = security_inode_init_security(inode, dir,
2136						     NULL,
2137						     shmem_initxattrs, NULL);
2138		if (error && error != -EOPNOTSUPP)
2139			goto out_iput;
2140		error = simple_acl_create(dir, inode);
2141		if (error)
2142			goto out_iput;
2143		d_tmpfile(dentry, inode);
2144	}
2145	return error;
2146out_iput:
2147	iput(inode);
2148	return error;
2149}
2150
2151static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2152{
2153	int error;
2154
2155	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2156		return error;
2157	inc_nlink(dir);
2158	return 0;
2159}
2160
2161static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2162		bool excl)
2163{
2164	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2165}
2166
2167/*
2168 * Link a file..
2169 */
2170static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2171{
2172	struct inode *inode = old_dentry->d_inode;
2173	int ret;
2174
2175	/*
2176	 * No ordinary (disk based) filesystem counts links as inodes;
2177	 * but each new link needs a new dentry, pinning lowmem, and
2178	 * tmpfs dentries cannot be pruned until they are unlinked.
2179	 */
2180	ret = shmem_reserve_inode(inode->i_sb);
2181	if (ret)
2182		goto out;
2183
2184	dir->i_size += BOGO_DIRENT_SIZE;
2185	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2186	inc_nlink(inode);
2187	ihold(inode);	/* New dentry reference */
2188	dget(dentry);		/* Extra pinning count for the created dentry */
2189	d_instantiate(dentry, inode);
2190out:
2191	return ret;
2192}
2193
2194static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2195{
2196	struct inode *inode = dentry->d_inode;
2197
2198	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2199		shmem_free_inode(inode->i_sb);
2200
2201	dir->i_size -= BOGO_DIRENT_SIZE;
2202	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2203	drop_nlink(inode);
2204	dput(dentry);	/* Undo the count from "create" - this does all the work */
2205	return 0;
2206}
2207
2208static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2209{
2210	if (!simple_empty(dentry))
2211		return -ENOTEMPTY;
2212
2213	drop_nlink(dentry->d_inode);
2214	drop_nlink(dir);
2215	return shmem_unlink(dir, dentry);
2216}
2217
2218/*
2219 * The VFS layer already does all the dentry stuff for rename,
2220 * we just have to decrement the usage count for the target if
2221 * it exists so that the VFS layer correctly free's it when it
2222 * gets overwritten.
2223 */
2224static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2225{
2226	struct inode *inode = old_dentry->d_inode;
2227	int they_are_dirs = S_ISDIR(inode->i_mode);
2228
2229	if (!simple_empty(new_dentry))
2230		return -ENOTEMPTY;
2231
2232	if (new_dentry->d_inode) {
2233		(void) shmem_unlink(new_dir, new_dentry);
2234		if (they_are_dirs)
2235			drop_nlink(old_dir);
2236	} else if (they_are_dirs) {
2237		drop_nlink(old_dir);
2238		inc_nlink(new_dir);
2239	}
2240
2241	old_dir->i_size -= BOGO_DIRENT_SIZE;
2242	new_dir->i_size += BOGO_DIRENT_SIZE;
2243	old_dir->i_ctime = old_dir->i_mtime =
2244	new_dir->i_ctime = new_dir->i_mtime =
2245	inode->i_ctime = CURRENT_TIME;
2246	return 0;
2247}
2248
2249static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2250{
2251	int error;
2252	int len;
2253	struct inode *inode;
2254	struct page *page;
2255	char *kaddr;
2256	struct shmem_inode_info *info;
2257
2258	len = strlen(symname) + 1;
2259	if (len > PAGE_CACHE_SIZE)
2260		return -ENAMETOOLONG;
2261
2262	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2263	if (!inode)
2264		return -ENOSPC;
2265
2266	error = security_inode_init_security(inode, dir, &dentry->d_name,
2267					     shmem_initxattrs, NULL);
2268	if (error) {
2269		if (error != -EOPNOTSUPP) {
2270			iput(inode);
2271			return error;
2272		}
2273		error = 0;
2274	}
2275
2276	info = SHMEM_I(inode);
2277	inode->i_size = len-1;
2278	if (len <= SHORT_SYMLINK_LEN) {
2279		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2280		if (!info->symlink) {
2281			iput(inode);
2282			return -ENOMEM;
2283		}
2284		inode->i_op = &shmem_short_symlink_operations;
2285	} else {
2286		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2287		if (error) {
2288			iput(inode);
2289			return error;
2290		}
2291		inode->i_mapping->a_ops = &shmem_aops;
2292		inode->i_op = &shmem_symlink_inode_operations;
2293		kaddr = kmap_atomic(page);
2294		memcpy(kaddr, symname, len);
2295		kunmap_atomic(kaddr);
2296		SetPageUptodate(page);
2297		set_page_dirty(page);
2298		unlock_page(page);
2299		page_cache_release(page);
2300	}
2301	dir->i_size += BOGO_DIRENT_SIZE;
2302	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2303	d_instantiate(dentry, inode);
2304	dget(dentry);
2305	return 0;
2306}
2307
2308static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2309{
2310	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2311	return NULL;
2312}
2313
2314static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2315{
2316	struct page *page = NULL;
2317	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2318	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2319	if (page)
2320		unlock_page(page);
2321	return page;
2322}
2323
2324static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2325{
2326	if (!IS_ERR(nd_get_link(nd))) {
2327		struct page *page = cookie;
2328		kunmap(page);
2329		mark_page_accessed(page);
2330		page_cache_release(page);
2331	}
2332}
2333
2334#ifdef CONFIG_TMPFS_XATTR
2335/*
2336 * Superblocks without xattr inode operations may get some security.* xattr
2337 * support from the LSM "for free". As soon as we have any other xattrs
2338 * like ACLs, we also need to implement the security.* handlers at
2339 * filesystem level, though.
2340 */
2341
2342/*
2343 * Callback for security_inode_init_security() for acquiring xattrs.
2344 */
2345static int shmem_initxattrs(struct inode *inode,
2346			    const struct xattr *xattr_array,
2347			    void *fs_info)
2348{
2349	struct shmem_inode_info *info = SHMEM_I(inode);
2350	const struct xattr *xattr;
2351	struct simple_xattr *new_xattr;
2352	size_t len;
2353
2354	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2355		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2356		if (!new_xattr)
2357			return -ENOMEM;
2358
2359		len = strlen(xattr->name) + 1;
2360		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2361					  GFP_KERNEL);
2362		if (!new_xattr->name) {
2363			kfree(new_xattr);
2364			return -ENOMEM;
2365		}
2366
2367		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2368		       XATTR_SECURITY_PREFIX_LEN);
2369		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2370		       xattr->name, len);
2371
2372		simple_xattr_list_add(&info->xattrs, new_xattr);
2373	}
2374
2375	return 0;
2376}
2377
2378static const struct xattr_handler *shmem_xattr_handlers[] = {
2379#ifdef CONFIG_TMPFS_POSIX_ACL
2380	&posix_acl_access_xattr_handler,
2381	&posix_acl_default_xattr_handler,
2382#endif
2383	NULL
2384};
2385
2386static int shmem_xattr_validate(const char *name)
2387{
2388	struct { const char *prefix; size_t len; } arr[] = {
2389		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2390		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2391	};
2392	int i;
2393
2394	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2395		size_t preflen = arr[i].len;
2396		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2397			if (!name[preflen])
2398				return -EINVAL;
2399			return 0;
2400		}
2401	}
2402	return -EOPNOTSUPP;
2403}
2404
2405static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2406			      void *buffer, size_t size)
2407{
2408	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2409	int err;
2410
2411	/*
2412	 * If this is a request for a synthetic attribute in the system.*
2413	 * namespace use the generic infrastructure to resolve a handler
2414	 * for it via sb->s_xattr.
2415	 */
2416	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2417		return generic_getxattr(dentry, name, buffer, size);
2418
2419	err = shmem_xattr_validate(name);
2420	if (err)
2421		return err;
2422
2423	return simple_xattr_get(&info->xattrs, name, buffer, size);
2424}
2425
2426static int shmem_setxattr(struct dentry *dentry, const char *name,
2427			  const void *value, size_t size, int flags)
2428{
2429	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2430	int err;
2431
2432	/*
2433	 * If this is a request for a synthetic attribute in the system.*
2434	 * namespace use the generic infrastructure to resolve a handler
2435	 * for it via sb->s_xattr.
2436	 */
2437	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2438		return generic_setxattr(dentry, name, value, size, flags);
2439
2440	err = shmem_xattr_validate(name);
2441	if (err)
2442		return err;
2443
2444	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2445}
2446
2447static int shmem_removexattr(struct dentry *dentry, const char *name)
2448{
2449	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2450	int err;
2451
2452	/*
2453	 * If this is a request for a synthetic attribute in the system.*
2454	 * namespace use the generic infrastructure to resolve a handler
2455	 * for it via sb->s_xattr.
2456	 */
2457	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2458		return generic_removexattr(dentry, name);
2459
2460	err = shmem_xattr_validate(name);
2461	if (err)
2462		return err;
2463
2464	return simple_xattr_remove(&info->xattrs, name);
2465}
2466
2467static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2468{
2469	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2470	return simple_xattr_list(&info->xattrs, buffer, size);
2471}
2472#endif /* CONFIG_TMPFS_XATTR */
2473
2474static const struct inode_operations shmem_short_symlink_operations = {
2475	.readlink	= generic_readlink,
2476	.follow_link	= shmem_follow_short_symlink,
2477#ifdef CONFIG_TMPFS_XATTR
2478	.setxattr	= shmem_setxattr,
2479	.getxattr	= shmem_getxattr,
2480	.listxattr	= shmem_listxattr,
2481	.removexattr	= shmem_removexattr,
2482#endif
2483};
2484
2485static const struct inode_operations shmem_symlink_inode_operations = {
2486	.readlink	= generic_readlink,
2487	.follow_link	= shmem_follow_link,
2488	.put_link	= shmem_put_link,
2489#ifdef CONFIG_TMPFS_XATTR
2490	.setxattr	= shmem_setxattr,
2491	.getxattr	= shmem_getxattr,
2492	.listxattr	= shmem_listxattr,
2493	.removexattr	= shmem_removexattr,
2494#endif
2495};
2496
2497static struct dentry *shmem_get_parent(struct dentry *child)
2498{
2499	return ERR_PTR(-ESTALE);
2500}
2501
2502static int shmem_match(struct inode *ino, void *vfh)
2503{
2504	__u32 *fh = vfh;
2505	__u64 inum = fh[2];
2506	inum = (inum << 32) | fh[1];
2507	return ino->i_ino == inum && fh[0] == ino->i_generation;
2508}
2509
2510static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2511		struct fid *fid, int fh_len, int fh_type)
2512{
2513	struct inode *inode;
2514	struct dentry *dentry = NULL;
2515	u64 inum;
2516
2517	if (fh_len < 3)
2518		return NULL;
2519
2520	inum = fid->raw[2];
2521	inum = (inum << 32) | fid->raw[1];
2522
2523	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2524			shmem_match, fid->raw);
2525	if (inode) {
2526		dentry = d_find_alias(inode);
2527		iput(inode);
2528	}
2529
2530	return dentry;
2531}
2532
2533static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2534				struct inode *parent)
2535{
2536	if (*len < 3) {
2537		*len = 3;
2538		return FILEID_INVALID;
2539	}
2540
2541	if (inode_unhashed(inode)) {
2542		/* Unfortunately insert_inode_hash is not idempotent,
2543		 * so as we hash inodes here rather than at creation
2544		 * time, we need a lock to ensure we only try
2545		 * to do it once
2546		 */
2547		static DEFINE_SPINLOCK(lock);
2548		spin_lock(&lock);
2549		if (inode_unhashed(inode))
2550			__insert_inode_hash(inode,
2551					    inode->i_ino + inode->i_generation);
2552		spin_unlock(&lock);
2553	}
2554
2555	fh[0] = inode->i_generation;
2556	fh[1] = inode->i_ino;
2557	fh[2] = ((__u64)inode->i_ino) >> 32;
2558
2559	*len = 3;
2560	return 1;
2561}
2562
2563static const struct export_operations shmem_export_ops = {
2564	.get_parent     = shmem_get_parent,
2565	.encode_fh      = shmem_encode_fh,
2566	.fh_to_dentry	= shmem_fh_to_dentry,
2567};
2568
2569static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2570			       bool remount)
2571{
2572	char *this_char, *value, *rest;
2573	struct mempolicy *mpol = NULL;
2574	uid_t uid;
2575	gid_t gid;
2576
2577	while (options != NULL) {
2578		this_char = options;
2579		for (;;) {
2580			/*
2581			 * NUL-terminate this option: unfortunately,
2582			 * mount options form a comma-separated list,
2583			 * but mpol's nodelist may also contain commas.
2584			 */
2585			options = strchr(options, ',');
2586			if (options == NULL)
2587				break;
2588			options++;
2589			if (!isdigit(*options)) {
2590				options[-1] = '\0';
2591				break;
2592			}
2593		}
2594		if (!*this_char)
2595			continue;
2596		if ((value = strchr(this_char,'=')) != NULL) {
2597			*value++ = 0;
2598		} else {
2599			printk(KERN_ERR
2600			    "tmpfs: No value for mount option '%s'\n",
2601			    this_char);
2602			goto error;
2603		}
2604
2605		if (!strcmp(this_char,"size")) {
2606			unsigned long long size;
2607			size = memparse(value,&rest);
2608			if (*rest == '%') {
2609				size <<= PAGE_SHIFT;
2610				size *= totalram_pages;
2611				do_div(size, 100);
2612				rest++;
2613			}
2614			if (*rest)
2615				goto bad_val;
2616			sbinfo->max_blocks =
2617				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2618		} else if (!strcmp(this_char,"nr_blocks")) {
2619			sbinfo->max_blocks = memparse(value, &rest);
2620			if (*rest)
2621				goto bad_val;
2622		} else if (!strcmp(this_char,"nr_inodes")) {
2623			sbinfo->max_inodes = memparse(value, &rest);
2624			if (*rest)
2625				goto bad_val;
2626		} else if (!strcmp(this_char,"mode")) {
2627			if (remount)
2628				continue;
2629			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2630			if (*rest)
2631				goto bad_val;
2632		} else if (!strcmp(this_char,"uid")) {
2633			if (remount)
2634				continue;
2635			uid = simple_strtoul(value, &rest, 0);
2636			if (*rest)
2637				goto bad_val;
2638			sbinfo->uid = make_kuid(current_user_ns(), uid);
2639			if (!uid_valid(sbinfo->uid))
2640				goto bad_val;
2641		} else if (!strcmp(this_char,"gid")) {
2642			if (remount)
2643				continue;
2644			gid = simple_strtoul(value, &rest, 0);
2645			if (*rest)
2646				goto bad_val;
2647			sbinfo->gid = make_kgid(current_user_ns(), gid);
2648			if (!gid_valid(sbinfo->gid))
2649				goto bad_val;
2650		} else if (!strcmp(this_char,"mpol")) {
2651			mpol_put(mpol);
2652			mpol = NULL;
2653			if (mpol_parse_str(value, &mpol))
2654				goto bad_val;
2655		} else {
2656			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2657			       this_char);
2658			goto error;
2659		}
2660	}
2661	sbinfo->mpol = mpol;
2662	return 0;
2663
2664bad_val:
2665	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2666	       value, this_char);
2667error:
2668	mpol_put(mpol);
2669	return 1;
2670
2671}
2672
2673static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2674{
2675	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2676	struct shmem_sb_info config = *sbinfo;
2677	unsigned long inodes;
2678	int error = -EINVAL;
2679
2680	config.mpol = NULL;
2681	if (shmem_parse_options(data, &config, true))
2682		return error;
2683
2684	spin_lock(&sbinfo->stat_lock);
2685	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2686	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2687		goto out;
2688	if (config.max_inodes < inodes)
2689		goto out;
2690	/*
2691	 * Those tests disallow limited->unlimited while any are in use;
2692	 * but we must separately disallow unlimited->limited, because
2693	 * in that case we have no record of how much is already in use.
2694	 */
2695	if (config.max_blocks && !sbinfo->max_blocks)
2696		goto out;
2697	if (config.max_inodes && !sbinfo->max_inodes)
2698		goto out;
2699
2700	error = 0;
2701	sbinfo->max_blocks  = config.max_blocks;
2702	sbinfo->max_inodes  = config.max_inodes;
2703	sbinfo->free_inodes = config.max_inodes - inodes;
2704
2705	/*
2706	 * Preserve previous mempolicy unless mpol remount option was specified.
2707	 */
2708	if (config.mpol) {
2709		mpol_put(sbinfo->mpol);
2710		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2711	}
2712out:
2713	spin_unlock(&sbinfo->stat_lock);
2714	return error;
2715}
2716
2717static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2718{
2719	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2720
2721	if (sbinfo->max_blocks != shmem_default_max_blocks())
2722		seq_printf(seq, ",size=%luk",
2723			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2724	if (sbinfo->max_inodes != shmem_default_max_inodes())
2725		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2726	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2727		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2728	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2729		seq_printf(seq, ",uid=%u",
2730				from_kuid_munged(&init_user_ns, sbinfo->uid));
2731	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2732		seq_printf(seq, ",gid=%u",
2733				from_kgid_munged(&init_user_ns, sbinfo->gid));
2734	shmem_show_mpol(seq, sbinfo->mpol);
2735	return 0;
2736}
2737
2738#define MFD_NAME_PREFIX "memfd:"
2739#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2740#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2741
2742#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2743
2744SYSCALL_DEFINE2(memfd_create,
2745		const char __user *, uname,
2746		unsigned int, flags)
2747{
2748	struct shmem_inode_info *info;
2749	struct file *file;
2750	int fd, error;
2751	char *name;
2752	long len;
2753
2754	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2755		return -EINVAL;
2756
2757	/* length includes terminating zero */
2758	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2759	if (len <= 0)
2760		return -EFAULT;
2761	if (len > MFD_NAME_MAX_LEN + 1)
2762		return -EINVAL;
2763
2764	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2765	if (!name)
2766		return -ENOMEM;
2767
2768	strcpy(name, MFD_NAME_PREFIX);
2769	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2770		error = -EFAULT;
2771		goto err_name;
2772	}
2773
2774	/* terminating-zero may have changed after strnlen_user() returned */
2775	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2776		error = -EFAULT;
2777		goto err_name;
2778	}
2779
2780	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2781	if (fd < 0) {
2782		error = fd;
2783		goto err_name;
2784	}
2785
2786	file = shmem_file_setup(name, 0, VM_NORESERVE);
2787	if (IS_ERR(file)) {
2788		error = PTR_ERR(file);
2789		goto err_fd;
2790	}
2791	info = SHMEM_I(file_inode(file));
2792	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2793	file->f_flags |= O_RDWR | O_LARGEFILE;
2794	if (flags & MFD_ALLOW_SEALING)
2795		info->seals &= ~F_SEAL_SEAL;
2796
2797	fd_install(fd, file);
2798	kfree(name);
2799	return fd;
2800
2801err_fd:
2802	put_unused_fd(fd);
2803err_name:
2804	kfree(name);
2805	return error;
2806}
2807
2808#endif /* CONFIG_TMPFS */
2809
2810static void shmem_put_super(struct super_block *sb)
2811{
2812	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2813
2814	percpu_counter_destroy(&sbinfo->used_blocks);
2815	mpol_put(sbinfo->mpol);
2816	kfree(sbinfo);
2817	sb->s_fs_info = NULL;
2818}
2819
2820int shmem_fill_super(struct super_block *sb, void *data, int silent)
2821{
2822	struct inode *inode;
2823	struct shmem_sb_info *sbinfo;
2824	int err = -ENOMEM;
2825
2826	/* Round up to L1_CACHE_BYTES to resist false sharing */
2827	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2828				L1_CACHE_BYTES), GFP_KERNEL);
2829	if (!sbinfo)
2830		return -ENOMEM;
2831
2832	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2833	sbinfo->uid = current_fsuid();
2834	sbinfo->gid = current_fsgid();
2835	sb->s_fs_info = sbinfo;
2836
2837#ifdef CONFIG_TMPFS
2838	/*
2839	 * Per default we only allow half of the physical ram per
2840	 * tmpfs instance, limiting inodes to one per page of lowmem;
2841	 * but the internal instance is left unlimited.
2842	 */
2843	if (!(sb->s_flags & MS_KERNMOUNT)) {
2844		sbinfo->max_blocks = shmem_default_max_blocks();
2845		sbinfo->max_inodes = shmem_default_max_inodes();
2846		if (shmem_parse_options(data, sbinfo, false)) {
2847			err = -EINVAL;
2848			goto failed;
2849		}
2850	} else {
2851		sb->s_flags |= MS_NOUSER;
2852	}
2853	sb->s_export_op = &shmem_export_ops;
2854	sb->s_flags |= MS_NOSEC;
2855#else
2856	sb->s_flags |= MS_NOUSER;
2857#endif
2858
2859	spin_lock_init(&sbinfo->stat_lock);
2860	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2861		goto failed;
2862	sbinfo->free_inodes = sbinfo->max_inodes;
2863
2864	sb->s_maxbytes = MAX_LFS_FILESIZE;
2865	sb->s_blocksize = PAGE_CACHE_SIZE;
2866	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2867	sb->s_magic = TMPFS_MAGIC;
2868	sb->s_op = &shmem_ops;
2869	sb->s_time_gran = 1;
2870#ifdef CONFIG_TMPFS_XATTR
2871	sb->s_xattr = shmem_xattr_handlers;
2872#endif
2873#ifdef CONFIG_TMPFS_POSIX_ACL
2874	sb->s_flags |= MS_POSIXACL;
2875#endif
2876
2877	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2878	if (!inode)
2879		goto failed;
2880	inode->i_uid = sbinfo->uid;
2881	inode->i_gid = sbinfo->gid;
2882	sb->s_root = d_make_root(inode);
2883	if (!sb->s_root)
2884		goto failed;
2885	return 0;
2886
2887failed:
2888	shmem_put_super(sb);
2889	return err;
2890}
2891
2892static struct kmem_cache *shmem_inode_cachep;
2893
2894static struct inode *shmem_alloc_inode(struct super_block *sb)
2895{
2896	struct shmem_inode_info *info;
2897	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2898	if (!info)
2899		return NULL;
2900	return &info->vfs_inode;
2901}
2902
2903static void shmem_destroy_callback(struct rcu_head *head)
2904{
2905	struct inode *inode = container_of(head, struct inode, i_rcu);
2906	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2907}
2908
2909static void shmem_destroy_inode(struct inode *inode)
2910{
2911	if (S_ISREG(inode->i_mode))
2912		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2913	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2914}
2915
2916static void shmem_init_inode(void *foo)
2917{
2918	struct shmem_inode_info *info = foo;
2919	inode_init_once(&info->vfs_inode);
2920}
2921
2922static int shmem_init_inodecache(void)
2923{
2924	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2925				sizeof(struct shmem_inode_info),
2926				0, SLAB_PANIC, shmem_init_inode);
2927	return 0;
2928}
2929
2930static void shmem_destroy_inodecache(void)
2931{
2932	kmem_cache_destroy(shmem_inode_cachep);
2933}
2934
2935static const struct address_space_operations shmem_aops = {
2936	.writepage	= shmem_writepage,
2937	.set_page_dirty	= __set_page_dirty_no_writeback,
2938#ifdef CONFIG_TMPFS
2939	.write_begin	= shmem_write_begin,
2940	.write_end	= shmem_write_end,
2941#endif
2942	.migratepage	= migrate_page,
2943	.error_remove_page = generic_error_remove_page,
2944};
2945
2946static const struct file_operations shmem_file_operations = {
2947	.mmap		= shmem_mmap,
2948#ifdef CONFIG_TMPFS
2949	.llseek		= shmem_file_llseek,
2950	.read		= new_sync_read,
2951	.write		= new_sync_write,
2952	.read_iter	= shmem_file_read_iter,
2953	.write_iter	= generic_file_write_iter,
2954	.fsync		= noop_fsync,
2955	.splice_read	= shmem_file_splice_read,
2956	.splice_write	= iter_file_splice_write,
2957	.fallocate	= shmem_fallocate,
2958#endif
2959};
2960
2961static const struct inode_operations shmem_inode_operations = {
2962	.setattr	= shmem_setattr,
2963#ifdef CONFIG_TMPFS_XATTR
2964	.setxattr	= shmem_setxattr,
2965	.getxattr	= shmem_getxattr,
2966	.listxattr	= shmem_listxattr,
2967	.removexattr	= shmem_removexattr,
2968	.set_acl	= simple_set_acl,
2969#endif
2970};
2971
2972static const struct inode_operations shmem_dir_inode_operations = {
2973#ifdef CONFIG_TMPFS
2974	.create		= shmem_create,
2975	.lookup		= simple_lookup,
2976	.link		= shmem_link,
2977	.unlink		= shmem_unlink,
2978	.symlink	= shmem_symlink,
2979	.mkdir		= shmem_mkdir,
2980	.rmdir		= shmem_rmdir,
2981	.mknod		= shmem_mknod,
2982	.rename		= shmem_rename,
2983	.tmpfile	= shmem_tmpfile,
2984#endif
2985#ifdef CONFIG_TMPFS_XATTR
2986	.setxattr	= shmem_setxattr,
2987	.getxattr	= shmem_getxattr,
2988	.listxattr	= shmem_listxattr,
2989	.removexattr	= shmem_removexattr,
2990#endif
2991#ifdef CONFIG_TMPFS_POSIX_ACL
2992	.setattr	= shmem_setattr,
2993	.set_acl	= simple_set_acl,
2994#endif
2995};
2996
2997static const struct inode_operations shmem_special_inode_operations = {
2998#ifdef CONFIG_TMPFS_XATTR
2999	.setxattr	= shmem_setxattr,
3000	.getxattr	= shmem_getxattr,
3001	.listxattr	= shmem_listxattr,
3002	.removexattr	= shmem_removexattr,
3003#endif
3004#ifdef CONFIG_TMPFS_POSIX_ACL
3005	.setattr	= shmem_setattr,
3006	.set_acl	= simple_set_acl,
3007#endif
3008};
3009
3010static const struct super_operations shmem_ops = {
3011	.alloc_inode	= shmem_alloc_inode,
3012	.destroy_inode	= shmem_destroy_inode,
3013#ifdef CONFIG_TMPFS
3014	.statfs		= shmem_statfs,
3015	.remount_fs	= shmem_remount_fs,
3016	.show_options	= shmem_show_options,
3017#endif
3018	.evict_inode	= shmem_evict_inode,
3019	.drop_inode	= generic_delete_inode,
3020	.put_super	= shmem_put_super,
3021};
3022
3023static const struct vm_operations_struct shmem_vm_ops = {
3024	.fault		= shmem_fault,
3025	.map_pages	= filemap_map_pages,
3026#ifdef CONFIG_NUMA
3027	.set_policy     = shmem_set_policy,
3028	.get_policy     = shmem_get_policy,
3029#endif
3030	.remap_pages	= generic_file_remap_pages,
3031};
3032
3033static struct dentry *shmem_mount(struct file_system_type *fs_type,
3034	int flags, const char *dev_name, void *data)
3035{
3036	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3037}
3038
3039static struct file_system_type shmem_fs_type = {
3040	.owner		= THIS_MODULE,
3041	.name		= "tmpfs",
3042	.mount		= shmem_mount,
3043	.kill_sb	= kill_litter_super,
3044	.fs_flags	= FS_USERNS_MOUNT,
3045};
3046
3047int __init shmem_init(void)
3048{
3049	int error;
3050
3051	/* If rootfs called this, don't re-init */
3052	if (shmem_inode_cachep)
3053		return 0;
3054
3055	error = bdi_init(&shmem_backing_dev_info);
3056	if (error)
3057		goto out4;
3058
3059	error = shmem_init_inodecache();
3060	if (error)
3061		goto out3;
3062
3063	error = register_filesystem(&shmem_fs_type);
3064	if (error) {
3065		printk(KERN_ERR "Could not register tmpfs\n");
3066		goto out2;
3067	}
3068
3069	shm_mnt = kern_mount(&shmem_fs_type);
3070	if (IS_ERR(shm_mnt)) {
3071		error = PTR_ERR(shm_mnt);
3072		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3073		goto out1;
3074	}
3075	return 0;
3076
3077out1:
3078	unregister_filesystem(&shmem_fs_type);
3079out2:
3080	shmem_destroy_inodecache();
3081out3:
3082	bdi_destroy(&shmem_backing_dev_info);
3083out4:
3084	shm_mnt = ERR_PTR(error);
3085	return error;
3086}
3087
3088#else /* !CONFIG_SHMEM */
3089
3090/*
3091 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3092 *
3093 * This is intended for small system where the benefits of the full
3094 * shmem code (swap-backed and resource-limited) are outweighed by
3095 * their complexity. On systems without swap this code should be
3096 * effectively equivalent, but much lighter weight.
3097 */
3098
3099static struct file_system_type shmem_fs_type = {
3100	.name		= "tmpfs",
3101	.mount		= ramfs_mount,
3102	.kill_sb	= kill_litter_super,
3103	.fs_flags	= FS_USERNS_MOUNT,
3104};
3105
3106int __init shmem_init(void)
3107{
3108	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3109
3110	shm_mnt = kern_mount(&shmem_fs_type);
3111	BUG_ON(IS_ERR(shm_mnt));
3112
3113	return 0;
3114}
3115
3116int shmem_unuse(swp_entry_t swap, struct page *page)
3117{
3118	return 0;
3119}
3120
3121int shmem_lock(struct file *file, int lock, struct user_struct *user)
3122{
3123	return 0;
3124}
3125
3126void shmem_unlock_mapping(struct address_space *mapping)
3127{
3128}
3129
3130void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3131{
3132	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3133}
3134EXPORT_SYMBOL_GPL(shmem_truncate_range);
3135
3136#define shmem_vm_ops				generic_file_vm_ops
3137#define shmem_file_operations			ramfs_file_operations
3138#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3139#define shmem_acct_size(flags, size)		0
3140#define shmem_unacct_size(flags, size)		do {} while (0)
3141
3142#endif /* CONFIG_SHMEM */
3143
3144/* common code */
3145
3146static struct dentry_operations anon_ops = {
3147	.d_dname = simple_dname
3148};
3149
3150static struct file *__shmem_file_setup(const char *name, loff_t size,
3151				       unsigned long flags, unsigned int i_flags)
3152{
3153	struct file *res;
3154	struct inode *inode;
3155	struct path path;
3156	struct super_block *sb;
3157	struct qstr this;
3158
3159	if (IS_ERR(shm_mnt))
3160		return ERR_CAST(shm_mnt);
3161
3162	if (size < 0 || size > MAX_LFS_FILESIZE)
3163		return ERR_PTR(-EINVAL);
3164
3165	if (shmem_acct_size(flags, size))
3166		return ERR_PTR(-ENOMEM);
3167
3168	res = ERR_PTR(-ENOMEM);
3169	this.name = name;
3170	this.len = strlen(name);
3171	this.hash = 0; /* will go */
3172	sb = shm_mnt->mnt_sb;
3173	path.mnt = mntget(shm_mnt);
3174	path.dentry = d_alloc_pseudo(sb, &this);
3175	if (!path.dentry)
3176		goto put_memory;
3177	d_set_d_op(path.dentry, &anon_ops);
3178
3179	res = ERR_PTR(-ENOSPC);
3180	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3181	if (!inode)
3182		goto put_memory;
3183
3184	inode->i_flags |= i_flags;
3185	d_instantiate(path.dentry, inode);
3186	inode->i_size = size;
3187	clear_nlink(inode);	/* It is unlinked */
3188	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3189	if (IS_ERR(res))
3190		goto put_path;
3191
3192	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3193		  &shmem_file_operations);
3194	if (IS_ERR(res))
3195		goto put_path;
3196
3197	return res;
3198
3199put_memory:
3200	shmem_unacct_size(flags, size);
3201put_path:
3202	path_put(&path);
3203	return res;
3204}
3205
3206/**
3207 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3208 * 	kernel internal.  There will be NO LSM permission checks against the
3209 * 	underlying inode.  So users of this interface must do LSM checks at a
3210 * 	higher layer.  The one user is the big_key implementation.  LSM checks
3211 * 	are provided at the key level rather than the inode level.
3212 * @name: name for dentry (to be seen in /proc/<pid>/maps
3213 * @size: size to be set for the file
3214 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3215 */
3216struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3217{
3218	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3219}
3220
3221/**
3222 * shmem_file_setup - get an unlinked file living in tmpfs
3223 * @name: name for dentry (to be seen in /proc/<pid>/maps
3224 * @size: size to be set for the file
3225 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3226 */
3227struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3228{
3229	return __shmem_file_setup(name, size, flags, 0);
3230}
3231EXPORT_SYMBOL_GPL(shmem_file_setup);
3232
3233/**
3234 * shmem_zero_setup - setup a shared anonymous mapping
3235 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3236 */
3237int shmem_zero_setup(struct vm_area_struct *vma)
3238{
3239	struct file *file;
3240	loff_t size = vma->vm_end - vma->vm_start;
3241
3242	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3243	if (IS_ERR(file))
3244		return PTR_ERR(file);
3245
3246	if (vma->vm_file)
3247		fput(vma->vm_file);
3248	vma->vm_file = file;
3249	vma->vm_ops = &shmem_vm_ops;
3250	return 0;
3251}
3252
3253/**
3254 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3255 * @mapping:	the page's address_space
3256 * @index:	the page index
3257 * @gfp:	the page allocator flags to use if allocating
3258 *
3259 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3260 * with any new page allocations done using the specified allocation flags.
3261 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3262 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3263 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3264 *
3265 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3266 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3267 */
3268struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3269					 pgoff_t index, gfp_t gfp)
3270{
3271#ifdef CONFIG_SHMEM
3272	struct inode *inode = mapping->host;
3273	struct page *page;
3274	int error;
3275
3276	BUG_ON(mapping->a_ops != &shmem_aops);
3277	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3278	if (error)
3279		page = ERR_PTR(error);
3280	else
3281		unlock_page(page);
3282	return page;
3283#else
3284	/*
3285	 * The tiny !SHMEM case uses ramfs without swap
3286	 */
3287	return read_cache_page_gfp(mapping, index, gfp);
3288#endif
3289}
3290EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3291