shmem.c revision 94c1e62df4494b79782cb9c7279f827212d1de70
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/percpu_counter.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/security.h>
55#include <linux/swapops.h>
56#include <linux/mempolicy.h>
57#include <linux/namei.h>
58#include <linux/ctype.h>
59#include <linux/migrate.h>
60#include <linux/highmem.h>
61#include <linux/seq_file.h>
62#include <linux/magic.h>
63
64#include <asm/uaccess.h>
65#include <asm/div64.h>
66#include <asm/pgtable.h>
67
68/*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
80#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93#define SHMEM_PAGEIN	 VM_READ
94#define SHMEM_TRUNCATE	 VM_WRITE
95
96/* Definition to limit shmem_truncate's steps between cond_rescheds */
97#define LATENCY_LIMIT	 64
98
99/* Pretend that each entry is of this size in directory's i_size */
100#define BOGO_DIRENT_SIZE 20
101
102struct shmem_xattr {
103	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
104	char *name;		/* xattr name */
105	size_t size;
106	char value[0];
107};
108
109/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
110enum sgp_type {
111	SGP_READ,	/* don't exceed i_size, don't allocate page */
112	SGP_CACHE,	/* don't exceed i_size, may allocate page */
113	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
114	SGP_WRITE,	/* may exceed i_size, may allocate page */
115};
116
117#ifdef CONFIG_TMPFS
118static unsigned long shmem_default_max_blocks(void)
119{
120	return totalram_pages / 2;
121}
122
123static unsigned long shmem_default_max_inodes(void)
124{
125	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
126}
127#endif
128
129static int shmem_getpage(struct inode *inode, unsigned long idx,
130			 struct page **pagep, enum sgp_type sgp, int *type);
131
132static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
133{
134	/*
135	 * The above definition of ENTRIES_PER_PAGE, and the use of
136	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137	 * might be reconsidered if it ever diverges from PAGE_SIZE.
138	 *
139	 * Mobility flags are masked out as swap vectors cannot move
140	 */
141	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
142				PAGE_CACHE_SHIFT-PAGE_SHIFT);
143}
144
145static inline void shmem_dir_free(struct page *page)
146{
147	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
148}
149
150static struct page **shmem_dir_map(struct page *page)
151{
152	return (struct page **)kmap_atomic(page, KM_USER0);
153}
154
155static inline void shmem_dir_unmap(struct page **dir)
156{
157	kunmap_atomic(dir, KM_USER0);
158}
159
160static swp_entry_t *shmem_swp_map(struct page *page)
161{
162	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
163}
164
165static inline void shmem_swp_balance_unmap(void)
166{
167	/*
168	 * When passing a pointer to an i_direct entry, to code which
169	 * also handles indirect entries and so will shmem_swp_unmap,
170	 * we must arrange for the preempt count to remain in balance.
171	 * What kmap_atomic of a lowmem page does depends on config
172	 * and architecture, so pretend to kmap_atomic some lowmem page.
173	 */
174	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
175}
176
177static inline void shmem_swp_unmap(swp_entry_t *entry)
178{
179	kunmap_atomic(entry, KM_USER1);
180}
181
182static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
183{
184	return sb->s_fs_info;
185}
186
187/*
188 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189 * for shared memory and for shared anonymous (/dev/zero) mappings
190 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191 * consistent with the pre-accounting of private mappings ...
192 */
193static inline int shmem_acct_size(unsigned long flags, loff_t size)
194{
195	return (flags & VM_NORESERVE) ?
196		0 : security_vm_enough_memory_kern(VM_ACCT(size));
197}
198
199static inline void shmem_unacct_size(unsigned long flags, loff_t size)
200{
201	if (!(flags & VM_NORESERVE))
202		vm_unacct_memory(VM_ACCT(size));
203}
204
205/*
206 * ... whereas tmpfs objects are accounted incrementally as
207 * pages are allocated, in order to allow huge sparse files.
208 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
210 */
211static inline int shmem_acct_block(unsigned long flags)
212{
213	return (flags & VM_NORESERVE) ?
214		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
215}
216
217static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218{
219	if (flags & VM_NORESERVE)
220		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
221}
222
223static const struct super_operations shmem_ops;
224static const struct address_space_operations shmem_aops;
225static const struct file_operations shmem_file_operations;
226static const struct inode_operations shmem_inode_operations;
227static const struct inode_operations shmem_dir_inode_operations;
228static const struct inode_operations shmem_special_inode_operations;
229static const struct vm_operations_struct shmem_vm_ops;
230
231static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
232	.ra_pages	= 0,	/* No readahead */
233	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
234};
235
236static LIST_HEAD(shmem_swaplist);
237static DEFINE_MUTEX(shmem_swaplist_mutex);
238
239static void shmem_free_blocks(struct inode *inode, long pages)
240{
241	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242	if (sbinfo->max_blocks) {
243		percpu_counter_add(&sbinfo->used_blocks, -pages);
244		spin_lock(&inode->i_lock);
245		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
246		spin_unlock(&inode->i_lock);
247	}
248}
249
250static int shmem_reserve_inode(struct super_block *sb)
251{
252	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
253	if (sbinfo->max_inodes) {
254		spin_lock(&sbinfo->stat_lock);
255		if (!sbinfo->free_inodes) {
256			spin_unlock(&sbinfo->stat_lock);
257			return -ENOSPC;
258		}
259		sbinfo->free_inodes--;
260		spin_unlock(&sbinfo->stat_lock);
261	}
262	return 0;
263}
264
265static void shmem_free_inode(struct super_block *sb)
266{
267	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
268	if (sbinfo->max_inodes) {
269		spin_lock(&sbinfo->stat_lock);
270		sbinfo->free_inodes++;
271		spin_unlock(&sbinfo->stat_lock);
272	}
273}
274
275/**
276 * shmem_recalc_inode - recalculate the size of an inode
277 * @inode: inode to recalc
278 *
279 * We have to calculate the free blocks since the mm can drop
280 * undirtied hole pages behind our back.
281 *
282 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
283 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
284 *
285 * It has to be called with the spinlock held.
286 */
287static void shmem_recalc_inode(struct inode *inode)
288{
289	struct shmem_inode_info *info = SHMEM_I(inode);
290	long freed;
291
292	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
293	if (freed > 0) {
294		info->alloced -= freed;
295		shmem_unacct_blocks(info->flags, freed);
296		shmem_free_blocks(inode, freed);
297	}
298}
299
300/**
301 * shmem_swp_entry - find the swap vector position in the info structure
302 * @info:  info structure for the inode
303 * @index: index of the page to find
304 * @page:  optional page to add to the structure. Has to be preset to
305 *         all zeros
306 *
307 * If there is no space allocated yet it will return NULL when
308 * page is NULL, else it will use the page for the needed block,
309 * setting it to NULL on return to indicate that it has been used.
310 *
311 * The swap vector is organized the following way:
312 *
313 * There are SHMEM_NR_DIRECT entries directly stored in the
314 * shmem_inode_info structure. So small files do not need an addional
315 * allocation.
316 *
317 * For pages with index > SHMEM_NR_DIRECT there is the pointer
318 * i_indirect which points to a page which holds in the first half
319 * doubly indirect blocks, in the second half triple indirect blocks:
320 *
321 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
322 * following layout (for SHMEM_NR_DIRECT == 16):
323 *
324 * i_indirect -> dir --> 16-19
325 * 	      |	     +-> 20-23
326 * 	      |
327 * 	      +-->dir2 --> 24-27
328 * 	      |	       +-> 28-31
329 * 	      |	       +-> 32-35
330 * 	      |	       +-> 36-39
331 * 	      |
332 * 	      +-->dir3 --> 40-43
333 * 	       	       +-> 44-47
334 * 	      	       +-> 48-51
335 * 	      	       +-> 52-55
336 */
337static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
338{
339	unsigned long offset;
340	struct page **dir;
341	struct page *subdir;
342
343	if (index < SHMEM_NR_DIRECT) {
344		shmem_swp_balance_unmap();
345		return info->i_direct+index;
346	}
347	if (!info->i_indirect) {
348		if (page) {
349			info->i_indirect = *page;
350			*page = NULL;
351		}
352		return NULL;			/* need another page */
353	}
354
355	index -= SHMEM_NR_DIRECT;
356	offset = index % ENTRIES_PER_PAGE;
357	index /= ENTRIES_PER_PAGE;
358	dir = shmem_dir_map(info->i_indirect);
359
360	if (index >= ENTRIES_PER_PAGE/2) {
361		index -= ENTRIES_PER_PAGE/2;
362		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
363		index %= ENTRIES_PER_PAGE;
364		subdir = *dir;
365		if (!subdir) {
366			if (page) {
367				*dir = *page;
368				*page = NULL;
369			}
370			shmem_dir_unmap(dir);
371			return NULL;		/* need another page */
372		}
373		shmem_dir_unmap(dir);
374		dir = shmem_dir_map(subdir);
375	}
376
377	dir += index;
378	subdir = *dir;
379	if (!subdir) {
380		if (!page || !(subdir = *page)) {
381			shmem_dir_unmap(dir);
382			return NULL;		/* need a page */
383		}
384		*dir = subdir;
385		*page = NULL;
386	}
387	shmem_dir_unmap(dir);
388	return shmem_swp_map(subdir) + offset;
389}
390
391static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
392{
393	long incdec = value? 1: -1;
394
395	entry->val = value;
396	info->swapped += incdec;
397	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
398		struct page *page = kmap_atomic_to_page(entry);
399		set_page_private(page, page_private(page) + incdec);
400	}
401}
402
403/**
404 * shmem_swp_alloc - get the position of the swap entry for the page.
405 * @info:	info structure for the inode
406 * @index:	index of the page to find
407 * @sgp:	check and recheck i_size? skip allocation?
408 *
409 * If the entry does not exist, allocate it.
410 */
411static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
412{
413	struct inode *inode = &info->vfs_inode;
414	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
415	struct page *page = NULL;
416	swp_entry_t *entry;
417
418	if (sgp != SGP_WRITE &&
419	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
420		return ERR_PTR(-EINVAL);
421
422	while (!(entry = shmem_swp_entry(info, index, &page))) {
423		if (sgp == SGP_READ)
424			return shmem_swp_map(ZERO_PAGE(0));
425		/*
426		 * Test used_blocks against 1 less max_blocks, since we have 1 data
427		 * page (and perhaps indirect index pages) yet to allocate:
428		 * a waste to allocate index if we cannot allocate data.
429		 */
430		if (sbinfo->max_blocks) {
431			if (percpu_counter_compare(&sbinfo->used_blocks,
432						sbinfo->max_blocks - 1) >= 0)
433				return ERR_PTR(-ENOSPC);
434			percpu_counter_inc(&sbinfo->used_blocks);
435			spin_lock(&inode->i_lock);
436			inode->i_blocks += BLOCKS_PER_PAGE;
437			spin_unlock(&inode->i_lock);
438		}
439
440		spin_unlock(&info->lock);
441		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
442		spin_lock(&info->lock);
443
444		if (!page) {
445			shmem_free_blocks(inode, 1);
446			return ERR_PTR(-ENOMEM);
447		}
448		if (sgp != SGP_WRITE &&
449		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
450			entry = ERR_PTR(-EINVAL);
451			break;
452		}
453		if (info->next_index <= index)
454			info->next_index = index + 1;
455	}
456	if (page) {
457		/* another task gave its page, or truncated the file */
458		shmem_free_blocks(inode, 1);
459		shmem_dir_free(page);
460	}
461	if (info->next_index <= index && !IS_ERR(entry))
462		info->next_index = index + 1;
463	return entry;
464}
465
466/**
467 * shmem_free_swp - free some swap entries in a directory
468 * @dir:        pointer to the directory
469 * @edir:       pointer after last entry of the directory
470 * @punch_lock: pointer to spinlock when needed for the holepunch case
471 */
472static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
473						spinlock_t *punch_lock)
474{
475	spinlock_t *punch_unlock = NULL;
476	swp_entry_t *ptr;
477	int freed = 0;
478
479	for (ptr = dir; ptr < edir; ptr++) {
480		if (ptr->val) {
481			if (unlikely(punch_lock)) {
482				punch_unlock = punch_lock;
483				punch_lock = NULL;
484				spin_lock(punch_unlock);
485				if (!ptr->val)
486					continue;
487			}
488			free_swap_and_cache(*ptr);
489			*ptr = (swp_entry_t){0};
490			freed++;
491		}
492	}
493	if (punch_unlock)
494		spin_unlock(punch_unlock);
495	return freed;
496}
497
498static int shmem_map_and_free_swp(struct page *subdir, int offset,
499		int limit, struct page ***dir, spinlock_t *punch_lock)
500{
501	swp_entry_t *ptr;
502	int freed = 0;
503
504	ptr = shmem_swp_map(subdir);
505	for (; offset < limit; offset += LATENCY_LIMIT) {
506		int size = limit - offset;
507		if (size > LATENCY_LIMIT)
508			size = LATENCY_LIMIT;
509		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
510							punch_lock);
511		if (need_resched()) {
512			shmem_swp_unmap(ptr);
513			if (*dir) {
514				shmem_dir_unmap(*dir);
515				*dir = NULL;
516			}
517			cond_resched();
518			ptr = shmem_swp_map(subdir);
519		}
520	}
521	shmem_swp_unmap(ptr);
522	return freed;
523}
524
525static void shmem_free_pages(struct list_head *next)
526{
527	struct page *page;
528	int freed = 0;
529
530	do {
531		page = container_of(next, struct page, lru);
532		next = next->next;
533		shmem_dir_free(page);
534		freed++;
535		if (freed >= LATENCY_LIMIT) {
536			cond_resched();
537			freed = 0;
538		}
539	} while (next);
540}
541
542void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
543{
544	struct shmem_inode_info *info = SHMEM_I(inode);
545	unsigned long idx;
546	unsigned long size;
547	unsigned long limit;
548	unsigned long stage;
549	unsigned long diroff;
550	struct page **dir;
551	struct page *topdir;
552	struct page *middir;
553	struct page *subdir;
554	swp_entry_t *ptr;
555	LIST_HEAD(pages_to_free);
556	long nr_pages_to_free = 0;
557	long nr_swaps_freed = 0;
558	int offset;
559	int freed;
560	int punch_hole;
561	spinlock_t *needs_lock;
562	spinlock_t *punch_lock;
563	unsigned long upper_limit;
564
565	truncate_inode_pages_range(inode->i_mapping, start, end);
566
567	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
568	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
569	if (idx >= info->next_index)
570		return;
571
572	spin_lock(&info->lock);
573	info->flags |= SHMEM_TRUNCATE;
574	if (likely(end == (loff_t) -1)) {
575		limit = info->next_index;
576		upper_limit = SHMEM_MAX_INDEX;
577		info->next_index = idx;
578		needs_lock = NULL;
579		punch_hole = 0;
580	} else {
581		if (end + 1 >= inode->i_size) {	/* we may free a little more */
582			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
583							PAGE_CACHE_SHIFT;
584			upper_limit = SHMEM_MAX_INDEX;
585		} else {
586			limit = (end + 1) >> PAGE_CACHE_SHIFT;
587			upper_limit = limit;
588		}
589		needs_lock = &info->lock;
590		punch_hole = 1;
591	}
592
593	topdir = info->i_indirect;
594	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
595		info->i_indirect = NULL;
596		nr_pages_to_free++;
597		list_add(&topdir->lru, &pages_to_free);
598	}
599	spin_unlock(&info->lock);
600
601	if (info->swapped && idx < SHMEM_NR_DIRECT) {
602		ptr = info->i_direct;
603		size = limit;
604		if (size > SHMEM_NR_DIRECT)
605			size = SHMEM_NR_DIRECT;
606		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
607	}
608
609	/*
610	 * If there are no indirect blocks or we are punching a hole
611	 * below indirect blocks, nothing to be done.
612	 */
613	if (!topdir || limit <= SHMEM_NR_DIRECT)
614		goto done2;
615
616	/*
617	 * The truncation case has already dropped info->lock, and we're safe
618	 * because i_size and next_index have already been lowered, preventing
619	 * access beyond.  But in the punch_hole case, we still need to take
620	 * the lock when updating the swap directory, because there might be
621	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
622	 * shmem_writepage.  However, whenever we find we can remove a whole
623	 * directory page (not at the misaligned start or end of the range),
624	 * we first NULLify its pointer in the level above, and then have no
625	 * need to take the lock when updating its contents: needs_lock and
626	 * punch_lock (either pointing to info->lock or NULL) manage this.
627	 */
628
629	upper_limit -= SHMEM_NR_DIRECT;
630	limit -= SHMEM_NR_DIRECT;
631	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
632	offset = idx % ENTRIES_PER_PAGE;
633	idx -= offset;
634
635	dir = shmem_dir_map(topdir);
636	stage = ENTRIES_PER_PAGEPAGE/2;
637	if (idx < ENTRIES_PER_PAGEPAGE/2) {
638		middir = topdir;
639		diroff = idx/ENTRIES_PER_PAGE;
640	} else {
641		dir += ENTRIES_PER_PAGE/2;
642		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
643		while (stage <= idx)
644			stage += ENTRIES_PER_PAGEPAGE;
645		middir = *dir;
646		if (*dir) {
647			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
648				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
649			if (!diroff && !offset && upper_limit >= stage) {
650				if (needs_lock) {
651					spin_lock(needs_lock);
652					*dir = NULL;
653					spin_unlock(needs_lock);
654					needs_lock = NULL;
655				} else
656					*dir = NULL;
657				nr_pages_to_free++;
658				list_add(&middir->lru, &pages_to_free);
659			}
660			shmem_dir_unmap(dir);
661			dir = shmem_dir_map(middir);
662		} else {
663			diroff = 0;
664			offset = 0;
665			idx = stage;
666		}
667	}
668
669	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
670		if (unlikely(idx == stage)) {
671			shmem_dir_unmap(dir);
672			dir = shmem_dir_map(topdir) +
673			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
674			while (!*dir) {
675				dir++;
676				idx += ENTRIES_PER_PAGEPAGE;
677				if (idx >= limit)
678					goto done1;
679			}
680			stage = idx + ENTRIES_PER_PAGEPAGE;
681			middir = *dir;
682			if (punch_hole)
683				needs_lock = &info->lock;
684			if (upper_limit >= stage) {
685				if (needs_lock) {
686					spin_lock(needs_lock);
687					*dir = NULL;
688					spin_unlock(needs_lock);
689					needs_lock = NULL;
690				} else
691					*dir = NULL;
692				nr_pages_to_free++;
693				list_add(&middir->lru, &pages_to_free);
694			}
695			shmem_dir_unmap(dir);
696			cond_resched();
697			dir = shmem_dir_map(middir);
698			diroff = 0;
699		}
700		punch_lock = needs_lock;
701		subdir = dir[diroff];
702		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
703			if (needs_lock) {
704				spin_lock(needs_lock);
705				dir[diroff] = NULL;
706				spin_unlock(needs_lock);
707				punch_lock = NULL;
708			} else
709				dir[diroff] = NULL;
710			nr_pages_to_free++;
711			list_add(&subdir->lru, &pages_to_free);
712		}
713		if (subdir && page_private(subdir) /* has swap entries */) {
714			size = limit - idx;
715			if (size > ENTRIES_PER_PAGE)
716				size = ENTRIES_PER_PAGE;
717			freed = shmem_map_and_free_swp(subdir,
718					offset, size, &dir, punch_lock);
719			if (!dir)
720				dir = shmem_dir_map(middir);
721			nr_swaps_freed += freed;
722			if (offset || punch_lock) {
723				spin_lock(&info->lock);
724				set_page_private(subdir,
725					page_private(subdir) - freed);
726				spin_unlock(&info->lock);
727			} else
728				BUG_ON(page_private(subdir) != freed);
729		}
730		offset = 0;
731	}
732done1:
733	shmem_dir_unmap(dir);
734done2:
735	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
736		/*
737		 * Call truncate_inode_pages again: racing shmem_unuse_inode
738		 * may have swizzled a page in from swap since
739		 * truncate_pagecache or generic_delete_inode did it, before we
740		 * lowered next_index.  Also, though shmem_getpage checks
741		 * i_size before adding to cache, no recheck after: so fix the
742		 * narrow window there too.
743		 */
744		truncate_inode_pages_range(inode->i_mapping, start, end);
745	}
746
747	spin_lock(&info->lock);
748	info->flags &= ~SHMEM_TRUNCATE;
749	info->swapped -= nr_swaps_freed;
750	if (nr_pages_to_free)
751		shmem_free_blocks(inode, nr_pages_to_free);
752	shmem_recalc_inode(inode);
753	spin_unlock(&info->lock);
754
755	/*
756	 * Empty swap vector directory pages to be freed?
757	 */
758	if (!list_empty(&pages_to_free)) {
759		pages_to_free.prev->next = NULL;
760		shmem_free_pages(pages_to_free.next);
761	}
762}
763EXPORT_SYMBOL_GPL(shmem_truncate_range);
764
765static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
766{
767	struct inode *inode = dentry->d_inode;
768	int error;
769
770	error = inode_change_ok(inode, attr);
771	if (error)
772		return error;
773
774	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
775		loff_t oldsize = inode->i_size;
776		loff_t newsize = attr->ia_size;
777		struct page *page = NULL;
778
779		if (newsize < oldsize) {
780			/*
781			 * If truncating down to a partial page, then
782			 * if that page is already allocated, hold it
783			 * in memory until the truncation is over, so
784			 * truncate_partial_page cannot miss it were
785			 * it assigned to swap.
786			 */
787			if (newsize & (PAGE_CACHE_SIZE-1)) {
788				(void) shmem_getpage(inode,
789					newsize >> PAGE_CACHE_SHIFT,
790						&page, SGP_READ, NULL);
791				if (page)
792					unlock_page(page);
793			}
794			/*
795			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
796			 * detect if any pages might have been added to cache
797			 * after truncate_inode_pages.  But we needn't bother
798			 * if it's being fully truncated to zero-length: the
799			 * nrpages check is efficient enough in that case.
800			 */
801			if (newsize) {
802				struct shmem_inode_info *info = SHMEM_I(inode);
803				spin_lock(&info->lock);
804				info->flags &= ~SHMEM_PAGEIN;
805				spin_unlock(&info->lock);
806			}
807		}
808		if (newsize != oldsize) {
809			i_size_write(inode, newsize);
810			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
811		}
812		if (newsize < oldsize) {
813			loff_t holebegin = round_up(newsize, PAGE_SIZE);
814			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
815			shmem_truncate_range(inode, newsize, (loff_t)-1);
816			/* unmap again to remove racily COWed private pages */
817			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
818		}
819		if (page)
820			page_cache_release(page);
821	}
822
823	setattr_copy(inode, attr);
824#ifdef CONFIG_TMPFS_POSIX_ACL
825	if (attr->ia_valid & ATTR_MODE)
826		error = generic_acl_chmod(inode);
827#endif
828	return error;
829}
830
831static void shmem_evict_inode(struct inode *inode)
832{
833	struct shmem_inode_info *info = SHMEM_I(inode);
834	struct shmem_xattr *xattr, *nxattr;
835
836	if (inode->i_mapping->a_ops == &shmem_aops) {
837		shmem_unacct_size(info->flags, inode->i_size);
838		inode->i_size = 0;
839		shmem_truncate_range(inode, 0, (loff_t)-1);
840		if (!list_empty(&info->swaplist)) {
841			mutex_lock(&shmem_swaplist_mutex);
842			list_del_init(&info->swaplist);
843			mutex_unlock(&shmem_swaplist_mutex);
844		}
845	}
846
847	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
848		kfree(xattr->name);
849		kfree(xattr);
850	}
851	BUG_ON(inode->i_blocks);
852	shmem_free_inode(inode->i_sb);
853	end_writeback(inode);
854}
855
856static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
857{
858	swp_entry_t *ptr;
859
860	for (ptr = dir; ptr < edir; ptr++) {
861		if (ptr->val == entry.val)
862			return ptr - dir;
863	}
864	return -1;
865}
866
867static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
868{
869	struct address_space *mapping;
870	unsigned long idx;
871	unsigned long size;
872	unsigned long limit;
873	unsigned long stage;
874	struct page **dir;
875	struct page *subdir;
876	swp_entry_t *ptr;
877	int offset;
878	int error;
879
880	idx = 0;
881	ptr = info->i_direct;
882	spin_lock(&info->lock);
883	if (!info->swapped) {
884		list_del_init(&info->swaplist);
885		goto lost2;
886	}
887	limit = info->next_index;
888	size = limit;
889	if (size > SHMEM_NR_DIRECT)
890		size = SHMEM_NR_DIRECT;
891	offset = shmem_find_swp(entry, ptr, ptr+size);
892	if (offset >= 0) {
893		shmem_swp_balance_unmap();
894		goto found;
895	}
896	if (!info->i_indirect)
897		goto lost2;
898
899	dir = shmem_dir_map(info->i_indirect);
900	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
901
902	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
903		if (unlikely(idx == stage)) {
904			shmem_dir_unmap(dir-1);
905			if (cond_resched_lock(&info->lock)) {
906				/* check it has not been truncated */
907				if (limit > info->next_index) {
908					limit = info->next_index;
909					if (idx >= limit)
910						goto lost2;
911				}
912			}
913			dir = shmem_dir_map(info->i_indirect) +
914			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
915			while (!*dir) {
916				dir++;
917				idx += ENTRIES_PER_PAGEPAGE;
918				if (idx >= limit)
919					goto lost1;
920			}
921			stage = idx + ENTRIES_PER_PAGEPAGE;
922			subdir = *dir;
923			shmem_dir_unmap(dir);
924			dir = shmem_dir_map(subdir);
925		}
926		subdir = *dir;
927		if (subdir && page_private(subdir)) {
928			ptr = shmem_swp_map(subdir);
929			size = limit - idx;
930			if (size > ENTRIES_PER_PAGE)
931				size = ENTRIES_PER_PAGE;
932			offset = shmem_find_swp(entry, ptr, ptr+size);
933			shmem_swp_unmap(ptr);
934			if (offset >= 0) {
935				shmem_dir_unmap(dir);
936				ptr = shmem_swp_map(subdir);
937				goto found;
938			}
939		}
940	}
941lost1:
942	shmem_dir_unmap(dir-1);
943lost2:
944	spin_unlock(&info->lock);
945	return 0;
946found:
947	idx += offset;
948	ptr += offset;
949
950	/*
951	 * Move _head_ to start search for next from here.
952	 * But be careful: shmem_evict_inode checks list_empty without taking
953	 * mutex, and there's an instant in list_move_tail when info->swaplist
954	 * would appear empty, if it were the only one on shmem_swaplist.  We
955	 * could avoid doing it if inode NULL; or use this minor optimization.
956	 */
957	if (shmem_swaplist.next != &info->swaplist)
958		list_move_tail(&shmem_swaplist, &info->swaplist);
959
960	/*
961	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
962	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
963	 * beneath us (pagelock doesn't help until the page is in pagecache).
964	 */
965	mapping = info->vfs_inode.i_mapping;
966	error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
967	/* which does mem_cgroup_uncharge_cache_page on error */
968
969	if (error == -EEXIST) {
970		struct page *filepage = find_get_page(mapping, idx);
971		error = 1;
972		if (filepage) {
973			/*
974			 * There might be a more uptodate page coming down
975			 * from a stacked writepage: forget our swappage if so.
976			 */
977			if (PageUptodate(filepage))
978				error = 0;
979			page_cache_release(filepage);
980		}
981	}
982	if (!error) {
983		delete_from_swap_cache(page);
984		set_page_dirty(page);
985		info->flags |= SHMEM_PAGEIN;
986		shmem_swp_set(info, ptr, 0);
987		swap_free(entry);
988		error = 1;	/* not an error, but entry was found */
989	}
990	shmem_swp_unmap(ptr);
991	spin_unlock(&info->lock);
992	return error;
993}
994
995/*
996 * shmem_unuse() search for an eventually swapped out shmem page.
997 */
998int shmem_unuse(swp_entry_t entry, struct page *page)
999{
1000	struct list_head *p, *next;
1001	struct shmem_inode_info *info;
1002	int found = 0;
1003	int error;
1004
1005	/*
1006	 * Charge page using GFP_KERNEL while we can wait, before taking
1007	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1008	 * Charged back to the user (not to caller) when swap account is used.
1009	 * add_to_page_cache() will be called with GFP_NOWAIT.
1010	 */
1011	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1012	if (error)
1013		goto out;
1014	/*
1015	 * Try to preload while we can wait, to not make a habit of
1016	 * draining atomic reserves; but don't latch on to this cpu,
1017	 * it's okay if sometimes we get rescheduled after this.
1018	 */
1019	error = radix_tree_preload(GFP_KERNEL);
1020	if (error)
1021		goto uncharge;
1022	radix_tree_preload_end();
1023
1024	mutex_lock(&shmem_swaplist_mutex);
1025	list_for_each_safe(p, next, &shmem_swaplist) {
1026		info = list_entry(p, struct shmem_inode_info, swaplist);
1027		found = shmem_unuse_inode(info, entry, page);
1028		cond_resched();
1029		if (found)
1030			break;
1031	}
1032	mutex_unlock(&shmem_swaplist_mutex);
1033
1034uncharge:
1035	if (!found)
1036		mem_cgroup_uncharge_cache_page(page);
1037	if (found < 0)
1038		error = found;
1039out:
1040	unlock_page(page);
1041	page_cache_release(page);
1042	return error;
1043}
1044
1045/*
1046 * Move the page from the page cache to the swap cache.
1047 */
1048static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1049{
1050	struct shmem_inode_info *info;
1051	swp_entry_t *entry, swap;
1052	struct address_space *mapping;
1053	unsigned long index;
1054	struct inode *inode;
1055
1056	BUG_ON(!PageLocked(page));
1057	mapping = page->mapping;
1058	index = page->index;
1059	inode = mapping->host;
1060	info = SHMEM_I(inode);
1061	if (info->flags & VM_LOCKED)
1062		goto redirty;
1063	if (!total_swap_pages)
1064		goto redirty;
1065
1066	/*
1067	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1068	 * sync from ever calling shmem_writepage; but a stacking filesystem
1069	 * may use the ->writepage of its underlying filesystem, in which case
1070	 * tmpfs should write out to swap only in response to memory pressure,
1071	 * and not for the writeback threads or sync.  However, in those cases,
1072	 * we do still want to check if there's a redundant swappage to be
1073	 * discarded.
1074	 */
1075	if (wbc->for_reclaim)
1076		swap = get_swap_page();
1077	else
1078		swap.val = 0;
1079
1080	/*
1081	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1082	 * if it's not already there.  Do it now because we cannot take
1083	 * mutex while holding spinlock, and must do so before the page
1084	 * is moved to swap cache, when its pagelock no longer protects
1085	 * the inode from eviction.  But don't unlock the mutex until
1086	 * we've taken the spinlock, because shmem_unuse_inode() will
1087	 * prune a !swapped inode from the swaplist under both locks.
1088	 */
1089	if (swap.val) {
1090		mutex_lock(&shmem_swaplist_mutex);
1091		if (list_empty(&info->swaplist))
1092			list_add_tail(&info->swaplist, &shmem_swaplist);
1093	}
1094
1095	spin_lock(&info->lock);
1096	if (swap.val)
1097		mutex_unlock(&shmem_swaplist_mutex);
1098
1099	if (index >= info->next_index) {
1100		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1101		goto unlock;
1102	}
1103	entry = shmem_swp_entry(info, index, NULL);
1104	if (entry->val) {
1105		/*
1106		 * The more uptodate page coming down from a stacked
1107		 * writepage should replace our old swappage.
1108		 */
1109		free_swap_and_cache(*entry);
1110		shmem_swp_set(info, entry, 0);
1111	}
1112	shmem_recalc_inode(inode);
1113
1114	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1115		delete_from_page_cache(page);
1116		shmem_swp_set(info, entry, swap.val);
1117		shmem_swp_unmap(entry);
1118		swap_shmem_alloc(swap);
1119		spin_unlock(&info->lock);
1120		BUG_ON(page_mapped(page));
1121		swap_writepage(page, wbc);
1122		return 0;
1123	}
1124
1125	shmem_swp_unmap(entry);
1126unlock:
1127	spin_unlock(&info->lock);
1128	/*
1129	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1130	 * clear SWAP_HAS_CACHE flag.
1131	 */
1132	swapcache_free(swap, NULL);
1133redirty:
1134	set_page_dirty(page);
1135	if (wbc->for_reclaim)
1136		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1137	unlock_page(page);
1138	return 0;
1139}
1140
1141#ifdef CONFIG_NUMA
1142#ifdef CONFIG_TMPFS
1143static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1144{
1145	char buffer[64];
1146
1147	if (!mpol || mpol->mode == MPOL_DEFAULT)
1148		return;		/* show nothing */
1149
1150	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1151
1152	seq_printf(seq, ",mpol=%s", buffer);
1153}
1154
1155static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1156{
1157	struct mempolicy *mpol = NULL;
1158	if (sbinfo->mpol) {
1159		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1160		mpol = sbinfo->mpol;
1161		mpol_get(mpol);
1162		spin_unlock(&sbinfo->stat_lock);
1163	}
1164	return mpol;
1165}
1166#endif /* CONFIG_TMPFS */
1167
1168static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1169			struct shmem_inode_info *info, unsigned long idx)
1170{
1171	struct mempolicy mpol, *spol;
1172	struct vm_area_struct pvma;
1173	struct page *page;
1174
1175	spol = mpol_cond_copy(&mpol,
1176				mpol_shared_policy_lookup(&info->policy, idx));
1177
1178	/* Create a pseudo vma that just contains the policy */
1179	pvma.vm_start = 0;
1180	pvma.vm_pgoff = idx;
1181	pvma.vm_ops = NULL;
1182	pvma.vm_policy = spol;
1183	page = swapin_readahead(entry, gfp, &pvma, 0);
1184	return page;
1185}
1186
1187static struct page *shmem_alloc_page(gfp_t gfp,
1188			struct shmem_inode_info *info, unsigned long idx)
1189{
1190	struct vm_area_struct pvma;
1191
1192	/* Create a pseudo vma that just contains the policy */
1193	pvma.vm_start = 0;
1194	pvma.vm_pgoff = idx;
1195	pvma.vm_ops = NULL;
1196	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1197
1198	/*
1199	 * alloc_page_vma() will drop the shared policy reference
1200	 */
1201	return alloc_page_vma(gfp, &pvma, 0);
1202}
1203#else /* !CONFIG_NUMA */
1204#ifdef CONFIG_TMPFS
1205static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1206{
1207}
1208#endif /* CONFIG_TMPFS */
1209
1210static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1211			struct shmem_inode_info *info, unsigned long idx)
1212{
1213	return swapin_readahead(entry, gfp, NULL, 0);
1214}
1215
1216static inline struct page *shmem_alloc_page(gfp_t gfp,
1217			struct shmem_inode_info *info, unsigned long idx)
1218{
1219	return alloc_page(gfp);
1220}
1221#endif /* CONFIG_NUMA */
1222
1223#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1224static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1225{
1226	return NULL;
1227}
1228#endif
1229
1230/*
1231 * shmem_getpage - either get the page from swap or allocate a new one
1232 *
1233 * If we allocate a new one we do not mark it dirty. That's up to the
1234 * vm. If we swap it in we mark it dirty since we also free the swap
1235 * entry since a page cannot live in both the swap and page cache
1236 */
1237static int shmem_getpage(struct inode *inode, unsigned long idx,
1238			struct page **pagep, enum sgp_type sgp, int *type)
1239{
1240	struct address_space *mapping = inode->i_mapping;
1241	struct shmem_inode_info *info = SHMEM_I(inode);
1242	struct shmem_sb_info *sbinfo;
1243	struct page *filepage = *pagep;
1244	struct page *swappage;
1245	struct page *prealloc_page = NULL;
1246	swp_entry_t *entry;
1247	swp_entry_t swap;
1248	gfp_t gfp;
1249	int error;
1250
1251	if (idx >= SHMEM_MAX_INDEX)
1252		return -EFBIG;
1253
1254	if (type)
1255		*type = 0;
1256
1257	/*
1258	 * Normally, filepage is NULL on entry, and either found
1259	 * uptodate immediately, or allocated and zeroed, or read
1260	 * in under swappage, which is then assigned to filepage.
1261	 * But shmem_readpage (required for splice) passes in a locked
1262	 * filepage, which may be found not uptodate by other callers
1263	 * too, and may need to be copied from the swappage read in.
1264	 */
1265repeat:
1266	if (!filepage)
1267		filepage = find_lock_page(mapping, idx);
1268	if (filepage && PageUptodate(filepage))
1269		goto done;
1270	gfp = mapping_gfp_mask(mapping);
1271	if (!filepage) {
1272		/*
1273		 * Try to preload while we can wait, to not make a habit of
1274		 * draining atomic reserves; but don't latch on to this cpu.
1275		 */
1276		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1277		if (error)
1278			goto failed;
1279		radix_tree_preload_end();
1280		if (sgp != SGP_READ && !prealloc_page) {
1281			/* We don't care if this fails */
1282			prealloc_page = shmem_alloc_page(gfp, info, idx);
1283			if (prealloc_page) {
1284				if (mem_cgroup_cache_charge(prealloc_page,
1285						current->mm, GFP_KERNEL)) {
1286					page_cache_release(prealloc_page);
1287					prealloc_page = NULL;
1288				}
1289			}
1290		}
1291	}
1292	error = 0;
1293
1294	spin_lock(&info->lock);
1295	shmem_recalc_inode(inode);
1296	entry = shmem_swp_alloc(info, idx, sgp);
1297	if (IS_ERR(entry)) {
1298		spin_unlock(&info->lock);
1299		error = PTR_ERR(entry);
1300		goto failed;
1301	}
1302	swap = *entry;
1303
1304	if (swap.val) {
1305		/* Look it up and read it in.. */
1306		swappage = lookup_swap_cache(swap);
1307		if (!swappage) {
1308			shmem_swp_unmap(entry);
1309			spin_unlock(&info->lock);
1310			/* here we actually do the io */
1311			if (type)
1312				*type |= VM_FAULT_MAJOR;
1313			swappage = shmem_swapin(swap, gfp, info, idx);
1314			if (!swappage) {
1315				spin_lock(&info->lock);
1316				entry = shmem_swp_alloc(info, idx, sgp);
1317				if (IS_ERR(entry))
1318					error = PTR_ERR(entry);
1319				else {
1320					if (entry->val == swap.val)
1321						error = -ENOMEM;
1322					shmem_swp_unmap(entry);
1323				}
1324				spin_unlock(&info->lock);
1325				if (error)
1326					goto failed;
1327				goto repeat;
1328			}
1329			wait_on_page_locked(swappage);
1330			page_cache_release(swappage);
1331			goto repeat;
1332		}
1333
1334		/* We have to do this with page locked to prevent races */
1335		if (!trylock_page(swappage)) {
1336			shmem_swp_unmap(entry);
1337			spin_unlock(&info->lock);
1338			wait_on_page_locked(swappage);
1339			page_cache_release(swappage);
1340			goto repeat;
1341		}
1342		if (PageWriteback(swappage)) {
1343			shmem_swp_unmap(entry);
1344			spin_unlock(&info->lock);
1345			wait_on_page_writeback(swappage);
1346			unlock_page(swappage);
1347			page_cache_release(swappage);
1348			goto repeat;
1349		}
1350		if (!PageUptodate(swappage)) {
1351			shmem_swp_unmap(entry);
1352			spin_unlock(&info->lock);
1353			unlock_page(swappage);
1354			page_cache_release(swappage);
1355			error = -EIO;
1356			goto failed;
1357		}
1358
1359		if (filepage) {
1360			shmem_swp_set(info, entry, 0);
1361			shmem_swp_unmap(entry);
1362			delete_from_swap_cache(swappage);
1363			spin_unlock(&info->lock);
1364			copy_highpage(filepage, swappage);
1365			unlock_page(swappage);
1366			page_cache_release(swappage);
1367			flush_dcache_page(filepage);
1368			SetPageUptodate(filepage);
1369			set_page_dirty(filepage);
1370			swap_free(swap);
1371		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1372					idx, GFP_NOWAIT))) {
1373			info->flags |= SHMEM_PAGEIN;
1374			shmem_swp_set(info, entry, 0);
1375			shmem_swp_unmap(entry);
1376			delete_from_swap_cache(swappage);
1377			spin_unlock(&info->lock);
1378			filepage = swappage;
1379			set_page_dirty(filepage);
1380			swap_free(swap);
1381		} else {
1382			shmem_swp_unmap(entry);
1383			spin_unlock(&info->lock);
1384			if (error == -ENOMEM) {
1385				/*
1386				 * reclaim from proper memory cgroup and
1387				 * call memcg's OOM if needed.
1388				 */
1389				error = mem_cgroup_shmem_charge_fallback(
1390								swappage,
1391								current->mm,
1392								gfp);
1393				if (error) {
1394					unlock_page(swappage);
1395					page_cache_release(swappage);
1396					goto failed;
1397				}
1398			}
1399			unlock_page(swappage);
1400			page_cache_release(swappage);
1401			goto repeat;
1402		}
1403	} else if (sgp == SGP_READ && !filepage) {
1404		shmem_swp_unmap(entry);
1405		filepage = find_get_page(mapping, idx);
1406		if (filepage &&
1407		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1408			spin_unlock(&info->lock);
1409			wait_on_page_locked(filepage);
1410			page_cache_release(filepage);
1411			filepage = NULL;
1412			goto repeat;
1413		}
1414		spin_unlock(&info->lock);
1415	} else {
1416		shmem_swp_unmap(entry);
1417		sbinfo = SHMEM_SB(inode->i_sb);
1418		if (sbinfo->max_blocks) {
1419			if (percpu_counter_compare(&sbinfo->used_blocks,
1420						sbinfo->max_blocks) >= 0 ||
1421			    shmem_acct_block(info->flags))
1422				goto nospace;
1423			percpu_counter_inc(&sbinfo->used_blocks);
1424			spin_lock(&inode->i_lock);
1425			inode->i_blocks += BLOCKS_PER_PAGE;
1426			spin_unlock(&inode->i_lock);
1427		} else if (shmem_acct_block(info->flags))
1428			goto nospace;
1429
1430		if (!filepage) {
1431			int ret;
1432
1433			if (!prealloc_page) {
1434				spin_unlock(&info->lock);
1435				filepage = shmem_alloc_page(gfp, info, idx);
1436				if (!filepage) {
1437					shmem_unacct_blocks(info->flags, 1);
1438					shmem_free_blocks(inode, 1);
1439					error = -ENOMEM;
1440					goto failed;
1441				}
1442				SetPageSwapBacked(filepage);
1443
1444				/*
1445				 * Precharge page while we can wait, compensate
1446				 * after
1447				 */
1448				error = mem_cgroup_cache_charge(filepage,
1449					current->mm, GFP_KERNEL);
1450				if (error) {
1451					page_cache_release(filepage);
1452					shmem_unacct_blocks(info->flags, 1);
1453					shmem_free_blocks(inode, 1);
1454					filepage = NULL;
1455					goto failed;
1456				}
1457
1458				spin_lock(&info->lock);
1459			} else {
1460				filepage = prealloc_page;
1461				prealloc_page = NULL;
1462				SetPageSwapBacked(filepage);
1463			}
1464
1465			entry = shmem_swp_alloc(info, idx, sgp);
1466			if (IS_ERR(entry))
1467				error = PTR_ERR(entry);
1468			else {
1469				swap = *entry;
1470				shmem_swp_unmap(entry);
1471			}
1472			ret = error || swap.val;
1473			if (ret)
1474				mem_cgroup_uncharge_cache_page(filepage);
1475			else
1476				ret = add_to_page_cache_lru(filepage, mapping,
1477						idx, GFP_NOWAIT);
1478			/*
1479			 * At add_to_page_cache_lru() failure, uncharge will
1480			 * be done automatically.
1481			 */
1482			if (ret) {
1483				spin_unlock(&info->lock);
1484				page_cache_release(filepage);
1485				shmem_unacct_blocks(info->flags, 1);
1486				shmem_free_blocks(inode, 1);
1487				filepage = NULL;
1488				if (error)
1489					goto failed;
1490				goto repeat;
1491			}
1492			info->flags |= SHMEM_PAGEIN;
1493		}
1494
1495		info->alloced++;
1496		spin_unlock(&info->lock);
1497		clear_highpage(filepage);
1498		flush_dcache_page(filepage);
1499		SetPageUptodate(filepage);
1500		if (sgp == SGP_DIRTY)
1501			set_page_dirty(filepage);
1502	}
1503done:
1504	*pagep = filepage;
1505	error = 0;
1506	goto out;
1507
1508nospace:
1509	/*
1510	 * Perhaps the page was brought in from swap between find_lock_page
1511	 * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1512	 * but must also avoid reporting a spurious ENOSPC while working on a
1513	 * full tmpfs.  (When filepage has been passed in to shmem_getpage, it
1514	 * is already in page cache, which prevents this race from occurring.)
1515	 */
1516	if (!filepage) {
1517		struct page *page = find_get_page(mapping, idx);
1518		if (page) {
1519			spin_unlock(&info->lock);
1520			page_cache_release(page);
1521			goto repeat;
1522		}
1523	}
1524	spin_unlock(&info->lock);
1525	error = -ENOSPC;
1526failed:
1527	if (*pagep != filepage) {
1528		unlock_page(filepage);
1529		page_cache_release(filepage);
1530	}
1531out:
1532	if (prealloc_page) {
1533		mem_cgroup_uncharge_cache_page(prealloc_page);
1534		page_cache_release(prealloc_page);
1535	}
1536	return error;
1537}
1538
1539static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1540{
1541	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1542	int error;
1543	int ret;
1544
1545	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1546		return VM_FAULT_SIGBUS;
1547
1548	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1549	if (error)
1550		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1551	if (ret & VM_FAULT_MAJOR) {
1552		count_vm_event(PGMAJFAULT);
1553		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1554	}
1555	return ret | VM_FAULT_LOCKED;
1556}
1557
1558#ifdef CONFIG_NUMA
1559static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1560{
1561	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1562	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1563}
1564
1565static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1566					  unsigned long addr)
1567{
1568	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1569	unsigned long idx;
1570
1571	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1572	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1573}
1574#endif
1575
1576int shmem_lock(struct file *file, int lock, struct user_struct *user)
1577{
1578	struct inode *inode = file->f_path.dentry->d_inode;
1579	struct shmem_inode_info *info = SHMEM_I(inode);
1580	int retval = -ENOMEM;
1581
1582	spin_lock(&info->lock);
1583	if (lock && !(info->flags & VM_LOCKED)) {
1584		if (!user_shm_lock(inode->i_size, user))
1585			goto out_nomem;
1586		info->flags |= VM_LOCKED;
1587		mapping_set_unevictable(file->f_mapping);
1588	}
1589	if (!lock && (info->flags & VM_LOCKED) && user) {
1590		user_shm_unlock(inode->i_size, user);
1591		info->flags &= ~VM_LOCKED;
1592		mapping_clear_unevictable(file->f_mapping);
1593		scan_mapping_unevictable_pages(file->f_mapping);
1594	}
1595	retval = 0;
1596
1597out_nomem:
1598	spin_unlock(&info->lock);
1599	return retval;
1600}
1601
1602static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1603{
1604	file_accessed(file);
1605	vma->vm_ops = &shmem_vm_ops;
1606	vma->vm_flags |= VM_CAN_NONLINEAR;
1607	return 0;
1608}
1609
1610static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1611				     int mode, dev_t dev, unsigned long flags)
1612{
1613	struct inode *inode;
1614	struct shmem_inode_info *info;
1615	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1616
1617	if (shmem_reserve_inode(sb))
1618		return NULL;
1619
1620	inode = new_inode(sb);
1621	if (inode) {
1622		inode->i_ino = get_next_ino();
1623		inode_init_owner(inode, dir, mode);
1624		inode->i_blocks = 0;
1625		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1626		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1627		inode->i_generation = get_seconds();
1628		info = SHMEM_I(inode);
1629		memset(info, 0, (char *)inode - (char *)info);
1630		spin_lock_init(&info->lock);
1631		info->flags = flags & VM_NORESERVE;
1632		INIT_LIST_HEAD(&info->swaplist);
1633		INIT_LIST_HEAD(&info->xattr_list);
1634		cache_no_acl(inode);
1635
1636		switch (mode & S_IFMT) {
1637		default:
1638			inode->i_op = &shmem_special_inode_operations;
1639			init_special_inode(inode, mode, dev);
1640			break;
1641		case S_IFREG:
1642			inode->i_mapping->a_ops = &shmem_aops;
1643			inode->i_op = &shmem_inode_operations;
1644			inode->i_fop = &shmem_file_operations;
1645			mpol_shared_policy_init(&info->policy,
1646						 shmem_get_sbmpol(sbinfo));
1647			break;
1648		case S_IFDIR:
1649			inc_nlink(inode);
1650			/* Some things misbehave if size == 0 on a directory */
1651			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1652			inode->i_op = &shmem_dir_inode_operations;
1653			inode->i_fop = &simple_dir_operations;
1654			break;
1655		case S_IFLNK:
1656			/*
1657			 * Must not load anything in the rbtree,
1658			 * mpol_free_shared_policy will not be called.
1659			 */
1660			mpol_shared_policy_init(&info->policy, NULL);
1661			break;
1662		}
1663	} else
1664		shmem_free_inode(sb);
1665	return inode;
1666}
1667
1668#ifdef CONFIG_TMPFS
1669static const struct inode_operations shmem_symlink_inode_operations;
1670static const struct inode_operations shmem_symlink_inline_operations;
1671
1672/*
1673 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1674 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1675 * below the loop driver, in the generic fashion that many filesystems support.
1676 */
1677static int shmem_readpage(struct file *file, struct page *page)
1678{
1679	struct inode *inode = page->mapping->host;
1680	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1681	unlock_page(page);
1682	return error;
1683}
1684
1685static int
1686shmem_write_begin(struct file *file, struct address_space *mapping,
1687			loff_t pos, unsigned len, unsigned flags,
1688			struct page **pagep, void **fsdata)
1689{
1690	struct inode *inode = mapping->host;
1691	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1692	*pagep = NULL;
1693	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1694}
1695
1696static int
1697shmem_write_end(struct file *file, struct address_space *mapping,
1698			loff_t pos, unsigned len, unsigned copied,
1699			struct page *page, void *fsdata)
1700{
1701	struct inode *inode = mapping->host;
1702
1703	if (pos + copied > inode->i_size)
1704		i_size_write(inode, pos + copied);
1705
1706	set_page_dirty(page);
1707	unlock_page(page);
1708	page_cache_release(page);
1709
1710	return copied;
1711}
1712
1713static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1714{
1715	struct inode *inode = filp->f_path.dentry->d_inode;
1716	struct address_space *mapping = inode->i_mapping;
1717	unsigned long index, offset;
1718	enum sgp_type sgp = SGP_READ;
1719
1720	/*
1721	 * Might this read be for a stacking filesystem?  Then when reading
1722	 * holes of a sparse file, we actually need to allocate those pages,
1723	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1724	 */
1725	if (segment_eq(get_fs(), KERNEL_DS))
1726		sgp = SGP_DIRTY;
1727
1728	index = *ppos >> PAGE_CACHE_SHIFT;
1729	offset = *ppos & ~PAGE_CACHE_MASK;
1730
1731	for (;;) {
1732		struct page *page = NULL;
1733		unsigned long end_index, nr, ret;
1734		loff_t i_size = i_size_read(inode);
1735
1736		end_index = i_size >> PAGE_CACHE_SHIFT;
1737		if (index > end_index)
1738			break;
1739		if (index == end_index) {
1740			nr = i_size & ~PAGE_CACHE_MASK;
1741			if (nr <= offset)
1742				break;
1743		}
1744
1745		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1746		if (desc->error) {
1747			if (desc->error == -EINVAL)
1748				desc->error = 0;
1749			break;
1750		}
1751		if (page)
1752			unlock_page(page);
1753
1754		/*
1755		 * We must evaluate after, since reads (unlike writes)
1756		 * are called without i_mutex protection against truncate
1757		 */
1758		nr = PAGE_CACHE_SIZE;
1759		i_size = i_size_read(inode);
1760		end_index = i_size >> PAGE_CACHE_SHIFT;
1761		if (index == end_index) {
1762			nr = i_size & ~PAGE_CACHE_MASK;
1763			if (nr <= offset) {
1764				if (page)
1765					page_cache_release(page);
1766				break;
1767			}
1768		}
1769		nr -= offset;
1770
1771		if (page) {
1772			/*
1773			 * If users can be writing to this page using arbitrary
1774			 * virtual addresses, take care about potential aliasing
1775			 * before reading the page on the kernel side.
1776			 */
1777			if (mapping_writably_mapped(mapping))
1778				flush_dcache_page(page);
1779			/*
1780			 * Mark the page accessed if we read the beginning.
1781			 */
1782			if (!offset)
1783				mark_page_accessed(page);
1784		} else {
1785			page = ZERO_PAGE(0);
1786			page_cache_get(page);
1787		}
1788
1789		/*
1790		 * Ok, we have the page, and it's up-to-date, so
1791		 * now we can copy it to user space...
1792		 *
1793		 * The actor routine returns how many bytes were actually used..
1794		 * NOTE! This may not be the same as how much of a user buffer
1795		 * we filled up (we may be padding etc), so we can only update
1796		 * "pos" here (the actor routine has to update the user buffer
1797		 * pointers and the remaining count).
1798		 */
1799		ret = actor(desc, page, offset, nr);
1800		offset += ret;
1801		index += offset >> PAGE_CACHE_SHIFT;
1802		offset &= ~PAGE_CACHE_MASK;
1803
1804		page_cache_release(page);
1805		if (ret != nr || !desc->count)
1806			break;
1807
1808		cond_resched();
1809	}
1810
1811	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1812	file_accessed(filp);
1813}
1814
1815static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1816		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1817{
1818	struct file *filp = iocb->ki_filp;
1819	ssize_t retval;
1820	unsigned long seg;
1821	size_t count;
1822	loff_t *ppos = &iocb->ki_pos;
1823
1824	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1825	if (retval)
1826		return retval;
1827
1828	for (seg = 0; seg < nr_segs; seg++) {
1829		read_descriptor_t desc;
1830
1831		desc.written = 0;
1832		desc.arg.buf = iov[seg].iov_base;
1833		desc.count = iov[seg].iov_len;
1834		if (desc.count == 0)
1835			continue;
1836		desc.error = 0;
1837		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1838		retval += desc.written;
1839		if (desc.error) {
1840			retval = retval ?: desc.error;
1841			break;
1842		}
1843		if (desc.count > 0)
1844			break;
1845	}
1846	return retval;
1847}
1848
1849static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1850{
1851	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1852
1853	buf->f_type = TMPFS_MAGIC;
1854	buf->f_bsize = PAGE_CACHE_SIZE;
1855	buf->f_namelen = NAME_MAX;
1856	if (sbinfo->max_blocks) {
1857		buf->f_blocks = sbinfo->max_blocks;
1858		buf->f_bavail = buf->f_bfree =
1859				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1860	}
1861	if (sbinfo->max_inodes) {
1862		buf->f_files = sbinfo->max_inodes;
1863		buf->f_ffree = sbinfo->free_inodes;
1864	}
1865	/* else leave those fields 0 like simple_statfs */
1866	return 0;
1867}
1868
1869/*
1870 * File creation. Allocate an inode, and we're done..
1871 */
1872static int
1873shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1874{
1875	struct inode *inode;
1876	int error = -ENOSPC;
1877
1878	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1879	if (inode) {
1880		error = security_inode_init_security(inode, dir,
1881						     &dentry->d_name, NULL,
1882						     NULL, NULL);
1883		if (error) {
1884			if (error != -EOPNOTSUPP) {
1885				iput(inode);
1886				return error;
1887			}
1888		}
1889#ifdef CONFIG_TMPFS_POSIX_ACL
1890		error = generic_acl_init(inode, dir);
1891		if (error) {
1892			iput(inode);
1893			return error;
1894		}
1895#else
1896		error = 0;
1897#endif
1898		dir->i_size += BOGO_DIRENT_SIZE;
1899		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1900		d_instantiate(dentry, inode);
1901		dget(dentry); /* Extra count - pin the dentry in core */
1902	}
1903	return error;
1904}
1905
1906static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1907{
1908	int error;
1909
1910	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1911		return error;
1912	inc_nlink(dir);
1913	return 0;
1914}
1915
1916static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1917		struct nameidata *nd)
1918{
1919	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1920}
1921
1922/*
1923 * Link a file..
1924 */
1925static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1926{
1927	struct inode *inode = old_dentry->d_inode;
1928	int ret;
1929
1930	/*
1931	 * No ordinary (disk based) filesystem counts links as inodes;
1932	 * but each new link needs a new dentry, pinning lowmem, and
1933	 * tmpfs dentries cannot be pruned until they are unlinked.
1934	 */
1935	ret = shmem_reserve_inode(inode->i_sb);
1936	if (ret)
1937		goto out;
1938
1939	dir->i_size += BOGO_DIRENT_SIZE;
1940	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1941	inc_nlink(inode);
1942	ihold(inode);	/* New dentry reference */
1943	dget(dentry);		/* Extra pinning count for the created dentry */
1944	d_instantiate(dentry, inode);
1945out:
1946	return ret;
1947}
1948
1949static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1950{
1951	struct inode *inode = dentry->d_inode;
1952
1953	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1954		shmem_free_inode(inode->i_sb);
1955
1956	dir->i_size -= BOGO_DIRENT_SIZE;
1957	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1958	drop_nlink(inode);
1959	dput(dentry);	/* Undo the count from "create" - this does all the work */
1960	return 0;
1961}
1962
1963static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1964{
1965	if (!simple_empty(dentry))
1966		return -ENOTEMPTY;
1967
1968	drop_nlink(dentry->d_inode);
1969	drop_nlink(dir);
1970	return shmem_unlink(dir, dentry);
1971}
1972
1973/*
1974 * The VFS layer already does all the dentry stuff for rename,
1975 * we just have to decrement the usage count for the target if
1976 * it exists so that the VFS layer correctly free's it when it
1977 * gets overwritten.
1978 */
1979static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1980{
1981	struct inode *inode = old_dentry->d_inode;
1982	int they_are_dirs = S_ISDIR(inode->i_mode);
1983
1984	if (!simple_empty(new_dentry))
1985		return -ENOTEMPTY;
1986
1987	if (new_dentry->d_inode) {
1988		(void) shmem_unlink(new_dir, new_dentry);
1989		if (they_are_dirs)
1990			drop_nlink(old_dir);
1991	} else if (they_are_dirs) {
1992		drop_nlink(old_dir);
1993		inc_nlink(new_dir);
1994	}
1995
1996	old_dir->i_size -= BOGO_DIRENT_SIZE;
1997	new_dir->i_size += BOGO_DIRENT_SIZE;
1998	old_dir->i_ctime = old_dir->i_mtime =
1999	new_dir->i_ctime = new_dir->i_mtime =
2000	inode->i_ctime = CURRENT_TIME;
2001	return 0;
2002}
2003
2004static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2005{
2006	int error;
2007	int len;
2008	struct inode *inode;
2009	struct page *page = NULL;
2010	char *kaddr;
2011	struct shmem_inode_info *info;
2012
2013	len = strlen(symname) + 1;
2014	if (len > PAGE_CACHE_SIZE)
2015		return -ENAMETOOLONG;
2016
2017	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2018	if (!inode)
2019		return -ENOSPC;
2020
2021	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2022					     NULL, NULL);
2023	if (error) {
2024		if (error != -EOPNOTSUPP) {
2025			iput(inode);
2026			return error;
2027		}
2028		error = 0;
2029	}
2030
2031	info = SHMEM_I(inode);
2032	inode->i_size = len-1;
2033	if (len <= SHMEM_SYMLINK_INLINE_LEN) {
2034		/* do it inline */
2035		memcpy(info->inline_symlink, symname, len);
2036		inode->i_op = &shmem_symlink_inline_operations;
2037	} else {
2038		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2039		if (error) {
2040			iput(inode);
2041			return error;
2042		}
2043		inode->i_mapping->a_ops = &shmem_aops;
2044		inode->i_op = &shmem_symlink_inode_operations;
2045		kaddr = kmap_atomic(page, KM_USER0);
2046		memcpy(kaddr, symname, len);
2047		kunmap_atomic(kaddr, KM_USER0);
2048		set_page_dirty(page);
2049		unlock_page(page);
2050		page_cache_release(page);
2051	}
2052	dir->i_size += BOGO_DIRENT_SIZE;
2053	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2054	d_instantiate(dentry, inode);
2055	dget(dentry);
2056	return 0;
2057}
2058
2059static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2060{
2061	nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
2062	return NULL;
2063}
2064
2065static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2066{
2067	struct page *page = NULL;
2068	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2069	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2070	if (page)
2071		unlock_page(page);
2072	return page;
2073}
2074
2075static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2076{
2077	if (!IS_ERR(nd_get_link(nd))) {
2078		struct page *page = cookie;
2079		kunmap(page);
2080		mark_page_accessed(page);
2081		page_cache_release(page);
2082	}
2083}
2084
2085#ifdef CONFIG_TMPFS_XATTR
2086/*
2087 * Superblocks without xattr inode operations may get some security.* xattr
2088 * support from the LSM "for free". As soon as we have any other xattrs
2089 * like ACLs, we also need to implement the security.* handlers at
2090 * filesystem level, though.
2091 */
2092
2093static int shmem_xattr_get(struct dentry *dentry, const char *name,
2094			   void *buffer, size_t size)
2095{
2096	struct shmem_inode_info *info;
2097	struct shmem_xattr *xattr;
2098	int ret = -ENODATA;
2099
2100	info = SHMEM_I(dentry->d_inode);
2101
2102	spin_lock(&info->lock);
2103	list_for_each_entry(xattr, &info->xattr_list, list) {
2104		if (strcmp(name, xattr->name))
2105			continue;
2106
2107		ret = xattr->size;
2108		if (buffer) {
2109			if (size < xattr->size)
2110				ret = -ERANGE;
2111			else
2112				memcpy(buffer, xattr->value, xattr->size);
2113		}
2114		break;
2115	}
2116	spin_unlock(&info->lock);
2117	return ret;
2118}
2119
2120static int shmem_xattr_set(struct dentry *dentry, const char *name,
2121			   const void *value, size_t size, int flags)
2122{
2123	struct inode *inode = dentry->d_inode;
2124	struct shmem_inode_info *info = SHMEM_I(inode);
2125	struct shmem_xattr *xattr;
2126	struct shmem_xattr *new_xattr = NULL;
2127	size_t len;
2128	int err = 0;
2129
2130	/* value == NULL means remove */
2131	if (value) {
2132		/* wrap around? */
2133		len = sizeof(*new_xattr) + size;
2134		if (len <= sizeof(*new_xattr))
2135			return -ENOMEM;
2136
2137		new_xattr = kmalloc(len, GFP_KERNEL);
2138		if (!new_xattr)
2139			return -ENOMEM;
2140
2141		new_xattr->name = kstrdup(name, GFP_KERNEL);
2142		if (!new_xattr->name) {
2143			kfree(new_xattr);
2144			return -ENOMEM;
2145		}
2146
2147		new_xattr->size = size;
2148		memcpy(new_xattr->value, value, size);
2149	}
2150
2151	spin_lock(&info->lock);
2152	list_for_each_entry(xattr, &info->xattr_list, list) {
2153		if (!strcmp(name, xattr->name)) {
2154			if (flags & XATTR_CREATE) {
2155				xattr = new_xattr;
2156				err = -EEXIST;
2157			} else if (new_xattr) {
2158				list_replace(&xattr->list, &new_xattr->list);
2159			} else {
2160				list_del(&xattr->list);
2161			}
2162			goto out;
2163		}
2164	}
2165	if (flags & XATTR_REPLACE) {
2166		xattr = new_xattr;
2167		err = -ENODATA;
2168	} else {
2169		list_add(&new_xattr->list, &info->xattr_list);
2170		xattr = NULL;
2171	}
2172out:
2173	spin_unlock(&info->lock);
2174	if (xattr)
2175		kfree(xattr->name);
2176	kfree(xattr);
2177	return err;
2178}
2179
2180
2181static const struct xattr_handler *shmem_xattr_handlers[] = {
2182#ifdef CONFIG_TMPFS_POSIX_ACL
2183	&generic_acl_access_handler,
2184	&generic_acl_default_handler,
2185#endif
2186	NULL
2187};
2188
2189static int shmem_xattr_validate(const char *name)
2190{
2191	struct { const char *prefix; size_t len; } arr[] = {
2192		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2193		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2194	};
2195	int i;
2196
2197	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2198		size_t preflen = arr[i].len;
2199		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2200			if (!name[preflen])
2201				return -EINVAL;
2202			return 0;
2203		}
2204	}
2205	return -EOPNOTSUPP;
2206}
2207
2208static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2209			      void *buffer, size_t size)
2210{
2211	int err;
2212
2213	/*
2214	 * If this is a request for a synthetic attribute in the system.*
2215	 * namespace use the generic infrastructure to resolve a handler
2216	 * for it via sb->s_xattr.
2217	 */
2218	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2219		return generic_getxattr(dentry, name, buffer, size);
2220
2221	err = shmem_xattr_validate(name);
2222	if (err)
2223		return err;
2224
2225	return shmem_xattr_get(dentry, name, buffer, size);
2226}
2227
2228static int shmem_setxattr(struct dentry *dentry, const char *name,
2229			  const void *value, size_t size, int flags)
2230{
2231	int err;
2232
2233	/*
2234	 * If this is a request for a synthetic attribute in the system.*
2235	 * namespace use the generic infrastructure to resolve a handler
2236	 * for it via sb->s_xattr.
2237	 */
2238	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2239		return generic_setxattr(dentry, name, value, size, flags);
2240
2241	err = shmem_xattr_validate(name);
2242	if (err)
2243		return err;
2244
2245	if (size == 0)
2246		value = "";  /* empty EA, do not remove */
2247
2248	return shmem_xattr_set(dentry, name, value, size, flags);
2249
2250}
2251
2252static int shmem_removexattr(struct dentry *dentry, const char *name)
2253{
2254	int err;
2255
2256	/*
2257	 * If this is a request for a synthetic attribute in the system.*
2258	 * namespace use the generic infrastructure to resolve a handler
2259	 * for it via sb->s_xattr.
2260	 */
2261	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2262		return generic_removexattr(dentry, name);
2263
2264	err = shmem_xattr_validate(name);
2265	if (err)
2266		return err;
2267
2268	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2269}
2270
2271static bool xattr_is_trusted(const char *name)
2272{
2273	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2274}
2275
2276static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2277{
2278	bool trusted = capable(CAP_SYS_ADMIN);
2279	struct shmem_xattr *xattr;
2280	struct shmem_inode_info *info;
2281	size_t used = 0;
2282
2283	info = SHMEM_I(dentry->d_inode);
2284
2285	spin_lock(&info->lock);
2286	list_for_each_entry(xattr, &info->xattr_list, list) {
2287		size_t len;
2288
2289		/* skip "trusted." attributes for unprivileged callers */
2290		if (!trusted && xattr_is_trusted(xattr->name))
2291			continue;
2292
2293		len = strlen(xattr->name) + 1;
2294		used += len;
2295		if (buffer) {
2296			if (size < used) {
2297				used = -ERANGE;
2298				break;
2299			}
2300			memcpy(buffer, xattr->name, len);
2301			buffer += len;
2302		}
2303	}
2304	spin_unlock(&info->lock);
2305
2306	return used;
2307}
2308#endif /* CONFIG_TMPFS_XATTR */
2309
2310static const struct inode_operations shmem_symlink_inline_operations = {
2311	.readlink	= generic_readlink,
2312	.follow_link	= shmem_follow_link_inline,
2313#ifdef CONFIG_TMPFS_XATTR
2314	.setxattr	= shmem_setxattr,
2315	.getxattr	= shmem_getxattr,
2316	.listxattr	= shmem_listxattr,
2317	.removexattr	= shmem_removexattr,
2318#endif
2319};
2320
2321static const struct inode_operations shmem_symlink_inode_operations = {
2322	.readlink	= generic_readlink,
2323	.follow_link	= shmem_follow_link,
2324	.put_link	= shmem_put_link,
2325#ifdef CONFIG_TMPFS_XATTR
2326	.setxattr	= shmem_setxattr,
2327	.getxattr	= shmem_getxattr,
2328	.listxattr	= shmem_listxattr,
2329	.removexattr	= shmem_removexattr,
2330#endif
2331};
2332
2333static struct dentry *shmem_get_parent(struct dentry *child)
2334{
2335	return ERR_PTR(-ESTALE);
2336}
2337
2338static int shmem_match(struct inode *ino, void *vfh)
2339{
2340	__u32 *fh = vfh;
2341	__u64 inum = fh[2];
2342	inum = (inum << 32) | fh[1];
2343	return ino->i_ino == inum && fh[0] == ino->i_generation;
2344}
2345
2346static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2347		struct fid *fid, int fh_len, int fh_type)
2348{
2349	struct inode *inode;
2350	struct dentry *dentry = NULL;
2351	u64 inum = fid->raw[2];
2352	inum = (inum << 32) | fid->raw[1];
2353
2354	if (fh_len < 3)
2355		return NULL;
2356
2357	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2358			shmem_match, fid->raw);
2359	if (inode) {
2360		dentry = d_find_alias(inode);
2361		iput(inode);
2362	}
2363
2364	return dentry;
2365}
2366
2367static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2368				int connectable)
2369{
2370	struct inode *inode = dentry->d_inode;
2371
2372	if (*len < 3) {
2373		*len = 3;
2374		return 255;
2375	}
2376
2377	if (inode_unhashed(inode)) {
2378		/* Unfortunately insert_inode_hash is not idempotent,
2379		 * so as we hash inodes here rather than at creation
2380		 * time, we need a lock to ensure we only try
2381		 * to do it once
2382		 */
2383		static DEFINE_SPINLOCK(lock);
2384		spin_lock(&lock);
2385		if (inode_unhashed(inode))
2386			__insert_inode_hash(inode,
2387					    inode->i_ino + inode->i_generation);
2388		spin_unlock(&lock);
2389	}
2390
2391	fh[0] = inode->i_generation;
2392	fh[1] = inode->i_ino;
2393	fh[2] = ((__u64)inode->i_ino) >> 32;
2394
2395	*len = 3;
2396	return 1;
2397}
2398
2399static const struct export_operations shmem_export_ops = {
2400	.get_parent     = shmem_get_parent,
2401	.encode_fh      = shmem_encode_fh,
2402	.fh_to_dentry	= shmem_fh_to_dentry,
2403};
2404
2405static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2406			       bool remount)
2407{
2408	char *this_char, *value, *rest;
2409
2410	while (options != NULL) {
2411		this_char = options;
2412		for (;;) {
2413			/*
2414			 * NUL-terminate this option: unfortunately,
2415			 * mount options form a comma-separated list,
2416			 * but mpol's nodelist may also contain commas.
2417			 */
2418			options = strchr(options, ',');
2419			if (options == NULL)
2420				break;
2421			options++;
2422			if (!isdigit(*options)) {
2423				options[-1] = '\0';
2424				break;
2425			}
2426		}
2427		if (!*this_char)
2428			continue;
2429		if ((value = strchr(this_char,'=')) != NULL) {
2430			*value++ = 0;
2431		} else {
2432			printk(KERN_ERR
2433			    "tmpfs: No value for mount option '%s'\n",
2434			    this_char);
2435			return 1;
2436		}
2437
2438		if (!strcmp(this_char,"size")) {
2439			unsigned long long size;
2440			size = memparse(value,&rest);
2441			if (*rest == '%') {
2442				size <<= PAGE_SHIFT;
2443				size *= totalram_pages;
2444				do_div(size, 100);
2445				rest++;
2446			}
2447			if (*rest)
2448				goto bad_val;
2449			sbinfo->max_blocks =
2450				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2451		} else if (!strcmp(this_char,"nr_blocks")) {
2452			sbinfo->max_blocks = memparse(value, &rest);
2453			if (*rest)
2454				goto bad_val;
2455		} else if (!strcmp(this_char,"nr_inodes")) {
2456			sbinfo->max_inodes = memparse(value, &rest);
2457			if (*rest)
2458				goto bad_val;
2459		} else if (!strcmp(this_char,"mode")) {
2460			if (remount)
2461				continue;
2462			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2463			if (*rest)
2464				goto bad_val;
2465		} else if (!strcmp(this_char,"uid")) {
2466			if (remount)
2467				continue;
2468			sbinfo->uid = simple_strtoul(value, &rest, 0);
2469			if (*rest)
2470				goto bad_val;
2471		} else if (!strcmp(this_char,"gid")) {
2472			if (remount)
2473				continue;
2474			sbinfo->gid = simple_strtoul(value, &rest, 0);
2475			if (*rest)
2476				goto bad_val;
2477		} else if (!strcmp(this_char,"mpol")) {
2478			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2479				goto bad_val;
2480		} else {
2481			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2482			       this_char);
2483			return 1;
2484		}
2485	}
2486	return 0;
2487
2488bad_val:
2489	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2490	       value, this_char);
2491	return 1;
2492
2493}
2494
2495static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2496{
2497	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2498	struct shmem_sb_info config = *sbinfo;
2499	unsigned long inodes;
2500	int error = -EINVAL;
2501
2502	if (shmem_parse_options(data, &config, true))
2503		return error;
2504
2505	spin_lock(&sbinfo->stat_lock);
2506	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2507	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2508		goto out;
2509	if (config.max_inodes < inodes)
2510		goto out;
2511	/*
2512	 * Those tests also disallow limited->unlimited while any are in
2513	 * use, so i_blocks will always be zero when max_blocks is zero;
2514	 * but we must separately disallow unlimited->limited, because
2515	 * in that case we have no record of how much is already in use.
2516	 */
2517	if (config.max_blocks && !sbinfo->max_blocks)
2518		goto out;
2519	if (config.max_inodes && !sbinfo->max_inodes)
2520		goto out;
2521
2522	error = 0;
2523	sbinfo->max_blocks  = config.max_blocks;
2524	sbinfo->max_inodes  = config.max_inodes;
2525	sbinfo->free_inodes = config.max_inodes - inodes;
2526
2527	mpol_put(sbinfo->mpol);
2528	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2529out:
2530	spin_unlock(&sbinfo->stat_lock);
2531	return error;
2532}
2533
2534static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2535{
2536	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2537
2538	if (sbinfo->max_blocks != shmem_default_max_blocks())
2539		seq_printf(seq, ",size=%luk",
2540			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2541	if (sbinfo->max_inodes != shmem_default_max_inodes())
2542		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2543	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2544		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2545	if (sbinfo->uid != 0)
2546		seq_printf(seq, ",uid=%u", sbinfo->uid);
2547	if (sbinfo->gid != 0)
2548		seq_printf(seq, ",gid=%u", sbinfo->gid);
2549	shmem_show_mpol(seq, sbinfo->mpol);
2550	return 0;
2551}
2552#endif /* CONFIG_TMPFS */
2553
2554static void shmem_put_super(struct super_block *sb)
2555{
2556	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2557
2558	percpu_counter_destroy(&sbinfo->used_blocks);
2559	kfree(sbinfo);
2560	sb->s_fs_info = NULL;
2561}
2562
2563int shmem_fill_super(struct super_block *sb, void *data, int silent)
2564{
2565	struct inode *inode;
2566	struct dentry *root;
2567	struct shmem_sb_info *sbinfo;
2568	int err = -ENOMEM;
2569
2570	/* Round up to L1_CACHE_BYTES to resist false sharing */
2571	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2572				L1_CACHE_BYTES), GFP_KERNEL);
2573	if (!sbinfo)
2574		return -ENOMEM;
2575
2576	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2577	sbinfo->uid = current_fsuid();
2578	sbinfo->gid = current_fsgid();
2579	sb->s_fs_info = sbinfo;
2580
2581#ifdef CONFIG_TMPFS
2582	/*
2583	 * Per default we only allow half of the physical ram per
2584	 * tmpfs instance, limiting inodes to one per page of lowmem;
2585	 * but the internal instance is left unlimited.
2586	 */
2587	if (!(sb->s_flags & MS_NOUSER)) {
2588		sbinfo->max_blocks = shmem_default_max_blocks();
2589		sbinfo->max_inodes = shmem_default_max_inodes();
2590		if (shmem_parse_options(data, sbinfo, false)) {
2591			err = -EINVAL;
2592			goto failed;
2593		}
2594	}
2595	sb->s_export_op = &shmem_export_ops;
2596#else
2597	sb->s_flags |= MS_NOUSER;
2598#endif
2599
2600	spin_lock_init(&sbinfo->stat_lock);
2601	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2602		goto failed;
2603	sbinfo->free_inodes = sbinfo->max_inodes;
2604
2605	sb->s_maxbytes = SHMEM_MAX_BYTES;
2606	sb->s_blocksize = PAGE_CACHE_SIZE;
2607	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2608	sb->s_magic = TMPFS_MAGIC;
2609	sb->s_op = &shmem_ops;
2610	sb->s_time_gran = 1;
2611#ifdef CONFIG_TMPFS_XATTR
2612	sb->s_xattr = shmem_xattr_handlers;
2613#endif
2614#ifdef CONFIG_TMPFS_POSIX_ACL
2615	sb->s_flags |= MS_POSIXACL;
2616#endif
2617
2618	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2619	if (!inode)
2620		goto failed;
2621	inode->i_uid = sbinfo->uid;
2622	inode->i_gid = sbinfo->gid;
2623	root = d_alloc_root(inode);
2624	if (!root)
2625		goto failed_iput;
2626	sb->s_root = root;
2627	return 0;
2628
2629failed_iput:
2630	iput(inode);
2631failed:
2632	shmem_put_super(sb);
2633	return err;
2634}
2635
2636static struct kmem_cache *shmem_inode_cachep;
2637
2638static struct inode *shmem_alloc_inode(struct super_block *sb)
2639{
2640	struct shmem_inode_info *p;
2641	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2642	if (!p)
2643		return NULL;
2644	return &p->vfs_inode;
2645}
2646
2647static void shmem_i_callback(struct rcu_head *head)
2648{
2649	struct inode *inode = container_of(head, struct inode, i_rcu);
2650	INIT_LIST_HEAD(&inode->i_dentry);
2651	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2652}
2653
2654static void shmem_destroy_inode(struct inode *inode)
2655{
2656	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2657		/* only struct inode is valid if it's an inline symlink */
2658		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2659	}
2660	call_rcu(&inode->i_rcu, shmem_i_callback);
2661}
2662
2663static void init_once(void *foo)
2664{
2665	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2666
2667	inode_init_once(&p->vfs_inode);
2668}
2669
2670static int init_inodecache(void)
2671{
2672	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2673				sizeof(struct shmem_inode_info),
2674				0, SLAB_PANIC, init_once);
2675	return 0;
2676}
2677
2678static void destroy_inodecache(void)
2679{
2680	kmem_cache_destroy(shmem_inode_cachep);
2681}
2682
2683static const struct address_space_operations shmem_aops = {
2684	.writepage	= shmem_writepage,
2685	.set_page_dirty	= __set_page_dirty_no_writeback,
2686#ifdef CONFIG_TMPFS
2687	.readpage	= shmem_readpage,
2688	.write_begin	= shmem_write_begin,
2689	.write_end	= shmem_write_end,
2690#endif
2691	.migratepage	= migrate_page,
2692	.error_remove_page = generic_error_remove_page,
2693};
2694
2695static const struct file_operations shmem_file_operations = {
2696	.mmap		= shmem_mmap,
2697#ifdef CONFIG_TMPFS
2698	.llseek		= generic_file_llseek,
2699	.read		= do_sync_read,
2700	.write		= do_sync_write,
2701	.aio_read	= shmem_file_aio_read,
2702	.aio_write	= generic_file_aio_write,
2703	.fsync		= noop_fsync,
2704	.splice_read	= generic_file_splice_read,
2705	.splice_write	= generic_file_splice_write,
2706#endif
2707};
2708
2709static const struct inode_operations shmem_inode_operations = {
2710	.setattr	= shmem_setattr,
2711	.truncate_range	= shmem_truncate_range,
2712#ifdef CONFIG_TMPFS_XATTR
2713	.setxattr	= shmem_setxattr,
2714	.getxattr	= shmem_getxattr,
2715	.listxattr	= shmem_listxattr,
2716	.removexattr	= shmem_removexattr,
2717#endif
2718#ifdef CONFIG_TMPFS_POSIX_ACL
2719	.check_acl	= generic_check_acl,
2720#endif
2721
2722};
2723
2724static const struct inode_operations shmem_dir_inode_operations = {
2725#ifdef CONFIG_TMPFS
2726	.create		= shmem_create,
2727	.lookup		= simple_lookup,
2728	.link		= shmem_link,
2729	.unlink		= shmem_unlink,
2730	.symlink	= shmem_symlink,
2731	.mkdir		= shmem_mkdir,
2732	.rmdir		= shmem_rmdir,
2733	.mknod		= shmem_mknod,
2734	.rename		= shmem_rename,
2735#endif
2736#ifdef CONFIG_TMPFS_XATTR
2737	.setxattr	= shmem_setxattr,
2738	.getxattr	= shmem_getxattr,
2739	.listxattr	= shmem_listxattr,
2740	.removexattr	= shmem_removexattr,
2741#endif
2742#ifdef CONFIG_TMPFS_POSIX_ACL
2743	.setattr	= shmem_setattr,
2744	.check_acl	= generic_check_acl,
2745#endif
2746};
2747
2748static const struct inode_operations shmem_special_inode_operations = {
2749#ifdef CONFIG_TMPFS_XATTR
2750	.setxattr	= shmem_setxattr,
2751	.getxattr	= shmem_getxattr,
2752	.listxattr	= shmem_listxattr,
2753	.removexattr	= shmem_removexattr,
2754#endif
2755#ifdef CONFIG_TMPFS_POSIX_ACL
2756	.setattr	= shmem_setattr,
2757	.check_acl	= generic_check_acl,
2758#endif
2759};
2760
2761static const struct super_operations shmem_ops = {
2762	.alloc_inode	= shmem_alloc_inode,
2763	.destroy_inode	= shmem_destroy_inode,
2764#ifdef CONFIG_TMPFS
2765	.statfs		= shmem_statfs,
2766	.remount_fs	= shmem_remount_fs,
2767	.show_options	= shmem_show_options,
2768#endif
2769	.evict_inode	= shmem_evict_inode,
2770	.drop_inode	= generic_delete_inode,
2771	.put_super	= shmem_put_super,
2772};
2773
2774static const struct vm_operations_struct shmem_vm_ops = {
2775	.fault		= shmem_fault,
2776#ifdef CONFIG_NUMA
2777	.set_policy     = shmem_set_policy,
2778	.get_policy     = shmem_get_policy,
2779#endif
2780};
2781
2782
2783static struct dentry *shmem_mount(struct file_system_type *fs_type,
2784	int flags, const char *dev_name, void *data)
2785{
2786	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2787}
2788
2789static struct file_system_type tmpfs_fs_type = {
2790	.owner		= THIS_MODULE,
2791	.name		= "tmpfs",
2792	.mount		= shmem_mount,
2793	.kill_sb	= kill_litter_super,
2794};
2795
2796int __init init_tmpfs(void)
2797{
2798	int error;
2799
2800	error = bdi_init(&shmem_backing_dev_info);
2801	if (error)
2802		goto out4;
2803
2804	error = init_inodecache();
2805	if (error)
2806		goto out3;
2807
2808	error = register_filesystem(&tmpfs_fs_type);
2809	if (error) {
2810		printk(KERN_ERR "Could not register tmpfs\n");
2811		goto out2;
2812	}
2813
2814	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2815				tmpfs_fs_type.name, NULL);
2816	if (IS_ERR(shm_mnt)) {
2817		error = PTR_ERR(shm_mnt);
2818		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2819		goto out1;
2820	}
2821	return 0;
2822
2823out1:
2824	unregister_filesystem(&tmpfs_fs_type);
2825out2:
2826	destroy_inodecache();
2827out3:
2828	bdi_destroy(&shmem_backing_dev_info);
2829out4:
2830	shm_mnt = ERR_PTR(error);
2831	return error;
2832}
2833
2834#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2835/**
2836 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2837 * @inode: the inode to be searched
2838 * @pgoff: the offset to be searched
2839 * @pagep: the pointer for the found page to be stored
2840 * @ent: the pointer for the found swap entry to be stored
2841 *
2842 * If a page is found, refcount of it is incremented. Callers should handle
2843 * these refcount.
2844 */
2845void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2846					struct page **pagep, swp_entry_t *ent)
2847{
2848	swp_entry_t entry = { .val = 0 }, *ptr;
2849	struct page *page = NULL;
2850	struct shmem_inode_info *info = SHMEM_I(inode);
2851
2852	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2853		goto out;
2854
2855	spin_lock(&info->lock);
2856	ptr = shmem_swp_entry(info, pgoff, NULL);
2857#ifdef CONFIG_SWAP
2858	if (ptr && ptr->val) {
2859		entry.val = ptr->val;
2860		page = find_get_page(&swapper_space, entry.val);
2861	} else
2862#endif
2863		page = find_get_page(inode->i_mapping, pgoff);
2864	if (ptr)
2865		shmem_swp_unmap(ptr);
2866	spin_unlock(&info->lock);
2867out:
2868	*pagep = page;
2869	*ent = entry;
2870}
2871#endif
2872
2873#else /* !CONFIG_SHMEM */
2874
2875/*
2876 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2877 *
2878 * This is intended for small system where the benefits of the full
2879 * shmem code (swap-backed and resource-limited) are outweighed by
2880 * their complexity. On systems without swap this code should be
2881 * effectively equivalent, but much lighter weight.
2882 */
2883
2884#include <linux/ramfs.h>
2885
2886static struct file_system_type tmpfs_fs_type = {
2887	.name		= "tmpfs",
2888	.mount		= ramfs_mount,
2889	.kill_sb	= kill_litter_super,
2890};
2891
2892int __init init_tmpfs(void)
2893{
2894	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2895
2896	shm_mnt = kern_mount(&tmpfs_fs_type);
2897	BUG_ON(IS_ERR(shm_mnt));
2898
2899	return 0;
2900}
2901
2902int shmem_unuse(swp_entry_t entry, struct page *page)
2903{
2904	return 0;
2905}
2906
2907int shmem_lock(struct file *file, int lock, struct user_struct *user)
2908{
2909	return 0;
2910}
2911
2912void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
2913{
2914	truncate_inode_pages_range(inode->i_mapping, start, end);
2915}
2916EXPORT_SYMBOL_GPL(shmem_truncate_range);
2917
2918#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2919/**
2920 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2921 * @inode: the inode to be searched
2922 * @pgoff: the offset to be searched
2923 * @pagep: the pointer for the found page to be stored
2924 * @ent: the pointer for the found swap entry to be stored
2925 *
2926 * If a page is found, refcount of it is incremented. Callers should handle
2927 * these refcount.
2928 */
2929void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2930					struct page **pagep, swp_entry_t *ent)
2931{
2932	struct page *page = NULL;
2933
2934	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2935		goto out;
2936	page = find_get_page(inode->i_mapping, pgoff);
2937out:
2938	*pagep = page;
2939	*ent = (swp_entry_t){ .val = 0 };
2940}
2941#endif
2942
2943#define shmem_vm_ops				generic_file_vm_ops
2944#define shmem_file_operations			ramfs_file_operations
2945#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2946#define shmem_acct_size(flags, size)		0
2947#define shmem_unacct_size(flags, size)		do {} while (0)
2948#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2949
2950#endif /* CONFIG_SHMEM */
2951
2952/* common code */
2953
2954/**
2955 * shmem_file_setup - get an unlinked file living in tmpfs
2956 * @name: name for dentry (to be seen in /proc/<pid>/maps
2957 * @size: size to be set for the file
2958 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2959 */
2960struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2961{
2962	int error;
2963	struct file *file;
2964	struct inode *inode;
2965	struct path path;
2966	struct dentry *root;
2967	struct qstr this;
2968
2969	if (IS_ERR(shm_mnt))
2970		return (void *)shm_mnt;
2971
2972	if (size < 0 || size > SHMEM_MAX_BYTES)
2973		return ERR_PTR(-EINVAL);
2974
2975	if (shmem_acct_size(flags, size))
2976		return ERR_PTR(-ENOMEM);
2977
2978	error = -ENOMEM;
2979	this.name = name;
2980	this.len = strlen(name);
2981	this.hash = 0; /* will go */
2982	root = shm_mnt->mnt_root;
2983	path.dentry = d_alloc(root, &this);
2984	if (!path.dentry)
2985		goto put_memory;
2986	path.mnt = mntget(shm_mnt);
2987
2988	error = -ENOSPC;
2989	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2990	if (!inode)
2991		goto put_dentry;
2992
2993	d_instantiate(path.dentry, inode);
2994	inode->i_size = size;
2995	inode->i_nlink = 0;	/* It is unlinked */
2996#ifndef CONFIG_MMU
2997	error = ramfs_nommu_expand_for_mapping(inode, size);
2998	if (error)
2999		goto put_dentry;
3000#endif
3001
3002	error = -ENFILE;
3003	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3004		  &shmem_file_operations);
3005	if (!file)
3006		goto put_dentry;
3007
3008	return file;
3009
3010put_dentry:
3011	path_put(&path);
3012put_memory:
3013	shmem_unacct_size(flags, size);
3014	return ERR_PTR(error);
3015}
3016EXPORT_SYMBOL_GPL(shmem_file_setup);
3017
3018/**
3019 * shmem_zero_setup - setup a shared anonymous mapping
3020 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3021 */
3022int shmem_zero_setup(struct vm_area_struct *vma)
3023{
3024	struct file *file;
3025	loff_t size = vma->vm_end - vma->vm_start;
3026
3027	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3028	if (IS_ERR(file))
3029		return PTR_ERR(file);
3030
3031	if (vma->vm_file)
3032		fput(vma->vm_file);
3033	vma->vm_file = file;
3034	vma->vm_ops = &shmem_vm_ops;
3035	vma->vm_flags |= VM_CAN_NONLINEAR;
3036	return 0;
3037}
3038