shmem.c revision 965c8e59cfcf845ecde2265a1d1bfee5f011d302
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/file.h>
30#include <linux/mm.h>
31#include <linux/export.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/pagevec.h>
55#include <linux/percpu_counter.h>
56#include <linux/falloc.h>
57#include <linux/splice.h>
58#include <linux/security.h>
59#include <linux/swapops.h>
60#include <linux/mempolicy.h>
61#include <linux/namei.h>
62#include <linux/ctype.h>
63#include <linux/migrate.h>
64#include <linux/highmem.h>
65#include <linux/seq_file.h>
66#include <linux/magic.h>
67
68#include <asm/uaccess.h>
69#include <asm/pgtable.h>
70
71#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74/* Pretend that each entry is of this size in directory's i_size */
75#define BOGO_DIRENT_SIZE 20
76
77/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78#define SHORT_SYMLINK_LEN 128
79
80/*
81 * shmem_fallocate and shmem_writepage communicate via inode->i_private
82 * (with i_mutex making sure that it has only one user at a time):
83 * we would prefer not to enlarge the shmem inode just for that.
84 */
85struct shmem_falloc {
86	pgoff_t start;		/* start of range currently being fallocated */
87	pgoff_t next;		/* the next page offset to be fallocated */
88	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
89	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
90};
91
92/* Flag allocation requirements to shmem_getpage */
93enum sgp_type {
94	SGP_READ,	/* don't exceed i_size, don't allocate page */
95	SGP_CACHE,	/* don't exceed i_size, may allocate page */
96	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
97	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
98	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
99};
100
101#ifdef CONFIG_TMPFS
102static unsigned long shmem_default_max_blocks(void)
103{
104	return totalram_pages / 2;
105}
106
107static unsigned long shmem_default_max_inodes(void)
108{
109	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110}
111#endif
112
113static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115				struct shmem_inode_info *info, pgoff_t index);
116static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
118
119static inline int shmem_getpage(struct inode *inode, pgoff_t index,
120	struct page **pagep, enum sgp_type sgp, int *fault_type)
121{
122	return shmem_getpage_gfp(inode, index, pagep, sgp,
123			mapping_gfp_mask(inode->i_mapping), fault_type);
124}
125
126static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
127{
128	return sb->s_fs_info;
129}
130
131/*
132 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133 * for shared memory and for shared anonymous (/dev/zero) mappings
134 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135 * consistent with the pre-accounting of private mappings ...
136 */
137static inline int shmem_acct_size(unsigned long flags, loff_t size)
138{
139	return (flags & VM_NORESERVE) ?
140		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
141}
142
143static inline void shmem_unacct_size(unsigned long flags, loff_t size)
144{
145	if (!(flags & VM_NORESERVE))
146		vm_unacct_memory(VM_ACCT(size));
147}
148
149/*
150 * ... whereas tmpfs objects are accounted incrementally as
151 * pages are allocated, in order to allow huge sparse files.
152 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
154 */
155static inline int shmem_acct_block(unsigned long flags)
156{
157	return (flags & VM_NORESERVE) ?
158		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
159}
160
161static inline void shmem_unacct_blocks(unsigned long flags, long pages)
162{
163	if (flags & VM_NORESERVE)
164		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
165}
166
167static const struct super_operations shmem_ops;
168static const struct address_space_operations shmem_aops;
169static const struct file_operations shmem_file_operations;
170static const struct inode_operations shmem_inode_operations;
171static const struct inode_operations shmem_dir_inode_operations;
172static const struct inode_operations shmem_special_inode_operations;
173static const struct vm_operations_struct shmem_vm_ops;
174
175static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
176	.ra_pages	= 0,	/* No readahead */
177	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
178};
179
180static LIST_HEAD(shmem_swaplist);
181static DEFINE_MUTEX(shmem_swaplist_mutex);
182
183static int shmem_reserve_inode(struct super_block *sb)
184{
185	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
186	if (sbinfo->max_inodes) {
187		spin_lock(&sbinfo->stat_lock);
188		if (!sbinfo->free_inodes) {
189			spin_unlock(&sbinfo->stat_lock);
190			return -ENOSPC;
191		}
192		sbinfo->free_inodes--;
193		spin_unlock(&sbinfo->stat_lock);
194	}
195	return 0;
196}
197
198static void shmem_free_inode(struct super_block *sb)
199{
200	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201	if (sbinfo->max_inodes) {
202		spin_lock(&sbinfo->stat_lock);
203		sbinfo->free_inodes++;
204		spin_unlock(&sbinfo->stat_lock);
205	}
206}
207
208/**
209 * shmem_recalc_inode - recalculate the block usage of an inode
210 * @inode: inode to recalc
211 *
212 * We have to calculate the free blocks since the mm can drop
213 * undirtied hole pages behind our back.
214 *
215 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
216 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
217 *
218 * It has to be called with the spinlock held.
219 */
220static void shmem_recalc_inode(struct inode *inode)
221{
222	struct shmem_inode_info *info = SHMEM_I(inode);
223	long freed;
224
225	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
226	if (freed > 0) {
227		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228		if (sbinfo->max_blocks)
229			percpu_counter_add(&sbinfo->used_blocks, -freed);
230		info->alloced -= freed;
231		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
232		shmem_unacct_blocks(info->flags, freed);
233	}
234}
235
236/*
237 * Replace item expected in radix tree by a new item, while holding tree lock.
238 */
239static int shmem_radix_tree_replace(struct address_space *mapping,
240			pgoff_t index, void *expected, void *replacement)
241{
242	void **pslot;
243	void *item = NULL;
244
245	VM_BUG_ON(!expected);
246	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
247	if (pslot)
248		item = radix_tree_deref_slot_protected(pslot,
249							&mapping->tree_lock);
250	if (item != expected)
251		return -ENOENT;
252	if (replacement)
253		radix_tree_replace_slot(pslot, replacement);
254	else
255		radix_tree_delete(&mapping->page_tree, index);
256	return 0;
257}
258
259/*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266static bool shmem_confirm_swap(struct address_space *mapping,
267			       pgoff_t index, swp_entry_t swap)
268{
269	void *item;
270
271	rcu_read_lock();
272	item = radix_tree_lookup(&mapping->page_tree, index);
273	rcu_read_unlock();
274	return item == swp_to_radix_entry(swap);
275}
276
277/*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280static int shmem_add_to_page_cache(struct page *page,
281				   struct address_space *mapping,
282				   pgoff_t index, gfp_t gfp, void *expected)
283{
284	int error;
285
286	VM_BUG_ON(!PageLocked(page));
287	VM_BUG_ON(!PageSwapBacked(page));
288
289	page_cache_get(page);
290	page->mapping = mapping;
291	page->index = index;
292
293	spin_lock_irq(&mapping->tree_lock);
294	if (!expected)
295		error = radix_tree_insert(&mapping->page_tree, index, page);
296	else
297		error = shmem_radix_tree_replace(mapping, index, expected,
298								 page);
299	if (!error) {
300		mapping->nrpages++;
301		__inc_zone_page_state(page, NR_FILE_PAGES);
302		__inc_zone_page_state(page, NR_SHMEM);
303		spin_unlock_irq(&mapping->tree_lock);
304	} else {
305		page->mapping = NULL;
306		spin_unlock_irq(&mapping->tree_lock);
307		page_cache_release(page);
308	}
309	return error;
310}
311
312/*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316{
317	struct address_space *mapping = page->mapping;
318	int error;
319
320	spin_lock_irq(&mapping->tree_lock);
321	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322	page->mapping = NULL;
323	mapping->nrpages--;
324	__dec_zone_page_state(page, NR_FILE_PAGES);
325	__dec_zone_page_state(page, NR_SHMEM);
326	spin_unlock_irq(&mapping->tree_lock);
327	page_cache_release(page);
328	BUG_ON(error);
329}
330
331/*
332 * Like find_get_pages, but collecting swap entries as well as pages.
333 */
334static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335					pgoff_t start, unsigned int nr_pages,
336					struct page **pages, pgoff_t *indices)
337{
338	unsigned int i;
339	unsigned int ret;
340	unsigned int nr_found;
341
342	rcu_read_lock();
343restart:
344	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
345				(void ***)pages, indices, start, nr_pages);
346	ret = 0;
347	for (i = 0; i < nr_found; i++) {
348		struct page *page;
349repeat:
350		page = radix_tree_deref_slot((void **)pages[i]);
351		if (unlikely(!page))
352			continue;
353		if (radix_tree_exception(page)) {
354			if (radix_tree_deref_retry(page))
355				goto restart;
356			/*
357			 * Otherwise, we must be storing a swap entry
358			 * here as an exceptional entry: so return it
359			 * without attempting to raise page count.
360			 */
361			goto export;
362		}
363		if (!page_cache_get_speculative(page))
364			goto repeat;
365
366		/* Has the page moved? */
367		if (unlikely(page != *((void **)pages[i]))) {
368			page_cache_release(page);
369			goto repeat;
370		}
371export:
372		indices[ret] = indices[i];
373		pages[ret] = page;
374		ret++;
375	}
376	if (unlikely(!ret && nr_found))
377		goto restart;
378	rcu_read_unlock();
379	return ret;
380}
381
382/*
383 * Remove swap entry from radix tree, free the swap and its page cache.
384 */
385static int shmem_free_swap(struct address_space *mapping,
386			   pgoff_t index, void *radswap)
387{
388	int error;
389
390	spin_lock_irq(&mapping->tree_lock);
391	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
392	spin_unlock_irq(&mapping->tree_lock);
393	if (!error)
394		free_swap_and_cache(radix_to_swp_entry(radswap));
395	return error;
396}
397
398/*
399 * Pagevec may contain swap entries, so shuffle up pages before releasing.
400 */
401static void shmem_deswap_pagevec(struct pagevec *pvec)
402{
403	int i, j;
404
405	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
406		struct page *page = pvec->pages[i];
407		if (!radix_tree_exceptional_entry(page))
408			pvec->pages[j++] = page;
409	}
410	pvec->nr = j;
411}
412
413/*
414 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
415 */
416void shmem_unlock_mapping(struct address_space *mapping)
417{
418	struct pagevec pvec;
419	pgoff_t indices[PAGEVEC_SIZE];
420	pgoff_t index = 0;
421
422	pagevec_init(&pvec, 0);
423	/*
424	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
425	 */
426	while (!mapping_unevictable(mapping)) {
427		/*
428		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
430		 */
431		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
432					PAGEVEC_SIZE, pvec.pages, indices);
433		if (!pvec.nr)
434			break;
435		index = indices[pvec.nr - 1] + 1;
436		shmem_deswap_pagevec(&pvec);
437		check_move_unevictable_pages(pvec.pages, pvec.nr);
438		pagevec_release(&pvec);
439		cond_resched();
440	}
441}
442
443/*
444 * Remove range of pages and swap entries from radix tree, and free them.
445 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
446 */
447static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448								 bool unfalloc)
449{
450	struct address_space *mapping = inode->i_mapping;
451	struct shmem_inode_info *info = SHMEM_I(inode);
452	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
453	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
454	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
455	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
456	struct pagevec pvec;
457	pgoff_t indices[PAGEVEC_SIZE];
458	long nr_swaps_freed = 0;
459	pgoff_t index;
460	int i;
461
462	if (lend == -1)
463		end = -1;	/* unsigned, so actually very big */
464
465	pagevec_init(&pvec, 0);
466	index = start;
467	while (index < end) {
468		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
469				min(end - index, (pgoff_t)PAGEVEC_SIZE),
470							pvec.pages, indices);
471		if (!pvec.nr)
472			break;
473		mem_cgroup_uncharge_start();
474		for (i = 0; i < pagevec_count(&pvec); i++) {
475			struct page *page = pvec.pages[i];
476
477			index = indices[i];
478			if (index >= end)
479				break;
480
481			if (radix_tree_exceptional_entry(page)) {
482				if (unfalloc)
483					continue;
484				nr_swaps_freed += !shmem_free_swap(mapping,
485								index, page);
486				continue;
487			}
488
489			if (!trylock_page(page))
490				continue;
491			if (!unfalloc || !PageUptodate(page)) {
492				if (page->mapping == mapping) {
493					VM_BUG_ON(PageWriteback(page));
494					truncate_inode_page(mapping, page);
495				}
496			}
497			unlock_page(page);
498		}
499		shmem_deswap_pagevec(&pvec);
500		pagevec_release(&pvec);
501		mem_cgroup_uncharge_end();
502		cond_resched();
503		index++;
504	}
505
506	if (partial_start) {
507		struct page *page = NULL;
508		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
509		if (page) {
510			unsigned int top = PAGE_CACHE_SIZE;
511			if (start > end) {
512				top = partial_end;
513				partial_end = 0;
514			}
515			zero_user_segment(page, partial_start, top);
516			set_page_dirty(page);
517			unlock_page(page);
518			page_cache_release(page);
519		}
520	}
521	if (partial_end) {
522		struct page *page = NULL;
523		shmem_getpage(inode, end, &page, SGP_READ, NULL);
524		if (page) {
525			zero_user_segment(page, 0, partial_end);
526			set_page_dirty(page);
527			unlock_page(page);
528			page_cache_release(page);
529		}
530	}
531	if (start >= end)
532		return;
533
534	index = start;
535	for ( ; ; ) {
536		cond_resched();
537		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
538				min(end - index, (pgoff_t)PAGEVEC_SIZE),
539							pvec.pages, indices);
540		if (!pvec.nr) {
541			if (index == start || unfalloc)
542				break;
543			index = start;
544			continue;
545		}
546		if ((index == start || unfalloc) && indices[0] >= end) {
547			shmem_deswap_pagevec(&pvec);
548			pagevec_release(&pvec);
549			break;
550		}
551		mem_cgroup_uncharge_start();
552		for (i = 0; i < pagevec_count(&pvec); i++) {
553			struct page *page = pvec.pages[i];
554
555			index = indices[i];
556			if (index >= end)
557				break;
558
559			if (radix_tree_exceptional_entry(page)) {
560				if (unfalloc)
561					continue;
562				nr_swaps_freed += !shmem_free_swap(mapping,
563								index, page);
564				continue;
565			}
566
567			lock_page(page);
568			if (!unfalloc || !PageUptodate(page)) {
569				if (page->mapping == mapping) {
570					VM_BUG_ON(PageWriteback(page));
571					truncate_inode_page(mapping, page);
572				}
573			}
574			unlock_page(page);
575		}
576		shmem_deswap_pagevec(&pvec);
577		pagevec_release(&pvec);
578		mem_cgroup_uncharge_end();
579		index++;
580	}
581
582	spin_lock(&info->lock);
583	info->swapped -= nr_swaps_freed;
584	shmem_recalc_inode(inode);
585	spin_unlock(&info->lock);
586}
587
588void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
589{
590	shmem_undo_range(inode, lstart, lend, false);
591	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
592}
593EXPORT_SYMBOL_GPL(shmem_truncate_range);
594
595static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
596{
597	struct inode *inode = dentry->d_inode;
598	int error;
599
600	error = inode_change_ok(inode, attr);
601	if (error)
602		return error;
603
604	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
605		loff_t oldsize = inode->i_size;
606		loff_t newsize = attr->ia_size;
607
608		if (newsize != oldsize) {
609			i_size_write(inode, newsize);
610			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
611		}
612		if (newsize < oldsize) {
613			loff_t holebegin = round_up(newsize, PAGE_SIZE);
614			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
615			shmem_truncate_range(inode, newsize, (loff_t)-1);
616			/* unmap again to remove racily COWed private pages */
617			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
618		}
619	}
620
621	setattr_copy(inode, attr);
622#ifdef CONFIG_TMPFS_POSIX_ACL
623	if (attr->ia_valid & ATTR_MODE)
624		error = generic_acl_chmod(inode);
625#endif
626	return error;
627}
628
629static void shmem_evict_inode(struct inode *inode)
630{
631	struct shmem_inode_info *info = SHMEM_I(inode);
632
633	if (inode->i_mapping->a_ops == &shmem_aops) {
634		shmem_unacct_size(info->flags, inode->i_size);
635		inode->i_size = 0;
636		shmem_truncate_range(inode, 0, (loff_t)-1);
637		if (!list_empty(&info->swaplist)) {
638			mutex_lock(&shmem_swaplist_mutex);
639			list_del_init(&info->swaplist);
640			mutex_unlock(&shmem_swaplist_mutex);
641		}
642	} else
643		kfree(info->symlink);
644
645	simple_xattrs_free(&info->xattrs);
646	WARN_ON(inode->i_blocks);
647	shmem_free_inode(inode->i_sb);
648	clear_inode(inode);
649}
650
651/*
652 * If swap found in inode, free it and move page from swapcache to filecache.
653 */
654static int shmem_unuse_inode(struct shmem_inode_info *info,
655			     swp_entry_t swap, struct page **pagep)
656{
657	struct address_space *mapping = info->vfs_inode.i_mapping;
658	void *radswap;
659	pgoff_t index;
660	gfp_t gfp;
661	int error = 0;
662
663	radswap = swp_to_radix_entry(swap);
664	index = radix_tree_locate_item(&mapping->page_tree, radswap);
665	if (index == -1)
666		return 0;
667
668	/*
669	 * Move _head_ to start search for next from here.
670	 * But be careful: shmem_evict_inode checks list_empty without taking
671	 * mutex, and there's an instant in list_move_tail when info->swaplist
672	 * would appear empty, if it were the only one on shmem_swaplist.
673	 */
674	if (shmem_swaplist.next != &info->swaplist)
675		list_move_tail(&shmem_swaplist, &info->swaplist);
676
677	gfp = mapping_gfp_mask(mapping);
678	if (shmem_should_replace_page(*pagep, gfp)) {
679		mutex_unlock(&shmem_swaplist_mutex);
680		error = shmem_replace_page(pagep, gfp, info, index);
681		mutex_lock(&shmem_swaplist_mutex);
682		/*
683		 * We needed to drop mutex to make that restrictive page
684		 * allocation, but the inode might have been freed while we
685		 * dropped it: although a racing shmem_evict_inode() cannot
686		 * complete without emptying the radix_tree, our page lock
687		 * on this swapcache page is not enough to prevent that -
688		 * free_swap_and_cache() of our swap entry will only
689		 * trylock_page(), removing swap from radix_tree whatever.
690		 *
691		 * We must not proceed to shmem_add_to_page_cache() if the
692		 * inode has been freed, but of course we cannot rely on
693		 * inode or mapping or info to check that.  However, we can
694		 * safely check if our swap entry is still in use (and here
695		 * it can't have got reused for another page): if it's still
696		 * in use, then the inode cannot have been freed yet, and we
697		 * can safely proceed (if it's no longer in use, that tells
698		 * nothing about the inode, but we don't need to unuse swap).
699		 */
700		if (!page_swapcount(*pagep))
701			error = -ENOENT;
702	}
703
704	/*
705	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
707	 * beneath us (pagelock doesn't help until the page is in pagecache).
708	 */
709	if (!error)
710		error = shmem_add_to_page_cache(*pagep, mapping, index,
711						GFP_NOWAIT, radswap);
712	if (error != -ENOMEM) {
713		/*
714		 * Truncation and eviction use free_swap_and_cache(), which
715		 * only does trylock page: if we raced, best clean up here.
716		 */
717		delete_from_swap_cache(*pagep);
718		set_page_dirty(*pagep);
719		if (!error) {
720			spin_lock(&info->lock);
721			info->swapped--;
722			spin_unlock(&info->lock);
723			swap_free(swap);
724		}
725		error = 1;	/* not an error, but entry was found */
726	}
727	return error;
728}
729
730/*
731 * Search through swapped inodes to find and replace swap by page.
732 */
733int shmem_unuse(swp_entry_t swap, struct page *page)
734{
735	struct list_head *this, *next;
736	struct shmem_inode_info *info;
737	int found = 0;
738	int error = 0;
739
740	/*
741	 * There's a faint possibility that swap page was replaced before
742	 * caller locked it: caller will come back later with the right page.
743	 */
744	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
745		goto out;
746
747	/*
748	 * Charge page using GFP_KERNEL while we can wait, before taking
749	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
750	 * Charged back to the user (not to caller) when swap account is used.
751	 */
752	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753	if (error)
754		goto out;
755	/* No radix_tree_preload: swap entry keeps a place for page in tree */
756
757	mutex_lock(&shmem_swaplist_mutex);
758	list_for_each_safe(this, next, &shmem_swaplist) {
759		info = list_entry(this, struct shmem_inode_info, swaplist);
760		if (info->swapped)
761			found = shmem_unuse_inode(info, swap, &page);
762		else
763			list_del_init(&info->swaplist);
764		cond_resched();
765		if (found)
766			break;
767	}
768	mutex_unlock(&shmem_swaplist_mutex);
769
770	if (found < 0)
771		error = found;
772out:
773	unlock_page(page);
774	page_cache_release(page);
775	return error;
776}
777
778/*
779 * Move the page from the page cache to the swap cache.
780 */
781static int shmem_writepage(struct page *page, struct writeback_control *wbc)
782{
783	struct shmem_inode_info *info;
784	struct address_space *mapping;
785	struct inode *inode;
786	swp_entry_t swap;
787	pgoff_t index;
788
789	BUG_ON(!PageLocked(page));
790	mapping = page->mapping;
791	index = page->index;
792	inode = mapping->host;
793	info = SHMEM_I(inode);
794	if (info->flags & VM_LOCKED)
795		goto redirty;
796	if (!total_swap_pages)
797		goto redirty;
798
799	/*
800	 * shmem_backing_dev_info's capabilities prevent regular writeback or
801	 * sync from ever calling shmem_writepage; but a stacking filesystem
802	 * might use ->writepage of its underlying filesystem, in which case
803	 * tmpfs should write out to swap only in response to memory pressure,
804	 * and not for the writeback threads or sync.
805	 */
806	if (!wbc->for_reclaim) {
807		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
808		goto redirty;
809	}
810
811	/*
812	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813	 * value into swapfile.c, the only way we can correctly account for a
814	 * fallocated page arriving here is now to initialize it and write it.
815	 *
816	 * That's okay for a page already fallocated earlier, but if we have
817	 * not yet completed the fallocation, then (a) we want to keep track
818	 * of this page in case we have to undo it, and (b) it may not be a
819	 * good idea to continue anyway, once we're pushing into swap.  So
820	 * reactivate the page, and let shmem_fallocate() quit when too many.
821	 */
822	if (!PageUptodate(page)) {
823		if (inode->i_private) {
824			struct shmem_falloc *shmem_falloc;
825			spin_lock(&inode->i_lock);
826			shmem_falloc = inode->i_private;
827			if (shmem_falloc &&
828			    index >= shmem_falloc->start &&
829			    index < shmem_falloc->next)
830				shmem_falloc->nr_unswapped++;
831			else
832				shmem_falloc = NULL;
833			spin_unlock(&inode->i_lock);
834			if (shmem_falloc)
835				goto redirty;
836		}
837		clear_highpage(page);
838		flush_dcache_page(page);
839		SetPageUptodate(page);
840	}
841
842	swap = get_swap_page();
843	if (!swap.val)
844		goto redirty;
845
846	/*
847	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
848	 * if it's not already there.  Do it now before the page is
849	 * moved to swap cache, when its pagelock no longer protects
850	 * the inode from eviction.  But don't unlock the mutex until
851	 * we've incremented swapped, because shmem_unuse_inode() will
852	 * prune a !swapped inode from the swaplist under this mutex.
853	 */
854	mutex_lock(&shmem_swaplist_mutex);
855	if (list_empty(&info->swaplist))
856		list_add_tail(&info->swaplist, &shmem_swaplist);
857
858	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
859		swap_shmem_alloc(swap);
860		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
861
862		spin_lock(&info->lock);
863		info->swapped++;
864		shmem_recalc_inode(inode);
865		spin_unlock(&info->lock);
866
867		mutex_unlock(&shmem_swaplist_mutex);
868		BUG_ON(page_mapped(page));
869		swap_writepage(page, wbc);
870		return 0;
871	}
872
873	mutex_unlock(&shmem_swaplist_mutex);
874	swapcache_free(swap, NULL);
875redirty:
876	set_page_dirty(page);
877	if (wbc->for_reclaim)
878		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
879	unlock_page(page);
880	return 0;
881}
882
883#ifdef CONFIG_NUMA
884#ifdef CONFIG_TMPFS
885static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
886{
887	char buffer[64];
888
889	if (!mpol || mpol->mode == MPOL_DEFAULT)
890		return;		/* show nothing */
891
892	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
893
894	seq_printf(seq, ",mpol=%s", buffer);
895}
896
897static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
898{
899	struct mempolicy *mpol = NULL;
900	if (sbinfo->mpol) {
901		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
902		mpol = sbinfo->mpol;
903		mpol_get(mpol);
904		spin_unlock(&sbinfo->stat_lock);
905	}
906	return mpol;
907}
908#endif /* CONFIG_TMPFS */
909
910static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
911			struct shmem_inode_info *info, pgoff_t index)
912{
913	struct vm_area_struct pvma;
914	struct page *page;
915
916	/* Create a pseudo vma that just contains the policy */
917	pvma.vm_start = 0;
918	/* Bias interleave by inode number to distribute better across nodes */
919	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
920	pvma.vm_ops = NULL;
921	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
922
923	page = swapin_readahead(swap, gfp, &pvma, 0);
924
925	/* Drop reference taken by mpol_shared_policy_lookup() */
926	mpol_cond_put(pvma.vm_policy);
927
928	return page;
929}
930
931static struct page *shmem_alloc_page(gfp_t gfp,
932			struct shmem_inode_info *info, pgoff_t index)
933{
934	struct vm_area_struct pvma;
935	struct page *page;
936
937	/* Create a pseudo vma that just contains the policy */
938	pvma.vm_start = 0;
939	/* Bias interleave by inode number to distribute better across nodes */
940	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
941	pvma.vm_ops = NULL;
942	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
943
944	page = alloc_page_vma(gfp, &pvma, 0);
945
946	/* Drop reference taken by mpol_shared_policy_lookup() */
947	mpol_cond_put(pvma.vm_policy);
948
949	return page;
950}
951#else /* !CONFIG_NUMA */
952#ifdef CONFIG_TMPFS
953static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
954{
955}
956#endif /* CONFIG_TMPFS */
957
958static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
959			struct shmem_inode_info *info, pgoff_t index)
960{
961	return swapin_readahead(swap, gfp, NULL, 0);
962}
963
964static inline struct page *shmem_alloc_page(gfp_t gfp,
965			struct shmem_inode_info *info, pgoff_t index)
966{
967	return alloc_page(gfp);
968}
969#endif /* CONFIG_NUMA */
970
971#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
972static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
973{
974	return NULL;
975}
976#endif
977
978/*
979 * When a page is moved from swapcache to shmem filecache (either by the
980 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
981 * shmem_unuse_inode()), it may have been read in earlier from swap, in
982 * ignorance of the mapping it belongs to.  If that mapping has special
983 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
984 * we may need to copy to a suitable page before moving to filecache.
985 *
986 * In a future release, this may well be extended to respect cpuset and
987 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
988 * but for now it is a simple matter of zone.
989 */
990static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
991{
992	return page_zonenum(page) > gfp_zone(gfp);
993}
994
995static int shmem_replace_page(struct page **pagep, gfp_t gfp,
996				struct shmem_inode_info *info, pgoff_t index)
997{
998	struct page *oldpage, *newpage;
999	struct address_space *swap_mapping;
1000	pgoff_t swap_index;
1001	int error;
1002
1003	oldpage = *pagep;
1004	swap_index = page_private(oldpage);
1005	swap_mapping = page_mapping(oldpage);
1006
1007	/*
1008	 * We have arrived here because our zones are constrained, so don't
1009	 * limit chance of success by further cpuset and node constraints.
1010	 */
1011	gfp &= ~GFP_CONSTRAINT_MASK;
1012	newpage = shmem_alloc_page(gfp, info, index);
1013	if (!newpage)
1014		return -ENOMEM;
1015
1016	page_cache_get(newpage);
1017	copy_highpage(newpage, oldpage);
1018	flush_dcache_page(newpage);
1019
1020	__set_page_locked(newpage);
1021	SetPageUptodate(newpage);
1022	SetPageSwapBacked(newpage);
1023	set_page_private(newpage, swap_index);
1024	SetPageSwapCache(newpage);
1025
1026	/*
1027	 * Our caller will very soon move newpage out of swapcache, but it's
1028	 * a nice clean interface for us to replace oldpage by newpage there.
1029	 */
1030	spin_lock_irq(&swap_mapping->tree_lock);
1031	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1032								   newpage);
1033	if (!error) {
1034		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1035		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1036	}
1037	spin_unlock_irq(&swap_mapping->tree_lock);
1038
1039	if (unlikely(error)) {
1040		/*
1041		 * Is this possible?  I think not, now that our callers check
1042		 * both PageSwapCache and page_private after getting page lock;
1043		 * but be defensive.  Reverse old to newpage for clear and free.
1044		 */
1045		oldpage = newpage;
1046	} else {
1047		mem_cgroup_replace_page_cache(oldpage, newpage);
1048		lru_cache_add_anon(newpage);
1049		*pagep = newpage;
1050	}
1051
1052	ClearPageSwapCache(oldpage);
1053	set_page_private(oldpage, 0);
1054
1055	unlock_page(oldpage);
1056	page_cache_release(oldpage);
1057	page_cache_release(oldpage);
1058	return error;
1059}
1060
1061/*
1062 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1063 *
1064 * If we allocate a new one we do not mark it dirty. That's up to the
1065 * vm. If we swap it in we mark it dirty since we also free the swap
1066 * entry since a page cannot live in both the swap and page cache
1067 */
1068static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1069	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1070{
1071	struct address_space *mapping = inode->i_mapping;
1072	struct shmem_inode_info *info;
1073	struct shmem_sb_info *sbinfo;
1074	struct page *page;
1075	swp_entry_t swap;
1076	int error;
1077	int once = 0;
1078	int alloced = 0;
1079
1080	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1081		return -EFBIG;
1082repeat:
1083	swap.val = 0;
1084	page = find_lock_page(mapping, index);
1085	if (radix_tree_exceptional_entry(page)) {
1086		swap = radix_to_swp_entry(page);
1087		page = NULL;
1088	}
1089
1090	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1091	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1092		error = -EINVAL;
1093		goto failed;
1094	}
1095
1096	/* fallocated page? */
1097	if (page && !PageUptodate(page)) {
1098		if (sgp != SGP_READ)
1099			goto clear;
1100		unlock_page(page);
1101		page_cache_release(page);
1102		page = NULL;
1103	}
1104	if (page || (sgp == SGP_READ && !swap.val)) {
1105		*pagep = page;
1106		return 0;
1107	}
1108
1109	/*
1110	 * Fast cache lookup did not find it:
1111	 * bring it back from swap or allocate.
1112	 */
1113	info = SHMEM_I(inode);
1114	sbinfo = SHMEM_SB(inode->i_sb);
1115
1116	if (swap.val) {
1117		/* Look it up and read it in.. */
1118		page = lookup_swap_cache(swap);
1119		if (!page) {
1120			/* here we actually do the io */
1121			if (fault_type)
1122				*fault_type |= VM_FAULT_MAJOR;
1123			page = shmem_swapin(swap, gfp, info, index);
1124			if (!page) {
1125				error = -ENOMEM;
1126				goto failed;
1127			}
1128		}
1129
1130		/* We have to do this with page locked to prevent races */
1131		lock_page(page);
1132		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1133		    !shmem_confirm_swap(mapping, index, swap)) {
1134			error = -EEXIST;	/* try again */
1135			goto unlock;
1136		}
1137		if (!PageUptodate(page)) {
1138			error = -EIO;
1139			goto failed;
1140		}
1141		wait_on_page_writeback(page);
1142
1143		if (shmem_should_replace_page(page, gfp)) {
1144			error = shmem_replace_page(&page, gfp, info, index);
1145			if (error)
1146				goto failed;
1147		}
1148
1149		error = mem_cgroup_cache_charge(page, current->mm,
1150						gfp & GFP_RECLAIM_MASK);
1151		if (!error) {
1152			error = shmem_add_to_page_cache(page, mapping, index,
1153						gfp, swp_to_radix_entry(swap));
1154			/*
1155			 * We already confirmed swap under page lock, and make
1156			 * no memory allocation here, so usually no possibility
1157			 * of error; but free_swap_and_cache() only trylocks a
1158			 * page, so it is just possible that the entry has been
1159			 * truncated or holepunched since swap was confirmed.
1160			 * shmem_undo_range() will have done some of the
1161			 * unaccounting, now delete_from_swap_cache() will do
1162			 * the rest (including mem_cgroup_uncharge_swapcache).
1163			 * Reset swap.val? No, leave it so "failed" goes back to
1164			 * "repeat": reading a hole and writing should succeed.
1165			 */
1166			if (error)
1167				delete_from_swap_cache(page);
1168		}
1169		if (error)
1170			goto failed;
1171
1172		spin_lock(&info->lock);
1173		info->swapped--;
1174		shmem_recalc_inode(inode);
1175		spin_unlock(&info->lock);
1176
1177		delete_from_swap_cache(page);
1178		set_page_dirty(page);
1179		swap_free(swap);
1180
1181	} else {
1182		if (shmem_acct_block(info->flags)) {
1183			error = -ENOSPC;
1184			goto failed;
1185		}
1186		if (sbinfo->max_blocks) {
1187			if (percpu_counter_compare(&sbinfo->used_blocks,
1188						sbinfo->max_blocks) >= 0) {
1189				error = -ENOSPC;
1190				goto unacct;
1191			}
1192			percpu_counter_inc(&sbinfo->used_blocks);
1193		}
1194
1195		page = shmem_alloc_page(gfp, info, index);
1196		if (!page) {
1197			error = -ENOMEM;
1198			goto decused;
1199		}
1200
1201		SetPageSwapBacked(page);
1202		__set_page_locked(page);
1203		error = mem_cgroup_cache_charge(page, current->mm,
1204						gfp & GFP_RECLAIM_MASK);
1205		if (error)
1206			goto decused;
1207		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1208		if (!error) {
1209			error = shmem_add_to_page_cache(page, mapping, index,
1210							gfp, NULL);
1211			radix_tree_preload_end();
1212		}
1213		if (error) {
1214			mem_cgroup_uncharge_cache_page(page);
1215			goto decused;
1216		}
1217		lru_cache_add_anon(page);
1218
1219		spin_lock(&info->lock);
1220		info->alloced++;
1221		inode->i_blocks += BLOCKS_PER_PAGE;
1222		shmem_recalc_inode(inode);
1223		spin_unlock(&info->lock);
1224		alloced = true;
1225
1226		/*
1227		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1228		 */
1229		if (sgp == SGP_FALLOC)
1230			sgp = SGP_WRITE;
1231clear:
1232		/*
1233		 * Let SGP_WRITE caller clear ends if write does not fill page;
1234		 * but SGP_FALLOC on a page fallocated earlier must initialize
1235		 * it now, lest undo on failure cancel our earlier guarantee.
1236		 */
1237		if (sgp != SGP_WRITE) {
1238			clear_highpage(page);
1239			flush_dcache_page(page);
1240			SetPageUptodate(page);
1241		}
1242		if (sgp == SGP_DIRTY)
1243			set_page_dirty(page);
1244	}
1245
1246	/* Perhaps the file has been truncated since we checked */
1247	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1248	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1249		error = -EINVAL;
1250		if (alloced)
1251			goto trunc;
1252		else
1253			goto failed;
1254	}
1255	*pagep = page;
1256	return 0;
1257
1258	/*
1259	 * Error recovery.
1260	 */
1261trunc:
1262	info = SHMEM_I(inode);
1263	ClearPageDirty(page);
1264	delete_from_page_cache(page);
1265	spin_lock(&info->lock);
1266	info->alloced--;
1267	inode->i_blocks -= BLOCKS_PER_PAGE;
1268	spin_unlock(&info->lock);
1269decused:
1270	sbinfo = SHMEM_SB(inode->i_sb);
1271	if (sbinfo->max_blocks)
1272		percpu_counter_add(&sbinfo->used_blocks, -1);
1273unacct:
1274	shmem_unacct_blocks(info->flags, 1);
1275failed:
1276	if (swap.val && error != -EINVAL &&
1277	    !shmem_confirm_swap(mapping, index, swap))
1278		error = -EEXIST;
1279unlock:
1280	if (page) {
1281		unlock_page(page);
1282		page_cache_release(page);
1283	}
1284	if (error == -ENOSPC && !once++) {
1285		info = SHMEM_I(inode);
1286		spin_lock(&info->lock);
1287		shmem_recalc_inode(inode);
1288		spin_unlock(&info->lock);
1289		goto repeat;
1290	}
1291	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1292		goto repeat;
1293	return error;
1294}
1295
1296static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1297{
1298	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1299	int error;
1300	int ret = VM_FAULT_LOCKED;
1301
1302	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1303	if (error)
1304		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1305
1306	if (ret & VM_FAULT_MAJOR) {
1307		count_vm_event(PGMAJFAULT);
1308		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1309	}
1310	return ret;
1311}
1312
1313#ifdef CONFIG_NUMA
1314static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1315{
1316	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1317	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1318}
1319
1320static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1321					  unsigned long addr)
1322{
1323	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1324	pgoff_t index;
1325
1326	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1327	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1328}
1329#endif
1330
1331int shmem_lock(struct file *file, int lock, struct user_struct *user)
1332{
1333	struct inode *inode = file->f_path.dentry->d_inode;
1334	struct shmem_inode_info *info = SHMEM_I(inode);
1335	int retval = -ENOMEM;
1336
1337	spin_lock(&info->lock);
1338	if (lock && !(info->flags & VM_LOCKED)) {
1339		if (!user_shm_lock(inode->i_size, user))
1340			goto out_nomem;
1341		info->flags |= VM_LOCKED;
1342		mapping_set_unevictable(file->f_mapping);
1343	}
1344	if (!lock && (info->flags & VM_LOCKED) && user) {
1345		user_shm_unlock(inode->i_size, user);
1346		info->flags &= ~VM_LOCKED;
1347		mapping_clear_unevictable(file->f_mapping);
1348	}
1349	retval = 0;
1350
1351out_nomem:
1352	spin_unlock(&info->lock);
1353	return retval;
1354}
1355
1356static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1357{
1358	file_accessed(file);
1359	vma->vm_ops = &shmem_vm_ops;
1360	return 0;
1361}
1362
1363static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1364				     umode_t mode, dev_t dev, unsigned long flags)
1365{
1366	struct inode *inode;
1367	struct shmem_inode_info *info;
1368	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1369
1370	if (shmem_reserve_inode(sb))
1371		return NULL;
1372
1373	inode = new_inode(sb);
1374	if (inode) {
1375		inode->i_ino = get_next_ino();
1376		inode_init_owner(inode, dir, mode);
1377		inode->i_blocks = 0;
1378		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1379		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1380		inode->i_generation = get_seconds();
1381		info = SHMEM_I(inode);
1382		memset(info, 0, (char *)inode - (char *)info);
1383		spin_lock_init(&info->lock);
1384		info->flags = flags & VM_NORESERVE;
1385		INIT_LIST_HEAD(&info->swaplist);
1386		simple_xattrs_init(&info->xattrs);
1387		cache_no_acl(inode);
1388
1389		switch (mode & S_IFMT) {
1390		default:
1391			inode->i_op = &shmem_special_inode_operations;
1392			init_special_inode(inode, mode, dev);
1393			break;
1394		case S_IFREG:
1395			inode->i_mapping->a_ops = &shmem_aops;
1396			inode->i_op = &shmem_inode_operations;
1397			inode->i_fop = &shmem_file_operations;
1398			mpol_shared_policy_init(&info->policy,
1399						 shmem_get_sbmpol(sbinfo));
1400			break;
1401		case S_IFDIR:
1402			inc_nlink(inode);
1403			/* Some things misbehave if size == 0 on a directory */
1404			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1405			inode->i_op = &shmem_dir_inode_operations;
1406			inode->i_fop = &simple_dir_operations;
1407			break;
1408		case S_IFLNK:
1409			/*
1410			 * Must not load anything in the rbtree,
1411			 * mpol_free_shared_policy will not be called.
1412			 */
1413			mpol_shared_policy_init(&info->policy, NULL);
1414			break;
1415		}
1416	} else
1417		shmem_free_inode(sb);
1418	return inode;
1419}
1420
1421#ifdef CONFIG_TMPFS
1422static const struct inode_operations shmem_symlink_inode_operations;
1423static const struct inode_operations shmem_short_symlink_operations;
1424
1425#ifdef CONFIG_TMPFS_XATTR
1426static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1427#else
1428#define shmem_initxattrs NULL
1429#endif
1430
1431static int
1432shmem_write_begin(struct file *file, struct address_space *mapping,
1433			loff_t pos, unsigned len, unsigned flags,
1434			struct page **pagep, void **fsdata)
1435{
1436	struct inode *inode = mapping->host;
1437	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1438	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1439}
1440
1441static int
1442shmem_write_end(struct file *file, struct address_space *mapping,
1443			loff_t pos, unsigned len, unsigned copied,
1444			struct page *page, void *fsdata)
1445{
1446	struct inode *inode = mapping->host;
1447
1448	if (pos + copied > inode->i_size)
1449		i_size_write(inode, pos + copied);
1450
1451	if (!PageUptodate(page)) {
1452		if (copied < PAGE_CACHE_SIZE) {
1453			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1454			zero_user_segments(page, 0, from,
1455					from + copied, PAGE_CACHE_SIZE);
1456		}
1457		SetPageUptodate(page);
1458	}
1459	set_page_dirty(page);
1460	unlock_page(page);
1461	page_cache_release(page);
1462
1463	return copied;
1464}
1465
1466static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1467{
1468	struct inode *inode = filp->f_path.dentry->d_inode;
1469	struct address_space *mapping = inode->i_mapping;
1470	pgoff_t index;
1471	unsigned long offset;
1472	enum sgp_type sgp = SGP_READ;
1473
1474	/*
1475	 * Might this read be for a stacking filesystem?  Then when reading
1476	 * holes of a sparse file, we actually need to allocate those pages,
1477	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1478	 */
1479	if (segment_eq(get_fs(), KERNEL_DS))
1480		sgp = SGP_DIRTY;
1481
1482	index = *ppos >> PAGE_CACHE_SHIFT;
1483	offset = *ppos & ~PAGE_CACHE_MASK;
1484
1485	for (;;) {
1486		struct page *page = NULL;
1487		pgoff_t end_index;
1488		unsigned long nr, ret;
1489		loff_t i_size = i_size_read(inode);
1490
1491		end_index = i_size >> PAGE_CACHE_SHIFT;
1492		if (index > end_index)
1493			break;
1494		if (index == end_index) {
1495			nr = i_size & ~PAGE_CACHE_MASK;
1496			if (nr <= offset)
1497				break;
1498		}
1499
1500		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1501		if (desc->error) {
1502			if (desc->error == -EINVAL)
1503				desc->error = 0;
1504			break;
1505		}
1506		if (page)
1507			unlock_page(page);
1508
1509		/*
1510		 * We must evaluate after, since reads (unlike writes)
1511		 * are called without i_mutex protection against truncate
1512		 */
1513		nr = PAGE_CACHE_SIZE;
1514		i_size = i_size_read(inode);
1515		end_index = i_size >> PAGE_CACHE_SHIFT;
1516		if (index == end_index) {
1517			nr = i_size & ~PAGE_CACHE_MASK;
1518			if (nr <= offset) {
1519				if (page)
1520					page_cache_release(page);
1521				break;
1522			}
1523		}
1524		nr -= offset;
1525
1526		if (page) {
1527			/*
1528			 * If users can be writing to this page using arbitrary
1529			 * virtual addresses, take care about potential aliasing
1530			 * before reading the page on the kernel side.
1531			 */
1532			if (mapping_writably_mapped(mapping))
1533				flush_dcache_page(page);
1534			/*
1535			 * Mark the page accessed if we read the beginning.
1536			 */
1537			if (!offset)
1538				mark_page_accessed(page);
1539		} else {
1540			page = ZERO_PAGE(0);
1541			page_cache_get(page);
1542		}
1543
1544		/*
1545		 * Ok, we have the page, and it's up-to-date, so
1546		 * now we can copy it to user space...
1547		 *
1548		 * The actor routine returns how many bytes were actually used..
1549		 * NOTE! This may not be the same as how much of a user buffer
1550		 * we filled up (we may be padding etc), so we can only update
1551		 * "pos" here (the actor routine has to update the user buffer
1552		 * pointers and the remaining count).
1553		 */
1554		ret = actor(desc, page, offset, nr);
1555		offset += ret;
1556		index += offset >> PAGE_CACHE_SHIFT;
1557		offset &= ~PAGE_CACHE_MASK;
1558
1559		page_cache_release(page);
1560		if (ret != nr || !desc->count)
1561			break;
1562
1563		cond_resched();
1564	}
1565
1566	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1567	file_accessed(filp);
1568}
1569
1570static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1571		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1572{
1573	struct file *filp = iocb->ki_filp;
1574	ssize_t retval;
1575	unsigned long seg;
1576	size_t count;
1577	loff_t *ppos = &iocb->ki_pos;
1578
1579	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1580	if (retval)
1581		return retval;
1582
1583	for (seg = 0; seg < nr_segs; seg++) {
1584		read_descriptor_t desc;
1585
1586		desc.written = 0;
1587		desc.arg.buf = iov[seg].iov_base;
1588		desc.count = iov[seg].iov_len;
1589		if (desc.count == 0)
1590			continue;
1591		desc.error = 0;
1592		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1593		retval += desc.written;
1594		if (desc.error) {
1595			retval = retval ?: desc.error;
1596			break;
1597		}
1598		if (desc.count > 0)
1599			break;
1600	}
1601	return retval;
1602}
1603
1604static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1605				struct pipe_inode_info *pipe, size_t len,
1606				unsigned int flags)
1607{
1608	struct address_space *mapping = in->f_mapping;
1609	struct inode *inode = mapping->host;
1610	unsigned int loff, nr_pages, req_pages;
1611	struct page *pages[PIPE_DEF_BUFFERS];
1612	struct partial_page partial[PIPE_DEF_BUFFERS];
1613	struct page *page;
1614	pgoff_t index, end_index;
1615	loff_t isize, left;
1616	int error, page_nr;
1617	struct splice_pipe_desc spd = {
1618		.pages = pages,
1619		.partial = partial,
1620		.nr_pages_max = PIPE_DEF_BUFFERS,
1621		.flags = flags,
1622		.ops = &page_cache_pipe_buf_ops,
1623		.spd_release = spd_release_page,
1624	};
1625
1626	isize = i_size_read(inode);
1627	if (unlikely(*ppos >= isize))
1628		return 0;
1629
1630	left = isize - *ppos;
1631	if (unlikely(left < len))
1632		len = left;
1633
1634	if (splice_grow_spd(pipe, &spd))
1635		return -ENOMEM;
1636
1637	index = *ppos >> PAGE_CACHE_SHIFT;
1638	loff = *ppos & ~PAGE_CACHE_MASK;
1639	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1640	nr_pages = min(req_pages, pipe->buffers);
1641
1642	spd.nr_pages = find_get_pages_contig(mapping, index,
1643						nr_pages, spd.pages);
1644	index += spd.nr_pages;
1645	error = 0;
1646
1647	while (spd.nr_pages < nr_pages) {
1648		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1649		if (error)
1650			break;
1651		unlock_page(page);
1652		spd.pages[spd.nr_pages++] = page;
1653		index++;
1654	}
1655
1656	index = *ppos >> PAGE_CACHE_SHIFT;
1657	nr_pages = spd.nr_pages;
1658	spd.nr_pages = 0;
1659
1660	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1661		unsigned int this_len;
1662
1663		if (!len)
1664			break;
1665
1666		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1667		page = spd.pages[page_nr];
1668
1669		if (!PageUptodate(page) || page->mapping != mapping) {
1670			error = shmem_getpage(inode, index, &page,
1671							SGP_CACHE, NULL);
1672			if (error)
1673				break;
1674			unlock_page(page);
1675			page_cache_release(spd.pages[page_nr]);
1676			spd.pages[page_nr] = page;
1677		}
1678
1679		isize = i_size_read(inode);
1680		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1681		if (unlikely(!isize || index > end_index))
1682			break;
1683
1684		if (end_index == index) {
1685			unsigned int plen;
1686
1687			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1688			if (plen <= loff)
1689				break;
1690
1691			this_len = min(this_len, plen - loff);
1692			len = this_len;
1693		}
1694
1695		spd.partial[page_nr].offset = loff;
1696		spd.partial[page_nr].len = this_len;
1697		len -= this_len;
1698		loff = 0;
1699		spd.nr_pages++;
1700		index++;
1701	}
1702
1703	while (page_nr < nr_pages)
1704		page_cache_release(spd.pages[page_nr++]);
1705
1706	if (spd.nr_pages)
1707		error = splice_to_pipe(pipe, &spd);
1708
1709	splice_shrink_spd(&spd);
1710
1711	if (error > 0) {
1712		*ppos += error;
1713		file_accessed(in);
1714	}
1715	return error;
1716}
1717
1718/*
1719 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1720 */
1721static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1722				    pgoff_t index, pgoff_t end, int whence)
1723{
1724	struct page *page;
1725	struct pagevec pvec;
1726	pgoff_t indices[PAGEVEC_SIZE];
1727	bool done = false;
1728	int i;
1729
1730	pagevec_init(&pvec, 0);
1731	pvec.nr = 1;		/* start small: we may be there already */
1732	while (!done) {
1733		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1734					pvec.nr, pvec.pages, indices);
1735		if (!pvec.nr) {
1736			if (whence == SEEK_DATA)
1737				index = end;
1738			break;
1739		}
1740		for (i = 0; i < pvec.nr; i++, index++) {
1741			if (index < indices[i]) {
1742				if (whence == SEEK_HOLE) {
1743					done = true;
1744					break;
1745				}
1746				index = indices[i];
1747			}
1748			page = pvec.pages[i];
1749			if (page && !radix_tree_exceptional_entry(page)) {
1750				if (!PageUptodate(page))
1751					page = NULL;
1752			}
1753			if (index >= end ||
1754			    (page && whence == SEEK_DATA) ||
1755			    (!page && whence == SEEK_HOLE)) {
1756				done = true;
1757				break;
1758			}
1759		}
1760		shmem_deswap_pagevec(&pvec);
1761		pagevec_release(&pvec);
1762		pvec.nr = PAGEVEC_SIZE;
1763		cond_resched();
1764	}
1765	return index;
1766}
1767
1768static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1769{
1770	struct address_space *mapping = file->f_mapping;
1771	struct inode *inode = mapping->host;
1772	pgoff_t start, end;
1773	loff_t new_offset;
1774
1775	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1776		return generic_file_llseek_size(file, offset, whence,
1777					MAX_LFS_FILESIZE, i_size_read(inode));
1778	mutex_lock(&inode->i_mutex);
1779	/* We're holding i_mutex so we can access i_size directly */
1780
1781	if (offset < 0)
1782		offset = -EINVAL;
1783	else if (offset >= inode->i_size)
1784		offset = -ENXIO;
1785	else {
1786		start = offset >> PAGE_CACHE_SHIFT;
1787		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1788		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1789		new_offset <<= PAGE_CACHE_SHIFT;
1790		if (new_offset > offset) {
1791			if (new_offset < inode->i_size)
1792				offset = new_offset;
1793			else if (whence == SEEK_DATA)
1794				offset = -ENXIO;
1795			else
1796				offset = inode->i_size;
1797		}
1798	}
1799
1800	if (offset >= 0 && offset != file->f_pos) {
1801		file->f_pos = offset;
1802		file->f_version = 0;
1803	}
1804	mutex_unlock(&inode->i_mutex);
1805	return offset;
1806}
1807
1808static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1809							 loff_t len)
1810{
1811	struct inode *inode = file->f_path.dentry->d_inode;
1812	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1813	struct shmem_falloc shmem_falloc;
1814	pgoff_t start, index, end;
1815	int error;
1816
1817	mutex_lock(&inode->i_mutex);
1818
1819	if (mode & FALLOC_FL_PUNCH_HOLE) {
1820		struct address_space *mapping = file->f_mapping;
1821		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1822		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1823
1824		if ((u64)unmap_end > (u64)unmap_start)
1825			unmap_mapping_range(mapping, unmap_start,
1826					    1 + unmap_end - unmap_start, 0);
1827		shmem_truncate_range(inode, offset, offset + len - 1);
1828		/* No need to unmap again: hole-punching leaves COWed pages */
1829		error = 0;
1830		goto out;
1831	}
1832
1833	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1834	error = inode_newsize_ok(inode, offset + len);
1835	if (error)
1836		goto out;
1837
1838	start = offset >> PAGE_CACHE_SHIFT;
1839	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1840	/* Try to avoid a swapstorm if len is impossible to satisfy */
1841	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1842		error = -ENOSPC;
1843		goto out;
1844	}
1845
1846	shmem_falloc.start = start;
1847	shmem_falloc.next  = start;
1848	shmem_falloc.nr_falloced = 0;
1849	shmem_falloc.nr_unswapped = 0;
1850	spin_lock(&inode->i_lock);
1851	inode->i_private = &shmem_falloc;
1852	spin_unlock(&inode->i_lock);
1853
1854	for (index = start; index < end; index++) {
1855		struct page *page;
1856
1857		/*
1858		 * Good, the fallocate(2) manpage permits EINTR: we may have
1859		 * been interrupted because we are using up too much memory.
1860		 */
1861		if (signal_pending(current))
1862			error = -EINTR;
1863		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1864			error = -ENOMEM;
1865		else
1866			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1867									NULL);
1868		if (error) {
1869			/* Remove the !PageUptodate pages we added */
1870			shmem_undo_range(inode,
1871				(loff_t)start << PAGE_CACHE_SHIFT,
1872				(loff_t)index << PAGE_CACHE_SHIFT, true);
1873			goto undone;
1874		}
1875
1876		/*
1877		 * Inform shmem_writepage() how far we have reached.
1878		 * No need for lock or barrier: we have the page lock.
1879		 */
1880		shmem_falloc.next++;
1881		if (!PageUptodate(page))
1882			shmem_falloc.nr_falloced++;
1883
1884		/*
1885		 * If !PageUptodate, leave it that way so that freeable pages
1886		 * can be recognized if we need to rollback on error later.
1887		 * But set_page_dirty so that memory pressure will swap rather
1888		 * than free the pages we are allocating (and SGP_CACHE pages
1889		 * might still be clean: we now need to mark those dirty too).
1890		 */
1891		set_page_dirty(page);
1892		unlock_page(page);
1893		page_cache_release(page);
1894		cond_resched();
1895	}
1896
1897	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1898		i_size_write(inode, offset + len);
1899	inode->i_ctime = CURRENT_TIME;
1900undone:
1901	spin_lock(&inode->i_lock);
1902	inode->i_private = NULL;
1903	spin_unlock(&inode->i_lock);
1904out:
1905	mutex_unlock(&inode->i_mutex);
1906	return error;
1907}
1908
1909static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1910{
1911	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1912
1913	buf->f_type = TMPFS_MAGIC;
1914	buf->f_bsize = PAGE_CACHE_SIZE;
1915	buf->f_namelen = NAME_MAX;
1916	if (sbinfo->max_blocks) {
1917		buf->f_blocks = sbinfo->max_blocks;
1918		buf->f_bavail =
1919		buf->f_bfree  = sbinfo->max_blocks -
1920				percpu_counter_sum(&sbinfo->used_blocks);
1921	}
1922	if (sbinfo->max_inodes) {
1923		buf->f_files = sbinfo->max_inodes;
1924		buf->f_ffree = sbinfo->free_inodes;
1925	}
1926	/* else leave those fields 0 like simple_statfs */
1927	return 0;
1928}
1929
1930/*
1931 * File creation. Allocate an inode, and we're done..
1932 */
1933static int
1934shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1935{
1936	struct inode *inode;
1937	int error = -ENOSPC;
1938
1939	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1940	if (inode) {
1941		error = security_inode_init_security(inode, dir,
1942						     &dentry->d_name,
1943						     shmem_initxattrs, NULL);
1944		if (error) {
1945			if (error != -EOPNOTSUPP) {
1946				iput(inode);
1947				return error;
1948			}
1949		}
1950#ifdef CONFIG_TMPFS_POSIX_ACL
1951		error = generic_acl_init(inode, dir);
1952		if (error) {
1953			iput(inode);
1954			return error;
1955		}
1956#else
1957		error = 0;
1958#endif
1959		dir->i_size += BOGO_DIRENT_SIZE;
1960		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1961		d_instantiate(dentry, inode);
1962		dget(dentry); /* Extra count - pin the dentry in core */
1963	}
1964	return error;
1965}
1966
1967static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1968{
1969	int error;
1970
1971	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1972		return error;
1973	inc_nlink(dir);
1974	return 0;
1975}
1976
1977static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1978		bool excl)
1979{
1980	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1981}
1982
1983/*
1984 * Link a file..
1985 */
1986static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1987{
1988	struct inode *inode = old_dentry->d_inode;
1989	int ret;
1990
1991	/*
1992	 * No ordinary (disk based) filesystem counts links as inodes;
1993	 * but each new link needs a new dentry, pinning lowmem, and
1994	 * tmpfs dentries cannot be pruned until they are unlinked.
1995	 */
1996	ret = shmem_reserve_inode(inode->i_sb);
1997	if (ret)
1998		goto out;
1999
2000	dir->i_size += BOGO_DIRENT_SIZE;
2001	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2002	inc_nlink(inode);
2003	ihold(inode);	/* New dentry reference */
2004	dget(dentry);		/* Extra pinning count for the created dentry */
2005	d_instantiate(dentry, inode);
2006out:
2007	return ret;
2008}
2009
2010static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2011{
2012	struct inode *inode = dentry->d_inode;
2013
2014	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2015		shmem_free_inode(inode->i_sb);
2016
2017	dir->i_size -= BOGO_DIRENT_SIZE;
2018	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2019	drop_nlink(inode);
2020	dput(dentry);	/* Undo the count from "create" - this does all the work */
2021	return 0;
2022}
2023
2024static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2025{
2026	if (!simple_empty(dentry))
2027		return -ENOTEMPTY;
2028
2029	drop_nlink(dentry->d_inode);
2030	drop_nlink(dir);
2031	return shmem_unlink(dir, dentry);
2032}
2033
2034/*
2035 * The VFS layer already does all the dentry stuff for rename,
2036 * we just have to decrement the usage count for the target if
2037 * it exists so that the VFS layer correctly free's it when it
2038 * gets overwritten.
2039 */
2040static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2041{
2042	struct inode *inode = old_dentry->d_inode;
2043	int they_are_dirs = S_ISDIR(inode->i_mode);
2044
2045	if (!simple_empty(new_dentry))
2046		return -ENOTEMPTY;
2047
2048	if (new_dentry->d_inode) {
2049		(void) shmem_unlink(new_dir, new_dentry);
2050		if (they_are_dirs)
2051			drop_nlink(old_dir);
2052	} else if (they_are_dirs) {
2053		drop_nlink(old_dir);
2054		inc_nlink(new_dir);
2055	}
2056
2057	old_dir->i_size -= BOGO_DIRENT_SIZE;
2058	new_dir->i_size += BOGO_DIRENT_SIZE;
2059	old_dir->i_ctime = old_dir->i_mtime =
2060	new_dir->i_ctime = new_dir->i_mtime =
2061	inode->i_ctime = CURRENT_TIME;
2062	return 0;
2063}
2064
2065static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2066{
2067	int error;
2068	int len;
2069	struct inode *inode;
2070	struct page *page;
2071	char *kaddr;
2072	struct shmem_inode_info *info;
2073
2074	len = strlen(symname) + 1;
2075	if (len > PAGE_CACHE_SIZE)
2076		return -ENAMETOOLONG;
2077
2078	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2079	if (!inode)
2080		return -ENOSPC;
2081
2082	error = security_inode_init_security(inode, dir, &dentry->d_name,
2083					     shmem_initxattrs, NULL);
2084	if (error) {
2085		if (error != -EOPNOTSUPP) {
2086			iput(inode);
2087			return error;
2088		}
2089		error = 0;
2090	}
2091
2092	info = SHMEM_I(inode);
2093	inode->i_size = len-1;
2094	if (len <= SHORT_SYMLINK_LEN) {
2095		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2096		if (!info->symlink) {
2097			iput(inode);
2098			return -ENOMEM;
2099		}
2100		inode->i_op = &shmem_short_symlink_operations;
2101	} else {
2102		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2103		if (error) {
2104			iput(inode);
2105			return error;
2106		}
2107		inode->i_mapping->a_ops = &shmem_aops;
2108		inode->i_op = &shmem_symlink_inode_operations;
2109		kaddr = kmap_atomic(page);
2110		memcpy(kaddr, symname, len);
2111		kunmap_atomic(kaddr);
2112		SetPageUptodate(page);
2113		set_page_dirty(page);
2114		unlock_page(page);
2115		page_cache_release(page);
2116	}
2117	dir->i_size += BOGO_DIRENT_SIZE;
2118	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2119	d_instantiate(dentry, inode);
2120	dget(dentry);
2121	return 0;
2122}
2123
2124static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2125{
2126	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2127	return NULL;
2128}
2129
2130static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2131{
2132	struct page *page = NULL;
2133	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2134	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2135	if (page)
2136		unlock_page(page);
2137	return page;
2138}
2139
2140static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2141{
2142	if (!IS_ERR(nd_get_link(nd))) {
2143		struct page *page = cookie;
2144		kunmap(page);
2145		mark_page_accessed(page);
2146		page_cache_release(page);
2147	}
2148}
2149
2150#ifdef CONFIG_TMPFS_XATTR
2151/*
2152 * Superblocks without xattr inode operations may get some security.* xattr
2153 * support from the LSM "for free". As soon as we have any other xattrs
2154 * like ACLs, we also need to implement the security.* handlers at
2155 * filesystem level, though.
2156 */
2157
2158/*
2159 * Callback for security_inode_init_security() for acquiring xattrs.
2160 */
2161static int shmem_initxattrs(struct inode *inode,
2162			    const struct xattr *xattr_array,
2163			    void *fs_info)
2164{
2165	struct shmem_inode_info *info = SHMEM_I(inode);
2166	const struct xattr *xattr;
2167	struct simple_xattr *new_xattr;
2168	size_t len;
2169
2170	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2171		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2172		if (!new_xattr)
2173			return -ENOMEM;
2174
2175		len = strlen(xattr->name) + 1;
2176		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2177					  GFP_KERNEL);
2178		if (!new_xattr->name) {
2179			kfree(new_xattr);
2180			return -ENOMEM;
2181		}
2182
2183		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2184		       XATTR_SECURITY_PREFIX_LEN);
2185		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2186		       xattr->name, len);
2187
2188		simple_xattr_list_add(&info->xattrs, new_xattr);
2189	}
2190
2191	return 0;
2192}
2193
2194static const struct xattr_handler *shmem_xattr_handlers[] = {
2195#ifdef CONFIG_TMPFS_POSIX_ACL
2196	&generic_acl_access_handler,
2197	&generic_acl_default_handler,
2198#endif
2199	NULL
2200};
2201
2202static int shmem_xattr_validate(const char *name)
2203{
2204	struct { const char *prefix; size_t len; } arr[] = {
2205		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2206		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2207	};
2208	int i;
2209
2210	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2211		size_t preflen = arr[i].len;
2212		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2213			if (!name[preflen])
2214				return -EINVAL;
2215			return 0;
2216		}
2217	}
2218	return -EOPNOTSUPP;
2219}
2220
2221static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2222			      void *buffer, size_t size)
2223{
2224	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2225	int err;
2226
2227	/*
2228	 * If this is a request for a synthetic attribute in the system.*
2229	 * namespace use the generic infrastructure to resolve a handler
2230	 * for it via sb->s_xattr.
2231	 */
2232	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2233		return generic_getxattr(dentry, name, buffer, size);
2234
2235	err = shmem_xattr_validate(name);
2236	if (err)
2237		return err;
2238
2239	return simple_xattr_get(&info->xattrs, name, buffer, size);
2240}
2241
2242static int shmem_setxattr(struct dentry *dentry, const char *name,
2243			  const void *value, size_t size, int flags)
2244{
2245	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2246	int err;
2247
2248	/*
2249	 * If this is a request for a synthetic attribute in the system.*
2250	 * namespace use the generic infrastructure to resolve a handler
2251	 * for it via sb->s_xattr.
2252	 */
2253	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2254		return generic_setxattr(dentry, name, value, size, flags);
2255
2256	err = shmem_xattr_validate(name);
2257	if (err)
2258		return err;
2259
2260	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2261}
2262
2263static int shmem_removexattr(struct dentry *dentry, const char *name)
2264{
2265	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2266	int err;
2267
2268	/*
2269	 * If this is a request for a synthetic attribute in the system.*
2270	 * namespace use the generic infrastructure to resolve a handler
2271	 * for it via sb->s_xattr.
2272	 */
2273	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2274		return generic_removexattr(dentry, name);
2275
2276	err = shmem_xattr_validate(name);
2277	if (err)
2278		return err;
2279
2280	return simple_xattr_remove(&info->xattrs, name);
2281}
2282
2283static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2284{
2285	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2286	return simple_xattr_list(&info->xattrs, buffer, size);
2287}
2288#endif /* CONFIG_TMPFS_XATTR */
2289
2290static const struct inode_operations shmem_short_symlink_operations = {
2291	.readlink	= generic_readlink,
2292	.follow_link	= shmem_follow_short_symlink,
2293#ifdef CONFIG_TMPFS_XATTR
2294	.setxattr	= shmem_setxattr,
2295	.getxattr	= shmem_getxattr,
2296	.listxattr	= shmem_listxattr,
2297	.removexattr	= shmem_removexattr,
2298#endif
2299};
2300
2301static const struct inode_operations shmem_symlink_inode_operations = {
2302	.readlink	= generic_readlink,
2303	.follow_link	= shmem_follow_link,
2304	.put_link	= shmem_put_link,
2305#ifdef CONFIG_TMPFS_XATTR
2306	.setxattr	= shmem_setxattr,
2307	.getxattr	= shmem_getxattr,
2308	.listxattr	= shmem_listxattr,
2309	.removexattr	= shmem_removexattr,
2310#endif
2311};
2312
2313static struct dentry *shmem_get_parent(struct dentry *child)
2314{
2315	return ERR_PTR(-ESTALE);
2316}
2317
2318static int shmem_match(struct inode *ino, void *vfh)
2319{
2320	__u32 *fh = vfh;
2321	__u64 inum = fh[2];
2322	inum = (inum << 32) | fh[1];
2323	return ino->i_ino == inum && fh[0] == ino->i_generation;
2324}
2325
2326static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2327		struct fid *fid, int fh_len, int fh_type)
2328{
2329	struct inode *inode;
2330	struct dentry *dentry = NULL;
2331	u64 inum;
2332
2333	if (fh_len < 3)
2334		return NULL;
2335
2336	inum = fid->raw[2];
2337	inum = (inum << 32) | fid->raw[1];
2338
2339	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2340			shmem_match, fid->raw);
2341	if (inode) {
2342		dentry = d_find_alias(inode);
2343		iput(inode);
2344	}
2345
2346	return dentry;
2347}
2348
2349static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2350				struct inode *parent)
2351{
2352	if (*len < 3) {
2353		*len = 3;
2354		return 255;
2355	}
2356
2357	if (inode_unhashed(inode)) {
2358		/* Unfortunately insert_inode_hash is not idempotent,
2359		 * so as we hash inodes here rather than at creation
2360		 * time, we need a lock to ensure we only try
2361		 * to do it once
2362		 */
2363		static DEFINE_SPINLOCK(lock);
2364		spin_lock(&lock);
2365		if (inode_unhashed(inode))
2366			__insert_inode_hash(inode,
2367					    inode->i_ino + inode->i_generation);
2368		spin_unlock(&lock);
2369	}
2370
2371	fh[0] = inode->i_generation;
2372	fh[1] = inode->i_ino;
2373	fh[2] = ((__u64)inode->i_ino) >> 32;
2374
2375	*len = 3;
2376	return 1;
2377}
2378
2379static const struct export_operations shmem_export_ops = {
2380	.get_parent     = shmem_get_parent,
2381	.encode_fh      = shmem_encode_fh,
2382	.fh_to_dentry	= shmem_fh_to_dentry,
2383};
2384
2385static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2386			       bool remount)
2387{
2388	char *this_char, *value, *rest;
2389	uid_t uid;
2390	gid_t gid;
2391
2392	while (options != NULL) {
2393		this_char = options;
2394		for (;;) {
2395			/*
2396			 * NUL-terminate this option: unfortunately,
2397			 * mount options form a comma-separated list,
2398			 * but mpol's nodelist may also contain commas.
2399			 */
2400			options = strchr(options, ',');
2401			if (options == NULL)
2402				break;
2403			options++;
2404			if (!isdigit(*options)) {
2405				options[-1] = '\0';
2406				break;
2407			}
2408		}
2409		if (!*this_char)
2410			continue;
2411		if ((value = strchr(this_char,'=')) != NULL) {
2412			*value++ = 0;
2413		} else {
2414			printk(KERN_ERR
2415			    "tmpfs: No value for mount option '%s'\n",
2416			    this_char);
2417			return 1;
2418		}
2419
2420		if (!strcmp(this_char,"size")) {
2421			unsigned long long size;
2422			size = memparse(value,&rest);
2423			if (*rest == '%') {
2424				size <<= PAGE_SHIFT;
2425				size *= totalram_pages;
2426				do_div(size, 100);
2427				rest++;
2428			}
2429			if (*rest)
2430				goto bad_val;
2431			sbinfo->max_blocks =
2432				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2433		} else if (!strcmp(this_char,"nr_blocks")) {
2434			sbinfo->max_blocks = memparse(value, &rest);
2435			if (*rest)
2436				goto bad_val;
2437		} else if (!strcmp(this_char,"nr_inodes")) {
2438			sbinfo->max_inodes = memparse(value, &rest);
2439			if (*rest)
2440				goto bad_val;
2441		} else if (!strcmp(this_char,"mode")) {
2442			if (remount)
2443				continue;
2444			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2445			if (*rest)
2446				goto bad_val;
2447		} else if (!strcmp(this_char,"uid")) {
2448			if (remount)
2449				continue;
2450			uid = simple_strtoul(value, &rest, 0);
2451			if (*rest)
2452				goto bad_val;
2453			sbinfo->uid = make_kuid(current_user_ns(), uid);
2454			if (!uid_valid(sbinfo->uid))
2455				goto bad_val;
2456		} else if (!strcmp(this_char,"gid")) {
2457			if (remount)
2458				continue;
2459			gid = simple_strtoul(value, &rest, 0);
2460			if (*rest)
2461				goto bad_val;
2462			sbinfo->gid = make_kgid(current_user_ns(), gid);
2463			if (!gid_valid(sbinfo->gid))
2464				goto bad_val;
2465		} else if (!strcmp(this_char,"mpol")) {
2466			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2467				goto bad_val;
2468		} else {
2469			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2470			       this_char);
2471			return 1;
2472		}
2473	}
2474	return 0;
2475
2476bad_val:
2477	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2478	       value, this_char);
2479	return 1;
2480
2481}
2482
2483static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2484{
2485	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2486	struct shmem_sb_info config = *sbinfo;
2487	unsigned long inodes;
2488	int error = -EINVAL;
2489
2490	if (shmem_parse_options(data, &config, true))
2491		return error;
2492
2493	spin_lock(&sbinfo->stat_lock);
2494	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2495	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2496		goto out;
2497	if (config.max_inodes < inodes)
2498		goto out;
2499	/*
2500	 * Those tests disallow limited->unlimited while any are in use;
2501	 * but we must separately disallow unlimited->limited, because
2502	 * in that case we have no record of how much is already in use.
2503	 */
2504	if (config.max_blocks && !sbinfo->max_blocks)
2505		goto out;
2506	if (config.max_inodes && !sbinfo->max_inodes)
2507		goto out;
2508
2509	error = 0;
2510	sbinfo->max_blocks  = config.max_blocks;
2511	sbinfo->max_inodes  = config.max_inodes;
2512	sbinfo->free_inodes = config.max_inodes - inodes;
2513
2514	mpol_put(sbinfo->mpol);
2515	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2516out:
2517	spin_unlock(&sbinfo->stat_lock);
2518	return error;
2519}
2520
2521static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2522{
2523	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2524
2525	if (sbinfo->max_blocks != shmem_default_max_blocks())
2526		seq_printf(seq, ",size=%luk",
2527			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2528	if (sbinfo->max_inodes != shmem_default_max_inodes())
2529		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2530	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2531		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2532	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2533		seq_printf(seq, ",uid=%u",
2534				from_kuid_munged(&init_user_ns, sbinfo->uid));
2535	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2536		seq_printf(seq, ",gid=%u",
2537				from_kgid_munged(&init_user_ns, sbinfo->gid));
2538	shmem_show_mpol(seq, sbinfo->mpol);
2539	return 0;
2540}
2541#endif /* CONFIG_TMPFS */
2542
2543static void shmem_put_super(struct super_block *sb)
2544{
2545	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2546
2547	percpu_counter_destroy(&sbinfo->used_blocks);
2548	kfree(sbinfo);
2549	sb->s_fs_info = NULL;
2550}
2551
2552int shmem_fill_super(struct super_block *sb, void *data, int silent)
2553{
2554	struct inode *inode;
2555	struct shmem_sb_info *sbinfo;
2556	int err = -ENOMEM;
2557
2558	/* Round up to L1_CACHE_BYTES to resist false sharing */
2559	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2560				L1_CACHE_BYTES), GFP_KERNEL);
2561	if (!sbinfo)
2562		return -ENOMEM;
2563
2564	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2565	sbinfo->uid = current_fsuid();
2566	sbinfo->gid = current_fsgid();
2567	sb->s_fs_info = sbinfo;
2568
2569#ifdef CONFIG_TMPFS
2570	/*
2571	 * Per default we only allow half of the physical ram per
2572	 * tmpfs instance, limiting inodes to one per page of lowmem;
2573	 * but the internal instance is left unlimited.
2574	 */
2575	if (!(sb->s_flags & MS_NOUSER)) {
2576		sbinfo->max_blocks = shmem_default_max_blocks();
2577		sbinfo->max_inodes = shmem_default_max_inodes();
2578		if (shmem_parse_options(data, sbinfo, false)) {
2579			err = -EINVAL;
2580			goto failed;
2581		}
2582	}
2583	sb->s_export_op = &shmem_export_ops;
2584	sb->s_flags |= MS_NOSEC;
2585#else
2586	sb->s_flags |= MS_NOUSER;
2587#endif
2588
2589	spin_lock_init(&sbinfo->stat_lock);
2590	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2591		goto failed;
2592	sbinfo->free_inodes = sbinfo->max_inodes;
2593
2594	sb->s_maxbytes = MAX_LFS_FILESIZE;
2595	sb->s_blocksize = PAGE_CACHE_SIZE;
2596	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2597	sb->s_magic = TMPFS_MAGIC;
2598	sb->s_op = &shmem_ops;
2599	sb->s_time_gran = 1;
2600#ifdef CONFIG_TMPFS_XATTR
2601	sb->s_xattr = shmem_xattr_handlers;
2602#endif
2603#ifdef CONFIG_TMPFS_POSIX_ACL
2604	sb->s_flags |= MS_POSIXACL;
2605#endif
2606
2607	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2608	if (!inode)
2609		goto failed;
2610	inode->i_uid = sbinfo->uid;
2611	inode->i_gid = sbinfo->gid;
2612	sb->s_root = d_make_root(inode);
2613	if (!sb->s_root)
2614		goto failed;
2615	return 0;
2616
2617failed:
2618	shmem_put_super(sb);
2619	return err;
2620}
2621
2622static struct kmem_cache *shmem_inode_cachep;
2623
2624static struct inode *shmem_alloc_inode(struct super_block *sb)
2625{
2626	struct shmem_inode_info *info;
2627	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2628	if (!info)
2629		return NULL;
2630	return &info->vfs_inode;
2631}
2632
2633static void shmem_destroy_callback(struct rcu_head *head)
2634{
2635	struct inode *inode = container_of(head, struct inode, i_rcu);
2636	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2637}
2638
2639static void shmem_destroy_inode(struct inode *inode)
2640{
2641	if (S_ISREG(inode->i_mode))
2642		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2643	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2644}
2645
2646static void shmem_init_inode(void *foo)
2647{
2648	struct shmem_inode_info *info = foo;
2649	inode_init_once(&info->vfs_inode);
2650}
2651
2652static int shmem_init_inodecache(void)
2653{
2654	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2655				sizeof(struct shmem_inode_info),
2656				0, SLAB_PANIC, shmem_init_inode);
2657	return 0;
2658}
2659
2660static void shmem_destroy_inodecache(void)
2661{
2662	kmem_cache_destroy(shmem_inode_cachep);
2663}
2664
2665static const struct address_space_operations shmem_aops = {
2666	.writepage	= shmem_writepage,
2667	.set_page_dirty	= __set_page_dirty_no_writeback,
2668#ifdef CONFIG_TMPFS
2669	.write_begin	= shmem_write_begin,
2670	.write_end	= shmem_write_end,
2671#endif
2672	.migratepage	= migrate_page,
2673	.error_remove_page = generic_error_remove_page,
2674};
2675
2676static const struct file_operations shmem_file_operations = {
2677	.mmap		= shmem_mmap,
2678#ifdef CONFIG_TMPFS
2679	.llseek		= shmem_file_llseek,
2680	.read		= do_sync_read,
2681	.write		= do_sync_write,
2682	.aio_read	= shmem_file_aio_read,
2683	.aio_write	= generic_file_aio_write,
2684	.fsync		= noop_fsync,
2685	.splice_read	= shmem_file_splice_read,
2686	.splice_write	= generic_file_splice_write,
2687	.fallocate	= shmem_fallocate,
2688#endif
2689};
2690
2691static const struct inode_operations shmem_inode_operations = {
2692	.setattr	= shmem_setattr,
2693#ifdef CONFIG_TMPFS_XATTR
2694	.setxattr	= shmem_setxattr,
2695	.getxattr	= shmem_getxattr,
2696	.listxattr	= shmem_listxattr,
2697	.removexattr	= shmem_removexattr,
2698#endif
2699};
2700
2701static const struct inode_operations shmem_dir_inode_operations = {
2702#ifdef CONFIG_TMPFS
2703	.create		= shmem_create,
2704	.lookup		= simple_lookup,
2705	.link		= shmem_link,
2706	.unlink		= shmem_unlink,
2707	.symlink	= shmem_symlink,
2708	.mkdir		= shmem_mkdir,
2709	.rmdir		= shmem_rmdir,
2710	.mknod		= shmem_mknod,
2711	.rename		= shmem_rename,
2712#endif
2713#ifdef CONFIG_TMPFS_XATTR
2714	.setxattr	= shmem_setxattr,
2715	.getxattr	= shmem_getxattr,
2716	.listxattr	= shmem_listxattr,
2717	.removexattr	= shmem_removexattr,
2718#endif
2719#ifdef CONFIG_TMPFS_POSIX_ACL
2720	.setattr	= shmem_setattr,
2721#endif
2722};
2723
2724static const struct inode_operations shmem_special_inode_operations = {
2725#ifdef CONFIG_TMPFS_XATTR
2726	.setxattr	= shmem_setxattr,
2727	.getxattr	= shmem_getxattr,
2728	.listxattr	= shmem_listxattr,
2729	.removexattr	= shmem_removexattr,
2730#endif
2731#ifdef CONFIG_TMPFS_POSIX_ACL
2732	.setattr	= shmem_setattr,
2733#endif
2734};
2735
2736static const struct super_operations shmem_ops = {
2737	.alloc_inode	= shmem_alloc_inode,
2738	.destroy_inode	= shmem_destroy_inode,
2739#ifdef CONFIG_TMPFS
2740	.statfs		= shmem_statfs,
2741	.remount_fs	= shmem_remount_fs,
2742	.show_options	= shmem_show_options,
2743#endif
2744	.evict_inode	= shmem_evict_inode,
2745	.drop_inode	= generic_delete_inode,
2746	.put_super	= shmem_put_super,
2747};
2748
2749static const struct vm_operations_struct shmem_vm_ops = {
2750	.fault		= shmem_fault,
2751#ifdef CONFIG_NUMA
2752	.set_policy     = shmem_set_policy,
2753	.get_policy     = shmem_get_policy,
2754#endif
2755	.remap_pages	= generic_file_remap_pages,
2756};
2757
2758static struct dentry *shmem_mount(struct file_system_type *fs_type,
2759	int flags, const char *dev_name, void *data)
2760{
2761	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2762}
2763
2764static struct file_system_type shmem_fs_type = {
2765	.owner		= THIS_MODULE,
2766	.name		= "tmpfs",
2767	.mount		= shmem_mount,
2768	.kill_sb	= kill_litter_super,
2769};
2770
2771int __init shmem_init(void)
2772{
2773	int error;
2774
2775	error = bdi_init(&shmem_backing_dev_info);
2776	if (error)
2777		goto out4;
2778
2779	error = shmem_init_inodecache();
2780	if (error)
2781		goto out3;
2782
2783	error = register_filesystem(&shmem_fs_type);
2784	if (error) {
2785		printk(KERN_ERR "Could not register tmpfs\n");
2786		goto out2;
2787	}
2788
2789	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2790				 shmem_fs_type.name, NULL);
2791	if (IS_ERR(shm_mnt)) {
2792		error = PTR_ERR(shm_mnt);
2793		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2794		goto out1;
2795	}
2796	return 0;
2797
2798out1:
2799	unregister_filesystem(&shmem_fs_type);
2800out2:
2801	shmem_destroy_inodecache();
2802out3:
2803	bdi_destroy(&shmem_backing_dev_info);
2804out4:
2805	shm_mnt = ERR_PTR(error);
2806	return error;
2807}
2808
2809#else /* !CONFIG_SHMEM */
2810
2811/*
2812 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2813 *
2814 * This is intended for small system where the benefits of the full
2815 * shmem code (swap-backed and resource-limited) are outweighed by
2816 * their complexity. On systems without swap this code should be
2817 * effectively equivalent, but much lighter weight.
2818 */
2819
2820#include <linux/ramfs.h>
2821
2822static struct file_system_type shmem_fs_type = {
2823	.name		= "tmpfs",
2824	.mount		= ramfs_mount,
2825	.kill_sb	= kill_litter_super,
2826};
2827
2828int __init shmem_init(void)
2829{
2830	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2831
2832	shm_mnt = kern_mount(&shmem_fs_type);
2833	BUG_ON(IS_ERR(shm_mnt));
2834
2835	return 0;
2836}
2837
2838int shmem_unuse(swp_entry_t swap, struct page *page)
2839{
2840	return 0;
2841}
2842
2843int shmem_lock(struct file *file, int lock, struct user_struct *user)
2844{
2845	return 0;
2846}
2847
2848void shmem_unlock_mapping(struct address_space *mapping)
2849{
2850}
2851
2852void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2853{
2854	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2855}
2856EXPORT_SYMBOL_GPL(shmem_truncate_range);
2857
2858#define shmem_vm_ops				generic_file_vm_ops
2859#define shmem_file_operations			ramfs_file_operations
2860#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2861#define shmem_acct_size(flags, size)		0
2862#define shmem_unacct_size(flags, size)		do {} while (0)
2863
2864#endif /* CONFIG_SHMEM */
2865
2866/* common code */
2867
2868/**
2869 * shmem_file_setup - get an unlinked file living in tmpfs
2870 * @name: name for dentry (to be seen in /proc/<pid>/maps
2871 * @size: size to be set for the file
2872 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2873 */
2874struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2875{
2876	int error;
2877	struct file *file;
2878	struct inode *inode;
2879	struct path path;
2880	struct dentry *root;
2881	struct qstr this;
2882
2883	if (IS_ERR(shm_mnt))
2884		return (void *)shm_mnt;
2885
2886	if (size < 0 || size > MAX_LFS_FILESIZE)
2887		return ERR_PTR(-EINVAL);
2888
2889	if (shmem_acct_size(flags, size))
2890		return ERR_PTR(-ENOMEM);
2891
2892	error = -ENOMEM;
2893	this.name = name;
2894	this.len = strlen(name);
2895	this.hash = 0; /* will go */
2896	root = shm_mnt->mnt_root;
2897	path.dentry = d_alloc(root, &this);
2898	if (!path.dentry)
2899		goto put_memory;
2900	path.mnt = mntget(shm_mnt);
2901
2902	error = -ENOSPC;
2903	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2904	if (!inode)
2905		goto put_dentry;
2906
2907	d_instantiate(path.dentry, inode);
2908	inode->i_size = size;
2909	clear_nlink(inode);	/* It is unlinked */
2910#ifndef CONFIG_MMU
2911	error = ramfs_nommu_expand_for_mapping(inode, size);
2912	if (error)
2913		goto put_dentry;
2914#endif
2915
2916	error = -ENFILE;
2917	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2918		  &shmem_file_operations);
2919	if (!file)
2920		goto put_dentry;
2921
2922	return file;
2923
2924put_dentry:
2925	path_put(&path);
2926put_memory:
2927	shmem_unacct_size(flags, size);
2928	return ERR_PTR(error);
2929}
2930EXPORT_SYMBOL_GPL(shmem_file_setup);
2931
2932/**
2933 * shmem_zero_setup - setup a shared anonymous mapping
2934 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2935 */
2936int shmem_zero_setup(struct vm_area_struct *vma)
2937{
2938	struct file *file;
2939	loff_t size = vma->vm_end - vma->vm_start;
2940
2941	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2942	if (IS_ERR(file))
2943		return PTR_ERR(file);
2944
2945	if (vma->vm_file)
2946		fput(vma->vm_file);
2947	vma->vm_file = file;
2948	vma->vm_ops = &shmem_vm_ops;
2949	return 0;
2950}
2951
2952/**
2953 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2954 * @mapping:	the page's address_space
2955 * @index:	the page index
2956 * @gfp:	the page allocator flags to use if allocating
2957 *
2958 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2959 * with any new page allocations done using the specified allocation flags.
2960 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2961 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2962 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2963 *
2964 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2965 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2966 */
2967struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2968					 pgoff_t index, gfp_t gfp)
2969{
2970#ifdef CONFIG_SHMEM
2971	struct inode *inode = mapping->host;
2972	struct page *page;
2973	int error;
2974
2975	BUG_ON(mapping->a_ops != &shmem_aops);
2976	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2977	if (error)
2978		page = ERR_PTR(error);
2979	else
2980		unlock_page(page);
2981	return page;
2982#else
2983	/*
2984	 * The tiny !SHMEM case uses ramfs without swap
2985	 */
2986	return read_cache_page_gfp(mapping, index, gfp);
2987#endif
2988}
2989EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2990