shmem.c revision 9fab5619bdd7f84cdd22cc760778f759f9819a33
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/module.h>
30#include <linux/swap.h>
31#include <linux/ima.h>
32
33static struct vfsmount *shm_mnt;
34
35#ifdef CONFIG_SHMEM
36/*
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
40 */
41
42#include <linux/xattr.h>
43#include <linux/exportfs.h>
44#include <linux/generic_acl.h>
45#include <linux/mman.h>
46#include <linux/pagemap.h>
47#include <linux/string.h>
48#include <linux/slab.h>
49#include <linux/backing-dev.h>
50#include <linux/shmem_fs.h>
51#include <linux/writeback.h>
52#include <linux/vfs.h>
53#include <linux/blkdev.h>
54#include <linux/security.h>
55#include <linux/swapops.h>
56#include <linux/mempolicy.h>
57#include <linux/namei.h>
58#include <linux/ctype.h>
59#include <linux/migrate.h>
60#include <linux/highmem.h>
61#include <linux/seq_file.h>
62#include <linux/magic.h>
63
64#include <asm/uaccess.h>
65#include <asm/div64.h>
66#include <asm/pgtable.h>
67
68#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
69#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
70#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71
72#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
73#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
74
75#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76
77/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
78#define SHMEM_PAGEIN	 VM_READ
79#define SHMEM_TRUNCATE	 VM_WRITE
80
81/* Definition to limit shmem_truncate's steps between cond_rescheds */
82#define LATENCY_LIMIT	 64
83
84/* Pretend that each entry is of this size in directory's i_size */
85#define BOGO_DIRENT_SIZE 20
86
87/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
88enum sgp_type {
89	SGP_READ,	/* don't exceed i_size, don't allocate page */
90	SGP_CACHE,	/* don't exceed i_size, may allocate page */
91	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
92	SGP_WRITE,	/* may exceed i_size, may allocate page */
93};
94
95#ifdef CONFIG_TMPFS
96static unsigned long shmem_default_max_blocks(void)
97{
98	return totalram_pages / 2;
99}
100
101static unsigned long shmem_default_max_inodes(void)
102{
103	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
104}
105#endif
106
107static int shmem_getpage(struct inode *inode, unsigned long idx,
108			 struct page **pagep, enum sgp_type sgp, int *type);
109
110static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
111{
112	/*
113	 * The above definition of ENTRIES_PER_PAGE, and the use of
114	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
115	 * might be reconsidered if it ever diverges from PAGE_SIZE.
116	 *
117	 * Mobility flags are masked out as swap vectors cannot move
118	 */
119	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
120				PAGE_CACHE_SHIFT-PAGE_SHIFT);
121}
122
123static inline void shmem_dir_free(struct page *page)
124{
125	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
126}
127
128static struct page **shmem_dir_map(struct page *page)
129{
130	return (struct page **)kmap_atomic(page, KM_USER0);
131}
132
133static inline void shmem_dir_unmap(struct page **dir)
134{
135	kunmap_atomic(dir, KM_USER0);
136}
137
138static swp_entry_t *shmem_swp_map(struct page *page)
139{
140	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
141}
142
143static inline void shmem_swp_balance_unmap(void)
144{
145	/*
146	 * When passing a pointer to an i_direct entry, to code which
147	 * also handles indirect entries and so will shmem_swp_unmap,
148	 * we must arrange for the preempt count to remain in balance.
149	 * What kmap_atomic of a lowmem page does depends on config
150	 * and architecture, so pretend to kmap_atomic some lowmem page.
151	 */
152	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
153}
154
155static inline void shmem_swp_unmap(swp_entry_t *entry)
156{
157	kunmap_atomic(entry, KM_USER1);
158}
159
160static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161{
162	return sb->s_fs_info;
163}
164
165/*
166 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167 * for shared memory and for shared anonymous (/dev/zero) mappings
168 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169 * consistent with the pre-accounting of private mappings ...
170 */
171static inline int shmem_acct_size(unsigned long flags, loff_t size)
172{
173	return (flags & VM_NORESERVE) ?
174		0 : security_vm_enough_memory_kern(VM_ACCT(size));
175}
176
177static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178{
179	if (!(flags & VM_NORESERVE))
180		vm_unacct_memory(VM_ACCT(size));
181}
182
183/*
184 * ... whereas tmpfs objects are accounted incrementally as
185 * pages are allocated, in order to allow huge sparse files.
186 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
187 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
188 */
189static inline int shmem_acct_block(unsigned long flags)
190{
191	return (flags & VM_NORESERVE) ?
192		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
193}
194
195static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196{
197	if (flags & VM_NORESERVE)
198		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
199}
200
201static const struct super_operations shmem_ops;
202static const struct address_space_operations shmem_aops;
203static const struct file_operations shmem_file_operations;
204static const struct inode_operations shmem_inode_operations;
205static const struct inode_operations shmem_dir_inode_operations;
206static const struct inode_operations shmem_special_inode_operations;
207static struct vm_operations_struct shmem_vm_ops;
208
209static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
210	.ra_pages	= 0,	/* No readahead */
211	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
212	.unplug_io_fn	= default_unplug_io_fn,
213};
214
215static LIST_HEAD(shmem_swaplist);
216static DEFINE_MUTEX(shmem_swaplist_mutex);
217
218static void shmem_free_blocks(struct inode *inode, long pages)
219{
220	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221	if (sbinfo->max_blocks) {
222		spin_lock(&sbinfo->stat_lock);
223		sbinfo->free_blocks += pages;
224		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
225		spin_unlock(&sbinfo->stat_lock);
226	}
227}
228
229static int shmem_reserve_inode(struct super_block *sb)
230{
231	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
232	if (sbinfo->max_inodes) {
233		spin_lock(&sbinfo->stat_lock);
234		if (!sbinfo->free_inodes) {
235			spin_unlock(&sbinfo->stat_lock);
236			return -ENOSPC;
237		}
238		sbinfo->free_inodes--;
239		spin_unlock(&sbinfo->stat_lock);
240	}
241	return 0;
242}
243
244static void shmem_free_inode(struct super_block *sb)
245{
246	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247	if (sbinfo->max_inodes) {
248		spin_lock(&sbinfo->stat_lock);
249		sbinfo->free_inodes++;
250		spin_unlock(&sbinfo->stat_lock);
251	}
252}
253
254/**
255 * shmem_recalc_inode - recalculate the size of an inode
256 * @inode: inode to recalc
257 *
258 * We have to calculate the free blocks since the mm can drop
259 * undirtied hole pages behind our back.
260 *
261 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
262 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
263 *
264 * It has to be called with the spinlock held.
265 */
266static void shmem_recalc_inode(struct inode *inode)
267{
268	struct shmem_inode_info *info = SHMEM_I(inode);
269	long freed;
270
271	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
272	if (freed > 0) {
273		info->alloced -= freed;
274		shmem_unacct_blocks(info->flags, freed);
275		shmem_free_blocks(inode, freed);
276	}
277}
278
279/**
280 * shmem_swp_entry - find the swap vector position in the info structure
281 * @info:  info structure for the inode
282 * @index: index of the page to find
283 * @page:  optional page to add to the structure. Has to be preset to
284 *         all zeros
285 *
286 * If there is no space allocated yet it will return NULL when
287 * page is NULL, else it will use the page for the needed block,
288 * setting it to NULL on return to indicate that it has been used.
289 *
290 * The swap vector is organized the following way:
291 *
292 * There are SHMEM_NR_DIRECT entries directly stored in the
293 * shmem_inode_info structure. So small files do not need an addional
294 * allocation.
295 *
296 * For pages with index > SHMEM_NR_DIRECT there is the pointer
297 * i_indirect which points to a page which holds in the first half
298 * doubly indirect blocks, in the second half triple indirect blocks:
299 *
300 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
301 * following layout (for SHMEM_NR_DIRECT == 16):
302 *
303 * i_indirect -> dir --> 16-19
304 * 	      |	     +-> 20-23
305 * 	      |
306 * 	      +-->dir2 --> 24-27
307 * 	      |	       +-> 28-31
308 * 	      |	       +-> 32-35
309 * 	      |	       +-> 36-39
310 * 	      |
311 * 	      +-->dir3 --> 40-43
312 * 	       	       +-> 44-47
313 * 	      	       +-> 48-51
314 * 	      	       +-> 52-55
315 */
316static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
317{
318	unsigned long offset;
319	struct page **dir;
320	struct page *subdir;
321
322	if (index < SHMEM_NR_DIRECT) {
323		shmem_swp_balance_unmap();
324		return info->i_direct+index;
325	}
326	if (!info->i_indirect) {
327		if (page) {
328			info->i_indirect = *page;
329			*page = NULL;
330		}
331		return NULL;			/* need another page */
332	}
333
334	index -= SHMEM_NR_DIRECT;
335	offset = index % ENTRIES_PER_PAGE;
336	index /= ENTRIES_PER_PAGE;
337	dir = shmem_dir_map(info->i_indirect);
338
339	if (index >= ENTRIES_PER_PAGE/2) {
340		index -= ENTRIES_PER_PAGE/2;
341		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
342		index %= ENTRIES_PER_PAGE;
343		subdir = *dir;
344		if (!subdir) {
345			if (page) {
346				*dir = *page;
347				*page = NULL;
348			}
349			shmem_dir_unmap(dir);
350			return NULL;		/* need another page */
351		}
352		shmem_dir_unmap(dir);
353		dir = shmem_dir_map(subdir);
354	}
355
356	dir += index;
357	subdir = *dir;
358	if (!subdir) {
359		if (!page || !(subdir = *page)) {
360			shmem_dir_unmap(dir);
361			return NULL;		/* need a page */
362		}
363		*dir = subdir;
364		*page = NULL;
365	}
366	shmem_dir_unmap(dir);
367	return shmem_swp_map(subdir) + offset;
368}
369
370static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
371{
372	long incdec = value? 1: -1;
373
374	entry->val = value;
375	info->swapped += incdec;
376	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
377		struct page *page = kmap_atomic_to_page(entry);
378		set_page_private(page, page_private(page) + incdec);
379	}
380}
381
382/**
383 * shmem_swp_alloc - get the position of the swap entry for the page.
384 * @info:	info structure for the inode
385 * @index:	index of the page to find
386 * @sgp:	check and recheck i_size? skip allocation?
387 *
388 * If the entry does not exist, allocate it.
389 */
390static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
391{
392	struct inode *inode = &info->vfs_inode;
393	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
394	struct page *page = NULL;
395	swp_entry_t *entry;
396
397	if (sgp != SGP_WRITE &&
398	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
399		return ERR_PTR(-EINVAL);
400
401	while (!(entry = shmem_swp_entry(info, index, &page))) {
402		if (sgp == SGP_READ)
403			return shmem_swp_map(ZERO_PAGE(0));
404		/*
405		 * Test free_blocks against 1 not 0, since we have 1 data
406		 * page (and perhaps indirect index pages) yet to allocate:
407		 * a waste to allocate index if we cannot allocate data.
408		 */
409		if (sbinfo->max_blocks) {
410			spin_lock(&sbinfo->stat_lock);
411			if (sbinfo->free_blocks <= 1) {
412				spin_unlock(&sbinfo->stat_lock);
413				return ERR_PTR(-ENOSPC);
414			}
415			sbinfo->free_blocks--;
416			inode->i_blocks += BLOCKS_PER_PAGE;
417			spin_unlock(&sbinfo->stat_lock);
418		}
419
420		spin_unlock(&info->lock);
421		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
422		if (page)
423			set_page_private(page, 0);
424		spin_lock(&info->lock);
425
426		if (!page) {
427			shmem_free_blocks(inode, 1);
428			return ERR_PTR(-ENOMEM);
429		}
430		if (sgp != SGP_WRITE &&
431		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
432			entry = ERR_PTR(-EINVAL);
433			break;
434		}
435		if (info->next_index <= index)
436			info->next_index = index + 1;
437	}
438	if (page) {
439		/* another task gave its page, or truncated the file */
440		shmem_free_blocks(inode, 1);
441		shmem_dir_free(page);
442	}
443	if (info->next_index <= index && !IS_ERR(entry))
444		info->next_index = index + 1;
445	return entry;
446}
447
448/**
449 * shmem_free_swp - free some swap entries in a directory
450 * @dir:        pointer to the directory
451 * @edir:       pointer after last entry of the directory
452 * @punch_lock: pointer to spinlock when needed for the holepunch case
453 */
454static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
455						spinlock_t *punch_lock)
456{
457	spinlock_t *punch_unlock = NULL;
458	swp_entry_t *ptr;
459	int freed = 0;
460
461	for (ptr = dir; ptr < edir; ptr++) {
462		if (ptr->val) {
463			if (unlikely(punch_lock)) {
464				punch_unlock = punch_lock;
465				punch_lock = NULL;
466				spin_lock(punch_unlock);
467				if (!ptr->val)
468					continue;
469			}
470			free_swap_and_cache(*ptr);
471			*ptr = (swp_entry_t){0};
472			freed++;
473		}
474	}
475	if (punch_unlock)
476		spin_unlock(punch_unlock);
477	return freed;
478}
479
480static int shmem_map_and_free_swp(struct page *subdir, int offset,
481		int limit, struct page ***dir, spinlock_t *punch_lock)
482{
483	swp_entry_t *ptr;
484	int freed = 0;
485
486	ptr = shmem_swp_map(subdir);
487	for (; offset < limit; offset += LATENCY_LIMIT) {
488		int size = limit - offset;
489		if (size > LATENCY_LIMIT)
490			size = LATENCY_LIMIT;
491		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
492							punch_lock);
493		if (need_resched()) {
494			shmem_swp_unmap(ptr);
495			if (*dir) {
496				shmem_dir_unmap(*dir);
497				*dir = NULL;
498			}
499			cond_resched();
500			ptr = shmem_swp_map(subdir);
501		}
502	}
503	shmem_swp_unmap(ptr);
504	return freed;
505}
506
507static void shmem_free_pages(struct list_head *next)
508{
509	struct page *page;
510	int freed = 0;
511
512	do {
513		page = container_of(next, struct page, lru);
514		next = next->next;
515		shmem_dir_free(page);
516		freed++;
517		if (freed >= LATENCY_LIMIT) {
518			cond_resched();
519			freed = 0;
520		}
521	} while (next);
522}
523
524static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
525{
526	struct shmem_inode_info *info = SHMEM_I(inode);
527	unsigned long idx;
528	unsigned long size;
529	unsigned long limit;
530	unsigned long stage;
531	unsigned long diroff;
532	struct page **dir;
533	struct page *topdir;
534	struct page *middir;
535	struct page *subdir;
536	swp_entry_t *ptr;
537	LIST_HEAD(pages_to_free);
538	long nr_pages_to_free = 0;
539	long nr_swaps_freed = 0;
540	int offset;
541	int freed;
542	int punch_hole;
543	spinlock_t *needs_lock;
544	spinlock_t *punch_lock;
545	unsigned long upper_limit;
546
547	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
549	if (idx >= info->next_index)
550		return;
551
552	spin_lock(&info->lock);
553	info->flags |= SHMEM_TRUNCATE;
554	if (likely(end == (loff_t) -1)) {
555		limit = info->next_index;
556		upper_limit = SHMEM_MAX_INDEX;
557		info->next_index = idx;
558		needs_lock = NULL;
559		punch_hole = 0;
560	} else {
561		if (end + 1 >= inode->i_size) {	/* we may free a little more */
562			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
563							PAGE_CACHE_SHIFT;
564			upper_limit = SHMEM_MAX_INDEX;
565		} else {
566			limit = (end + 1) >> PAGE_CACHE_SHIFT;
567			upper_limit = limit;
568		}
569		needs_lock = &info->lock;
570		punch_hole = 1;
571	}
572
573	topdir = info->i_indirect;
574	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
575		info->i_indirect = NULL;
576		nr_pages_to_free++;
577		list_add(&topdir->lru, &pages_to_free);
578	}
579	spin_unlock(&info->lock);
580
581	if (info->swapped && idx < SHMEM_NR_DIRECT) {
582		ptr = info->i_direct;
583		size = limit;
584		if (size > SHMEM_NR_DIRECT)
585			size = SHMEM_NR_DIRECT;
586		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
587	}
588
589	/*
590	 * If there are no indirect blocks or we are punching a hole
591	 * below indirect blocks, nothing to be done.
592	 */
593	if (!topdir || limit <= SHMEM_NR_DIRECT)
594		goto done2;
595
596	/*
597	 * The truncation case has already dropped info->lock, and we're safe
598	 * because i_size and next_index have already been lowered, preventing
599	 * access beyond.  But in the punch_hole case, we still need to take
600	 * the lock when updating the swap directory, because there might be
601	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
602	 * shmem_writepage.  However, whenever we find we can remove a whole
603	 * directory page (not at the misaligned start or end of the range),
604	 * we first NULLify its pointer in the level above, and then have no
605	 * need to take the lock when updating its contents: needs_lock and
606	 * punch_lock (either pointing to info->lock or NULL) manage this.
607	 */
608
609	upper_limit -= SHMEM_NR_DIRECT;
610	limit -= SHMEM_NR_DIRECT;
611	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
612	offset = idx % ENTRIES_PER_PAGE;
613	idx -= offset;
614
615	dir = shmem_dir_map(topdir);
616	stage = ENTRIES_PER_PAGEPAGE/2;
617	if (idx < ENTRIES_PER_PAGEPAGE/2) {
618		middir = topdir;
619		diroff = idx/ENTRIES_PER_PAGE;
620	} else {
621		dir += ENTRIES_PER_PAGE/2;
622		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
623		while (stage <= idx)
624			stage += ENTRIES_PER_PAGEPAGE;
625		middir = *dir;
626		if (*dir) {
627			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
628				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
629			if (!diroff && !offset && upper_limit >= stage) {
630				if (needs_lock) {
631					spin_lock(needs_lock);
632					*dir = NULL;
633					spin_unlock(needs_lock);
634					needs_lock = NULL;
635				} else
636					*dir = NULL;
637				nr_pages_to_free++;
638				list_add(&middir->lru, &pages_to_free);
639			}
640			shmem_dir_unmap(dir);
641			dir = shmem_dir_map(middir);
642		} else {
643			diroff = 0;
644			offset = 0;
645			idx = stage;
646		}
647	}
648
649	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
650		if (unlikely(idx == stage)) {
651			shmem_dir_unmap(dir);
652			dir = shmem_dir_map(topdir) +
653			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
654			while (!*dir) {
655				dir++;
656				idx += ENTRIES_PER_PAGEPAGE;
657				if (idx >= limit)
658					goto done1;
659			}
660			stage = idx + ENTRIES_PER_PAGEPAGE;
661			middir = *dir;
662			if (punch_hole)
663				needs_lock = &info->lock;
664			if (upper_limit >= stage) {
665				if (needs_lock) {
666					spin_lock(needs_lock);
667					*dir = NULL;
668					spin_unlock(needs_lock);
669					needs_lock = NULL;
670				} else
671					*dir = NULL;
672				nr_pages_to_free++;
673				list_add(&middir->lru, &pages_to_free);
674			}
675			shmem_dir_unmap(dir);
676			cond_resched();
677			dir = shmem_dir_map(middir);
678			diroff = 0;
679		}
680		punch_lock = needs_lock;
681		subdir = dir[diroff];
682		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
683			if (needs_lock) {
684				spin_lock(needs_lock);
685				dir[diroff] = NULL;
686				spin_unlock(needs_lock);
687				punch_lock = NULL;
688			} else
689				dir[diroff] = NULL;
690			nr_pages_to_free++;
691			list_add(&subdir->lru, &pages_to_free);
692		}
693		if (subdir && page_private(subdir) /* has swap entries */) {
694			size = limit - idx;
695			if (size > ENTRIES_PER_PAGE)
696				size = ENTRIES_PER_PAGE;
697			freed = shmem_map_and_free_swp(subdir,
698					offset, size, &dir, punch_lock);
699			if (!dir)
700				dir = shmem_dir_map(middir);
701			nr_swaps_freed += freed;
702			if (offset || punch_lock) {
703				spin_lock(&info->lock);
704				set_page_private(subdir,
705					page_private(subdir) - freed);
706				spin_unlock(&info->lock);
707			} else
708				BUG_ON(page_private(subdir) != freed);
709		}
710		offset = 0;
711	}
712done1:
713	shmem_dir_unmap(dir);
714done2:
715	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
716		/*
717		 * Call truncate_inode_pages again: racing shmem_unuse_inode
718		 * may have swizzled a page in from swap since vmtruncate or
719		 * generic_delete_inode did it, before we lowered next_index.
720		 * Also, though shmem_getpage checks i_size before adding to
721		 * cache, no recheck after: so fix the narrow window there too.
722		 *
723		 * Recalling truncate_inode_pages_range and unmap_mapping_range
724		 * every time for punch_hole (which never got a chance to clear
725		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
726		 * yet hardly ever necessary: try to optimize them out later.
727		 */
728		truncate_inode_pages_range(inode->i_mapping, start, end);
729		if (punch_hole)
730			unmap_mapping_range(inode->i_mapping, start,
731							end - start, 1);
732	}
733
734	spin_lock(&info->lock);
735	info->flags &= ~SHMEM_TRUNCATE;
736	info->swapped -= nr_swaps_freed;
737	if (nr_pages_to_free)
738		shmem_free_blocks(inode, nr_pages_to_free);
739	shmem_recalc_inode(inode);
740	spin_unlock(&info->lock);
741
742	/*
743	 * Empty swap vector directory pages to be freed?
744	 */
745	if (!list_empty(&pages_to_free)) {
746		pages_to_free.prev->next = NULL;
747		shmem_free_pages(pages_to_free.next);
748	}
749}
750
751static void shmem_truncate(struct inode *inode)
752{
753	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
754}
755
756static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
757{
758	struct inode *inode = dentry->d_inode;
759	struct page *page = NULL;
760	int error;
761
762	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
763		if (attr->ia_size < inode->i_size) {
764			/*
765			 * If truncating down to a partial page, then
766			 * if that page is already allocated, hold it
767			 * in memory until the truncation is over, so
768			 * truncate_partial_page cannnot miss it were
769			 * it assigned to swap.
770			 */
771			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
772				(void) shmem_getpage(inode,
773					attr->ia_size>>PAGE_CACHE_SHIFT,
774						&page, SGP_READ, NULL);
775				if (page)
776					unlock_page(page);
777			}
778			/*
779			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
780			 * detect if any pages might have been added to cache
781			 * after truncate_inode_pages.  But we needn't bother
782			 * if it's being fully truncated to zero-length: the
783			 * nrpages check is efficient enough in that case.
784			 */
785			if (attr->ia_size) {
786				struct shmem_inode_info *info = SHMEM_I(inode);
787				spin_lock(&info->lock);
788				info->flags &= ~SHMEM_PAGEIN;
789				spin_unlock(&info->lock);
790			}
791		}
792	}
793
794	error = inode_change_ok(inode, attr);
795	if (!error)
796		error = inode_setattr(inode, attr);
797#ifdef CONFIG_TMPFS_POSIX_ACL
798	if (!error && (attr->ia_valid & ATTR_MODE))
799		error = generic_acl_chmod(inode, &shmem_acl_ops);
800#endif
801	if (page)
802		page_cache_release(page);
803	return error;
804}
805
806static void shmem_delete_inode(struct inode *inode)
807{
808	struct shmem_inode_info *info = SHMEM_I(inode);
809
810	if (inode->i_op->truncate == shmem_truncate) {
811		truncate_inode_pages(inode->i_mapping, 0);
812		shmem_unacct_size(info->flags, inode->i_size);
813		inode->i_size = 0;
814		shmem_truncate(inode);
815		if (!list_empty(&info->swaplist)) {
816			mutex_lock(&shmem_swaplist_mutex);
817			list_del_init(&info->swaplist);
818			mutex_unlock(&shmem_swaplist_mutex);
819		}
820	}
821	BUG_ON(inode->i_blocks);
822	shmem_free_inode(inode->i_sb);
823	clear_inode(inode);
824}
825
826static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
827{
828	swp_entry_t *ptr;
829
830	for (ptr = dir; ptr < edir; ptr++) {
831		if (ptr->val == entry.val)
832			return ptr - dir;
833	}
834	return -1;
835}
836
837static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
838{
839	struct inode *inode;
840	unsigned long idx;
841	unsigned long size;
842	unsigned long limit;
843	unsigned long stage;
844	struct page **dir;
845	struct page *subdir;
846	swp_entry_t *ptr;
847	int offset;
848	int error;
849
850	idx = 0;
851	ptr = info->i_direct;
852	spin_lock(&info->lock);
853	if (!info->swapped) {
854		list_del_init(&info->swaplist);
855		goto lost2;
856	}
857	limit = info->next_index;
858	size = limit;
859	if (size > SHMEM_NR_DIRECT)
860		size = SHMEM_NR_DIRECT;
861	offset = shmem_find_swp(entry, ptr, ptr+size);
862	if (offset >= 0)
863		goto found;
864	if (!info->i_indirect)
865		goto lost2;
866
867	dir = shmem_dir_map(info->i_indirect);
868	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
869
870	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
871		if (unlikely(idx == stage)) {
872			shmem_dir_unmap(dir-1);
873			if (cond_resched_lock(&info->lock)) {
874				/* check it has not been truncated */
875				if (limit > info->next_index) {
876					limit = info->next_index;
877					if (idx >= limit)
878						goto lost2;
879				}
880			}
881			dir = shmem_dir_map(info->i_indirect) +
882			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
883			while (!*dir) {
884				dir++;
885				idx += ENTRIES_PER_PAGEPAGE;
886				if (idx >= limit)
887					goto lost1;
888			}
889			stage = idx + ENTRIES_PER_PAGEPAGE;
890			subdir = *dir;
891			shmem_dir_unmap(dir);
892			dir = shmem_dir_map(subdir);
893		}
894		subdir = *dir;
895		if (subdir && page_private(subdir)) {
896			ptr = shmem_swp_map(subdir);
897			size = limit - idx;
898			if (size > ENTRIES_PER_PAGE)
899				size = ENTRIES_PER_PAGE;
900			offset = shmem_find_swp(entry, ptr, ptr+size);
901			shmem_swp_unmap(ptr);
902			if (offset >= 0) {
903				shmem_dir_unmap(dir);
904				goto found;
905			}
906		}
907	}
908lost1:
909	shmem_dir_unmap(dir-1);
910lost2:
911	spin_unlock(&info->lock);
912	return 0;
913found:
914	idx += offset;
915	inode = igrab(&info->vfs_inode);
916	spin_unlock(&info->lock);
917
918	/*
919	 * Move _head_ to start search for next from here.
920	 * But be careful: shmem_delete_inode checks list_empty without taking
921	 * mutex, and there's an instant in list_move_tail when info->swaplist
922	 * would appear empty, if it were the only one on shmem_swaplist.  We
923	 * could avoid doing it if inode NULL; or use this minor optimization.
924	 */
925	if (shmem_swaplist.next != &info->swaplist)
926		list_move_tail(&shmem_swaplist, &info->swaplist);
927	mutex_unlock(&shmem_swaplist_mutex);
928
929	error = 1;
930	if (!inode)
931		goto out;
932	/*
933	 * Charge page using GFP_KERNEL while we can wait.
934	 * Charged back to the user(not to caller) when swap account is used.
935	 * add_to_page_cache() will be called with GFP_NOWAIT.
936	 */
937	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
938	if (error)
939		goto out;
940	error = radix_tree_preload(GFP_KERNEL);
941	if (error) {
942		mem_cgroup_uncharge_cache_page(page);
943		goto out;
944	}
945	error = 1;
946
947	spin_lock(&info->lock);
948	ptr = shmem_swp_entry(info, idx, NULL);
949	if (ptr && ptr->val == entry.val) {
950		error = add_to_page_cache_locked(page, inode->i_mapping,
951						idx, GFP_NOWAIT);
952		/* does mem_cgroup_uncharge_cache_page on error */
953	} else	/* we must compensate for our precharge above */
954		mem_cgroup_uncharge_cache_page(page);
955
956	if (error == -EEXIST) {
957		struct page *filepage = find_get_page(inode->i_mapping, idx);
958		error = 1;
959		if (filepage) {
960			/*
961			 * There might be a more uptodate page coming down
962			 * from a stacked writepage: forget our swappage if so.
963			 */
964			if (PageUptodate(filepage))
965				error = 0;
966			page_cache_release(filepage);
967		}
968	}
969	if (!error) {
970		delete_from_swap_cache(page);
971		set_page_dirty(page);
972		info->flags |= SHMEM_PAGEIN;
973		shmem_swp_set(info, ptr, 0);
974		swap_free(entry);
975		error = 1;	/* not an error, but entry was found */
976	}
977	if (ptr)
978		shmem_swp_unmap(ptr);
979	spin_unlock(&info->lock);
980	radix_tree_preload_end();
981out:
982	unlock_page(page);
983	page_cache_release(page);
984	iput(inode);		/* allows for NULL */
985	return error;
986}
987
988/*
989 * shmem_unuse() search for an eventually swapped out shmem page.
990 */
991int shmem_unuse(swp_entry_t entry, struct page *page)
992{
993	struct list_head *p, *next;
994	struct shmem_inode_info *info;
995	int found = 0;
996
997	mutex_lock(&shmem_swaplist_mutex);
998	list_for_each_safe(p, next, &shmem_swaplist) {
999		info = list_entry(p, struct shmem_inode_info, swaplist);
1000		found = shmem_unuse_inode(info, entry, page);
1001		cond_resched();
1002		if (found)
1003			goto out;
1004	}
1005	mutex_unlock(&shmem_swaplist_mutex);
1006out:	return found;	/* 0 or 1 or -ENOMEM */
1007}
1008
1009/*
1010 * Move the page from the page cache to the swap cache.
1011 */
1012static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1013{
1014	struct shmem_inode_info *info;
1015	swp_entry_t *entry, swap;
1016	struct address_space *mapping;
1017	unsigned long index;
1018	struct inode *inode;
1019
1020	BUG_ON(!PageLocked(page));
1021	mapping = page->mapping;
1022	index = page->index;
1023	inode = mapping->host;
1024	info = SHMEM_I(inode);
1025	if (info->flags & VM_LOCKED)
1026		goto redirty;
1027	if (!total_swap_pages)
1028		goto redirty;
1029
1030	/*
1031	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1032	 * sync from ever calling shmem_writepage; but a stacking filesystem
1033	 * may use the ->writepage of its underlying filesystem, in which case
1034	 * tmpfs should write out to swap only in response to memory pressure,
1035	 * and not for pdflush or sync.  However, in those cases, we do still
1036	 * want to check if there's a redundant swappage to be discarded.
1037	 */
1038	if (wbc->for_reclaim)
1039		swap = get_swap_page();
1040	else
1041		swap.val = 0;
1042
1043	spin_lock(&info->lock);
1044	if (index >= info->next_index) {
1045		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1046		goto unlock;
1047	}
1048	entry = shmem_swp_entry(info, index, NULL);
1049	if (entry->val) {
1050		/*
1051		 * The more uptodate page coming down from a stacked
1052		 * writepage should replace our old swappage.
1053		 */
1054		free_swap_and_cache(*entry);
1055		shmem_swp_set(info, entry, 0);
1056	}
1057	shmem_recalc_inode(inode);
1058
1059	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1060		remove_from_page_cache(page);
1061		shmem_swp_set(info, entry, swap.val);
1062		shmem_swp_unmap(entry);
1063		if (list_empty(&info->swaplist))
1064			inode = igrab(inode);
1065		else
1066			inode = NULL;
1067		spin_unlock(&info->lock);
1068		swap_duplicate(swap);
1069		BUG_ON(page_mapped(page));
1070		page_cache_release(page);	/* pagecache ref */
1071		swap_writepage(page, wbc);
1072		if (inode) {
1073			mutex_lock(&shmem_swaplist_mutex);
1074			/* move instead of add in case we're racing */
1075			list_move_tail(&info->swaplist, &shmem_swaplist);
1076			mutex_unlock(&shmem_swaplist_mutex);
1077			iput(inode);
1078		}
1079		return 0;
1080	}
1081
1082	shmem_swp_unmap(entry);
1083unlock:
1084	spin_unlock(&info->lock);
1085	swap_free(swap);
1086redirty:
1087	set_page_dirty(page);
1088	if (wbc->for_reclaim)
1089		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1090	unlock_page(page);
1091	return 0;
1092}
1093
1094#ifdef CONFIG_NUMA
1095#ifdef CONFIG_TMPFS
1096static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1097{
1098	char buffer[64];
1099
1100	if (!mpol || mpol->mode == MPOL_DEFAULT)
1101		return;		/* show nothing */
1102
1103	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1104
1105	seq_printf(seq, ",mpol=%s", buffer);
1106}
1107
1108static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1109{
1110	struct mempolicy *mpol = NULL;
1111	if (sbinfo->mpol) {
1112		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1113		mpol = sbinfo->mpol;
1114		mpol_get(mpol);
1115		spin_unlock(&sbinfo->stat_lock);
1116	}
1117	return mpol;
1118}
1119#endif /* CONFIG_TMPFS */
1120
1121static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1122			struct shmem_inode_info *info, unsigned long idx)
1123{
1124	struct mempolicy mpol, *spol;
1125	struct vm_area_struct pvma;
1126	struct page *page;
1127
1128	spol = mpol_cond_copy(&mpol,
1129				mpol_shared_policy_lookup(&info->policy, idx));
1130
1131	/* Create a pseudo vma that just contains the policy */
1132	pvma.vm_start = 0;
1133	pvma.vm_pgoff = idx;
1134	pvma.vm_ops = NULL;
1135	pvma.vm_policy = spol;
1136	page = swapin_readahead(entry, gfp, &pvma, 0);
1137	return page;
1138}
1139
1140static struct page *shmem_alloc_page(gfp_t gfp,
1141			struct shmem_inode_info *info, unsigned long idx)
1142{
1143	struct vm_area_struct pvma;
1144
1145	/* Create a pseudo vma that just contains the policy */
1146	pvma.vm_start = 0;
1147	pvma.vm_pgoff = idx;
1148	pvma.vm_ops = NULL;
1149	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1150
1151	/*
1152	 * alloc_page_vma() will drop the shared policy reference
1153	 */
1154	return alloc_page_vma(gfp, &pvma, 0);
1155}
1156#else /* !CONFIG_NUMA */
1157#ifdef CONFIG_TMPFS
1158static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1159{
1160}
1161#endif /* CONFIG_TMPFS */
1162
1163static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1164			struct shmem_inode_info *info, unsigned long idx)
1165{
1166	return swapin_readahead(entry, gfp, NULL, 0);
1167}
1168
1169static inline struct page *shmem_alloc_page(gfp_t gfp,
1170			struct shmem_inode_info *info, unsigned long idx)
1171{
1172	return alloc_page(gfp);
1173}
1174#endif /* CONFIG_NUMA */
1175
1176#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1177static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1178{
1179	return NULL;
1180}
1181#endif
1182
1183/*
1184 * shmem_getpage - either get the page from swap or allocate a new one
1185 *
1186 * If we allocate a new one we do not mark it dirty. That's up to the
1187 * vm. If we swap it in we mark it dirty since we also free the swap
1188 * entry since a page cannot live in both the swap and page cache
1189 */
1190static int shmem_getpage(struct inode *inode, unsigned long idx,
1191			struct page **pagep, enum sgp_type sgp, int *type)
1192{
1193	struct address_space *mapping = inode->i_mapping;
1194	struct shmem_inode_info *info = SHMEM_I(inode);
1195	struct shmem_sb_info *sbinfo;
1196	struct page *filepage = *pagep;
1197	struct page *swappage;
1198	swp_entry_t *entry;
1199	swp_entry_t swap;
1200	gfp_t gfp;
1201	int error;
1202
1203	if (idx >= SHMEM_MAX_INDEX)
1204		return -EFBIG;
1205
1206	if (type)
1207		*type = 0;
1208
1209	/*
1210	 * Normally, filepage is NULL on entry, and either found
1211	 * uptodate immediately, or allocated and zeroed, or read
1212	 * in under swappage, which is then assigned to filepage.
1213	 * But shmem_readpage (required for splice) passes in a locked
1214	 * filepage, which may be found not uptodate by other callers
1215	 * too, and may need to be copied from the swappage read in.
1216	 */
1217repeat:
1218	if (!filepage)
1219		filepage = find_lock_page(mapping, idx);
1220	if (filepage && PageUptodate(filepage))
1221		goto done;
1222	error = 0;
1223	gfp = mapping_gfp_mask(mapping);
1224	if (!filepage) {
1225		/*
1226		 * Try to preload while we can wait, to not make a habit of
1227		 * draining atomic reserves; but don't latch on to this cpu.
1228		 */
1229		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1230		if (error)
1231			goto failed;
1232		radix_tree_preload_end();
1233	}
1234
1235	spin_lock(&info->lock);
1236	shmem_recalc_inode(inode);
1237	entry = shmem_swp_alloc(info, idx, sgp);
1238	if (IS_ERR(entry)) {
1239		spin_unlock(&info->lock);
1240		error = PTR_ERR(entry);
1241		goto failed;
1242	}
1243	swap = *entry;
1244
1245	if (swap.val) {
1246		/* Look it up and read it in.. */
1247		swappage = lookup_swap_cache(swap);
1248		if (!swappage) {
1249			shmem_swp_unmap(entry);
1250			/* here we actually do the io */
1251			if (type && !(*type & VM_FAULT_MAJOR)) {
1252				__count_vm_event(PGMAJFAULT);
1253				*type |= VM_FAULT_MAJOR;
1254			}
1255			spin_unlock(&info->lock);
1256			swappage = shmem_swapin(swap, gfp, info, idx);
1257			if (!swappage) {
1258				spin_lock(&info->lock);
1259				entry = shmem_swp_alloc(info, idx, sgp);
1260				if (IS_ERR(entry))
1261					error = PTR_ERR(entry);
1262				else {
1263					if (entry->val == swap.val)
1264						error = -ENOMEM;
1265					shmem_swp_unmap(entry);
1266				}
1267				spin_unlock(&info->lock);
1268				if (error)
1269					goto failed;
1270				goto repeat;
1271			}
1272			wait_on_page_locked(swappage);
1273			page_cache_release(swappage);
1274			goto repeat;
1275		}
1276
1277		/* We have to do this with page locked to prevent races */
1278		if (!trylock_page(swappage)) {
1279			shmem_swp_unmap(entry);
1280			spin_unlock(&info->lock);
1281			wait_on_page_locked(swappage);
1282			page_cache_release(swappage);
1283			goto repeat;
1284		}
1285		if (PageWriteback(swappage)) {
1286			shmem_swp_unmap(entry);
1287			spin_unlock(&info->lock);
1288			wait_on_page_writeback(swappage);
1289			unlock_page(swappage);
1290			page_cache_release(swappage);
1291			goto repeat;
1292		}
1293		if (!PageUptodate(swappage)) {
1294			shmem_swp_unmap(entry);
1295			spin_unlock(&info->lock);
1296			unlock_page(swappage);
1297			page_cache_release(swappage);
1298			error = -EIO;
1299			goto failed;
1300		}
1301
1302		if (filepage) {
1303			shmem_swp_set(info, entry, 0);
1304			shmem_swp_unmap(entry);
1305			delete_from_swap_cache(swappage);
1306			spin_unlock(&info->lock);
1307			copy_highpage(filepage, swappage);
1308			unlock_page(swappage);
1309			page_cache_release(swappage);
1310			flush_dcache_page(filepage);
1311			SetPageUptodate(filepage);
1312			set_page_dirty(filepage);
1313			swap_free(swap);
1314		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1315					idx, GFP_NOWAIT))) {
1316			info->flags |= SHMEM_PAGEIN;
1317			shmem_swp_set(info, entry, 0);
1318			shmem_swp_unmap(entry);
1319			delete_from_swap_cache(swappage);
1320			spin_unlock(&info->lock);
1321			filepage = swappage;
1322			set_page_dirty(filepage);
1323			swap_free(swap);
1324		} else {
1325			shmem_swp_unmap(entry);
1326			spin_unlock(&info->lock);
1327			if (error == -ENOMEM) {
1328				/* allow reclaim from this memory cgroup */
1329				error = mem_cgroup_shrink_usage(swappage,
1330								current->mm,
1331								gfp);
1332				if (error) {
1333					unlock_page(swappage);
1334					page_cache_release(swappage);
1335					goto failed;
1336				}
1337			}
1338			unlock_page(swappage);
1339			page_cache_release(swappage);
1340			goto repeat;
1341		}
1342	} else if (sgp == SGP_READ && !filepage) {
1343		shmem_swp_unmap(entry);
1344		filepage = find_get_page(mapping, idx);
1345		if (filepage &&
1346		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1347			spin_unlock(&info->lock);
1348			wait_on_page_locked(filepage);
1349			page_cache_release(filepage);
1350			filepage = NULL;
1351			goto repeat;
1352		}
1353		spin_unlock(&info->lock);
1354	} else {
1355		shmem_swp_unmap(entry);
1356		sbinfo = SHMEM_SB(inode->i_sb);
1357		if (sbinfo->max_blocks) {
1358			spin_lock(&sbinfo->stat_lock);
1359			if (sbinfo->free_blocks == 0 ||
1360			    shmem_acct_block(info->flags)) {
1361				spin_unlock(&sbinfo->stat_lock);
1362				spin_unlock(&info->lock);
1363				error = -ENOSPC;
1364				goto failed;
1365			}
1366			sbinfo->free_blocks--;
1367			inode->i_blocks += BLOCKS_PER_PAGE;
1368			spin_unlock(&sbinfo->stat_lock);
1369		} else if (shmem_acct_block(info->flags)) {
1370			spin_unlock(&info->lock);
1371			error = -ENOSPC;
1372			goto failed;
1373		}
1374
1375		if (!filepage) {
1376			int ret;
1377
1378			spin_unlock(&info->lock);
1379			filepage = shmem_alloc_page(gfp, info, idx);
1380			if (!filepage) {
1381				shmem_unacct_blocks(info->flags, 1);
1382				shmem_free_blocks(inode, 1);
1383				error = -ENOMEM;
1384				goto failed;
1385			}
1386			SetPageSwapBacked(filepage);
1387
1388			/* Precharge page while we can wait, compensate after */
1389			error = mem_cgroup_cache_charge(filepage, current->mm,
1390					GFP_KERNEL);
1391			if (error) {
1392				page_cache_release(filepage);
1393				shmem_unacct_blocks(info->flags, 1);
1394				shmem_free_blocks(inode, 1);
1395				filepage = NULL;
1396				goto failed;
1397			}
1398
1399			spin_lock(&info->lock);
1400			entry = shmem_swp_alloc(info, idx, sgp);
1401			if (IS_ERR(entry))
1402				error = PTR_ERR(entry);
1403			else {
1404				swap = *entry;
1405				shmem_swp_unmap(entry);
1406			}
1407			ret = error || swap.val;
1408			if (ret)
1409				mem_cgroup_uncharge_cache_page(filepage);
1410			else
1411				ret = add_to_page_cache_lru(filepage, mapping,
1412						idx, GFP_NOWAIT);
1413			/*
1414			 * At add_to_page_cache_lru() failure, uncharge will
1415			 * be done automatically.
1416			 */
1417			if (ret) {
1418				spin_unlock(&info->lock);
1419				page_cache_release(filepage);
1420				shmem_unacct_blocks(info->flags, 1);
1421				shmem_free_blocks(inode, 1);
1422				filepage = NULL;
1423				if (error)
1424					goto failed;
1425				goto repeat;
1426			}
1427			info->flags |= SHMEM_PAGEIN;
1428		}
1429
1430		info->alloced++;
1431		spin_unlock(&info->lock);
1432		clear_highpage(filepage);
1433		flush_dcache_page(filepage);
1434		SetPageUptodate(filepage);
1435		if (sgp == SGP_DIRTY)
1436			set_page_dirty(filepage);
1437	}
1438done:
1439	*pagep = filepage;
1440	return 0;
1441
1442failed:
1443	if (*pagep != filepage) {
1444		unlock_page(filepage);
1445		page_cache_release(filepage);
1446	}
1447	return error;
1448}
1449
1450static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1451{
1452	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1453	int error;
1454	int ret;
1455
1456	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1457		return VM_FAULT_SIGBUS;
1458
1459	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1460	if (error)
1461		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1462
1463	return ret | VM_FAULT_LOCKED;
1464}
1465
1466#ifdef CONFIG_NUMA
1467static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1468{
1469	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1470	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1471}
1472
1473static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1474					  unsigned long addr)
1475{
1476	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1477	unsigned long idx;
1478
1479	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1480	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1481}
1482#endif
1483
1484int shmem_lock(struct file *file, int lock, struct user_struct *user)
1485{
1486	struct inode *inode = file->f_path.dentry->d_inode;
1487	struct shmem_inode_info *info = SHMEM_I(inode);
1488	int retval = -ENOMEM;
1489
1490	spin_lock(&info->lock);
1491	if (lock && !(info->flags & VM_LOCKED)) {
1492		if (!user_shm_lock(inode->i_size, user))
1493			goto out_nomem;
1494		info->flags |= VM_LOCKED;
1495		mapping_set_unevictable(file->f_mapping);
1496	}
1497	if (!lock && (info->flags & VM_LOCKED) && user) {
1498		user_shm_unlock(inode->i_size, user);
1499		info->flags &= ~VM_LOCKED;
1500		mapping_clear_unevictable(file->f_mapping);
1501		scan_mapping_unevictable_pages(file->f_mapping);
1502	}
1503	retval = 0;
1504
1505out_nomem:
1506	spin_unlock(&info->lock);
1507	return retval;
1508}
1509
1510static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1511{
1512	file_accessed(file);
1513	vma->vm_ops = &shmem_vm_ops;
1514	vma->vm_flags |= VM_CAN_NONLINEAR;
1515	return 0;
1516}
1517
1518static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1519					dev_t dev, unsigned long flags)
1520{
1521	struct inode *inode;
1522	struct shmem_inode_info *info;
1523	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1524
1525	if (shmem_reserve_inode(sb))
1526		return NULL;
1527
1528	inode = new_inode(sb);
1529	if (inode) {
1530		inode->i_mode = mode;
1531		inode->i_uid = current_fsuid();
1532		inode->i_gid = current_fsgid();
1533		inode->i_blocks = 0;
1534		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1535		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1536		inode->i_generation = get_seconds();
1537		info = SHMEM_I(inode);
1538		memset(info, 0, (char *)inode - (char *)info);
1539		spin_lock_init(&info->lock);
1540		info->flags = flags & VM_NORESERVE;
1541		INIT_LIST_HEAD(&info->swaplist);
1542
1543		switch (mode & S_IFMT) {
1544		default:
1545			inode->i_op = &shmem_special_inode_operations;
1546			init_special_inode(inode, mode, dev);
1547			break;
1548		case S_IFREG:
1549			inode->i_mapping->a_ops = &shmem_aops;
1550			inode->i_op = &shmem_inode_operations;
1551			inode->i_fop = &shmem_file_operations;
1552			mpol_shared_policy_init(&info->policy,
1553						 shmem_get_sbmpol(sbinfo));
1554			break;
1555		case S_IFDIR:
1556			inc_nlink(inode);
1557			/* Some things misbehave if size == 0 on a directory */
1558			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1559			inode->i_op = &shmem_dir_inode_operations;
1560			inode->i_fop = &simple_dir_operations;
1561			break;
1562		case S_IFLNK:
1563			/*
1564			 * Must not load anything in the rbtree,
1565			 * mpol_free_shared_policy will not be called.
1566			 */
1567			mpol_shared_policy_init(&info->policy, NULL);
1568			break;
1569		}
1570	} else
1571		shmem_free_inode(sb);
1572	return inode;
1573}
1574
1575#ifdef CONFIG_TMPFS
1576static const struct inode_operations shmem_symlink_inode_operations;
1577static const struct inode_operations shmem_symlink_inline_operations;
1578
1579/*
1580 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1581 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1582 * below the loop driver, in the generic fashion that many filesystems support.
1583 */
1584static int shmem_readpage(struct file *file, struct page *page)
1585{
1586	struct inode *inode = page->mapping->host;
1587	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1588	unlock_page(page);
1589	return error;
1590}
1591
1592static int
1593shmem_write_begin(struct file *file, struct address_space *mapping,
1594			loff_t pos, unsigned len, unsigned flags,
1595			struct page **pagep, void **fsdata)
1596{
1597	struct inode *inode = mapping->host;
1598	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1599	*pagep = NULL;
1600	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1601}
1602
1603static int
1604shmem_write_end(struct file *file, struct address_space *mapping,
1605			loff_t pos, unsigned len, unsigned copied,
1606			struct page *page, void *fsdata)
1607{
1608	struct inode *inode = mapping->host;
1609
1610	if (pos + copied > inode->i_size)
1611		i_size_write(inode, pos + copied);
1612
1613	unlock_page(page);
1614	set_page_dirty(page);
1615	page_cache_release(page);
1616
1617	return copied;
1618}
1619
1620static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1621{
1622	struct inode *inode = filp->f_path.dentry->d_inode;
1623	struct address_space *mapping = inode->i_mapping;
1624	unsigned long index, offset;
1625	enum sgp_type sgp = SGP_READ;
1626
1627	/*
1628	 * Might this read be for a stacking filesystem?  Then when reading
1629	 * holes of a sparse file, we actually need to allocate those pages,
1630	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1631	 */
1632	if (segment_eq(get_fs(), KERNEL_DS))
1633		sgp = SGP_DIRTY;
1634
1635	index = *ppos >> PAGE_CACHE_SHIFT;
1636	offset = *ppos & ~PAGE_CACHE_MASK;
1637
1638	for (;;) {
1639		struct page *page = NULL;
1640		unsigned long end_index, nr, ret;
1641		loff_t i_size = i_size_read(inode);
1642
1643		end_index = i_size >> PAGE_CACHE_SHIFT;
1644		if (index > end_index)
1645			break;
1646		if (index == end_index) {
1647			nr = i_size & ~PAGE_CACHE_MASK;
1648			if (nr <= offset)
1649				break;
1650		}
1651
1652		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1653		if (desc->error) {
1654			if (desc->error == -EINVAL)
1655				desc->error = 0;
1656			break;
1657		}
1658		if (page)
1659			unlock_page(page);
1660
1661		/*
1662		 * We must evaluate after, since reads (unlike writes)
1663		 * are called without i_mutex protection against truncate
1664		 */
1665		nr = PAGE_CACHE_SIZE;
1666		i_size = i_size_read(inode);
1667		end_index = i_size >> PAGE_CACHE_SHIFT;
1668		if (index == end_index) {
1669			nr = i_size & ~PAGE_CACHE_MASK;
1670			if (nr <= offset) {
1671				if (page)
1672					page_cache_release(page);
1673				break;
1674			}
1675		}
1676		nr -= offset;
1677
1678		if (page) {
1679			/*
1680			 * If users can be writing to this page using arbitrary
1681			 * virtual addresses, take care about potential aliasing
1682			 * before reading the page on the kernel side.
1683			 */
1684			if (mapping_writably_mapped(mapping))
1685				flush_dcache_page(page);
1686			/*
1687			 * Mark the page accessed if we read the beginning.
1688			 */
1689			if (!offset)
1690				mark_page_accessed(page);
1691		} else {
1692			page = ZERO_PAGE(0);
1693			page_cache_get(page);
1694		}
1695
1696		/*
1697		 * Ok, we have the page, and it's up-to-date, so
1698		 * now we can copy it to user space...
1699		 *
1700		 * The actor routine returns how many bytes were actually used..
1701		 * NOTE! This may not be the same as how much of a user buffer
1702		 * we filled up (we may be padding etc), so we can only update
1703		 * "pos" here (the actor routine has to update the user buffer
1704		 * pointers and the remaining count).
1705		 */
1706		ret = actor(desc, page, offset, nr);
1707		offset += ret;
1708		index += offset >> PAGE_CACHE_SHIFT;
1709		offset &= ~PAGE_CACHE_MASK;
1710
1711		page_cache_release(page);
1712		if (ret != nr || !desc->count)
1713			break;
1714
1715		cond_resched();
1716	}
1717
1718	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1719	file_accessed(filp);
1720}
1721
1722static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1723		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1724{
1725	struct file *filp = iocb->ki_filp;
1726	ssize_t retval;
1727	unsigned long seg;
1728	size_t count;
1729	loff_t *ppos = &iocb->ki_pos;
1730
1731	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1732	if (retval)
1733		return retval;
1734
1735	for (seg = 0; seg < nr_segs; seg++) {
1736		read_descriptor_t desc;
1737
1738		desc.written = 0;
1739		desc.arg.buf = iov[seg].iov_base;
1740		desc.count = iov[seg].iov_len;
1741		if (desc.count == 0)
1742			continue;
1743		desc.error = 0;
1744		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1745		retval += desc.written;
1746		if (desc.error) {
1747			retval = retval ?: desc.error;
1748			break;
1749		}
1750		if (desc.count > 0)
1751			break;
1752	}
1753	return retval;
1754}
1755
1756static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1757{
1758	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1759
1760	buf->f_type = TMPFS_MAGIC;
1761	buf->f_bsize = PAGE_CACHE_SIZE;
1762	buf->f_namelen = NAME_MAX;
1763	spin_lock(&sbinfo->stat_lock);
1764	if (sbinfo->max_blocks) {
1765		buf->f_blocks = sbinfo->max_blocks;
1766		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1767	}
1768	if (sbinfo->max_inodes) {
1769		buf->f_files = sbinfo->max_inodes;
1770		buf->f_ffree = sbinfo->free_inodes;
1771	}
1772	/* else leave those fields 0 like simple_statfs */
1773	spin_unlock(&sbinfo->stat_lock);
1774	return 0;
1775}
1776
1777/*
1778 * File creation. Allocate an inode, and we're done..
1779 */
1780static int
1781shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1782{
1783	struct inode *inode;
1784	int error = -ENOSPC;
1785
1786	inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1787	if (inode) {
1788		error = security_inode_init_security(inode, dir, NULL, NULL,
1789						     NULL);
1790		if (error) {
1791			if (error != -EOPNOTSUPP) {
1792				iput(inode);
1793				return error;
1794			}
1795		}
1796		error = shmem_acl_init(inode, dir);
1797		if (error) {
1798			iput(inode);
1799			return error;
1800		}
1801		if (dir->i_mode & S_ISGID) {
1802			inode->i_gid = dir->i_gid;
1803			if (S_ISDIR(mode))
1804				inode->i_mode |= S_ISGID;
1805		}
1806		dir->i_size += BOGO_DIRENT_SIZE;
1807		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1808		d_instantiate(dentry, inode);
1809		dget(dentry); /* Extra count - pin the dentry in core */
1810	}
1811	return error;
1812}
1813
1814static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1815{
1816	int error;
1817
1818	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1819		return error;
1820	inc_nlink(dir);
1821	return 0;
1822}
1823
1824static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1825		struct nameidata *nd)
1826{
1827	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1828}
1829
1830/*
1831 * Link a file..
1832 */
1833static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1834{
1835	struct inode *inode = old_dentry->d_inode;
1836	int ret;
1837
1838	/*
1839	 * No ordinary (disk based) filesystem counts links as inodes;
1840	 * but each new link needs a new dentry, pinning lowmem, and
1841	 * tmpfs dentries cannot be pruned until they are unlinked.
1842	 */
1843	ret = shmem_reserve_inode(inode->i_sb);
1844	if (ret)
1845		goto out;
1846
1847	dir->i_size += BOGO_DIRENT_SIZE;
1848	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1849	inc_nlink(inode);
1850	atomic_inc(&inode->i_count);	/* New dentry reference */
1851	dget(dentry);		/* Extra pinning count for the created dentry */
1852	d_instantiate(dentry, inode);
1853out:
1854	return ret;
1855}
1856
1857static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1858{
1859	struct inode *inode = dentry->d_inode;
1860
1861	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1862		shmem_free_inode(inode->i_sb);
1863
1864	dir->i_size -= BOGO_DIRENT_SIZE;
1865	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1866	drop_nlink(inode);
1867	dput(dentry);	/* Undo the count from "create" - this does all the work */
1868	return 0;
1869}
1870
1871static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1872{
1873	if (!simple_empty(dentry))
1874		return -ENOTEMPTY;
1875
1876	drop_nlink(dentry->d_inode);
1877	drop_nlink(dir);
1878	return shmem_unlink(dir, dentry);
1879}
1880
1881/*
1882 * The VFS layer already does all the dentry stuff for rename,
1883 * we just have to decrement the usage count for the target if
1884 * it exists so that the VFS layer correctly free's it when it
1885 * gets overwritten.
1886 */
1887static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1888{
1889	struct inode *inode = old_dentry->d_inode;
1890	int they_are_dirs = S_ISDIR(inode->i_mode);
1891
1892	if (!simple_empty(new_dentry))
1893		return -ENOTEMPTY;
1894
1895	if (new_dentry->d_inode) {
1896		(void) shmem_unlink(new_dir, new_dentry);
1897		if (they_are_dirs)
1898			drop_nlink(old_dir);
1899	} else if (they_are_dirs) {
1900		drop_nlink(old_dir);
1901		inc_nlink(new_dir);
1902	}
1903
1904	old_dir->i_size -= BOGO_DIRENT_SIZE;
1905	new_dir->i_size += BOGO_DIRENT_SIZE;
1906	old_dir->i_ctime = old_dir->i_mtime =
1907	new_dir->i_ctime = new_dir->i_mtime =
1908	inode->i_ctime = CURRENT_TIME;
1909	return 0;
1910}
1911
1912static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1913{
1914	int error;
1915	int len;
1916	struct inode *inode;
1917	struct page *page = NULL;
1918	char *kaddr;
1919	struct shmem_inode_info *info;
1920
1921	len = strlen(symname) + 1;
1922	if (len > PAGE_CACHE_SIZE)
1923		return -ENAMETOOLONG;
1924
1925	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1926	if (!inode)
1927		return -ENOSPC;
1928
1929	error = security_inode_init_security(inode, dir, NULL, NULL,
1930					     NULL);
1931	if (error) {
1932		if (error != -EOPNOTSUPP) {
1933			iput(inode);
1934			return error;
1935		}
1936		error = 0;
1937	}
1938
1939	info = SHMEM_I(inode);
1940	inode->i_size = len-1;
1941	if (len <= (char *)inode - (char *)info) {
1942		/* do it inline */
1943		memcpy(info, symname, len);
1944		inode->i_op = &shmem_symlink_inline_operations;
1945	} else {
1946		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1947		if (error) {
1948			iput(inode);
1949			return error;
1950		}
1951		unlock_page(page);
1952		inode->i_mapping->a_ops = &shmem_aops;
1953		inode->i_op = &shmem_symlink_inode_operations;
1954		kaddr = kmap_atomic(page, KM_USER0);
1955		memcpy(kaddr, symname, len);
1956		kunmap_atomic(kaddr, KM_USER0);
1957		set_page_dirty(page);
1958		page_cache_release(page);
1959	}
1960	if (dir->i_mode & S_ISGID)
1961		inode->i_gid = dir->i_gid;
1962	dir->i_size += BOGO_DIRENT_SIZE;
1963	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1964	d_instantiate(dentry, inode);
1965	dget(dentry);
1966	return 0;
1967}
1968
1969static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1970{
1971	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1972	return NULL;
1973}
1974
1975static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1976{
1977	struct page *page = NULL;
1978	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1979	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1980	if (page)
1981		unlock_page(page);
1982	return page;
1983}
1984
1985static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1986{
1987	if (!IS_ERR(nd_get_link(nd))) {
1988		struct page *page = cookie;
1989		kunmap(page);
1990		mark_page_accessed(page);
1991		page_cache_release(page);
1992	}
1993}
1994
1995static const struct inode_operations shmem_symlink_inline_operations = {
1996	.readlink	= generic_readlink,
1997	.follow_link	= shmem_follow_link_inline,
1998};
1999
2000static const struct inode_operations shmem_symlink_inode_operations = {
2001	.truncate	= shmem_truncate,
2002	.readlink	= generic_readlink,
2003	.follow_link	= shmem_follow_link,
2004	.put_link	= shmem_put_link,
2005};
2006
2007#ifdef CONFIG_TMPFS_POSIX_ACL
2008/*
2009 * Superblocks without xattr inode operations will get security.* xattr
2010 * support from the VFS "for free". As soon as we have any other xattrs
2011 * like ACLs, we also need to implement the security.* handlers at
2012 * filesystem level, though.
2013 */
2014
2015static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2016					size_t list_len, const char *name,
2017					size_t name_len)
2018{
2019	return security_inode_listsecurity(inode, list, list_len);
2020}
2021
2022static int shmem_xattr_security_get(struct inode *inode, const char *name,
2023				    void *buffer, size_t size)
2024{
2025	if (strcmp(name, "") == 0)
2026		return -EINVAL;
2027	return xattr_getsecurity(inode, name, buffer, size);
2028}
2029
2030static int shmem_xattr_security_set(struct inode *inode, const char *name,
2031				    const void *value, size_t size, int flags)
2032{
2033	if (strcmp(name, "") == 0)
2034		return -EINVAL;
2035	return security_inode_setsecurity(inode, name, value, size, flags);
2036}
2037
2038static struct xattr_handler shmem_xattr_security_handler = {
2039	.prefix = XATTR_SECURITY_PREFIX,
2040	.list   = shmem_xattr_security_list,
2041	.get    = shmem_xattr_security_get,
2042	.set    = shmem_xattr_security_set,
2043};
2044
2045static struct xattr_handler *shmem_xattr_handlers[] = {
2046	&shmem_xattr_acl_access_handler,
2047	&shmem_xattr_acl_default_handler,
2048	&shmem_xattr_security_handler,
2049	NULL
2050};
2051#endif
2052
2053static struct dentry *shmem_get_parent(struct dentry *child)
2054{
2055	return ERR_PTR(-ESTALE);
2056}
2057
2058static int shmem_match(struct inode *ino, void *vfh)
2059{
2060	__u32 *fh = vfh;
2061	__u64 inum = fh[2];
2062	inum = (inum << 32) | fh[1];
2063	return ino->i_ino == inum && fh[0] == ino->i_generation;
2064}
2065
2066static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2067		struct fid *fid, int fh_len, int fh_type)
2068{
2069	struct inode *inode;
2070	struct dentry *dentry = NULL;
2071	u64 inum = fid->raw[2];
2072	inum = (inum << 32) | fid->raw[1];
2073
2074	if (fh_len < 3)
2075		return NULL;
2076
2077	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2078			shmem_match, fid->raw);
2079	if (inode) {
2080		dentry = d_find_alias(inode);
2081		iput(inode);
2082	}
2083
2084	return dentry;
2085}
2086
2087static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2088				int connectable)
2089{
2090	struct inode *inode = dentry->d_inode;
2091
2092	if (*len < 3)
2093		return 255;
2094
2095	if (hlist_unhashed(&inode->i_hash)) {
2096		/* Unfortunately insert_inode_hash is not idempotent,
2097		 * so as we hash inodes here rather than at creation
2098		 * time, we need a lock to ensure we only try
2099		 * to do it once
2100		 */
2101		static DEFINE_SPINLOCK(lock);
2102		spin_lock(&lock);
2103		if (hlist_unhashed(&inode->i_hash))
2104			__insert_inode_hash(inode,
2105					    inode->i_ino + inode->i_generation);
2106		spin_unlock(&lock);
2107	}
2108
2109	fh[0] = inode->i_generation;
2110	fh[1] = inode->i_ino;
2111	fh[2] = ((__u64)inode->i_ino) >> 32;
2112
2113	*len = 3;
2114	return 1;
2115}
2116
2117static const struct export_operations shmem_export_ops = {
2118	.get_parent     = shmem_get_parent,
2119	.encode_fh      = shmem_encode_fh,
2120	.fh_to_dentry	= shmem_fh_to_dentry,
2121};
2122
2123static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2124			       bool remount)
2125{
2126	char *this_char, *value, *rest;
2127
2128	while (options != NULL) {
2129		this_char = options;
2130		for (;;) {
2131			/*
2132			 * NUL-terminate this option: unfortunately,
2133			 * mount options form a comma-separated list,
2134			 * but mpol's nodelist may also contain commas.
2135			 */
2136			options = strchr(options, ',');
2137			if (options == NULL)
2138				break;
2139			options++;
2140			if (!isdigit(*options)) {
2141				options[-1] = '\0';
2142				break;
2143			}
2144		}
2145		if (!*this_char)
2146			continue;
2147		if ((value = strchr(this_char,'=')) != NULL) {
2148			*value++ = 0;
2149		} else {
2150			printk(KERN_ERR
2151			    "tmpfs: No value for mount option '%s'\n",
2152			    this_char);
2153			return 1;
2154		}
2155
2156		if (!strcmp(this_char,"size")) {
2157			unsigned long long size;
2158			size = memparse(value,&rest);
2159			if (*rest == '%') {
2160				size <<= PAGE_SHIFT;
2161				size *= totalram_pages;
2162				do_div(size, 100);
2163				rest++;
2164			}
2165			if (*rest)
2166				goto bad_val;
2167			sbinfo->max_blocks =
2168				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2169		} else if (!strcmp(this_char,"nr_blocks")) {
2170			sbinfo->max_blocks = memparse(value, &rest);
2171			if (*rest)
2172				goto bad_val;
2173		} else if (!strcmp(this_char,"nr_inodes")) {
2174			sbinfo->max_inodes = memparse(value, &rest);
2175			if (*rest)
2176				goto bad_val;
2177		} else if (!strcmp(this_char,"mode")) {
2178			if (remount)
2179				continue;
2180			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2181			if (*rest)
2182				goto bad_val;
2183		} else if (!strcmp(this_char,"uid")) {
2184			if (remount)
2185				continue;
2186			sbinfo->uid = simple_strtoul(value, &rest, 0);
2187			if (*rest)
2188				goto bad_val;
2189		} else if (!strcmp(this_char,"gid")) {
2190			if (remount)
2191				continue;
2192			sbinfo->gid = simple_strtoul(value, &rest, 0);
2193			if (*rest)
2194				goto bad_val;
2195		} else if (!strcmp(this_char,"mpol")) {
2196			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2197				goto bad_val;
2198		} else {
2199			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2200			       this_char);
2201			return 1;
2202		}
2203	}
2204	return 0;
2205
2206bad_val:
2207	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2208	       value, this_char);
2209	return 1;
2210
2211}
2212
2213static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2214{
2215	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2216	struct shmem_sb_info config = *sbinfo;
2217	unsigned long blocks;
2218	unsigned long inodes;
2219	int error = -EINVAL;
2220
2221	if (shmem_parse_options(data, &config, true))
2222		return error;
2223
2224	spin_lock(&sbinfo->stat_lock);
2225	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2226	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2227	if (config.max_blocks < blocks)
2228		goto out;
2229	if (config.max_inodes < inodes)
2230		goto out;
2231	/*
2232	 * Those tests also disallow limited->unlimited while any are in
2233	 * use, so i_blocks will always be zero when max_blocks is zero;
2234	 * but we must separately disallow unlimited->limited, because
2235	 * in that case we have no record of how much is already in use.
2236	 */
2237	if (config.max_blocks && !sbinfo->max_blocks)
2238		goto out;
2239	if (config.max_inodes && !sbinfo->max_inodes)
2240		goto out;
2241
2242	error = 0;
2243	sbinfo->max_blocks  = config.max_blocks;
2244	sbinfo->free_blocks = config.max_blocks - blocks;
2245	sbinfo->max_inodes  = config.max_inodes;
2246	sbinfo->free_inodes = config.max_inodes - inodes;
2247
2248	mpol_put(sbinfo->mpol);
2249	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2250out:
2251	spin_unlock(&sbinfo->stat_lock);
2252	return error;
2253}
2254
2255static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2256{
2257	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2258
2259	if (sbinfo->max_blocks != shmem_default_max_blocks())
2260		seq_printf(seq, ",size=%luk",
2261			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2262	if (sbinfo->max_inodes != shmem_default_max_inodes())
2263		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2264	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2265		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2266	if (sbinfo->uid != 0)
2267		seq_printf(seq, ",uid=%u", sbinfo->uid);
2268	if (sbinfo->gid != 0)
2269		seq_printf(seq, ",gid=%u", sbinfo->gid);
2270	shmem_show_mpol(seq, sbinfo->mpol);
2271	return 0;
2272}
2273#endif /* CONFIG_TMPFS */
2274
2275static void shmem_put_super(struct super_block *sb)
2276{
2277	kfree(sb->s_fs_info);
2278	sb->s_fs_info = NULL;
2279}
2280
2281static int shmem_fill_super(struct super_block *sb,
2282			    void *data, int silent)
2283{
2284	struct inode *inode;
2285	struct dentry *root;
2286	struct shmem_sb_info *sbinfo;
2287	int err = -ENOMEM;
2288
2289	/* Round up to L1_CACHE_BYTES to resist false sharing */
2290	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2291				L1_CACHE_BYTES), GFP_KERNEL);
2292	if (!sbinfo)
2293		return -ENOMEM;
2294
2295	sbinfo->max_blocks = 0;
2296	sbinfo->max_inodes = 0;
2297	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2298	sbinfo->uid = current_fsuid();
2299	sbinfo->gid = current_fsgid();
2300	sbinfo->mpol = NULL;
2301	sb->s_fs_info = sbinfo;
2302
2303#ifdef CONFIG_TMPFS
2304	/*
2305	 * Per default we only allow half of the physical ram per
2306	 * tmpfs instance, limiting inodes to one per page of lowmem;
2307	 * but the internal instance is left unlimited.
2308	 */
2309	if (!(sb->s_flags & MS_NOUSER)) {
2310		sbinfo->max_blocks = shmem_default_max_blocks();
2311		sbinfo->max_inodes = shmem_default_max_inodes();
2312		if (shmem_parse_options(data, sbinfo, false)) {
2313			err = -EINVAL;
2314			goto failed;
2315		}
2316	}
2317	sb->s_export_op = &shmem_export_ops;
2318#else
2319	sb->s_flags |= MS_NOUSER;
2320#endif
2321
2322	spin_lock_init(&sbinfo->stat_lock);
2323	sbinfo->free_blocks = sbinfo->max_blocks;
2324	sbinfo->free_inodes = sbinfo->max_inodes;
2325
2326	sb->s_maxbytes = SHMEM_MAX_BYTES;
2327	sb->s_blocksize = PAGE_CACHE_SIZE;
2328	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2329	sb->s_magic = TMPFS_MAGIC;
2330	sb->s_op = &shmem_ops;
2331	sb->s_time_gran = 1;
2332#ifdef CONFIG_TMPFS_POSIX_ACL
2333	sb->s_xattr = shmem_xattr_handlers;
2334	sb->s_flags |= MS_POSIXACL;
2335#endif
2336
2337	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2338	if (!inode)
2339		goto failed;
2340	inode->i_uid = sbinfo->uid;
2341	inode->i_gid = sbinfo->gid;
2342	root = d_alloc_root(inode);
2343	if (!root)
2344		goto failed_iput;
2345	sb->s_root = root;
2346	return 0;
2347
2348failed_iput:
2349	iput(inode);
2350failed:
2351	shmem_put_super(sb);
2352	return err;
2353}
2354
2355static struct kmem_cache *shmem_inode_cachep;
2356
2357static struct inode *shmem_alloc_inode(struct super_block *sb)
2358{
2359	struct shmem_inode_info *p;
2360	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2361	if (!p)
2362		return NULL;
2363	return &p->vfs_inode;
2364}
2365
2366static void shmem_destroy_inode(struct inode *inode)
2367{
2368	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2369		/* only struct inode is valid if it's an inline symlink */
2370		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2371	}
2372	shmem_acl_destroy_inode(inode);
2373	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2374}
2375
2376static void init_once(void *foo)
2377{
2378	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2379
2380	inode_init_once(&p->vfs_inode);
2381#ifdef CONFIG_TMPFS_POSIX_ACL
2382	p->i_acl = NULL;
2383	p->i_default_acl = NULL;
2384#endif
2385}
2386
2387static int init_inodecache(void)
2388{
2389	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2390				sizeof(struct shmem_inode_info),
2391				0, SLAB_PANIC, init_once);
2392	return 0;
2393}
2394
2395static void destroy_inodecache(void)
2396{
2397	kmem_cache_destroy(shmem_inode_cachep);
2398}
2399
2400static const struct address_space_operations shmem_aops = {
2401	.writepage	= shmem_writepage,
2402	.set_page_dirty	= __set_page_dirty_no_writeback,
2403#ifdef CONFIG_TMPFS
2404	.readpage	= shmem_readpage,
2405	.write_begin	= shmem_write_begin,
2406	.write_end	= shmem_write_end,
2407#endif
2408	.migratepage	= migrate_page,
2409};
2410
2411static const struct file_operations shmem_file_operations = {
2412	.mmap		= shmem_mmap,
2413#ifdef CONFIG_TMPFS
2414	.llseek		= generic_file_llseek,
2415	.read		= do_sync_read,
2416	.write		= do_sync_write,
2417	.aio_read	= shmem_file_aio_read,
2418	.aio_write	= generic_file_aio_write,
2419	.fsync		= simple_sync_file,
2420	.splice_read	= generic_file_splice_read,
2421	.splice_write	= generic_file_splice_write,
2422#endif
2423};
2424
2425static const struct inode_operations shmem_inode_operations = {
2426	.truncate	= shmem_truncate,
2427	.setattr	= shmem_notify_change,
2428	.truncate_range	= shmem_truncate_range,
2429#ifdef CONFIG_TMPFS_POSIX_ACL
2430	.setxattr	= generic_setxattr,
2431	.getxattr	= generic_getxattr,
2432	.listxattr	= generic_listxattr,
2433	.removexattr	= generic_removexattr,
2434	.permission	= shmem_permission,
2435#endif
2436
2437};
2438
2439static const struct inode_operations shmem_dir_inode_operations = {
2440#ifdef CONFIG_TMPFS
2441	.create		= shmem_create,
2442	.lookup		= simple_lookup,
2443	.link		= shmem_link,
2444	.unlink		= shmem_unlink,
2445	.symlink	= shmem_symlink,
2446	.mkdir		= shmem_mkdir,
2447	.rmdir		= shmem_rmdir,
2448	.mknod		= shmem_mknod,
2449	.rename		= shmem_rename,
2450#endif
2451#ifdef CONFIG_TMPFS_POSIX_ACL
2452	.setattr	= shmem_notify_change,
2453	.setxattr	= generic_setxattr,
2454	.getxattr	= generic_getxattr,
2455	.listxattr	= generic_listxattr,
2456	.removexattr	= generic_removexattr,
2457	.permission	= shmem_permission,
2458#endif
2459};
2460
2461static const struct inode_operations shmem_special_inode_operations = {
2462#ifdef CONFIG_TMPFS_POSIX_ACL
2463	.setattr	= shmem_notify_change,
2464	.setxattr	= generic_setxattr,
2465	.getxattr	= generic_getxattr,
2466	.listxattr	= generic_listxattr,
2467	.removexattr	= generic_removexattr,
2468	.permission	= shmem_permission,
2469#endif
2470};
2471
2472static const struct super_operations shmem_ops = {
2473	.alloc_inode	= shmem_alloc_inode,
2474	.destroy_inode	= shmem_destroy_inode,
2475#ifdef CONFIG_TMPFS
2476	.statfs		= shmem_statfs,
2477	.remount_fs	= shmem_remount_fs,
2478	.show_options	= shmem_show_options,
2479#endif
2480	.delete_inode	= shmem_delete_inode,
2481	.drop_inode	= generic_delete_inode,
2482	.put_super	= shmem_put_super,
2483};
2484
2485static struct vm_operations_struct shmem_vm_ops = {
2486	.fault		= shmem_fault,
2487#ifdef CONFIG_NUMA
2488	.set_policy     = shmem_set_policy,
2489	.get_policy     = shmem_get_policy,
2490#endif
2491};
2492
2493
2494static int shmem_get_sb(struct file_system_type *fs_type,
2495	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2496{
2497	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2498}
2499
2500static struct file_system_type tmpfs_fs_type = {
2501	.owner		= THIS_MODULE,
2502	.name		= "tmpfs",
2503	.get_sb		= shmem_get_sb,
2504	.kill_sb	= kill_litter_super,
2505};
2506
2507static int __init init_tmpfs(void)
2508{
2509	int error;
2510
2511	error = bdi_init(&shmem_backing_dev_info);
2512	if (error)
2513		goto out4;
2514
2515	error = init_inodecache();
2516	if (error)
2517		goto out3;
2518
2519	error = register_filesystem(&tmpfs_fs_type);
2520	if (error) {
2521		printk(KERN_ERR "Could not register tmpfs\n");
2522		goto out2;
2523	}
2524
2525	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2526				tmpfs_fs_type.name, NULL);
2527	if (IS_ERR(shm_mnt)) {
2528		error = PTR_ERR(shm_mnt);
2529		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2530		goto out1;
2531	}
2532	return 0;
2533
2534out1:
2535	unregister_filesystem(&tmpfs_fs_type);
2536out2:
2537	destroy_inodecache();
2538out3:
2539	bdi_destroy(&shmem_backing_dev_info);
2540out4:
2541	shm_mnt = ERR_PTR(error);
2542	return error;
2543}
2544
2545#else /* !CONFIG_SHMEM */
2546
2547/*
2548 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2549 *
2550 * This is intended for small system where the benefits of the full
2551 * shmem code (swap-backed and resource-limited) are outweighed by
2552 * their complexity. On systems without swap this code should be
2553 * effectively equivalent, but much lighter weight.
2554 */
2555
2556#include <linux/ramfs.h>
2557
2558static struct file_system_type tmpfs_fs_type = {
2559	.name		= "tmpfs",
2560	.get_sb		= ramfs_get_sb,
2561	.kill_sb	= kill_litter_super,
2562};
2563
2564static int __init init_tmpfs(void)
2565{
2566	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2567
2568	shm_mnt = kern_mount(&tmpfs_fs_type);
2569	BUG_ON(IS_ERR(shm_mnt));
2570
2571	return 0;
2572}
2573
2574int shmem_unuse(swp_entry_t entry, struct page *page)
2575{
2576	return 0;
2577}
2578
2579#define shmem_vm_ops				generic_file_vm_ops
2580#define shmem_file_operations			ramfs_file_operations
2581#define shmem_get_inode(sb, mode, dev, flags)	ramfs_get_inode(sb, mode, dev)
2582#define shmem_acct_size(flags, size)		0
2583#define shmem_unacct_size(flags, size)		do {} while (0)
2584#define SHMEM_MAX_BYTES				LLONG_MAX
2585
2586#endif /* CONFIG_SHMEM */
2587
2588/* common code */
2589
2590/**
2591 * shmem_file_setup - get an unlinked file living in tmpfs
2592 * @name: name for dentry (to be seen in /proc/<pid>/maps
2593 * @size: size to be set for the file
2594 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2595 */
2596struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2597{
2598	int error;
2599	struct file *file;
2600	struct inode *inode;
2601	struct dentry *dentry, *root;
2602	struct qstr this;
2603
2604	if (IS_ERR(shm_mnt))
2605		return (void *)shm_mnt;
2606
2607	if (size < 0 || size > SHMEM_MAX_BYTES)
2608		return ERR_PTR(-EINVAL);
2609
2610	if (shmem_acct_size(flags, size))
2611		return ERR_PTR(-ENOMEM);
2612
2613	error = -ENOMEM;
2614	this.name = name;
2615	this.len = strlen(name);
2616	this.hash = 0; /* will go */
2617	root = shm_mnt->mnt_root;
2618	dentry = d_alloc(root, &this);
2619	if (!dentry)
2620		goto put_memory;
2621
2622	error = -ENFILE;
2623	file = get_empty_filp();
2624	if (!file)
2625		goto put_dentry;
2626
2627	error = -ENOSPC;
2628	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2629	if (!inode)
2630		goto close_file;
2631
2632	d_instantiate(dentry, inode);
2633	inode->i_size = size;
2634	inode->i_nlink = 0;	/* It is unlinked */
2635	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2636		  &shmem_file_operations);
2637
2638#ifndef CONFIG_MMU
2639	error = ramfs_nommu_expand_for_mapping(inode, size);
2640	if (error)
2641		goto close_file;
2642#endif
2643	return file;
2644
2645close_file:
2646	put_filp(file);
2647put_dentry:
2648	dput(dentry);
2649put_memory:
2650	shmem_unacct_size(flags, size);
2651	return ERR_PTR(error);
2652}
2653EXPORT_SYMBOL_GPL(shmem_file_setup);
2654
2655/**
2656 * shmem_zero_setup - setup a shared anonymous mapping
2657 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2658 */
2659int shmem_zero_setup(struct vm_area_struct *vma)
2660{
2661	struct file *file;
2662	loff_t size = vma->vm_end - vma->vm_start;
2663
2664	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2665	if (IS_ERR(file))
2666		return PTR_ERR(file);
2667
2668	ima_shm_check(file);
2669	if (vma->vm_file)
2670		fput(vma->vm_file);
2671	vma->vm_file = file;
2672	vma->vm_ops = &shmem_vm_ops;
2673	return 0;
2674}
2675
2676module_init(init_tmpfs)
2677