shmem.c revision a0ee5ec520ede1dc8e2194623bcebfd9fab408f2
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52
53#include <asm/uaccess.h>
54#include <asm/div64.h>
55#include <asm/pgtable.h>
56
57/* This magic number is used in glibc for posix shared memory */
58#define TMPFS_MAGIC	0x01021994
59
60#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70#define SHMEM_PAGEIN	 VM_READ
71#define SHMEM_TRUNCATE	 VM_WRITE
72
73/* Definition to limit shmem_truncate's steps between cond_rescheds */
74#define LATENCY_LIMIT	 64
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80enum sgp_type {
81	SGP_READ,	/* don't exceed i_size, don't allocate page */
82	SGP_CACHE,	/* don't exceed i_size, may allocate page */
83	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
84	SGP_WRITE,	/* may exceed i_size, may allocate page */
85};
86
87static int shmem_getpage(struct inode *inode, unsigned long idx,
88			 struct page **pagep, enum sgp_type sgp, int *type);
89
90static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91{
92	/*
93	 * The above definition of ENTRIES_PER_PAGE, and the use of
94	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95	 * might be reconsidered if it ever diverges from PAGE_SIZE.
96	 *
97	 * Mobility flags are masked out as swap vectors cannot move
98	 */
99	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
100				PAGE_CACHE_SHIFT-PAGE_SHIFT);
101}
102
103static inline void shmem_dir_free(struct page *page)
104{
105	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
106}
107
108static struct page **shmem_dir_map(struct page *page)
109{
110	return (struct page **)kmap_atomic(page, KM_USER0);
111}
112
113static inline void shmem_dir_unmap(struct page **dir)
114{
115	kunmap_atomic(dir, KM_USER0);
116}
117
118static swp_entry_t *shmem_swp_map(struct page *page)
119{
120	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
121}
122
123static inline void shmem_swp_balance_unmap(void)
124{
125	/*
126	 * When passing a pointer to an i_direct entry, to code which
127	 * also handles indirect entries and so will shmem_swp_unmap,
128	 * we must arrange for the preempt count to remain in balance.
129	 * What kmap_atomic of a lowmem page does depends on config
130	 * and architecture, so pretend to kmap_atomic some lowmem page.
131	 */
132	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
133}
134
135static inline void shmem_swp_unmap(swp_entry_t *entry)
136{
137	kunmap_atomic(entry, KM_USER1);
138}
139
140static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
141{
142	return sb->s_fs_info;
143}
144
145/*
146 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
147 * for shared memory and for shared anonymous (/dev/zero) mappings
148 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
149 * consistent with the pre-accounting of private mappings ...
150 */
151static inline int shmem_acct_size(unsigned long flags, loff_t size)
152{
153	return (flags & VM_ACCOUNT)?
154		security_vm_enough_memory(VM_ACCT(size)): 0;
155}
156
157static inline void shmem_unacct_size(unsigned long flags, loff_t size)
158{
159	if (flags & VM_ACCOUNT)
160		vm_unacct_memory(VM_ACCT(size));
161}
162
163/*
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow huge sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
169static inline int shmem_acct_block(unsigned long flags)
170{
171	return (flags & VM_ACCOUNT)?
172		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
173}
174
175static inline void shmem_unacct_blocks(unsigned long flags, long pages)
176{
177	if (!(flags & VM_ACCOUNT))
178		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
179}
180
181static const struct super_operations shmem_ops;
182static const struct address_space_operations shmem_aops;
183static const struct file_operations shmem_file_operations;
184static const struct inode_operations shmem_inode_operations;
185static const struct inode_operations shmem_dir_inode_operations;
186static const struct inode_operations shmem_special_inode_operations;
187static struct vm_operations_struct shmem_vm_ops;
188
189static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
190	.ra_pages	= 0,	/* No readahead */
191	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
192	.unplug_io_fn	= default_unplug_io_fn,
193};
194
195static LIST_HEAD(shmem_swaplist);
196static DEFINE_SPINLOCK(shmem_swaplist_lock);
197
198static void shmem_free_blocks(struct inode *inode, long pages)
199{
200	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
201	if (sbinfo->max_blocks) {
202		spin_lock(&sbinfo->stat_lock);
203		sbinfo->free_blocks += pages;
204		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
205		spin_unlock(&sbinfo->stat_lock);
206	}
207}
208
209static int shmem_reserve_inode(struct super_block *sb)
210{
211	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
212	if (sbinfo->max_inodes) {
213		spin_lock(&sbinfo->stat_lock);
214		if (!sbinfo->free_inodes) {
215			spin_unlock(&sbinfo->stat_lock);
216			return -ENOSPC;
217		}
218		sbinfo->free_inodes--;
219		spin_unlock(&sbinfo->stat_lock);
220	}
221	return 0;
222}
223
224static void shmem_free_inode(struct super_block *sb)
225{
226	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
227	if (sbinfo->max_inodes) {
228		spin_lock(&sbinfo->stat_lock);
229		sbinfo->free_inodes++;
230		spin_unlock(&sbinfo->stat_lock);
231	}
232}
233
234/*
235 * shmem_recalc_inode - recalculate the size of an inode
236 *
237 * @inode: inode to recalc
238 *
239 * We have to calculate the free blocks since the mm can drop
240 * undirtied hole pages behind our back.
241 *
242 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
243 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
244 *
245 * It has to be called with the spinlock held.
246 */
247static void shmem_recalc_inode(struct inode *inode)
248{
249	struct shmem_inode_info *info = SHMEM_I(inode);
250	long freed;
251
252	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
253	if (freed > 0) {
254		info->alloced -= freed;
255		shmem_unacct_blocks(info->flags, freed);
256		shmem_free_blocks(inode, freed);
257	}
258}
259
260/*
261 * shmem_swp_entry - find the swap vector position in the info structure
262 *
263 * @info:  info structure for the inode
264 * @index: index of the page to find
265 * @page:  optional page to add to the structure. Has to be preset to
266 *         all zeros
267 *
268 * If there is no space allocated yet it will return NULL when
269 * page is NULL, else it will use the page for the needed block,
270 * setting it to NULL on return to indicate that it has been used.
271 *
272 * The swap vector is organized the following way:
273 *
274 * There are SHMEM_NR_DIRECT entries directly stored in the
275 * shmem_inode_info structure. So small files do not need an addional
276 * allocation.
277 *
278 * For pages with index > SHMEM_NR_DIRECT there is the pointer
279 * i_indirect which points to a page which holds in the first half
280 * doubly indirect blocks, in the second half triple indirect blocks:
281 *
282 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
283 * following layout (for SHMEM_NR_DIRECT == 16):
284 *
285 * i_indirect -> dir --> 16-19
286 * 	      |	     +-> 20-23
287 * 	      |
288 * 	      +-->dir2 --> 24-27
289 * 	      |	       +-> 28-31
290 * 	      |	       +-> 32-35
291 * 	      |	       +-> 36-39
292 * 	      |
293 * 	      +-->dir3 --> 40-43
294 * 	       	       +-> 44-47
295 * 	      	       +-> 48-51
296 * 	      	       +-> 52-55
297 */
298static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
299{
300	unsigned long offset;
301	struct page **dir;
302	struct page *subdir;
303
304	if (index < SHMEM_NR_DIRECT) {
305		shmem_swp_balance_unmap();
306		return info->i_direct+index;
307	}
308	if (!info->i_indirect) {
309		if (page) {
310			info->i_indirect = *page;
311			*page = NULL;
312		}
313		return NULL;			/* need another page */
314	}
315
316	index -= SHMEM_NR_DIRECT;
317	offset = index % ENTRIES_PER_PAGE;
318	index /= ENTRIES_PER_PAGE;
319	dir = shmem_dir_map(info->i_indirect);
320
321	if (index >= ENTRIES_PER_PAGE/2) {
322		index -= ENTRIES_PER_PAGE/2;
323		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
324		index %= ENTRIES_PER_PAGE;
325		subdir = *dir;
326		if (!subdir) {
327			if (page) {
328				*dir = *page;
329				*page = NULL;
330			}
331			shmem_dir_unmap(dir);
332			return NULL;		/* need another page */
333		}
334		shmem_dir_unmap(dir);
335		dir = shmem_dir_map(subdir);
336	}
337
338	dir += index;
339	subdir = *dir;
340	if (!subdir) {
341		if (!page || !(subdir = *page)) {
342			shmem_dir_unmap(dir);
343			return NULL;		/* need a page */
344		}
345		*dir = subdir;
346		*page = NULL;
347	}
348	shmem_dir_unmap(dir);
349	return shmem_swp_map(subdir) + offset;
350}
351
352static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
353{
354	long incdec = value? 1: -1;
355
356	entry->val = value;
357	info->swapped += incdec;
358	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
359		struct page *page = kmap_atomic_to_page(entry);
360		set_page_private(page, page_private(page) + incdec);
361	}
362}
363
364/*
365 * shmem_swp_alloc - get the position of the swap entry for the page.
366 *                   If it does not exist allocate the entry.
367 *
368 * @info:	info structure for the inode
369 * @index:	index of the page to find
370 * @sgp:	check and recheck i_size? skip allocation?
371 */
372static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
373{
374	struct inode *inode = &info->vfs_inode;
375	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
376	struct page *page = NULL;
377	swp_entry_t *entry;
378
379	if (sgp != SGP_WRITE &&
380	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
381		return ERR_PTR(-EINVAL);
382
383	while (!(entry = shmem_swp_entry(info, index, &page))) {
384		if (sgp == SGP_READ)
385			return shmem_swp_map(ZERO_PAGE(0));
386		/*
387		 * Test free_blocks against 1 not 0, since we have 1 data
388		 * page (and perhaps indirect index pages) yet to allocate:
389		 * a waste to allocate index if we cannot allocate data.
390		 */
391		if (sbinfo->max_blocks) {
392			spin_lock(&sbinfo->stat_lock);
393			if (sbinfo->free_blocks <= 1) {
394				spin_unlock(&sbinfo->stat_lock);
395				return ERR_PTR(-ENOSPC);
396			}
397			sbinfo->free_blocks--;
398			inode->i_blocks += BLOCKS_PER_PAGE;
399			spin_unlock(&sbinfo->stat_lock);
400		}
401
402		spin_unlock(&info->lock);
403		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
404		if (page)
405			set_page_private(page, 0);
406		spin_lock(&info->lock);
407
408		if (!page) {
409			shmem_free_blocks(inode, 1);
410			return ERR_PTR(-ENOMEM);
411		}
412		if (sgp != SGP_WRITE &&
413		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
414			entry = ERR_PTR(-EINVAL);
415			break;
416		}
417		if (info->next_index <= index)
418			info->next_index = index + 1;
419	}
420	if (page) {
421		/* another task gave its page, or truncated the file */
422		shmem_free_blocks(inode, 1);
423		shmem_dir_free(page);
424	}
425	if (info->next_index <= index && !IS_ERR(entry))
426		info->next_index = index + 1;
427	return entry;
428}
429
430/*
431 * shmem_free_swp - free some swap entries in a directory
432 *
433 * @dir:        pointer to the directory
434 * @edir:       pointer after last entry of the directory
435 * @punch_lock: pointer to spinlock when needed for the holepunch case
436 */
437static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
438						spinlock_t *punch_lock)
439{
440	spinlock_t *punch_unlock = NULL;
441	swp_entry_t *ptr;
442	int freed = 0;
443
444	for (ptr = dir; ptr < edir; ptr++) {
445		if (ptr->val) {
446			if (unlikely(punch_lock)) {
447				punch_unlock = punch_lock;
448				punch_lock = NULL;
449				spin_lock(punch_unlock);
450				if (!ptr->val)
451					continue;
452			}
453			free_swap_and_cache(*ptr);
454			*ptr = (swp_entry_t){0};
455			freed++;
456		}
457	}
458	if (punch_unlock)
459		spin_unlock(punch_unlock);
460	return freed;
461}
462
463static int shmem_map_and_free_swp(struct page *subdir, int offset,
464		int limit, struct page ***dir, spinlock_t *punch_lock)
465{
466	swp_entry_t *ptr;
467	int freed = 0;
468
469	ptr = shmem_swp_map(subdir);
470	for (; offset < limit; offset += LATENCY_LIMIT) {
471		int size = limit - offset;
472		if (size > LATENCY_LIMIT)
473			size = LATENCY_LIMIT;
474		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
475							punch_lock);
476		if (need_resched()) {
477			shmem_swp_unmap(ptr);
478			if (*dir) {
479				shmem_dir_unmap(*dir);
480				*dir = NULL;
481			}
482			cond_resched();
483			ptr = shmem_swp_map(subdir);
484		}
485	}
486	shmem_swp_unmap(ptr);
487	return freed;
488}
489
490static void shmem_free_pages(struct list_head *next)
491{
492	struct page *page;
493	int freed = 0;
494
495	do {
496		page = container_of(next, struct page, lru);
497		next = next->next;
498		shmem_dir_free(page);
499		freed++;
500		if (freed >= LATENCY_LIMIT) {
501			cond_resched();
502			freed = 0;
503		}
504	} while (next);
505}
506
507static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
508{
509	struct shmem_inode_info *info = SHMEM_I(inode);
510	unsigned long idx;
511	unsigned long size;
512	unsigned long limit;
513	unsigned long stage;
514	unsigned long diroff;
515	struct page **dir;
516	struct page *topdir;
517	struct page *middir;
518	struct page *subdir;
519	swp_entry_t *ptr;
520	LIST_HEAD(pages_to_free);
521	long nr_pages_to_free = 0;
522	long nr_swaps_freed = 0;
523	int offset;
524	int freed;
525	int punch_hole;
526	spinlock_t *needs_lock;
527	spinlock_t *punch_lock;
528	unsigned long upper_limit;
529
530	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
531	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
532	if (idx >= info->next_index)
533		return;
534
535	spin_lock(&info->lock);
536	info->flags |= SHMEM_TRUNCATE;
537	if (likely(end == (loff_t) -1)) {
538		limit = info->next_index;
539		upper_limit = SHMEM_MAX_INDEX;
540		info->next_index = idx;
541		needs_lock = NULL;
542		punch_hole = 0;
543	} else {
544		if (end + 1 >= inode->i_size) {	/* we may free a little more */
545			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
546							PAGE_CACHE_SHIFT;
547			upper_limit = SHMEM_MAX_INDEX;
548		} else {
549			limit = (end + 1) >> PAGE_CACHE_SHIFT;
550			upper_limit = limit;
551		}
552		needs_lock = &info->lock;
553		punch_hole = 1;
554	}
555
556	topdir = info->i_indirect;
557	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
558		info->i_indirect = NULL;
559		nr_pages_to_free++;
560		list_add(&topdir->lru, &pages_to_free);
561	}
562	spin_unlock(&info->lock);
563
564	if (info->swapped && idx < SHMEM_NR_DIRECT) {
565		ptr = info->i_direct;
566		size = limit;
567		if (size > SHMEM_NR_DIRECT)
568			size = SHMEM_NR_DIRECT;
569		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
570	}
571
572	/*
573	 * If there are no indirect blocks or we are punching a hole
574	 * below indirect blocks, nothing to be done.
575	 */
576	if (!topdir || limit <= SHMEM_NR_DIRECT)
577		goto done2;
578
579	/*
580	 * The truncation case has already dropped info->lock, and we're safe
581	 * because i_size and next_index have already been lowered, preventing
582	 * access beyond.  But in the punch_hole case, we still need to take
583	 * the lock when updating the swap directory, because there might be
584	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
585	 * shmem_writepage.  However, whenever we find we can remove a whole
586	 * directory page (not at the misaligned start or end of the range),
587	 * we first NULLify its pointer in the level above, and then have no
588	 * need to take the lock when updating its contents: needs_lock and
589	 * punch_lock (either pointing to info->lock or NULL) manage this.
590	 */
591
592	upper_limit -= SHMEM_NR_DIRECT;
593	limit -= SHMEM_NR_DIRECT;
594	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
595	offset = idx % ENTRIES_PER_PAGE;
596	idx -= offset;
597
598	dir = shmem_dir_map(topdir);
599	stage = ENTRIES_PER_PAGEPAGE/2;
600	if (idx < ENTRIES_PER_PAGEPAGE/2) {
601		middir = topdir;
602		diroff = idx/ENTRIES_PER_PAGE;
603	} else {
604		dir += ENTRIES_PER_PAGE/2;
605		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
606		while (stage <= idx)
607			stage += ENTRIES_PER_PAGEPAGE;
608		middir = *dir;
609		if (*dir) {
610			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
611				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
612			if (!diroff && !offset && upper_limit >= stage) {
613				if (needs_lock) {
614					spin_lock(needs_lock);
615					*dir = NULL;
616					spin_unlock(needs_lock);
617					needs_lock = NULL;
618				} else
619					*dir = NULL;
620				nr_pages_to_free++;
621				list_add(&middir->lru, &pages_to_free);
622			}
623			shmem_dir_unmap(dir);
624			dir = shmem_dir_map(middir);
625		} else {
626			diroff = 0;
627			offset = 0;
628			idx = stage;
629		}
630	}
631
632	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
633		if (unlikely(idx == stage)) {
634			shmem_dir_unmap(dir);
635			dir = shmem_dir_map(topdir) +
636			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
637			while (!*dir) {
638				dir++;
639				idx += ENTRIES_PER_PAGEPAGE;
640				if (idx >= limit)
641					goto done1;
642			}
643			stage = idx + ENTRIES_PER_PAGEPAGE;
644			middir = *dir;
645			if (punch_hole)
646				needs_lock = &info->lock;
647			if (upper_limit >= stage) {
648				if (needs_lock) {
649					spin_lock(needs_lock);
650					*dir = NULL;
651					spin_unlock(needs_lock);
652					needs_lock = NULL;
653				} else
654					*dir = NULL;
655				nr_pages_to_free++;
656				list_add(&middir->lru, &pages_to_free);
657			}
658			shmem_dir_unmap(dir);
659			cond_resched();
660			dir = shmem_dir_map(middir);
661			diroff = 0;
662		}
663		punch_lock = needs_lock;
664		subdir = dir[diroff];
665		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
666			if (needs_lock) {
667				spin_lock(needs_lock);
668				dir[diroff] = NULL;
669				spin_unlock(needs_lock);
670				punch_lock = NULL;
671			} else
672				dir[diroff] = NULL;
673			nr_pages_to_free++;
674			list_add(&subdir->lru, &pages_to_free);
675		}
676		if (subdir && page_private(subdir) /* has swap entries */) {
677			size = limit - idx;
678			if (size > ENTRIES_PER_PAGE)
679				size = ENTRIES_PER_PAGE;
680			freed = shmem_map_and_free_swp(subdir,
681					offset, size, &dir, punch_lock);
682			if (!dir)
683				dir = shmem_dir_map(middir);
684			nr_swaps_freed += freed;
685			if (offset || punch_lock) {
686				spin_lock(&info->lock);
687				set_page_private(subdir,
688					page_private(subdir) - freed);
689				spin_unlock(&info->lock);
690			} else
691				BUG_ON(page_private(subdir) != freed);
692		}
693		offset = 0;
694	}
695done1:
696	shmem_dir_unmap(dir);
697done2:
698	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
699		/*
700		 * Call truncate_inode_pages again: racing shmem_unuse_inode
701		 * may have swizzled a page in from swap since vmtruncate or
702		 * generic_delete_inode did it, before we lowered next_index.
703		 * Also, though shmem_getpage checks i_size before adding to
704		 * cache, no recheck after: so fix the narrow window there too.
705		 *
706		 * Recalling truncate_inode_pages_range and unmap_mapping_range
707		 * every time for punch_hole (which never got a chance to clear
708		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
709		 * yet hardly ever necessary: try to optimize them out later.
710		 */
711		truncate_inode_pages_range(inode->i_mapping, start, end);
712		if (punch_hole)
713			unmap_mapping_range(inode->i_mapping, start,
714							end - start, 1);
715	}
716
717	spin_lock(&info->lock);
718	info->flags &= ~SHMEM_TRUNCATE;
719	info->swapped -= nr_swaps_freed;
720	if (nr_pages_to_free)
721		shmem_free_blocks(inode, nr_pages_to_free);
722	shmem_recalc_inode(inode);
723	spin_unlock(&info->lock);
724
725	/*
726	 * Empty swap vector directory pages to be freed?
727	 */
728	if (!list_empty(&pages_to_free)) {
729		pages_to_free.prev->next = NULL;
730		shmem_free_pages(pages_to_free.next);
731	}
732}
733
734static void shmem_truncate(struct inode *inode)
735{
736	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
737}
738
739static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
740{
741	struct inode *inode = dentry->d_inode;
742	struct page *page = NULL;
743	int error;
744
745	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
746		if (attr->ia_size < inode->i_size) {
747			/*
748			 * If truncating down to a partial page, then
749			 * if that page is already allocated, hold it
750			 * in memory until the truncation is over, so
751			 * truncate_partial_page cannnot miss it were
752			 * it assigned to swap.
753			 */
754			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
755				(void) shmem_getpage(inode,
756					attr->ia_size>>PAGE_CACHE_SHIFT,
757						&page, SGP_READ, NULL);
758				if (page)
759					unlock_page(page);
760			}
761			/*
762			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
763			 * detect if any pages might have been added to cache
764			 * after truncate_inode_pages.  But we needn't bother
765			 * if it's being fully truncated to zero-length: the
766			 * nrpages check is efficient enough in that case.
767			 */
768			if (attr->ia_size) {
769				struct shmem_inode_info *info = SHMEM_I(inode);
770				spin_lock(&info->lock);
771				info->flags &= ~SHMEM_PAGEIN;
772				spin_unlock(&info->lock);
773			}
774		}
775	}
776
777	error = inode_change_ok(inode, attr);
778	if (!error)
779		error = inode_setattr(inode, attr);
780#ifdef CONFIG_TMPFS_POSIX_ACL
781	if (!error && (attr->ia_valid & ATTR_MODE))
782		error = generic_acl_chmod(inode, &shmem_acl_ops);
783#endif
784	if (page)
785		page_cache_release(page);
786	return error;
787}
788
789static void shmem_delete_inode(struct inode *inode)
790{
791	struct shmem_inode_info *info = SHMEM_I(inode);
792
793	if (inode->i_op->truncate == shmem_truncate) {
794		truncate_inode_pages(inode->i_mapping, 0);
795		shmem_unacct_size(info->flags, inode->i_size);
796		inode->i_size = 0;
797		shmem_truncate(inode);
798		if (!list_empty(&info->swaplist)) {
799			spin_lock(&shmem_swaplist_lock);
800			list_del_init(&info->swaplist);
801			spin_unlock(&shmem_swaplist_lock);
802		}
803	}
804	BUG_ON(inode->i_blocks);
805	shmem_free_inode(inode->i_sb);
806	clear_inode(inode);
807}
808
809static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
810{
811	swp_entry_t *ptr;
812
813	for (ptr = dir; ptr < edir; ptr++) {
814		if (ptr->val == entry.val)
815			return ptr - dir;
816	}
817	return -1;
818}
819
820static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
821{
822	struct inode *inode;
823	unsigned long idx;
824	unsigned long size;
825	unsigned long limit;
826	unsigned long stage;
827	struct page **dir;
828	struct page *subdir;
829	swp_entry_t *ptr;
830	int offset;
831	int error;
832
833	idx = 0;
834	ptr = info->i_direct;
835	spin_lock(&info->lock);
836	limit = info->next_index;
837	size = limit;
838	if (size > SHMEM_NR_DIRECT)
839		size = SHMEM_NR_DIRECT;
840	offset = shmem_find_swp(entry, ptr, ptr+size);
841	if (offset >= 0) {
842		shmem_swp_balance_unmap();
843		goto found;
844	}
845	if (!info->i_indirect)
846		goto lost2;
847
848	dir = shmem_dir_map(info->i_indirect);
849	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
850
851	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
852		if (unlikely(idx == stage)) {
853			shmem_dir_unmap(dir-1);
854			dir = shmem_dir_map(info->i_indirect) +
855			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
856			while (!*dir) {
857				dir++;
858				idx += ENTRIES_PER_PAGEPAGE;
859				if (idx >= limit)
860					goto lost1;
861			}
862			stage = idx + ENTRIES_PER_PAGEPAGE;
863			subdir = *dir;
864			shmem_dir_unmap(dir);
865			dir = shmem_dir_map(subdir);
866		}
867		subdir = *dir;
868		if (subdir && page_private(subdir)) {
869			ptr = shmem_swp_map(subdir);
870			size = limit - idx;
871			if (size > ENTRIES_PER_PAGE)
872				size = ENTRIES_PER_PAGE;
873			offset = shmem_find_swp(entry, ptr, ptr+size);
874			if (offset >= 0) {
875				shmem_dir_unmap(dir);
876				goto found;
877			}
878			shmem_swp_unmap(ptr);
879		}
880	}
881lost1:
882	shmem_dir_unmap(dir-1);
883lost2:
884	spin_unlock(&info->lock);
885	return 0;
886found:
887	idx += offset;
888	inode = &info->vfs_inode;
889	error = add_to_page_cache(page, inode->i_mapping, idx, GFP_ATOMIC);
890	if (error == -EEXIST) {
891		struct page *filepage = find_get_page(inode->i_mapping, idx);
892		if (filepage) {
893			/*
894			 * There might be a more uptodate page coming down
895			 * from a stacked writepage: forget our swappage if so.
896			 */
897			if (PageUptodate(filepage))
898				error = 0;
899			page_cache_release(filepage);
900		}
901	}
902	if (!error) {
903		delete_from_swap_cache(page);
904		set_page_dirty(page);
905		info->flags |= SHMEM_PAGEIN;
906		shmem_swp_set(info, ptr + offset, 0);
907	}
908	shmem_swp_unmap(ptr);
909	spin_unlock(&info->lock);
910	/*
911	 * Decrement swap count even when the entry is left behind:
912	 * try_to_unuse will skip over mms, then reincrement count.
913	 */
914	swap_free(entry);
915	return 1;
916}
917
918/*
919 * shmem_unuse() search for an eventually swapped out shmem page.
920 */
921int shmem_unuse(swp_entry_t entry, struct page *page)
922{
923	struct list_head *p, *next;
924	struct shmem_inode_info *info;
925	int found = 0;
926
927	spin_lock(&shmem_swaplist_lock);
928	list_for_each_safe(p, next, &shmem_swaplist) {
929		info = list_entry(p, struct shmem_inode_info, swaplist);
930		if (!info->swapped)
931			list_del_init(&info->swaplist);
932		else if (shmem_unuse_inode(info, entry, page)) {
933			/* move head to start search for next from here */
934			list_move_tail(&shmem_swaplist, &info->swaplist);
935			found = 1;
936			break;
937		}
938	}
939	spin_unlock(&shmem_swaplist_lock);
940	return found;
941}
942
943/*
944 * Move the page from the page cache to the swap cache.
945 */
946static int shmem_writepage(struct page *page, struct writeback_control *wbc)
947{
948	struct shmem_inode_info *info;
949	swp_entry_t *entry, swap;
950	struct address_space *mapping;
951	unsigned long index;
952	struct inode *inode;
953
954	BUG_ON(!PageLocked(page));
955	mapping = page->mapping;
956	index = page->index;
957	inode = mapping->host;
958	info = SHMEM_I(inode);
959	if (info->flags & VM_LOCKED)
960		goto redirty;
961	if (!total_swap_pages)
962		goto redirty;
963
964	/*
965	 * shmem_backing_dev_info's capabilities prevent regular writeback or
966	 * sync from ever calling shmem_writepage; but a stacking filesystem
967	 * may use the ->writepage of its underlying filesystem, in which case
968	 * tmpfs should write out to swap only in response to memory pressure,
969	 * and not for pdflush or sync.  However, in those cases, we do still
970	 * want to check if there's a redundant swappage to be discarded.
971	 */
972	if (wbc->for_reclaim)
973		swap = get_swap_page();
974	else
975		swap.val = 0;
976
977	spin_lock(&info->lock);
978	if (index >= info->next_index) {
979		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
980		goto unlock;
981	}
982	entry = shmem_swp_entry(info, index, NULL);
983	if (entry->val) {
984		/*
985		 * The more uptodate page coming down from a stacked
986		 * writepage should replace our old swappage.
987		 */
988		free_swap_and_cache(*entry);
989		shmem_swp_set(info, entry, 0);
990	}
991	shmem_recalc_inode(inode);
992
993	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
994		remove_from_page_cache(page);
995		shmem_swp_set(info, entry, swap.val);
996		shmem_swp_unmap(entry);
997		spin_unlock(&info->lock);
998		if (list_empty(&info->swaplist)) {
999			spin_lock(&shmem_swaplist_lock);
1000			/* move instead of add in case we're racing */
1001			list_move_tail(&info->swaplist, &shmem_swaplist);
1002			spin_unlock(&shmem_swaplist_lock);
1003		}
1004		swap_duplicate(swap);
1005		BUG_ON(page_mapped(page));
1006		page_cache_release(page);	/* pagecache ref */
1007		set_page_dirty(page);
1008		unlock_page(page);
1009		return 0;
1010	}
1011
1012	shmem_swp_unmap(entry);
1013unlock:
1014	spin_unlock(&info->lock);
1015	swap_free(swap);
1016redirty:
1017	set_page_dirty(page);
1018	if (wbc->for_reclaim)
1019		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1020	unlock_page(page);
1021	return 0;
1022}
1023
1024#ifdef CONFIG_NUMA
1025static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1026{
1027	char *nodelist = strchr(value, ':');
1028	int err = 1;
1029
1030	if (nodelist) {
1031		/* NUL-terminate policy string */
1032		*nodelist++ = '\0';
1033		if (nodelist_parse(nodelist, *policy_nodes))
1034			goto out;
1035		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1036			goto out;
1037	}
1038	if (!strcmp(value, "default")) {
1039		*policy = MPOL_DEFAULT;
1040		/* Don't allow a nodelist */
1041		if (!nodelist)
1042			err = 0;
1043	} else if (!strcmp(value, "prefer")) {
1044		*policy = MPOL_PREFERRED;
1045		/* Insist on a nodelist of one node only */
1046		if (nodelist) {
1047			char *rest = nodelist;
1048			while (isdigit(*rest))
1049				rest++;
1050			if (!*rest)
1051				err = 0;
1052		}
1053	} else if (!strcmp(value, "bind")) {
1054		*policy = MPOL_BIND;
1055		/* Insist on a nodelist */
1056		if (nodelist)
1057			err = 0;
1058	} else if (!strcmp(value, "interleave")) {
1059		*policy = MPOL_INTERLEAVE;
1060		/*
1061		 * Default to online nodes with memory if no nodelist
1062		 */
1063		if (!nodelist)
1064			*policy_nodes = node_states[N_HIGH_MEMORY];
1065		err = 0;
1066	}
1067out:
1068	/* Restore string for error message */
1069	if (nodelist)
1070		*--nodelist = ':';
1071	return err;
1072}
1073
1074static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1075			struct shmem_inode_info *info, unsigned long idx)
1076{
1077	struct vm_area_struct pvma;
1078	struct page *page;
1079
1080	/* Create a pseudo vma that just contains the policy */
1081	pvma.vm_start = 0;
1082	pvma.vm_pgoff = idx;
1083	pvma.vm_ops = NULL;
1084	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1085	page = swapin_readahead(entry, gfp, &pvma, 0);
1086	mpol_free(pvma.vm_policy);
1087	return page;
1088}
1089
1090static struct page *shmem_alloc_page(gfp_t gfp,
1091			struct shmem_inode_info *info, unsigned long idx)
1092{
1093	struct vm_area_struct pvma;
1094	struct page *page;
1095
1096	/* Create a pseudo vma that just contains the policy */
1097	pvma.vm_start = 0;
1098	pvma.vm_pgoff = idx;
1099	pvma.vm_ops = NULL;
1100	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1101	page = alloc_page_vma(gfp, &pvma, 0);
1102	mpol_free(pvma.vm_policy);
1103	return page;
1104}
1105#else
1106static inline int shmem_parse_mpol(char *value, int *policy,
1107						nodemask_t *policy_nodes)
1108{
1109	return 1;
1110}
1111
1112static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1113			struct shmem_inode_info *info, unsigned long idx)
1114{
1115	return swapin_readahead(entry, gfp, NULL, 0);
1116}
1117
1118static inline struct page *shmem_alloc_page(gfp_t gfp,
1119			struct shmem_inode_info *info, unsigned long idx)
1120{
1121	return alloc_page(gfp);
1122}
1123#endif
1124
1125/*
1126 * shmem_getpage - either get the page from swap or allocate a new one
1127 *
1128 * If we allocate a new one we do not mark it dirty. That's up to the
1129 * vm. If we swap it in we mark it dirty since we also free the swap
1130 * entry since a page cannot live in both the swap and page cache
1131 */
1132static int shmem_getpage(struct inode *inode, unsigned long idx,
1133			struct page **pagep, enum sgp_type sgp, int *type)
1134{
1135	struct address_space *mapping = inode->i_mapping;
1136	struct shmem_inode_info *info = SHMEM_I(inode);
1137	struct shmem_sb_info *sbinfo;
1138	struct page *filepage = *pagep;
1139	struct page *swappage;
1140	swp_entry_t *entry;
1141	swp_entry_t swap;
1142	gfp_t gfp;
1143	int error;
1144
1145	if (idx >= SHMEM_MAX_INDEX)
1146		return -EFBIG;
1147
1148	if (type)
1149		*type = 0;
1150
1151	/*
1152	 * Normally, filepage is NULL on entry, and either found
1153	 * uptodate immediately, or allocated and zeroed, or read
1154	 * in under swappage, which is then assigned to filepage.
1155	 * But shmem_readpage (required for splice) passes in a locked
1156	 * filepage, which may be found not uptodate by other callers
1157	 * too, and may need to be copied from the swappage read in.
1158	 */
1159repeat:
1160	if (!filepage)
1161		filepage = find_lock_page(mapping, idx);
1162	if (filepage && PageUptodate(filepage))
1163		goto done;
1164	error = 0;
1165	gfp = mapping_gfp_mask(mapping);
1166
1167	spin_lock(&info->lock);
1168	shmem_recalc_inode(inode);
1169	entry = shmem_swp_alloc(info, idx, sgp);
1170	if (IS_ERR(entry)) {
1171		spin_unlock(&info->lock);
1172		error = PTR_ERR(entry);
1173		goto failed;
1174	}
1175	swap = *entry;
1176
1177	if (swap.val) {
1178		/* Look it up and read it in.. */
1179		swappage = lookup_swap_cache(swap);
1180		if (!swappage) {
1181			shmem_swp_unmap(entry);
1182			/* here we actually do the io */
1183			if (type && !(*type & VM_FAULT_MAJOR)) {
1184				__count_vm_event(PGMAJFAULT);
1185				*type |= VM_FAULT_MAJOR;
1186			}
1187			spin_unlock(&info->lock);
1188			swappage = shmem_swapin(swap, gfp, info, idx);
1189			if (!swappage) {
1190				spin_lock(&info->lock);
1191				entry = shmem_swp_alloc(info, idx, sgp);
1192				if (IS_ERR(entry))
1193					error = PTR_ERR(entry);
1194				else {
1195					if (entry->val == swap.val)
1196						error = -ENOMEM;
1197					shmem_swp_unmap(entry);
1198				}
1199				spin_unlock(&info->lock);
1200				if (error)
1201					goto failed;
1202				goto repeat;
1203			}
1204			wait_on_page_locked(swappage);
1205			page_cache_release(swappage);
1206			goto repeat;
1207		}
1208
1209		/* We have to do this with page locked to prevent races */
1210		if (TestSetPageLocked(swappage)) {
1211			shmem_swp_unmap(entry);
1212			spin_unlock(&info->lock);
1213			wait_on_page_locked(swappage);
1214			page_cache_release(swappage);
1215			goto repeat;
1216		}
1217		if (PageWriteback(swappage)) {
1218			shmem_swp_unmap(entry);
1219			spin_unlock(&info->lock);
1220			wait_on_page_writeback(swappage);
1221			unlock_page(swappage);
1222			page_cache_release(swappage);
1223			goto repeat;
1224		}
1225		if (!PageUptodate(swappage)) {
1226			shmem_swp_unmap(entry);
1227			spin_unlock(&info->lock);
1228			unlock_page(swappage);
1229			page_cache_release(swappage);
1230			error = -EIO;
1231			goto failed;
1232		}
1233
1234		if (filepage) {
1235			shmem_swp_set(info, entry, 0);
1236			shmem_swp_unmap(entry);
1237			delete_from_swap_cache(swappage);
1238			spin_unlock(&info->lock);
1239			copy_highpage(filepage, swappage);
1240			unlock_page(swappage);
1241			page_cache_release(swappage);
1242			flush_dcache_page(filepage);
1243			SetPageUptodate(filepage);
1244			set_page_dirty(filepage);
1245			swap_free(swap);
1246		} else if (!(error = add_to_page_cache(
1247				swappage, mapping, idx, GFP_ATOMIC))) {
1248			info->flags |= SHMEM_PAGEIN;
1249			shmem_swp_set(info, entry, 0);
1250			shmem_swp_unmap(entry);
1251			delete_from_swap_cache(swappage);
1252			spin_unlock(&info->lock);
1253			filepage = swappage;
1254			set_page_dirty(filepage);
1255			swap_free(swap);
1256		} else {
1257			shmem_swp_unmap(entry);
1258			spin_unlock(&info->lock);
1259			unlock_page(swappage);
1260			page_cache_release(swappage);
1261			if (error == -ENOMEM) {
1262				/* let kswapd refresh zone for GFP_ATOMICs */
1263				congestion_wait(WRITE, HZ/50);
1264			}
1265			goto repeat;
1266		}
1267	} else if (sgp == SGP_READ && !filepage) {
1268		shmem_swp_unmap(entry);
1269		filepage = find_get_page(mapping, idx);
1270		if (filepage &&
1271		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1272			spin_unlock(&info->lock);
1273			wait_on_page_locked(filepage);
1274			page_cache_release(filepage);
1275			filepage = NULL;
1276			goto repeat;
1277		}
1278		spin_unlock(&info->lock);
1279	} else {
1280		shmem_swp_unmap(entry);
1281		sbinfo = SHMEM_SB(inode->i_sb);
1282		if (sbinfo->max_blocks) {
1283			spin_lock(&sbinfo->stat_lock);
1284			if (sbinfo->free_blocks == 0 ||
1285			    shmem_acct_block(info->flags)) {
1286				spin_unlock(&sbinfo->stat_lock);
1287				spin_unlock(&info->lock);
1288				error = -ENOSPC;
1289				goto failed;
1290			}
1291			sbinfo->free_blocks--;
1292			inode->i_blocks += BLOCKS_PER_PAGE;
1293			spin_unlock(&sbinfo->stat_lock);
1294		} else if (shmem_acct_block(info->flags)) {
1295			spin_unlock(&info->lock);
1296			error = -ENOSPC;
1297			goto failed;
1298		}
1299
1300		if (!filepage) {
1301			spin_unlock(&info->lock);
1302			filepage = shmem_alloc_page(gfp, info, idx);
1303			if (!filepage) {
1304				shmem_unacct_blocks(info->flags, 1);
1305				shmem_free_blocks(inode, 1);
1306				error = -ENOMEM;
1307				goto failed;
1308			}
1309
1310			spin_lock(&info->lock);
1311			entry = shmem_swp_alloc(info, idx, sgp);
1312			if (IS_ERR(entry))
1313				error = PTR_ERR(entry);
1314			else {
1315				swap = *entry;
1316				shmem_swp_unmap(entry);
1317			}
1318			if (error || swap.val || 0 != add_to_page_cache_lru(
1319					filepage, mapping, idx, GFP_ATOMIC)) {
1320				spin_unlock(&info->lock);
1321				page_cache_release(filepage);
1322				shmem_unacct_blocks(info->flags, 1);
1323				shmem_free_blocks(inode, 1);
1324				filepage = NULL;
1325				if (error)
1326					goto failed;
1327				goto repeat;
1328			}
1329			info->flags |= SHMEM_PAGEIN;
1330		}
1331
1332		info->alloced++;
1333		spin_unlock(&info->lock);
1334		clear_highpage(filepage);
1335		flush_dcache_page(filepage);
1336		SetPageUptodate(filepage);
1337		if (sgp == SGP_DIRTY)
1338			set_page_dirty(filepage);
1339	}
1340done:
1341	*pagep = filepage;
1342	return 0;
1343
1344failed:
1345	if (*pagep != filepage) {
1346		unlock_page(filepage);
1347		page_cache_release(filepage);
1348	}
1349	return error;
1350}
1351
1352static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1353{
1354	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1355	int error;
1356	int ret;
1357
1358	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1359		return VM_FAULT_SIGBUS;
1360
1361	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1362	if (error)
1363		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1364
1365	mark_page_accessed(vmf->page);
1366	return ret | VM_FAULT_LOCKED;
1367}
1368
1369#ifdef CONFIG_NUMA
1370static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1371{
1372	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1373	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1374}
1375
1376static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1377					  unsigned long addr)
1378{
1379	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1380	unsigned long idx;
1381
1382	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1383	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1384}
1385#endif
1386
1387int shmem_lock(struct file *file, int lock, struct user_struct *user)
1388{
1389	struct inode *inode = file->f_path.dentry->d_inode;
1390	struct shmem_inode_info *info = SHMEM_I(inode);
1391	int retval = -ENOMEM;
1392
1393	spin_lock(&info->lock);
1394	if (lock && !(info->flags & VM_LOCKED)) {
1395		if (!user_shm_lock(inode->i_size, user))
1396			goto out_nomem;
1397		info->flags |= VM_LOCKED;
1398	}
1399	if (!lock && (info->flags & VM_LOCKED) && user) {
1400		user_shm_unlock(inode->i_size, user);
1401		info->flags &= ~VM_LOCKED;
1402	}
1403	retval = 0;
1404out_nomem:
1405	spin_unlock(&info->lock);
1406	return retval;
1407}
1408
1409static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1410{
1411	file_accessed(file);
1412	vma->vm_ops = &shmem_vm_ops;
1413	vma->vm_flags |= VM_CAN_NONLINEAR;
1414	return 0;
1415}
1416
1417static struct inode *
1418shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1419{
1420	struct inode *inode;
1421	struct shmem_inode_info *info;
1422	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1423
1424	if (shmem_reserve_inode(sb))
1425		return NULL;
1426
1427	inode = new_inode(sb);
1428	if (inode) {
1429		inode->i_mode = mode;
1430		inode->i_uid = current->fsuid;
1431		inode->i_gid = current->fsgid;
1432		inode->i_blocks = 0;
1433		inode->i_mapping->a_ops = &shmem_aops;
1434		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1435		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1436		inode->i_generation = get_seconds();
1437		info = SHMEM_I(inode);
1438		memset(info, 0, (char *)inode - (char *)info);
1439		spin_lock_init(&info->lock);
1440		INIT_LIST_HEAD(&info->swaplist);
1441
1442		switch (mode & S_IFMT) {
1443		default:
1444			inode->i_op = &shmem_special_inode_operations;
1445			init_special_inode(inode, mode, dev);
1446			break;
1447		case S_IFREG:
1448			inode->i_op = &shmem_inode_operations;
1449			inode->i_fop = &shmem_file_operations;
1450			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1451							&sbinfo->policy_nodes);
1452			break;
1453		case S_IFDIR:
1454			inc_nlink(inode);
1455			/* Some things misbehave if size == 0 on a directory */
1456			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1457			inode->i_op = &shmem_dir_inode_operations;
1458			inode->i_fop = &simple_dir_operations;
1459			break;
1460		case S_IFLNK:
1461			/*
1462			 * Must not load anything in the rbtree,
1463			 * mpol_free_shared_policy will not be called.
1464			 */
1465			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1466						NULL);
1467			break;
1468		}
1469	} else
1470		shmem_free_inode(sb);
1471	return inode;
1472}
1473
1474#ifdef CONFIG_TMPFS
1475static const struct inode_operations shmem_symlink_inode_operations;
1476static const struct inode_operations shmem_symlink_inline_operations;
1477
1478/*
1479 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1480 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1481 * below the loop driver, in the generic fashion that many filesystems support.
1482 */
1483static int shmem_readpage(struct file *file, struct page *page)
1484{
1485	struct inode *inode = page->mapping->host;
1486	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1487	unlock_page(page);
1488	return error;
1489}
1490
1491static int
1492shmem_write_begin(struct file *file, struct address_space *mapping,
1493			loff_t pos, unsigned len, unsigned flags,
1494			struct page **pagep, void **fsdata)
1495{
1496	struct inode *inode = mapping->host;
1497	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1498	*pagep = NULL;
1499	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1500}
1501
1502static int
1503shmem_write_end(struct file *file, struct address_space *mapping,
1504			loff_t pos, unsigned len, unsigned copied,
1505			struct page *page, void *fsdata)
1506{
1507	struct inode *inode = mapping->host;
1508
1509	if (pos + copied > inode->i_size)
1510		i_size_write(inode, pos + copied);
1511
1512	unlock_page(page);
1513	set_page_dirty(page);
1514	page_cache_release(page);
1515
1516	return copied;
1517}
1518
1519static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1520{
1521	struct inode *inode = filp->f_path.dentry->d_inode;
1522	struct address_space *mapping = inode->i_mapping;
1523	unsigned long index, offset;
1524	enum sgp_type sgp = SGP_READ;
1525
1526	/*
1527	 * Might this read be for a stacking filesystem?  Then when reading
1528	 * holes of a sparse file, we actually need to allocate those pages,
1529	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1530	 */
1531	if (segment_eq(get_fs(), KERNEL_DS))
1532		sgp = SGP_DIRTY;
1533
1534	index = *ppos >> PAGE_CACHE_SHIFT;
1535	offset = *ppos & ~PAGE_CACHE_MASK;
1536
1537	for (;;) {
1538		struct page *page = NULL;
1539		unsigned long end_index, nr, ret;
1540		loff_t i_size = i_size_read(inode);
1541
1542		end_index = i_size >> PAGE_CACHE_SHIFT;
1543		if (index > end_index)
1544			break;
1545		if (index == end_index) {
1546			nr = i_size & ~PAGE_CACHE_MASK;
1547			if (nr <= offset)
1548				break;
1549		}
1550
1551		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1552		if (desc->error) {
1553			if (desc->error == -EINVAL)
1554				desc->error = 0;
1555			break;
1556		}
1557		if (page)
1558			unlock_page(page);
1559
1560		/*
1561		 * We must evaluate after, since reads (unlike writes)
1562		 * are called without i_mutex protection against truncate
1563		 */
1564		nr = PAGE_CACHE_SIZE;
1565		i_size = i_size_read(inode);
1566		end_index = i_size >> PAGE_CACHE_SHIFT;
1567		if (index == end_index) {
1568			nr = i_size & ~PAGE_CACHE_MASK;
1569			if (nr <= offset) {
1570				if (page)
1571					page_cache_release(page);
1572				break;
1573			}
1574		}
1575		nr -= offset;
1576
1577		if (page) {
1578			/*
1579			 * If users can be writing to this page using arbitrary
1580			 * virtual addresses, take care about potential aliasing
1581			 * before reading the page on the kernel side.
1582			 */
1583			if (mapping_writably_mapped(mapping))
1584				flush_dcache_page(page);
1585			/*
1586			 * Mark the page accessed if we read the beginning.
1587			 */
1588			if (!offset)
1589				mark_page_accessed(page);
1590		} else {
1591			page = ZERO_PAGE(0);
1592			page_cache_get(page);
1593		}
1594
1595		/*
1596		 * Ok, we have the page, and it's up-to-date, so
1597		 * now we can copy it to user space...
1598		 *
1599		 * The actor routine returns how many bytes were actually used..
1600		 * NOTE! This may not be the same as how much of a user buffer
1601		 * we filled up (we may be padding etc), so we can only update
1602		 * "pos" here (the actor routine has to update the user buffer
1603		 * pointers and the remaining count).
1604		 */
1605		ret = actor(desc, page, offset, nr);
1606		offset += ret;
1607		index += offset >> PAGE_CACHE_SHIFT;
1608		offset &= ~PAGE_CACHE_MASK;
1609
1610		page_cache_release(page);
1611		if (ret != nr || !desc->count)
1612			break;
1613
1614		cond_resched();
1615	}
1616
1617	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1618	file_accessed(filp);
1619}
1620
1621static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1622{
1623	read_descriptor_t desc;
1624
1625	if ((ssize_t) count < 0)
1626		return -EINVAL;
1627	if (!access_ok(VERIFY_WRITE, buf, count))
1628		return -EFAULT;
1629	if (!count)
1630		return 0;
1631
1632	desc.written = 0;
1633	desc.count = count;
1634	desc.arg.buf = buf;
1635	desc.error = 0;
1636
1637	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1638	if (desc.written)
1639		return desc.written;
1640	return desc.error;
1641}
1642
1643static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1644{
1645	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1646
1647	buf->f_type = TMPFS_MAGIC;
1648	buf->f_bsize = PAGE_CACHE_SIZE;
1649	buf->f_namelen = NAME_MAX;
1650	spin_lock(&sbinfo->stat_lock);
1651	if (sbinfo->max_blocks) {
1652		buf->f_blocks = sbinfo->max_blocks;
1653		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1654	}
1655	if (sbinfo->max_inodes) {
1656		buf->f_files = sbinfo->max_inodes;
1657		buf->f_ffree = sbinfo->free_inodes;
1658	}
1659	/* else leave those fields 0 like simple_statfs */
1660	spin_unlock(&sbinfo->stat_lock);
1661	return 0;
1662}
1663
1664/*
1665 * File creation. Allocate an inode, and we're done..
1666 */
1667static int
1668shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1669{
1670	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1671	int error = -ENOSPC;
1672
1673	if (inode) {
1674		error = security_inode_init_security(inode, dir, NULL, NULL,
1675						     NULL);
1676		if (error) {
1677			if (error != -EOPNOTSUPP) {
1678				iput(inode);
1679				return error;
1680			}
1681		}
1682		error = shmem_acl_init(inode, dir);
1683		if (error) {
1684			iput(inode);
1685			return error;
1686		}
1687		if (dir->i_mode & S_ISGID) {
1688			inode->i_gid = dir->i_gid;
1689			if (S_ISDIR(mode))
1690				inode->i_mode |= S_ISGID;
1691		}
1692		dir->i_size += BOGO_DIRENT_SIZE;
1693		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1694		d_instantiate(dentry, inode);
1695		dget(dentry); /* Extra count - pin the dentry in core */
1696	}
1697	return error;
1698}
1699
1700static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1701{
1702	int error;
1703
1704	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1705		return error;
1706	inc_nlink(dir);
1707	return 0;
1708}
1709
1710static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1711		struct nameidata *nd)
1712{
1713	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1714}
1715
1716/*
1717 * Link a file..
1718 */
1719static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1720{
1721	struct inode *inode = old_dentry->d_inode;
1722	int ret;
1723
1724	/*
1725	 * No ordinary (disk based) filesystem counts links as inodes;
1726	 * but each new link needs a new dentry, pinning lowmem, and
1727	 * tmpfs dentries cannot be pruned until they are unlinked.
1728	 */
1729	ret = shmem_reserve_inode(inode->i_sb);
1730	if (ret)
1731		goto out;
1732
1733	dir->i_size += BOGO_DIRENT_SIZE;
1734	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1735	inc_nlink(inode);
1736	atomic_inc(&inode->i_count);	/* New dentry reference */
1737	dget(dentry);		/* Extra pinning count for the created dentry */
1738	d_instantiate(dentry, inode);
1739out:
1740	return ret;
1741}
1742
1743static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1744{
1745	struct inode *inode = dentry->d_inode;
1746
1747	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1748		shmem_free_inode(inode->i_sb);
1749
1750	dir->i_size -= BOGO_DIRENT_SIZE;
1751	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1752	drop_nlink(inode);
1753	dput(dentry);	/* Undo the count from "create" - this does all the work */
1754	return 0;
1755}
1756
1757static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1758{
1759	if (!simple_empty(dentry))
1760		return -ENOTEMPTY;
1761
1762	drop_nlink(dentry->d_inode);
1763	drop_nlink(dir);
1764	return shmem_unlink(dir, dentry);
1765}
1766
1767/*
1768 * The VFS layer already does all the dentry stuff for rename,
1769 * we just have to decrement the usage count for the target if
1770 * it exists so that the VFS layer correctly free's it when it
1771 * gets overwritten.
1772 */
1773static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1774{
1775	struct inode *inode = old_dentry->d_inode;
1776	int they_are_dirs = S_ISDIR(inode->i_mode);
1777
1778	if (!simple_empty(new_dentry))
1779		return -ENOTEMPTY;
1780
1781	if (new_dentry->d_inode) {
1782		(void) shmem_unlink(new_dir, new_dentry);
1783		if (they_are_dirs)
1784			drop_nlink(old_dir);
1785	} else if (they_are_dirs) {
1786		drop_nlink(old_dir);
1787		inc_nlink(new_dir);
1788	}
1789
1790	old_dir->i_size -= BOGO_DIRENT_SIZE;
1791	new_dir->i_size += BOGO_DIRENT_SIZE;
1792	old_dir->i_ctime = old_dir->i_mtime =
1793	new_dir->i_ctime = new_dir->i_mtime =
1794	inode->i_ctime = CURRENT_TIME;
1795	return 0;
1796}
1797
1798static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1799{
1800	int error;
1801	int len;
1802	struct inode *inode;
1803	struct page *page = NULL;
1804	char *kaddr;
1805	struct shmem_inode_info *info;
1806
1807	len = strlen(symname) + 1;
1808	if (len > PAGE_CACHE_SIZE)
1809		return -ENAMETOOLONG;
1810
1811	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1812	if (!inode)
1813		return -ENOSPC;
1814
1815	error = security_inode_init_security(inode, dir, NULL, NULL,
1816					     NULL);
1817	if (error) {
1818		if (error != -EOPNOTSUPP) {
1819			iput(inode);
1820			return error;
1821		}
1822		error = 0;
1823	}
1824
1825	info = SHMEM_I(inode);
1826	inode->i_size = len-1;
1827	if (len <= (char *)inode - (char *)info) {
1828		/* do it inline */
1829		memcpy(info, symname, len);
1830		inode->i_op = &shmem_symlink_inline_operations;
1831	} else {
1832		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1833		if (error) {
1834			iput(inode);
1835			return error;
1836		}
1837		unlock_page(page);
1838		inode->i_op = &shmem_symlink_inode_operations;
1839		kaddr = kmap_atomic(page, KM_USER0);
1840		memcpy(kaddr, symname, len);
1841		kunmap_atomic(kaddr, KM_USER0);
1842		set_page_dirty(page);
1843		page_cache_release(page);
1844	}
1845	if (dir->i_mode & S_ISGID)
1846		inode->i_gid = dir->i_gid;
1847	dir->i_size += BOGO_DIRENT_SIZE;
1848	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1849	d_instantiate(dentry, inode);
1850	dget(dentry);
1851	return 0;
1852}
1853
1854static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1855{
1856	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1857	return NULL;
1858}
1859
1860static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1861{
1862	struct page *page = NULL;
1863	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1864	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1865	if (page)
1866		unlock_page(page);
1867	return page;
1868}
1869
1870static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1871{
1872	if (!IS_ERR(nd_get_link(nd))) {
1873		struct page *page = cookie;
1874		kunmap(page);
1875		mark_page_accessed(page);
1876		page_cache_release(page);
1877	}
1878}
1879
1880static const struct inode_operations shmem_symlink_inline_operations = {
1881	.readlink	= generic_readlink,
1882	.follow_link	= shmem_follow_link_inline,
1883};
1884
1885static const struct inode_operations shmem_symlink_inode_operations = {
1886	.truncate	= shmem_truncate,
1887	.readlink	= generic_readlink,
1888	.follow_link	= shmem_follow_link,
1889	.put_link	= shmem_put_link,
1890};
1891
1892#ifdef CONFIG_TMPFS_POSIX_ACL
1893/**
1894 * Superblocks without xattr inode operations will get security.* xattr
1895 * support from the VFS "for free". As soon as we have any other xattrs
1896 * like ACLs, we also need to implement the security.* handlers at
1897 * filesystem level, though.
1898 */
1899
1900static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1901					size_t list_len, const char *name,
1902					size_t name_len)
1903{
1904	return security_inode_listsecurity(inode, list, list_len);
1905}
1906
1907static int shmem_xattr_security_get(struct inode *inode, const char *name,
1908				    void *buffer, size_t size)
1909{
1910	if (strcmp(name, "") == 0)
1911		return -EINVAL;
1912	return security_inode_getsecurity(inode, name, buffer, size,
1913					  -EOPNOTSUPP);
1914}
1915
1916static int shmem_xattr_security_set(struct inode *inode, const char *name,
1917				    const void *value, size_t size, int flags)
1918{
1919	if (strcmp(name, "") == 0)
1920		return -EINVAL;
1921	return security_inode_setsecurity(inode, name, value, size, flags);
1922}
1923
1924static struct xattr_handler shmem_xattr_security_handler = {
1925	.prefix = XATTR_SECURITY_PREFIX,
1926	.list   = shmem_xattr_security_list,
1927	.get    = shmem_xattr_security_get,
1928	.set    = shmem_xattr_security_set,
1929};
1930
1931static struct xattr_handler *shmem_xattr_handlers[] = {
1932	&shmem_xattr_acl_access_handler,
1933	&shmem_xattr_acl_default_handler,
1934	&shmem_xattr_security_handler,
1935	NULL
1936};
1937#endif
1938
1939static struct dentry *shmem_get_parent(struct dentry *child)
1940{
1941	return ERR_PTR(-ESTALE);
1942}
1943
1944static int shmem_match(struct inode *ino, void *vfh)
1945{
1946	__u32 *fh = vfh;
1947	__u64 inum = fh[2];
1948	inum = (inum << 32) | fh[1];
1949	return ino->i_ino == inum && fh[0] == ino->i_generation;
1950}
1951
1952static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1953		struct fid *fid, int fh_len, int fh_type)
1954{
1955	struct inode *inode;
1956	struct dentry *dentry = NULL;
1957	u64 inum = fid->raw[2];
1958	inum = (inum << 32) | fid->raw[1];
1959
1960	if (fh_len < 3)
1961		return NULL;
1962
1963	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1964			shmem_match, fid->raw);
1965	if (inode) {
1966		dentry = d_find_alias(inode);
1967		iput(inode);
1968	}
1969
1970	return dentry;
1971}
1972
1973static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1974				int connectable)
1975{
1976	struct inode *inode = dentry->d_inode;
1977
1978	if (*len < 3)
1979		return 255;
1980
1981	if (hlist_unhashed(&inode->i_hash)) {
1982		/* Unfortunately insert_inode_hash is not idempotent,
1983		 * so as we hash inodes here rather than at creation
1984		 * time, we need a lock to ensure we only try
1985		 * to do it once
1986		 */
1987		static DEFINE_SPINLOCK(lock);
1988		spin_lock(&lock);
1989		if (hlist_unhashed(&inode->i_hash))
1990			__insert_inode_hash(inode,
1991					    inode->i_ino + inode->i_generation);
1992		spin_unlock(&lock);
1993	}
1994
1995	fh[0] = inode->i_generation;
1996	fh[1] = inode->i_ino;
1997	fh[2] = ((__u64)inode->i_ino) >> 32;
1998
1999	*len = 3;
2000	return 1;
2001}
2002
2003static const struct export_operations shmem_export_ops = {
2004	.get_parent     = shmem_get_parent,
2005	.encode_fh      = shmem_encode_fh,
2006	.fh_to_dentry	= shmem_fh_to_dentry,
2007};
2008
2009static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2010	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2011	int *policy, nodemask_t *policy_nodes)
2012{
2013	char *this_char, *value, *rest;
2014
2015	while (options != NULL) {
2016		this_char = options;
2017		for (;;) {
2018			/*
2019			 * NUL-terminate this option: unfortunately,
2020			 * mount options form a comma-separated list,
2021			 * but mpol's nodelist may also contain commas.
2022			 */
2023			options = strchr(options, ',');
2024			if (options == NULL)
2025				break;
2026			options++;
2027			if (!isdigit(*options)) {
2028				options[-1] = '\0';
2029				break;
2030			}
2031		}
2032		if (!*this_char)
2033			continue;
2034		if ((value = strchr(this_char,'=')) != NULL) {
2035			*value++ = 0;
2036		} else {
2037			printk(KERN_ERR
2038			    "tmpfs: No value for mount option '%s'\n",
2039			    this_char);
2040			return 1;
2041		}
2042
2043		if (!strcmp(this_char,"size")) {
2044			unsigned long long size;
2045			size = memparse(value,&rest);
2046			if (*rest == '%') {
2047				size <<= PAGE_SHIFT;
2048				size *= totalram_pages;
2049				do_div(size, 100);
2050				rest++;
2051			}
2052			if (*rest)
2053				goto bad_val;
2054			*blocks = DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2055		} else if (!strcmp(this_char,"nr_blocks")) {
2056			*blocks = memparse(value,&rest);
2057			if (*rest)
2058				goto bad_val;
2059		} else if (!strcmp(this_char,"nr_inodes")) {
2060			*inodes = memparse(value,&rest);
2061			if (*rest)
2062				goto bad_val;
2063		} else if (!strcmp(this_char,"mode")) {
2064			if (!mode)
2065				continue;
2066			*mode = simple_strtoul(value,&rest,8);
2067			if (*rest)
2068				goto bad_val;
2069		} else if (!strcmp(this_char,"uid")) {
2070			if (!uid)
2071				continue;
2072			*uid = simple_strtoul(value,&rest,0);
2073			if (*rest)
2074				goto bad_val;
2075		} else if (!strcmp(this_char,"gid")) {
2076			if (!gid)
2077				continue;
2078			*gid = simple_strtoul(value,&rest,0);
2079			if (*rest)
2080				goto bad_val;
2081		} else if (!strcmp(this_char,"mpol")) {
2082			if (shmem_parse_mpol(value,policy,policy_nodes))
2083				goto bad_val;
2084		} else {
2085			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2086			       this_char);
2087			return 1;
2088		}
2089	}
2090	return 0;
2091
2092bad_val:
2093	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2094	       value, this_char);
2095	return 1;
2096
2097}
2098
2099static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2100{
2101	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2102	unsigned long max_blocks = sbinfo->max_blocks;
2103	unsigned long max_inodes = sbinfo->max_inodes;
2104	int policy = sbinfo->policy;
2105	nodemask_t policy_nodes = sbinfo->policy_nodes;
2106	unsigned long blocks;
2107	unsigned long inodes;
2108	int error = -EINVAL;
2109
2110	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2111				&max_inodes, &policy, &policy_nodes))
2112		return error;
2113
2114	spin_lock(&sbinfo->stat_lock);
2115	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2116	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2117	if (max_blocks < blocks)
2118		goto out;
2119	if (max_inodes < inodes)
2120		goto out;
2121	/*
2122	 * Those tests also disallow limited->unlimited while any are in
2123	 * use, so i_blocks will always be zero when max_blocks is zero;
2124	 * but we must separately disallow unlimited->limited, because
2125	 * in that case we have no record of how much is already in use.
2126	 */
2127	if (max_blocks && !sbinfo->max_blocks)
2128		goto out;
2129	if (max_inodes && !sbinfo->max_inodes)
2130		goto out;
2131
2132	error = 0;
2133	sbinfo->max_blocks  = max_blocks;
2134	sbinfo->free_blocks = max_blocks - blocks;
2135	sbinfo->max_inodes  = max_inodes;
2136	sbinfo->free_inodes = max_inodes - inodes;
2137	sbinfo->policy = policy;
2138	sbinfo->policy_nodes = policy_nodes;
2139out:
2140	spin_unlock(&sbinfo->stat_lock);
2141	return error;
2142}
2143#endif
2144
2145static void shmem_put_super(struct super_block *sb)
2146{
2147	kfree(sb->s_fs_info);
2148	sb->s_fs_info = NULL;
2149}
2150
2151static int shmem_fill_super(struct super_block *sb,
2152			    void *data, int silent)
2153{
2154	struct inode *inode;
2155	struct dentry *root;
2156	int mode   = S_IRWXUGO | S_ISVTX;
2157	uid_t uid = current->fsuid;
2158	gid_t gid = current->fsgid;
2159	int err = -ENOMEM;
2160	struct shmem_sb_info *sbinfo;
2161	unsigned long blocks = 0;
2162	unsigned long inodes = 0;
2163	int policy = MPOL_DEFAULT;
2164	nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2165
2166#ifdef CONFIG_TMPFS
2167	/*
2168	 * Per default we only allow half of the physical ram per
2169	 * tmpfs instance, limiting inodes to one per page of lowmem;
2170	 * but the internal instance is left unlimited.
2171	 */
2172	if (!(sb->s_flags & MS_NOUSER)) {
2173		blocks = totalram_pages / 2;
2174		inodes = totalram_pages - totalhigh_pages;
2175		if (inodes > blocks)
2176			inodes = blocks;
2177		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2178					&inodes, &policy, &policy_nodes))
2179			return -EINVAL;
2180	}
2181	sb->s_export_op = &shmem_export_ops;
2182#else
2183	sb->s_flags |= MS_NOUSER;
2184#endif
2185
2186	/* Round up to L1_CACHE_BYTES to resist false sharing */
2187	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2188				L1_CACHE_BYTES), GFP_KERNEL);
2189	if (!sbinfo)
2190		return -ENOMEM;
2191
2192	spin_lock_init(&sbinfo->stat_lock);
2193	sbinfo->max_blocks = blocks;
2194	sbinfo->free_blocks = blocks;
2195	sbinfo->max_inodes = inodes;
2196	sbinfo->free_inodes = inodes;
2197	sbinfo->policy = policy;
2198	sbinfo->policy_nodes = policy_nodes;
2199
2200	sb->s_fs_info = sbinfo;
2201	sb->s_maxbytes = SHMEM_MAX_BYTES;
2202	sb->s_blocksize = PAGE_CACHE_SIZE;
2203	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2204	sb->s_magic = TMPFS_MAGIC;
2205	sb->s_op = &shmem_ops;
2206	sb->s_time_gran = 1;
2207#ifdef CONFIG_TMPFS_POSIX_ACL
2208	sb->s_xattr = shmem_xattr_handlers;
2209	sb->s_flags |= MS_POSIXACL;
2210#endif
2211
2212	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2213	if (!inode)
2214		goto failed;
2215	inode->i_uid = uid;
2216	inode->i_gid = gid;
2217	root = d_alloc_root(inode);
2218	if (!root)
2219		goto failed_iput;
2220	sb->s_root = root;
2221	return 0;
2222
2223failed_iput:
2224	iput(inode);
2225failed:
2226	shmem_put_super(sb);
2227	return err;
2228}
2229
2230static struct kmem_cache *shmem_inode_cachep;
2231
2232static struct inode *shmem_alloc_inode(struct super_block *sb)
2233{
2234	struct shmem_inode_info *p;
2235	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2236	if (!p)
2237		return NULL;
2238	return &p->vfs_inode;
2239}
2240
2241static void shmem_destroy_inode(struct inode *inode)
2242{
2243	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2244		/* only struct inode is valid if it's an inline symlink */
2245		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2246	}
2247	shmem_acl_destroy_inode(inode);
2248	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2249}
2250
2251static void init_once(struct kmem_cache *cachep, void *foo)
2252{
2253	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2254
2255	inode_init_once(&p->vfs_inode);
2256#ifdef CONFIG_TMPFS_POSIX_ACL
2257	p->i_acl = NULL;
2258	p->i_default_acl = NULL;
2259#endif
2260}
2261
2262static int init_inodecache(void)
2263{
2264	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2265				sizeof(struct shmem_inode_info),
2266				0, SLAB_PANIC, init_once);
2267	return 0;
2268}
2269
2270static void destroy_inodecache(void)
2271{
2272	kmem_cache_destroy(shmem_inode_cachep);
2273}
2274
2275static const struct address_space_operations shmem_aops = {
2276	.writepage	= shmem_writepage,
2277	.set_page_dirty	= __set_page_dirty_no_writeback,
2278#ifdef CONFIG_TMPFS
2279	.readpage	= shmem_readpage,
2280	.write_begin	= shmem_write_begin,
2281	.write_end	= shmem_write_end,
2282#endif
2283	.migratepage	= migrate_page,
2284};
2285
2286static const struct file_operations shmem_file_operations = {
2287	.mmap		= shmem_mmap,
2288#ifdef CONFIG_TMPFS
2289	.llseek		= generic_file_llseek,
2290	.read		= shmem_file_read,
2291	.write		= do_sync_write,
2292	.aio_write	= generic_file_aio_write,
2293	.fsync		= simple_sync_file,
2294	.splice_read	= generic_file_splice_read,
2295	.splice_write	= generic_file_splice_write,
2296#endif
2297};
2298
2299static const struct inode_operations shmem_inode_operations = {
2300	.truncate	= shmem_truncate,
2301	.setattr	= shmem_notify_change,
2302	.truncate_range	= shmem_truncate_range,
2303#ifdef CONFIG_TMPFS_POSIX_ACL
2304	.setxattr	= generic_setxattr,
2305	.getxattr	= generic_getxattr,
2306	.listxattr	= generic_listxattr,
2307	.removexattr	= generic_removexattr,
2308	.permission	= shmem_permission,
2309#endif
2310
2311};
2312
2313static const struct inode_operations shmem_dir_inode_operations = {
2314#ifdef CONFIG_TMPFS
2315	.create		= shmem_create,
2316	.lookup		= simple_lookup,
2317	.link		= shmem_link,
2318	.unlink		= shmem_unlink,
2319	.symlink	= shmem_symlink,
2320	.mkdir		= shmem_mkdir,
2321	.rmdir		= shmem_rmdir,
2322	.mknod		= shmem_mknod,
2323	.rename		= shmem_rename,
2324#endif
2325#ifdef CONFIG_TMPFS_POSIX_ACL
2326	.setattr	= shmem_notify_change,
2327	.setxattr	= generic_setxattr,
2328	.getxattr	= generic_getxattr,
2329	.listxattr	= generic_listxattr,
2330	.removexattr	= generic_removexattr,
2331	.permission	= shmem_permission,
2332#endif
2333};
2334
2335static const struct inode_operations shmem_special_inode_operations = {
2336#ifdef CONFIG_TMPFS_POSIX_ACL
2337	.setattr	= shmem_notify_change,
2338	.setxattr	= generic_setxattr,
2339	.getxattr	= generic_getxattr,
2340	.listxattr	= generic_listxattr,
2341	.removexattr	= generic_removexattr,
2342	.permission	= shmem_permission,
2343#endif
2344};
2345
2346static const struct super_operations shmem_ops = {
2347	.alloc_inode	= shmem_alloc_inode,
2348	.destroy_inode	= shmem_destroy_inode,
2349#ifdef CONFIG_TMPFS
2350	.statfs		= shmem_statfs,
2351	.remount_fs	= shmem_remount_fs,
2352#endif
2353	.delete_inode	= shmem_delete_inode,
2354	.drop_inode	= generic_delete_inode,
2355	.put_super	= shmem_put_super,
2356};
2357
2358static struct vm_operations_struct shmem_vm_ops = {
2359	.fault		= shmem_fault,
2360#ifdef CONFIG_NUMA
2361	.set_policy     = shmem_set_policy,
2362	.get_policy     = shmem_get_policy,
2363#endif
2364};
2365
2366
2367static int shmem_get_sb(struct file_system_type *fs_type,
2368	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2369{
2370	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2371}
2372
2373static struct file_system_type tmpfs_fs_type = {
2374	.owner		= THIS_MODULE,
2375	.name		= "tmpfs",
2376	.get_sb		= shmem_get_sb,
2377	.kill_sb	= kill_litter_super,
2378};
2379static struct vfsmount *shm_mnt;
2380
2381static int __init init_tmpfs(void)
2382{
2383	int error;
2384
2385	error = bdi_init(&shmem_backing_dev_info);
2386	if (error)
2387		goto out4;
2388
2389	error = init_inodecache();
2390	if (error)
2391		goto out3;
2392
2393	error = register_filesystem(&tmpfs_fs_type);
2394	if (error) {
2395		printk(KERN_ERR "Could not register tmpfs\n");
2396		goto out2;
2397	}
2398
2399	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2400				tmpfs_fs_type.name, NULL);
2401	if (IS_ERR(shm_mnt)) {
2402		error = PTR_ERR(shm_mnt);
2403		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2404		goto out1;
2405	}
2406	return 0;
2407
2408out1:
2409	unregister_filesystem(&tmpfs_fs_type);
2410out2:
2411	destroy_inodecache();
2412out3:
2413	bdi_destroy(&shmem_backing_dev_info);
2414out4:
2415	shm_mnt = ERR_PTR(error);
2416	return error;
2417}
2418module_init(init_tmpfs)
2419
2420/*
2421 * shmem_file_setup - get an unlinked file living in tmpfs
2422 *
2423 * @name: name for dentry (to be seen in /proc/<pid>/maps
2424 * @size: size to be set for the file
2425 *
2426 */
2427struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2428{
2429	int error;
2430	struct file *file;
2431	struct inode *inode;
2432	struct dentry *dentry, *root;
2433	struct qstr this;
2434
2435	if (IS_ERR(shm_mnt))
2436		return (void *)shm_mnt;
2437
2438	if (size < 0 || size > SHMEM_MAX_BYTES)
2439		return ERR_PTR(-EINVAL);
2440
2441	if (shmem_acct_size(flags, size))
2442		return ERR_PTR(-ENOMEM);
2443
2444	error = -ENOMEM;
2445	this.name = name;
2446	this.len = strlen(name);
2447	this.hash = 0; /* will go */
2448	root = shm_mnt->mnt_root;
2449	dentry = d_alloc(root, &this);
2450	if (!dentry)
2451		goto put_memory;
2452
2453	error = -ENFILE;
2454	file = get_empty_filp();
2455	if (!file)
2456		goto put_dentry;
2457
2458	error = -ENOSPC;
2459	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2460	if (!inode)
2461		goto close_file;
2462
2463	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2464	d_instantiate(dentry, inode);
2465	inode->i_size = size;
2466	inode->i_nlink = 0;	/* It is unlinked */
2467	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2468			&shmem_file_operations);
2469	return file;
2470
2471close_file:
2472	put_filp(file);
2473put_dentry:
2474	dput(dentry);
2475put_memory:
2476	shmem_unacct_size(flags, size);
2477	return ERR_PTR(error);
2478}
2479
2480/*
2481 * shmem_zero_setup - setup a shared anonymous mapping
2482 *
2483 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2484 */
2485int shmem_zero_setup(struct vm_area_struct *vma)
2486{
2487	struct file *file;
2488	loff_t size = vma->vm_end - vma->vm_start;
2489
2490	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2491	if (IS_ERR(file))
2492		return PTR_ERR(file);
2493
2494	if (vma->vm_file)
2495		fput(vma->vm_file);
2496	vma->vm_file = file;
2497	vma->vm_ops = &shmem_vm_ops;
2498	return 0;
2499}
2500