shmem.c revision a35afb830f8d71ec211531aeb9a621b09a2efb39
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/generic_acl.h>
31#include <linux/mm.h>
32#include <linux/mman.h>
33#include <linux/file.h>
34#include <linux/swap.h>
35#include <linux/pagemap.h>
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/backing-dev.h>
39#include <linux/shmem_fs.h>
40#include <linux/mount.h>
41#include <linux/writeback.h>
42#include <linux/vfs.h>
43#include <linux/blkdev.h>
44#include <linux/security.h>
45#include <linux/swapops.h>
46#include <linux/mempolicy.h>
47#include <linux/namei.h>
48#include <linux/ctype.h>
49#include <linux/migrate.h>
50#include <linux/highmem.h>
51#include <linux/backing-dev.h>
52
53#include <asm/uaccess.h>
54#include <asm/div64.h>
55#include <asm/pgtable.h>
56
57/* This magic number is used in glibc for posix shared memory */
58#define TMPFS_MAGIC	0x01021994
59
60#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70#define SHMEM_PAGEIN	 VM_READ
71#define SHMEM_TRUNCATE	 VM_WRITE
72
73/* Definition to limit shmem_truncate's steps between cond_rescheds */
74#define LATENCY_LIMIT	 64
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80enum sgp_type {
81	SGP_QUICK,	/* don't try more than file page cache lookup */
82	SGP_READ,	/* don't exceed i_size, don't allocate page */
83	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84	SGP_WRITE,	/* may exceed i_size, may allocate page */
85};
86
87static int shmem_getpage(struct inode *inode, unsigned long idx,
88			 struct page **pagep, enum sgp_type sgp, int *type);
89
90static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91{
92	/*
93	 * The above definition of ENTRIES_PER_PAGE, and the use of
94	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95	 * might be reconsidered if it ever diverges from PAGE_SIZE.
96	 */
97	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
98}
99
100static inline void shmem_dir_free(struct page *page)
101{
102	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
103}
104
105static struct page **shmem_dir_map(struct page *page)
106{
107	return (struct page **)kmap_atomic(page, KM_USER0);
108}
109
110static inline void shmem_dir_unmap(struct page **dir)
111{
112	kunmap_atomic(dir, KM_USER0);
113}
114
115static swp_entry_t *shmem_swp_map(struct page *page)
116{
117	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
118}
119
120static inline void shmem_swp_balance_unmap(void)
121{
122	/*
123	 * When passing a pointer to an i_direct entry, to code which
124	 * also handles indirect entries and so will shmem_swp_unmap,
125	 * we must arrange for the preempt count to remain in balance.
126	 * What kmap_atomic of a lowmem page does depends on config
127	 * and architecture, so pretend to kmap_atomic some lowmem page.
128	 */
129	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
130}
131
132static inline void shmem_swp_unmap(swp_entry_t *entry)
133{
134	kunmap_atomic(entry, KM_USER1);
135}
136
137static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
138{
139	return sb->s_fs_info;
140}
141
142/*
143 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
144 * for shared memory and for shared anonymous (/dev/zero) mappings
145 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
146 * consistent with the pre-accounting of private mappings ...
147 */
148static inline int shmem_acct_size(unsigned long flags, loff_t size)
149{
150	return (flags & VM_ACCOUNT)?
151		security_vm_enough_memory(VM_ACCT(size)): 0;
152}
153
154static inline void shmem_unacct_size(unsigned long flags, loff_t size)
155{
156	if (flags & VM_ACCOUNT)
157		vm_unacct_memory(VM_ACCT(size));
158}
159
160/*
161 * ... whereas tmpfs objects are accounted incrementally as
162 * pages are allocated, in order to allow huge sparse files.
163 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
164 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
165 */
166static inline int shmem_acct_block(unsigned long flags)
167{
168	return (flags & VM_ACCOUNT)?
169		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
170}
171
172static inline void shmem_unacct_blocks(unsigned long flags, long pages)
173{
174	if (!(flags & VM_ACCOUNT))
175		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
176}
177
178static const struct super_operations shmem_ops;
179static const struct address_space_operations shmem_aops;
180static const struct file_operations shmem_file_operations;
181static const struct inode_operations shmem_inode_operations;
182static const struct inode_operations shmem_dir_inode_operations;
183static const struct inode_operations shmem_special_inode_operations;
184static struct vm_operations_struct shmem_vm_ops;
185
186static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
187	.ra_pages	= 0,	/* No readahead */
188	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
189	.unplug_io_fn	= default_unplug_io_fn,
190};
191
192static LIST_HEAD(shmem_swaplist);
193static DEFINE_SPINLOCK(shmem_swaplist_lock);
194
195static void shmem_free_blocks(struct inode *inode, long pages)
196{
197	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
198	if (sbinfo->max_blocks) {
199		spin_lock(&sbinfo->stat_lock);
200		sbinfo->free_blocks += pages;
201		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
202		spin_unlock(&sbinfo->stat_lock);
203	}
204}
205
206/*
207 * shmem_recalc_inode - recalculate the size of an inode
208 *
209 * @inode: inode to recalc
210 *
211 * We have to calculate the free blocks since the mm can drop
212 * undirtied hole pages behind our back.
213 *
214 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
215 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
216 *
217 * It has to be called with the spinlock held.
218 */
219static void shmem_recalc_inode(struct inode *inode)
220{
221	struct shmem_inode_info *info = SHMEM_I(inode);
222	long freed;
223
224	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
225	if (freed > 0) {
226		info->alloced -= freed;
227		shmem_unacct_blocks(info->flags, freed);
228		shmem_free_blocks(inode, freed);
229	}
230}
231
232/*
233 * shmem_swp_entry - find the swap vector position in the info structure
234 *
235 * @info:  info structure for the inode
236 * @index: index of the page to find
237 * @page:  optional page to add to the structure. Has to be preset to
238 *         all zeros
239 *
240 * If there is no space allocated yet it will return NULL when
241 * page is NULL, else it will use the page for the needed block,
242 * setting it to NULL on return to indicate that it has been used.
243 *
244 * The swap vector is organized the following way:
245 *
246 * There are SHMEM_NR_DIRECT entries directly stored in the
247 * shmem_inode_info structure. So small files do not need an addional
248 * allocation.
249 *
250 * For pages with index > SHMEM_NR_DIRECT there is the pointer
251 * i_indirect which points to a page which holds in the first half
252 * doubly indirect blocks, in the second half triple indirect blocks:
253 *
254 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
255 * following layout (for SHMEM_NR_DIRECT == 16):
256 *
257 * i_indirect -> dir --> 16-19
258 * 	      |	     +-> 20-23
259 * 	      |
260 * 	      +-->dir2 --> 24-27
261 * 	      |	       +-> 28-31
262 * 	      |	       +-> 32-35
263 * 	      |	       +-> 36-39
264 * 	      |
265 * 	      +-->dir3 --> 40-43
266 * 	       	       +-> 44-47
267 * 	      	       +-> 48-51
268 * 	      	       +-> 52-55
269 */
270static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
271{
272	unsigned long offset;
273	struct page **dir;
274	struct page *subdir;
275
276	if (index < SHMEM_NR_DIRECT) {
277		shmem_swp_balance_unmap();
278		return info->i_direct+index;
279	}
280	if (!info->i_indirect) {
281		if (page) {
282			info->i_indirect = *page;
283			*page = NULL;
284		}
285		return NULL;			/* need another page */
286	}
287
288	index -= SHMEM_NR_DIRECT;
289	offset = index % ENTRIES_PER_PAGE;
290	index /= ENTRIES_PER_PAGE;
291	dir = shmem_dir_map(info->i_indirect);
292
293	if (index >= ENTRIES_PER_PAGE/2) {
294		index -= ENTRIES_PER_PAGE/2;
295		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
296		index %= ENTRIES_PER_PAGE;
297		subdir = *dir;
298		if (!subdir) {
299			if (page) {
300				*dir = *page;
301				*page = NULL;
302			}
303			shmem_dir_unmap(dir);
304			return NULL;		/* need another page */
305		}
306		shmem_dir_unmap(dir);
307		dir = shmem_dir_map(subdir);
308	}
309
310	dir += index;
311	subdir = *dir;
312	if (!subdir) {
313		if (!page || !(subdir = *page)) {
314			shmem_dir_unmap(dir);
315			return NULL;		/* need a page */
316		}
317		*dir = subdir;
318		*page = NULL;
319	}
320	shmem_dir_unmap(dir);
321	return shmem_swp_map(subdir) + offset;
322}
323
324static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
325{
326	long incdec = value? 1: -1;
327
328	entry->val = value;
329	info->swapped += incdec;
330	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
331		struct page *page = kmap_atomic_to_page(entry);
332		set_page_private(page, page_private(page) + incdec);
333	}
334}
335
336/*
337 * shmem_swp_alloc - get the position of the swap entry for the page.
338 *                   If it does not exist allocate the entry.
339 *
340 * @info:	info structure for the inode
341 * @index:	index of the page to find
342 * @sgp:	check and recheck i_size? skip allocation?
343 */
344static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
345{
346	struct inode *inode = &info->vfs_inode;
347	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
348	struct page *page = NULL;
349	swp_entry_t *entry;
350
351	if (sgp != SGP_WRITE &&
352	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
353		return ERR_PTR(-EINVAL);
354
355	while (!(entry = shmem_swp_entry(info, index, &page))) {
356		if (sgp == SGP_READ)
357			return shmem_swp_map(ZERO_PAGE(0));
358		/*
359		 * Test free_blocks against 1 not 0, since we have 1 data
360		 * page (and perhaps indirect index pages) yet to allocate:
361		 * a waste to allocate index if we cannot allocate data.
362		 */
363		if (sbinfo->max_blocks) {
364			spin_lock(&sbinfo->stat_lock);
365			if (sbinfo->free_blocks <= 1) {
366				spin_unlock(&sbinfo->stat_lock);
367				return ERR_PTR(-ENOSPC);
368			}
369			sbinfo->free_blocks--;
370			inode->i_blocks += BLOCKS_PER_PAGE;
371			spin_unlock(&sbinfo->stat_lock);
372		}
373
374		spin_unlock(&info->lock);
375		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
376		if (page)
377			set_page_private(page, 0);
378		spin_lock(&info->lock);
379
380		if (!page) {
381			shmem_free_blocks(inode, 1);
382			return ERR_PTR(-ENOMEM);
383		}
384		if (sgp != SGP_WRITE &&
385		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
386			entry = ERR_PTR(-EINVAL);
387			break;
388		}
389		if (info->next_index <= index)
390			info->next_index = index + 1;
391	}
392	if (page) {
393		/* another task gave its page, or truncated the file */
394		shmem_free_blocks(inode, 1);
395		shmem_dir_free(page);
396	}
397	if (info->next_index <= index && !IS_ERR(entry))
398		info->next_index = index + 1;
399	return entry;
400}
401
402/*
403 * shmem_free_swp - free some swap entries in a directory
404 *
405 * @dir:        pointer to the directory
406 * @edir:       pointer after last entry of the directory
407 * @punch_lock: pointer to spinlock when needed for the holepunch case
408 */
409static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
410						spinlock_t *punch_lock)
411{
412	spinlock_t *punch_unlock = NULL;
413	swp_entry_t *ptr;
414	int freed = 0;
415
416	for (ptr = dir; ptr < edir; ptr++) {
417		if (ptr->val) {
418			if (unlikely(punch_lock)) {
419				punch_unlock = punch_lock;
420				punch_lock = NULL;
421				spin_lock(punch_unlock);
422				if (!ptr->val)
423					continue;
424			}
425			free_swap_and_cache(*ptr);
426			*ptr = (swp_entry_t){0};
427			freed++;
428		}
429	}
430	if (punch_unlock)
431		spin_unlock(punch_unlock);
432	return freed;
433}
434
435static int shmem_map_and_free_swp(struct page *subdir, int offset,
436		int limit, struct page ***dir, spinlock_t *punch_lock)
437{
438	swp_entry_t *ptr;
439	int freed = 0;
440
441	ptr = shmem_swp_map(subdir);
442	for (; offset < limit; offset += LATENCY_LIMIT) {
443		int size = limit - offset;
444		if (size > LATENCY_LIMIT)
445			size = LATENCY_LIMIT;
446		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
447							punch_lock);
448		if (need_resched()) {
449			shmem_swp_unmap(ptr);
450			if (*dir) {
451				shmem_dir_unmap(*dir);
452				*dir = NULL;
453			}
454			cond_resched();
455			ptr = shmem_swp_map(subdir);
456		}
457	}
458	shmem_swp_unmap(ptr);
459	return freed;
460}
461
462static void shmem_free_pages(struct list_head *next)
463{
464	struct page *page;
465	int freed = 0;
466
467	do {
468		page = container_of(next, struct page, lru);
469		next = next->next;
470		shmem_dir_free(page);
471		freed++;
472		if (freed >= LATENCY_LIMIT) {
473			cond_resched();
474			freed = 0;
475		}
476	} while (next);
477}
478
479static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
480{
481	struct shmem_inode_info *info = SHMEM_I(inode);
482	unsigned long idx;
483	unsigned long size;
484	unsigned long limit;
485	unsigned long stage;
486	unsigned long diroff;
487	struct page **dir;
488	struct page *topdir;
489	struct page *middir;
490	struct page *subdir;
491	swp_entry_t *ptr;
492	LIST_HEAD(pages_to_free);
493	long nr_pages_to_free = 0;
494	long nr_swaps_freed = 0;
495	int offset;
496	int freed;
497	int punch_hole;
498	spinlock_t *needs_lock;
499	spinlock_t *punch_lock;
500	unsigned long upper_limit;
501
502	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
503	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
504	if (idx >= info->next_index)
505		return;
506
507	spin_lock(&info->lock);
508	info->flags |= SHMEM_TRUNCATE;
509	if (likely(end == (loff_t) -1)) {
510		limit = info->next_index;
511		upper_limit = SHMEM_MAX_INDEX;
512		info->next_index = idx;
513		needs_lock = NULL;
514		punch_hole = 0;
515	} else {
516		if (end + 1 >= inode->i_size) {	/* we may free a little more */
517			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
518							PAGE_CACHE_SHIFT;
519			upper_limit = SHMEM_MAX_INDEX;
520		} else {
521			limit = (end + 1) >> PAGE_CACHE_SHIFT;
522			upper_limit = limit;
523		}
524		needs_lock = &info->lock;
525		punch_hole = 1;
526	}
527
528	topdir = info->i_indirect;
529	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
530		info->i_indirect = NULL;
531		nr_pages_to_free++;
532		list_add(&topdir->lru, &pages_to_free);
533	}
534	spin_unlock(&info->lock);
535
536	if (info->swapped && idx < SHMEM_NR_DIRECT) {
537		ptr = info->i_direct;
538		size = limit;
539		if (size > SHMEM_NR_DIRECT)
540			size = SHMEM_NR_DIRECT;
541		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
542	}
543
544	/*
545	 * If there are no indirect blocks or we are punching a hole
546	 * below indirect blocks, nothing to be done.
547	 */
548	if (!topdir || limit <= SHMEM_NR_DIRECT)
549		goto done2;
550
551	/*
552	 * The truncation case has already dropped info->lock, and we're safe
553	 * because i_size and next_index have already been lowered, preventing
554	 * access beyond.  But in the punch_hole case, we still need to take
555	 * the lock when updating the swap directory, because there might be
556	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
557	 * shmem_writepage.  However, whenever we find we can remove a whole
558	 * directory page (not at the misaligned start or end of the range),
559	 * we first NULLify its pointer in the level above, and then have no
560	 * need to take the lock when updating its contents: needs_lock and
561	 * punch_lock (either pointing to info->lock or NULL) manage this.
562	 */
563
564	upper_limit -= SHMEM_NR_DIRECT;
565	limit -= SHMEM_NR_DIRECT;
566	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
567	offset = idx % ENTRIES_PER_PAGE;
568	idx -= offset;
569
570	dir = shmem_dir_map(topdir);
571	stage = ENTRIES_PER_PAGEPAGE/2;
572	if (idx < ENTRIES_PER_PAGEPAGE/2) {
573		middir = topdir;
574		diroff = idx/ENTRIES_PER_PAGE;
575	} else {
576		dir += ENTRIES_PER_PAGE/2;
577		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
578		while (stage <= idx)
579			stage += ENTRIES_PER_PAGEPAGE;
580		middir = *dir;
581		if (*dir) {
582			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
583				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
584			if (!diroff && !offset && upper_limit >= stage) {
585				if (needs_lock) {
586					spin_lock(needs_lock);
587					*dir = NULL;
588					spin_unlock(needs_lock);
589					needs_lock = NULL;
590				} else
591					*dir = NULL;
592				nr_pages_to_free++;
593				list_add(&middir->lru, &pages_to_free);
594			}
595			shmem_dir_unmap(dir);
596			dir = shmem_dir_map(middir);
597		} else {
598			diroff = 0;
599			offset = 0;
600			idx = stage;
601		}
602	}
603
604	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
605		if (unlikely(idx == stage)) {
606			shmem_dir_unmap(dir);
607			dir = shmem_dir_map(topdir) +
608			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
609			while (!*dir) {
610				dir++;
611				idx += ENTRIES_PER_PAGEPAGE;
612				if (idx >= limit)
613					goto done1;
614			}
615			stage = idx + ENTRIES_PER_PAGEPAGE;
616			middir = *dir;
617			if (punch_hole)
618				needs_lock = &info->lock;
619			if (upper_limit >= stage) {
620				if (needs_lock) {
621					spin_lock(needs_lock);
622					*dir = NULL;
623					spin_unlock(needs_lock);
624					needs_lock = NULL;
625				} else
626					*dir = NULL;
627				nr_pages_to_free++;
628				list_add(&middir->lru, &pages_to_free);
629			}
630			shmem_dir_unmap(dir);
631			cond_resched();
632			dir = shmem_dir_map(middir);
633			diroff = 0;
634		}
635		punch_lock = needs_lock;
636		subdir = dir[diroff];
637		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
638			if (needs_lock) {
639				spin_lock(needs_lock);
640				dir[diroff] = NULL;
641				spin_unlock(needs_lock);
642				punch_lock = NULL;
643			} else
644				dir[diroff] = NULL;
645			nr_pages_to_free++;
646			list_add(&subdir->lru, &pages_to_free);
647		}
648		if (subdir && page_private(subdir) /* has swap entries */) {
649			size = limit - idx;
650			if (size > ENTRIES_PER_PAGE)
651				size = ENTRIES_PER_PAGE;
652			freed = shmem_map_and_free_swp(subdir,
653					offset, size, &dir, punch_lock);
654			if (!dir)
655				dir = shmem_dir_map(middir);
656			nr_swaps_freed += freed;
657			if (offset || punch_lock) {
658				spin_lock(&info->lock);
659				set_page_private(subdir,
660					page_private(subdir) - freed);
661				spin_unlock(&info->lock);
662			} else
663				BUG_ON(page_private(subdir) != freed);
664		}
665		offset = 0;
666	}
667done1:
668	shmem_dir_unmap(dir);
669done2:
670	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
671		/*
672		 * Call truncate_inode_pages again: racing shmem_unuse_inode
673		 * may have swizzled a page in from swap since vmtruncate or
674		 * generic_delete_inode did it, before we lowered next_index.
675		 * Also, though shmem_getpage checks i_size before adding to
676		 * cache, no recheck after: so fix the narrow window there too.
677		 *
678		 * Recalling truncate_inode_pages_range and unmap_mapping_range
679		 * every time for punch_hole (which never got a chance to clear
680		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
681		 * yet hardly ever necessary: try to optimize them out later.
682		 */
683		truncate_inode_pages_range(inode->i_mapping, start, end);
684		if (punch_hole)
685			unmap_mapping_range(inode->i_mapping, start,
686							end - start, 1);
687	}
688
689	spin_lock(&info->lock);
690	info->flags &= ~SHMEM_TRUNCATE;
691	info->swapped -= nr_swaps_freed;
692	if (nr_pages_to_free)
693		shmem_free_blocks(inode, nr_pages_to_free);
694	shmem_recalc_inode(inode);
695	spin_unlock(&info->lock);
696
697	/*
698	 * Empty swap vector directory pages to be freed?
699	 */
700	if (!list_empty(&pages_to_free)) {
701		pages_to_free.prev->next = NULL;
702		shmem_free_pages(pages_to_free.next);
703	}
704}
705
706static void shmem_truncate(struct inode *inode)
707{
708	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
709}
710
711static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
712{
713	struct inode *inode = dentry->d_inode;
714	struct page *page = NULL;
715	int error;
716
717	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
718		if (attr->ia_size < inode->i_size) {
719			/*
720			 * If truncating down to a partial page, then
721			 * if that page is already allocated, hold it
722			 * in memory until the truncation is over, so
723			 * truncate_partial_page cannnot miss it were
724			 * it assigned to swap.
725			 */
726			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
727				(void) shmem_getpage(inode,
728					attr->ia_size>>PAGE_CACHE_SHIFT,
729						&page, SGP_READ, NULL);
730			}
731			/*
732			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
733			 * detect if any pages might have been added to cache
734			 * after truncate_inode_pages.  But we needn't bother
735			 * if it's being fully truncated to zero-length: the
736			 * nrpages check is efficient enough in that case.
737			 */
738			if (attr->ia_size) {
739				struct shmem_inode_info *info = SHMEM_I(inode);
740				spin_lock(&info->lock);
741				info->flags &= ~SHMEM_PAGEIN;
742				spin_unlock(&info->lock);
743			}
744		}
745	}
746
747	error = inode_change_ok(inode, attr);
748	if (!error)
749		error = inode_setattr(inode, attr);
750#ifdef CONFIG_TMPFS_POSIX_ACL
751	if (!error && (attr->ia_valid & ATTR_MODE))
752		error = generic_acl_chmod(inode, &shmem_acl_ops);
753#endif
754	if (page)
755		page_cache_release(page);
756	return error;
757}
758
759static void shmem_delete_inode(struct inode *inode)
760{
761	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
762	struct shmem_inode_info *info = SHMEM_I(inode);
763
764	if (inode->i_op->truncate == shmem_truncate) {
765		truncate_inode_pages(inode->i_mapping, 0);
766		shmem_unacct_size(info->flags, inode->i_size);
767		inode->i_size = 0;
768		shmem_truncate(inode);
769		if (!list_empty(&info->swaplist)) {
770			spin_lock(&shmem_swaplist_lock);
771			list_del_init(&info->swaplist);
772			spin_unlock(&shmem_swaplist_lock);
773		}
774	}
775	BUG_ON(inode->i_blocks);
776	if (sbinfo->max_inodes) {
777		spin_lock(&sbinfo->stat_lock);
778		sbinfo->free_inodes++;
779		spin_unlock(&sbinfo->stat_lock);
780	}
781	clear_inode(inode);
782}
783
784static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
785{
786	swp_entry_t *ptr;
787
788	for (ptr = dir; ptr < edir; ptr++) {
789		if (ptr->val == entry.val)
790			return ptr - dir;
791	}
792	return -1;
793}
794
795static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
796{
797	struct inode *inode;
798	unsigned long idx;
799	unsigned long size;
800	unsigned long limit;
801	unsigned long stage;
802	struct page **dir;
803	struct page *subdir;
804	swp_entry_t *ptr;
805	int offset;
806
807	idx = 0;
808	ptr = info->i_direct;
809	spin_lock(&info->lock);
810	limit = info->next_index;
811	size = limit;
812	if (size > SHMEM_NR_DIRECT)
813		size = SHMEM_NR_DIRECT;
814	offset = shmem_find_swp(entry, ptr, ptr+size);
815	if (offset >= 0) {
816		shmem_swp_balance_unmap();
817		goto found;
818	}
819	if (!info->i_indirect)
820		goto lost2;
821
822	dir = shmem_dir_map(info->i_indirect);
823	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
824
825	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
826		if (unlikely(idx == stage)) {
827			shmem_dir_unmap(dir-1);
828			dir = shmem_dir_map(info->i_indirect) +
829			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
830			while (!*dir) {
831				dir++;
832				idx += ENTRIES_PER_PAGEPAGE;
833				if (idx >= limit)
834					goto lost1;
835			}
836			stage = idx + ENTRIES_PER_PAGEPAGE;
837			subdir = *dir;
838			shmem_dir_unmap(dir);
839			dir = shmem_dir_map(subdir);
840		}
841		subdir = *dir;
842		if (subdir && page_private(subdir)) {
843			ptr = shmem_swp_map(subdir);
844			size = limit - idx;
845			if (size > ENTRIES_PER_PAGE)
846				size = ENTRIES_PER_PAGE;
847			offset = shmem_find_swp(entry, ptr, ptr+size);
848			if (offset >= 0) {
849				shmem_dir_unmap(dir);
850				goto found;
851			}
852			shmem_swp_unmap(ptr);
853		}
854	}
855lost1:
856	shmem_dir_unmap(dir-1);
857lost2:
858	spin_unlock(&info->lock);
859	return 0;
860found:
861	idx += offset;
862	inode = &info->vfs_inode;
863	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
864		info->flags |= SHMEM_PAGEIN;
865		shmem_swp_set(info, ptr + offset, 0);
866	}
867	shmem_swp_unmap(ptr);
868	spin_unlock(&info->lock);
869	/*
870	 * Decrement swap count even when the entry is left behind:
871	 * try_to_unuse will skip over mms, then reincrement count.
872	 */
873	swap_free(entry);
874	return 1;
875}
876
877/*
878 * shmem_unuse() search for an eventually swapped out shmem page.
879 */
880int shmem_unuse(swp_entry_t entry, struct page *page)
881{
882	struct list_head *p, *next;
883	struct shmem_inode_info *info;
884	int found = 0;
885
886	spin_lock(&shmem_swaplist_lock);
887	list_for_each_safe(p, next, &shmem_swaplist) {
888		info = list_entry(p, struct shmem_inode_info, swaplist);
889		if (!info->swapped)
890			list_del_init(&info->swaplist);
891		else if (shmem_unuse_inode(info, entry, page)) {
892			/* move head to start search for next from here */
893			list_move_tail(&shmem_swaplist, &info->swaplist);
894			found = 1;
895			break;
896		}
897	}
898	spin_unlock(&shmem_swaplist_lock);
899	return found;
900}
901
902/*
903 * Move the page from the page cache to the swap cache.
904 */
905static int shmem_writepage(struct page *page, struct writeback_control *wbc)
906{
907	struct shmem_inode_info *info;
908	swp_entry_t *entry, swap;
909	struct address_space *mapping;
910	unsigned long index;
911	struct inode *inode;
912
913	BUG_ON(!PageLocked(page));
914	BUG_ON(page_mapped(page));
915
916	mapping = page->mapping;
917	index = page->index;
918	inode = mapping->host;
919	info = SHMEM_I(inode);
920	if (info->flags & VM_LOCKED)
921		goto redirty;
922	swap = get_swap_page();
923	if (!swap.val)
924		goto redirty;
925
926	spin_lock(&info->lock);
927	shmem_recalc_inode(inode);
928	if (index >= info->next_index) {
929		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
930		goto unlock;
931	}
932	entry = shmem_swp_entry(info, index, NULL);
933	BUG_ON(!entry);
934	BUG_ON(entry->val);
935
936	if (move_to_swap_cache(page, swap) == 0) {
937		shmem_swp_set(info, entry, swap.val);
938		shmem_swp_unmap(entry);
939		spin_unlock(&info->lock);
940		if (list_empty(&info->swaplist)) {
941			spin_lock(&shmem_swaplist_lock);
942			/* move instead of add in case we're racing */
943			list_move_tail(&info->swaplist, &shmem_swaplist);
944			spin_unlock(&shmem_swaplist_lock);
945		}
946		unlock_page(page);
947		return 0;
948	}
949
950	shmem_swp_unmap(entry);
951unlock:
952	spin_unlock(&info->lock);
953	swap_free(swap);
954redirty:
955	set_page_dirty(page);
956	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
957}
958
959#ifdef CONFIG_NUMA
960static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
961{
962	char *nodelist = strchr(value, ':');
963	int err = 1;
964
965	if (nodelist) {
966		/* NUL-terminate policy string */
967		*nodelist++ = '\0';
968		if (nodelist_parse(nodelist, *policy_nodes))
969			goto out;
970	}
971	if (!strcmp(value, "default")) {
972		*policy = MPOL_DEFAULT;
973		/* Don't allow a nodelist */
974		if (!nodelist)
975			err = 0;
976	} else if (!strcmp(value, "prefer")) {
977		*policy = MPOL_PREFERRED;
978		/* Insist on a nodelist of one node only */
979		if (nodelist) {
980			char *rest = nodelist;
981			while (isdigit(*rest))
982				rest++;
983			if (!*rest)
984				err = 0;
985		}
986	} else if (!strcmp(value, "bind")) {
987		*policy = MPOL_BIND;
988		/* Insist on a nodelist */
989		if (nodelist)
990			err = 0;
991	} else if (!strcmp(value, "interleave")) {
992		*policy = MPOL_INTERLEAVE;
993		/* Default to nodes online if no nodelist */
994		if (!nodelist)
995			*policy_nodes = node_online_map;
996		err = 0;
997	}
998out:
999	/* Restore string for error message */
1000	if (nodelist)
1001		*--nodelist = ':';
1002	return err;
1003}
1004
1005static struct page *shmem_swapin_async(struct shared_policy *p,
1006				       swp_entry_t entry, unsigned long idx)
1007{
1008	struct page *page;
1009	struct vm_area_struct pvma;
1010
1011	/* Create a pseudo vma that just contains the policy */
1012	memset(&pvma, 0, sizeof(struct vm_area_struct));
1013	pvma.vm_end = PAGE_SIZE;
1014	pvma.vm_pgoff = idx;
1015	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1016	page = read_swap_cache_async(entry, &pvma, 0);
1017	mpol_free(pvma.vm_policy);
1018	return page;
1019}
1020
1021struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
1022			  unsigned long idx)
1023{
1024	struct shared_policy *p = &info->policy;
1025	int i, num;
1026	struct page *page;
1027	unsigned long offset;
1028
1029	num = valid_swaphandles(entry, &offset);
1030	for (i = 0; i < num; offset++, i++) {
1031		page = shmem_swapin_async(p,
1032				swp_entry(swp_type(entry), offset), idx);
1033		if (!page)
1034			break;
1035		page_cache_release(page);
1036	}
1037	lru_add_drain();	/* Push any new pages onto the LRU now */
1038	return shmem_swapin_async(p, entry, idx);
1039}
1040
1041static struct page *
1042shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1043		 unsigned long idx)
1044{
1045	struct vm_area_struct pvma;
1046	struct page *page;
1047
1048	memset(&pvma, 0, sizeof(struct vm_area_struct));
1049	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1050	pvma.vm_pgoff = idx;
1051	pvma.vm_end = PAGE_SIZE;
1052	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1053	mpol_free(pvma.vm_policy);
1054	return page;
1055}
1056#else
1057static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1058{
1059	return 1;
1060}
1061
1062static inline struct page *
1063shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1064{
1065	swapin_readahead(entry, 0, NULL);
1066	return read_swap_cache_async(entry, NULL, 0);
1067}
1068
1069static inline struct page *
1070shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1071{
1072	return alloc_page(gfp | __GFP_ZERO);
1073}
1074#endif
1075
1076/*
1077 * shmem_getpage - either get the page from swap or allocate a new one
1078 *
1079 * If we allocate a new one we do not mark it dirty. That's up to the
1080 * vm. If we swap it in we mark it dirty since we also free the swap
1081 * entry since a page cannot live in both the swap and page cache
1082 */
1083static int shmem_getpage(struct inode *inode, unsigned long idx,
1084			struct page **pagep, enum sgp_type sgp, int *type)
1085{
1086	struct address_space *mapping = inode->i_mapping;
1087	struct shmem_inode_info *info = SHMEM_I(inode);
1088	struct shmem_sb_info *sbinfo;
1089	struct page *filepage = *pagep;
1090	struct page *swappage;
1091	swp_entry_t *entry;
1092	swp_entry_t swap;
1093	int error;
1094
1095	if (idx >= SHMEM_MAX_INDEX)
1096		return -EFBIG;
1097	/*
1098	 * Normally, filepage is NULL on entry, and either found
1099	 * uptodate immediately, or allocated and zeroed, or read
1100	 * in under swappage, which is then assigned to filepage.
1101	 * But shmem_prepare_write passes in a locked filepage,
1102	 * which may be found not uptodate by other callers too,
1103	 * and may need to be copied from the swappage read in.
1104	 */
1105repeat:
1106	if (!filepage)
1107		filepage = find_lock_page(mapping, idx);
1108	if (filepage && PageUptodate(filepage))
1109		goto done;
1110	error = 0;
1111	if (sgp == SGP_QUICK)
1112		goto failed;
1113
1114	spin_lock(&info->lock);
1115	shmem_recalc_inode(inode);
1116	entry = shmem_swp_alloc(info, idx, sgp);
1117	if (IS_ERR(entry)) {
1118		spin_unlock(&info->lock);
1119		error = PTR_ERR(entry);
1120		goto failed;
1121	}
1122	swap = *entry;
1123
1124	if (swap.val) {
1125		/* Look it up and read it in.. */
1126		swappage = lookup_swap_cache(swap);
1127		if (!swappage) {
1128			shmem_swp_unmap(entry);
1129			/* here we actually do the io */
1130			if (type && *type == VM_FAULT_MINOR) {
1131				__count_vm_event(PGMAJFAULT);
1132				*type = VM_FAULT_MAJOR;
1133			}
1134			spin_unlock(&info->lock);
1135			swappage = shmem_swapin(info, swap, idx);
1136			if (!swappage) {
1137				spin_lock(&info->lock);
1138				entry = shmem_swp_alloc(info, idx, sgp);
1139				if (IS_ERR(entry))
1140					error = PTR_ERR(entry);
1141				else {
1142					if (entry->val == swap.val)
1143						error = -ENOMEM;
1144					shmem_swp_unmap(entry);
1145				}
1146				spin_unlock(&info->lock);
1147				if (error)
1148					goto failed;
1149				goto repeat;
1150			}
1151			wait_on_page_locked(swappage);
1152			page_cache_release(swappage);
1153			goto repeat;
1154		}
1155
1156		/* We have to do this with page locked to prevent races */
1157		if (TestSetPageLocked(swappage)) {
1158			shmem_swp_unmap(entry);
1159			spin_unlock(&info->lock);
1160			wait_on_page_locked(swappage);
1161			page_cache_release(swappage);
1162			goto repeat;
1163		}
1164		if (PageWriteback(swappage)) {
1165			shmem_swp_unmap(entry);
1166			spin_unlock(&info->lock);
1167			wait_on_page_writeback(swappage);
1168			unlock_page(swappage);
1169			page_cache_release(swappage);
1170			goto repeat;
1171		}
1172		if (!PageUptodate(swappage)) {
1173			shmem_swp_unmap(entry);
1174			spin_unlock(&info->lock);
1175			unlock_page(swappage);
1176			page_cache_release(swappage);
1177			error = -EIO;
1178			goto failed;
1179		}
1180
1181		if (filepage) {
1182			shmem_swp_set(info, entry, 0);
1183			shmem_swp_unmap(entry);
1184			delete_from_swap_cache(swappage);
1185			spin_unlock(&info->lock);
1186			copy_highpage(filepage, swappage);
1187			unlock_page(swappage);
1188			page_cache_release(swappage);
1189			flush_dcache_page(filepage);
1190			SetPageUptodate(filepage);
1191			set_page_dirty(filepage);
1192			swap_free(swap);
1193		} else if (!(error = move_from_swap_cache(
1194				swappage, idx, mapping))) {
1195			info->flags |= SHMEM_PAGEIN;
1196			shmem_swp_set(info, entry, 0);
1197			shmem_swp_unmap(entry);
1198			spin_unlock(&info->lock);
1199			filepage = swappage;
1200			swap_free(swap);
1201		} else {
1202			shmem_swp_unmap(entry);
1203			spin_unlock(&info->lock);
1204			unlock_page(swappage);
1205			page_cache_release(swappage);
1206			if (error == -ENOMEM) {
1207				/* let kswapd refresh zone for GFP_ATOMICs */
1208				congestion_wait(WRITE, HZ/50);
1209			}
1210			goto repeat;
1211		}
1212	} else if (sgp == SGP_READ && !filepage) {
1213		shmem_swp_unmap(entry);
1214		filepage = find_get_page(mapping, idx);
1215		if (filepage &&
1216		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1217			spin_unlock(&info->lock);
1218			wait_on_page_locked(filepage);
1219			page_cache_release(filepage);
1220			filepage = NULL;
1221			goto repeat;
1222		}
1223		spin_unlock(&info->lock);
1224	} else {
1225		shmem_swp_unmap(entry);
1226		sbinfo = SHMEM_SB(inode->i_sb);
1227		if (sbinfo->max_blocks) {
1228			spin_lock(&sbinfo->stat_lock);
1229			if (sbinfo->free_blocks == 0 ||
1230			    shmem_acct_block(info->flags)) {
1231				spin_unlock(&sbinfo->stat_lock);
1232				spin_unlock(&info->lock);
1233				error = -ENOSPC;
1234				goto failed;
1235			}
1236			sbinfo->free_blocks--;
1237			inode->i_blocks += BLOCKS_PER_PAGE;
1238			spin_unlock(&sbinfo->stat_lock);
1239		} else if (shmem_acct_block(info->flags)) {
1240			spin_unlock(&info->lock);
1241			error = -ENOSPC;
1242			goto failed;
1243		}
1244
1245		if (!filepage) {
1246			spin_unlock(&info->lock);
1247			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1248						    info,
1249						    idx);
1250			if (!filepage) {
1251				shmem_unacct_blocks(info->flags, 1);
1252				shmem_free_blocks(inode, 1);
1253				error = -ENOMEM;
1254				goto failed;
1255			}
1256
1257			spin_lock(&info->lock);
1258			entry = shmem_swp_alloc(info, idx, sgp);
1259			if (IS_ERR(entry))
1260				error = PTR_ERR(entry);
1261			else {
1262				swap = *entry;
1263				shmem_swp_unmap(entry);
1264			}
1265			if (error || swap.val || 0 != add_to_page_cache_lru(
1266					filepage, mapping, idx, GFP_ATOMIC)) {
1267				spin_unlock(&info->lock);
1268				page_cache_release(filepage);
1269				shmem_unacct_blocks(info->flags, 1);
1270				shmem_free_blocks(inode, 1);
1271				filepage = NULL;
1272				if (error)
1273					goto failed;
1274				goto repeat;
1275			}
1276			info->flags |= SHMEM_PAGEIN;
1277		}
1278
1279		info->alloced++;
1280		spin_unlock(&info->lock);
1281		flush_dcache_page(filepage);
1282		SetPageUptodate(filepage);
1283	}
1284done:
1285	if (*pagep != filepage) {
1286		unlock_page(filepage);
1287		*pagep = filepage;
1288	}
1289	return 0;
1290
1291failed:
1292	if (*pagep != filepage) {
1293		unlock_page(filepage);
1294		page_cache_release(filepage);
1295	}
1296	return error;
1297}
1298
1299static struct page *shmem_nopage(struct vm_area_struct *vma,
1300				 unsigned long address, int *type)
1301{
1302	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1303	struct page *page = NULL;
1304	unsigned long idx;
1305	int error;
1306
1307	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1308	idx += vma->vm_pgoff;
1309	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1310	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1311		return NOPAGE_SIGBUS;
1312
1313	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1314	if (error)
1315		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1316
1317	mark_page_accessed(page);
1318	return page;
1319}
1320
1321static int shmem_populate(struct vm_area_struct *vma,
1322	unsigned long addr, unsigned long len,
1323	pgprot_t prot, unsigned long pgoff, int nonblock)
1324{
1325	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1326	struct mm_struct *mm = vma->vm_mm;
1327	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1328	unsigned long size;
1329
1330	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1331	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1332		return -EINVAL;
1333
1334	while ((long) len > 0) {
1335		struct page *page = NULL;
1336		int err;
1337		/*
1338		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1339		 */
1340		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1341		if (err)
1342			return err;
1343		/* Page may still be null, but only if nonblock was set. */
1344		if (page) {
1345			mark_page_accessed(page);
1346			err = install_page(mm, vma, addr, page, prot);
1347			if (err) {
1348				page_cache_release(page);
1349				return err;
1350			}
1351		} else if (vma->vm_flags & VM_NONLINEAR) {
1352			/* No page was found just because we can't read it in
1353			 * now (being here implies nonblock != 0), but the page
1354			 * may exist, so set the PTE to fault it in later. */
1355    			err = install_file_pte(mm, vma, addr, pgoff, prot);
1356			if (err)
1357	    			return err;
1358		}
1359
1360		len -= PAGE_SIZE;
1361		addr += PAGE_SIZE;
1362		pgoff++;
1363	}
1364	return 0;
1365}
1366
1367#ifdef CONFIG_NUMA
1368int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1369{
1370	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1371	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1372}
1373
1374struct mempolicy *
1375shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1376{
1377	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1378	unsigned long idx;
1379
1380	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1381	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1382}
1383#endif
1384
1385int shmem_lock(struct file *file, int lock, struct user_struct *user)
1386{
1387	struct inode *inode = file->f_path.dentry->d_inode;
1388	struct shmem_inode_info *info = SHMEM_I(inode);
1389	int retval = -ENOMEM;
1390
1391	spin_lock(&info->lock);
1392	if (lock && !(info->flags & VM_LOCKED)) {
1393		if (!user_shm_lock(inode->i_size, user))
1394			goto out_nomem;
1395		info->flags |= VM_LOCKED;
1396	}
1397	if (!lock && (info->flags & VM_LOCKED) && user) {
1398		user_shm_unlock(inode->i_size, user);
1399		info->flags &= ~VM_LOCKED;
1400	}
1401	retval = 0;
1402out_nomem:
1403	spin_unlock(&info->lock);
1404	return retval;
1405}
1406
1407static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1408{
1409	file_accessed(file);
1410	vma->vm_ops = &shmem_vm_ops;
1411	return 0;
1412}
1413
1414static struct inode *
1415shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1416{
1417	struct inode *inode;
1418	struct shmem_inode_info *info;
1419	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1420
1421	if (sbinfo->max_inodes) {
1422		spin_lock(&sbinfo->stat_lock);
1423		if (!sbinfo->free_inodes) {
1424			spin_unlock(&sbinfo->stat_lock);
1425			return NULL;
1426		}
1427		sbinfo->free_inodes--;
1428		spin_unlock(&sbinfo->stat_lock);
1429	}
1430
1431	inode = new_inode(sb);
1432	if (inode) {
1433		inode->i_mode = mode;
1434		inode->i_uid = current->fsuid;
1435		inode->i_gid = current->fsgid;
1436		inode->i_blocks = 0;
1437		inode->i_mapping->a_ops = &shmem_aops;
1438		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1439		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1440		inode->i_generation = get_seconds();
1441		info = SHMEM_I(inode);
1442		memset(info, 0, (char *)inode - (char *)info);
1443		spin_lock_init(&info->lock);
1444		INIT_LIST_HEAD(&info->swaplist);
1445
1446		switch (mode & S_IFMT) {
1447		default:
1448			inode->i_op = &shmem_special_inode_operations;
1449			init_special_inode(inode, mode, dev);
1450			break;
1451		case S_IFREG:
1452			inode->i_op = &shmem_inode_operations;
1453			inode->i_fop = &shmem_file_operations;
1454			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1455							&sbinfo->policy_nodes);
1456			break;
1457		case S_IFDIR:
1458			inc_nlink(inode);
1459			/* Some things misbehave if size == 0 on a directory */
1460			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1461			inode->i_op = &shmem_dir_inode_operations;
1462			inode->i_fop = &simple_dir_operations;
1463			break;
1464		case S_IFLNK:
1465			/*
1466			 * Must not load anything in the rbtree,
1467			 * mpol_free_shared_policy will not be called.
1468			 */
1469			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1470						NULL);
1471			break;
1472		}
1473	} else if (sbinfo->max_inodes) {
1474		spin_lock(&sbinfo->stat_lock);
1475		sbinfo->free_inodes++;
1476		spin_unlock(&sbinfo->stat_lock);
1477	}
1478	return inode;
1479}
1480
1481#ifdef CONFIG_TMPFS
1482static const struct inode_operations shmem_symlink_inode_operations;
1483static const struct inode_operations shmem_symlink_inline_operations;
1484
1485/*
1486 * Normally tmpfs makes no use of shmem_prepare_write, but it
1487 * lets a tmpfs file be used read-write below the loop driver.
1488 */
1489static int
1490shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1491{
1492	struct inode *inode = page->mapping->host;
1493	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1494}
1495
1496static ssize_t
1497shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1498{
1499	struct inode	*inode = file->f_path.dentry->d_inode;
1500	loff_t		pos;
1501	unsigned long	written;
1502	ssize_t		err;
1503
1504	if ((ssize_t) count < 0)
1505		return -EINVAL;
1506
1507	if (!access_ok(VERIFY_READ, buf, count))
1508		return -EFAULT;
1509
1510	mutex_lock(&inode->i_mutex);
1511
1512	pos = *ppos;
1513	written = 0;
1514
1515	err = generic_write_checks(file, &pos, &count, 0);
1516	if (err || !count)
1517		goto out;
1518
1519	err = remove_suid(file->f_path.dentry);
1520	if (err)
1521		goto out;
1522
1523	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1524
1525	do {
1526		struct page *page = NULL;
1527		unsigned long bytes, index, offset;
1528		char *kaddr;
1529		int left;
1530
1531		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1532		index = pos >> PAGE_CACHE_SHIFT;
1533		bytes = PAGE_CACHE_SIZE - offset;
1534		if (bytes > count)
1535			bytes = count;
1536
1537		/*
1538		 * We don't hold page lock across copy from user -
1539		 * what would it guard against? - so no deadlock here.
1540		 * But it still may be a good idea to prefault below.
1541		 */
1542
1543		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1544		if (err)
1545			break;
1546
1547		left = bytes;
1548		if (PageHighMem(page)) {
1549			volatile unsigned char dummy;
1550			__get_user(dummy, buf);
1551			__get_user(dummy, buf + bytes - 1);
1552
1553			kaddr = kmap_atomic(page, KM_USER0);
1554			left = __copy_from_user_inatomic(kaddr + offset,
1555							buf, bytes);
1556			kunmap_atomic(kaddr, KM_USER0);
1557		}
1558		if (left) {
1559			kaddr = kmap(page);
1560			left = __copy_from_user(kaddr + offset, buf, bytes);
1561			kunmap(page);
1562		}
1563
1564		written += bytes;
1565		count -= bytes;
1566		pos += bytes;
1567		buf += bytes;
1568		if (pos > inode->i_size)
1569			i_size_write(inode, pos);
1570
1571		flush_dcache_page(page);
1572		set_page_dirty(page);
1573		mark_page_accessed(page);
1574		page_cache_release(page);
1575
1576		if (left) {
1577			pos -= left;
1578			written -= left;
1579			err = -EFAULT;
1580			break;
1581		}
1582
1583		/*
1584		 * Our dirty pages are not counted in nr_dirty,
1585		 * and we do not attempt to balance dirty pages.
1586		 */
1587
1588		cond_resched();
1589	} while (count);
1590
1591	*ppos = pos;
1592	if (written)
1593		err = written;
1594out:
1595	mutex_unlock(&inode->i_mutex);
1596	return err;
1597}
1598
1599static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1600{
1601	struct inode *inode = filp->f_path.dentry->d_inode;
1602	struct address_space *mapping = inode->i_mapping;
1603	unsigned long index, offset;
1604
1605	index = *ppos >> PAGE_CACHE_SHIFT;
1606	offset = *ppos & ~PAGE_CACHE_MASK;
1607
1608	for (;;) {
1609		struct page *page = NULL;
1610		unsigned long end_index, nr, ret;
1611		loff_t i_size = i_size_read(inode);
1612
1613		end_index = i_size >> PAGE_CACHE_SHIFT;
1614		if (index > end_index)
1615			break;
1616		if (index == end_index) {
1617			nr = i_size & ~PAGE_CACHE_MASK;
1618			if (nr <= offset)
1619				break;
1620		}
1621
1622		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1623		if (desc->error) {
1624			if (desc->error == -EINVAL)
1625				desc->error = 0;
1626			break;
1627		}
1628
1629		/*
1630		 * We must evaluate after, since reads (unlike writes)
1631		 * are called without i_mutex protection against truncate
1632		 */
1633		nr = PAGE_CACHE_SIZE;
1634		i_size = i_size_read(inode);
1635		end_index = i_size >> PAGE_CACHE_SHIFT;
1636		if (index == end_index) {
1637			nr = i_size & ~PAGE_CACHE_MASK;
1638			if (nr <= offset) {
1639				if (page)
1640					page_cache_release(page);
1641				break;
1642			}
1643		}
1644		nr -= offset;
1645
1646		if (page) {
1647			/*
1648			 * If users can be writing to this page using arbitrary
1649			 * virtual addresses, take care about potential aliasing
1650			 * before reading the page on the kernel side.
1651			 */
1652			if (mapping_writably_mapped(mapping))
1653				flush_dcache_page(page);
1654			/*
1655			 * Mark the page accessed if we read the beginning.
1656			 */
1657			if (!offset)
1658				mark_page_accessed(page);
1659		} else {
1660			page = ZERO_PAGE(0);
1661			page_cache_get(page);
1662		}
1663
1664		/*
1665		 * Ok, we have the page, and it's up-to-date, so
1666		 * now we can copy it to user space...
1667		 *
1668		 * The actor routine returns how many bytes were actually used..
1669		 * NOTE! This may not be the same as how much of a user buffer
1670		 * we filled up (we may be padding etc), so we can only update
1671		 * "pos" here (the actor routine has to update the user buffer
1672		 * pointers and the remaining count).
1673		 */
1674		ret = actor(desc, page, offset, nr);
1675		offset += ret;
1676		index += offset >> PAGE_CACHE_SHIFT;
1677		offset &= ~PAGE_CACHE_MASK;
1678
1679		page_cache_release(page);
1680		if (ret != nr || !desc->count)
1681			break;
1682
1683		cond_resched();
1684	}
1685
1686	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1687	file_accessed(filp);
1688}
1689
1690static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1691{
1692	read_descriptor_t desc;
1693
1694	if ((ssize_t) count < 0)
1695		return -EINVAL;
1696	if (!access_ok(VERIFY_WRITE, buf, count))
1697		return -EFAULT;
1698	if (!count)
1699		return 0;
1700
1701	desc.written = 0;
1702	desc.count = count;
1703	desc.arg.buf = buf;
1704	desc.error = 0;
1705
1706	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1707	if (desc.written)
1708		return desc.written;
1709	return desc.error;
1710}
1711
1712static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1713			 size_t count, read_actor_t actor, void *target)
1714{
1715	read_descriptor_t desc;
1716
1717	if (!count)
1718		return 0;
1719
1720	desc.written = 0;
1721	desc.count = count;
1722	desc.arg.data = target;
1723	desc.error = 0;
1724
1725	do_shmem_file_read(in_file, ppos, &desc, actor);
1726	if (desc.written)
1727		return desc.written;
1728	return desc.error;
1729}
1730
1731static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1732{
1733	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1734
1735	buf->f_type = TMPFS_MAGIC;
1736	buf->f_bsize = PAGE_CACHE_SIZE;
1737	buf->f_namelen = NAME_MAX;
1738	spin_lock(&sbinfo->stat_lock);
1739	if (sbinfo->max_blocks) {
1740		buf->f_blocks = sbinfo->max_blocks;
1741		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1742	}
1743	if (sbinfo->max_inodes) {
1744		buf->f_files = sbinfo->max_inodes;
1745		buf->f_ffree = sbinfo->free_inodes;
1746	}
1747	/* else leave those fields 0 like simple_statfs */
1748	spin_unlock(&sbinfo->stat_lock);
1749	return 0;
1750}
1751
1752/*
1753 * File creation. Allocate an inode, and we're done..
1754 */
1755static int
1756shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1757{
1758	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1759	int error = -ENOSPC;
1760
1761	if (inode) {
1762		error = security_inode_init_security(inode, dir, NULL, NULL,
1763						     NULL);
1764		if (error) {
1765			if (error != -EOPNOTSUPP) {
1766				iput(inode);
1767				return error;
1768			}
1769		}
1770		error = shmem_acl_init(inode, dir);
1771		if (error) {
1772			iput(inode);
1773			return error;
1774		}
1775		if (dir->i_mode & S_ISGID) {
1776			inode->i_gid = dir->i_gid;
1777			if (S_ISDIR(mode))
1778				inode->i_mode |= S_ISGID;
1779		}
1780		dir->i_size += BOGO_DIRENT_SIZE;
1781		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1782		d_instantiate(dentry, inode);
1783		dget(dentry); /* Extra count - pin the dentry in core */
1784	}
1785	return error;
1786}
1787
1788static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1789{
1790	int error;
1791
1792	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1793		return error;
1794	inc_nlink(dir);
1795	return 0;
1796}
1797
1798static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1799		struct nameidata *nd)
1800{
1801	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1802}
1803
1804/*
1805 * Link a file..
1806 */
1807static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1808{
1809	struct inode *inode = old_dentry->d_inode;
1810	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1811
1812	/*
1813	 * No ordinary (disk based) filesystem counts links as inodes;
1814	 * but each new link needs a new dentry, pinning lowmem, and
1815	 * tmpfs dentries cannot be pruned until they are unlinked.
1816	 */
1817	if (sbinfo->max_inodes) {
1818		spin_lock(&sbinfo->stat_lock);
1819		if (!sbinfo->free_inodes) {
1820			spin_unlock(&sbinfo->stat_lock);
1821			return -ENOSPC;
1822		}
1823		sbinfo->free_inodes--;
1824		spin_unlock(&sbinfo->stat_lock);
1825	}
1826
1827	dir->i_size += BOGO_DIRENT_SIZE;
1828	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1829	inc_nlink(inode);
1830	atomic_inc(&inode->i_count);	/* New dentry reference */
1831	dget(dentry);		/* Extra pinning count for the created dentry */
1832	d_instantiate(dentry, inode);
1833	return 0;
1834}
1835
1836static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1837{
1838	struct inode *inode = dentry->d_inode;
1839
1840	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1841		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1842		if (sbinfo->max_inodes) {
1843			spin_lock(&sbinfo->stat_lock);
1844			sbinfo->free_inodes++;
1845			spin_unlock(&sbinfo->stat_lock);
1846		}
1847	}
1848
1849	dir->i_size -= BOGO_DIRENT_SIZE;
1850	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1851	drop_nlink(inode);
1852	dput(dentry);	/* Undo the count from "create" - this does all the work */
1853	return 0;
1854}
1855
1856static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1857{
1858	if (!simple_empty(dentry))
1859		return -ENOTEMPTY;
1860
1861	drop_nlink(dentry->d_inode);
1862	drop_nlink(dir);
1863	return shmem_unlink(dir, dentry);
1864}
1865
1866/*
1867 * The VFS layer already does all the dentry stuff for rename,
1868 * we just have to decrement the usage count for the target if
1869 * it exists so that the VFS layer correctly free's it when it
1870 * gets overwritten.
1871 */
1872static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1873{
1874	struct inode *inode = old_dentry->d_inode;
1875	int they_are_dirs = S_ISDIR(inode->i_mode);
1876
1877	if (!simple_empty(new_dentry))
1878		return -ENOTEMPTY;
1879
1880	if (new_dentry->d_inode) {
1881		(void) shmem_unlink(new_dir, new_dentry);
1882		if (they_are_dirs)
1883			drop_nlink(old_dir);
1884	} else if (they_are_dirs) {
1885		drop_nlink(old_dir);
1886		inc_nlink(new_dir);
1887	}
1888
1889	old_dir->i_size -= BOGO_DIRENT_SIZE;
1890	new_dir->i_size += BOGO_DIRENT_SIZE;
1891	old_dir->i_ctime = old_dir->i_mtime =
1892	new_dir->i_ctime = new_dir->i_mtime =
1893	inode->i_ctime = CURRENT_TIME;
1894	return 0;
1895}
1896
1897static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1898{
1899	int error;
1900	int len;
1901	struct inode *inode;
1902	struct page *page = NULL;
1903	char *kaddr;
1904	struct shmem_inode_info *info;
1905
1906	len = strlen(symname) + 1;
1907	if (len > PAGE_CACHE_SIZE)
1908		return -ENAMETOOLONG;
1909
1910	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1911	if (!inode)
1912		return -ENOSPC;
1913
1914	error = security_inode_init_security(inode, dir, NULL, NULL,
1915					     NULL);
1916	if (error) {
1917		if (error != -EOPNOTSUPP) {
1918			iput(inode);
1919			return error;
1920		}
1921		error = 0;
1922	}
1923
1924	info = SHMEM_I(inode);
1925	inode->i_size = len-1;
1926	if (len <= (char *)inode - (char *)info) {
1927		/* do it inline */
1928		memcpy(info, symname, len);
1929		inode->i_op = &shmem_symlink_inline_operations;
1930	} else {
1931		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1932		if (error) {
1933			iput(inode);
1934			return error;
1935		}
1936		inode->i_op = &shmem_symlink_inode_operations;
1937		kaddr = kmap_atomic(page, KM_USER0);
1938		memcpy(kaddr, symname, len);
1939		kunmap_atomic(kaddr, KM_USER0);
1940		set_page_dirty(page);
1941		page_cache_release(page);
1942	}
1943	if (dir->i_mode & S_ISGID)
1944		inode->i_gid = dir->i_gid;
1945	dir->i_size += BOGO_DIRENT_SIZE;
1946	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1947	d_instantiate(dentry, inode);
1948	dget(dentry);
1949	return 0;
1950}
1951
1952static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1953{
1954	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1955	return NULL;
1956}
1957
1958static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1959{
1960	struct page *page = NULL;
1961	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1962	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1963	return page;
1964}
1965
1966static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1967{
1968	if (!IS_ERR(nd_get_link(nd))) {
1969		struct page *page = cookie;
1970		kunmap(page);
1971		mark_page_accessed(page);
1972		page_cache_release(page);
1973	}
1974}
1975
1976static const struct inode_operations shmem_symlink_inline_operations = {
1977	.readlink	= generic_readlink,
1978	.follow_link	= shmem_follow_link_inline,
1979};
1980
1981static const struct inode_operations shmem_symlink_inode_operations = {
1982	.truncate	= shmem_truncate,
1983	.readlink	= generic_readlink,
1984	.follow_link	= shmem_follow_link,
1985	.put_link	= shmem_put_link,
1986};
1987
1988#ifdef CONFIG_TMPFS_POSIX_ACL
1989/**
1990 * Superblocks without xattr inode operations will get security.* xattr
1991 * support from the VFS "for free". As soon as we have any other xattrs
1992 * like ACLs, we also need to implement the security.* handlers at
1993 * filesystem level, though.
1994 */
1995
1996static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1997					size_t list_len, const char *name,
1998					size_t name_len)
1999{
2000	return security_inode_listsecurity(inode, list, list_len);
2001}
2002
2003static int shmem_xattr_security_get(struct inode *inode, const char *name,
2004				    void *buffer, size_t size)
2005{
2006	if (strcmp(name, "") == 0)
2007		return -EINVAL;
2008	return security_inode_getsecurity(inode, name, buffer, size,
2009					  -EOPNOTSUPP);
2010}
2011
2012static int shmem_xattr_security_set(struct inode *inode, const char *name,
2013				    const void *value, size_t size, int flags)
2014{
2015	if (strcmp(name, "") == 0)
2016		return -EINVAL;
2017	return security_inode_setsecurity(inode, name, value, size, flags);
2018}
2019
2020static struct xattr_handler shmem_xattr_security_handler = {
2021	.prefix = XATTR_SECURITY_PREFIX,
2022	.list   = shmem_xattr_security_list,
2023	.get    = shmem_xattr_security_get,
2024	.set    = shmem_xattr_security_set,
2025};
2026
2027static struct xattr_handler *shmem_xattr_handlers[] = {
2028	&shmem_xattr_acl_access_handler,
2029	&shmem_xattr_acl_default_handler,
2030	&shmem_xattr_security_handler,
2031	NULL
2032};
2033#endif
2034
2035static struct dentry *shmem_get_parent(struct dentry *child)
2036{
2037	return ERR_PTR(-ESTALE);
2038}
2039
2040static int shmem_match(struct inode *ino, void *vfh)
2041{
2042	__u32 *fh = vfh;
2043	__u64 inum = fh[2];
2044	inum = (inum << 32) | fh[1];
2045	return ino->i_ino == inum && fh[0] == ino->i_generation;
2046}
2047
2048static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2049{
2050	struct dentry *de = NULL;
2051	struct inode *inode;
2052	__u32 *fh = vfh;
2053	__u64 inum = fh[2];
2054	inum = (inum << 32) | fh[1];
2055
2056	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2057	if (inode) {
2058		de = d_find_alias(inode);
2059		iput(inode);
2060	}
2061
2062	return de? de: ERR_PTR(-ESTALE);
2063}
2064
2065static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2066		int len, int type,
2067		int (*acceptable)(void *context, struct dentry *de),
2068		void *context)
2069{
2070	if (len < 3)
2071		return ERR_PTR(-ESTALE);
2072
2073	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2074							context);
2075}
2076
2077static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2078				int connectable)
2079{
2080	struct inode *inode = dentry->d_inode;
2081
2082	if (*len < 3)
2083		return 255;
2084
2085	if (hlist_unhashed(&inode->i_hash)) {
2086		/* Unfortunately insert_inode_hash is not idempotent,
2087		 * so as we hash inodes here rather than at creation
2088		 * time, we need a lock to ensure we only try
2089		 * to do it once
2090		 */
2091		static DEFINE_SPINLOCK(lock);
2092		spin_lock(&lock);
2093		if (hlist_unhashed(&inode->i_hash))
2094			__insert_inode_hash(inode,
2095					    inode->i_ino + inode->i_generation);
2096		spin_unlock(&lock);
2097	}
2098
2099	fh[0] = inode->i_generation;
2100	fh[1] = inode->i_ino;
2101	fh[2] = ((__u64)inode->i_ino) >> 32;
2102
2103	*len = 3;
2104	return 1;
2105}
2106
2107static struct export_operations shmem_export_ops = {
2108	.get_parent     = shmem_get_parent,
2109	.get_dentry     = shmem_get_dentry,
2110	.encode_fh      = shmem_encode_fh,
2111	.decode_fh      = shmem_decode_fh,
2112};
2113
2114static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2115	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2116	int *policy, nodemask_t *policy_nodes)
2117{
2118	char *this_char, *value, *rest;
2119
2120	while (options != NULL) {
2121		this_char = options;
2122		for (;;) {
2123			/*
2124			 * NUL-terminate this option: unfortunately,
2125			 * mount options form a comma-separated list,
2126			 * but mpol's nodelist may also contain commas.
2127			 */
2128			options = strchr(options, ',');
2129			if (options == NULL)
2130				break;
2131			options++;
2132			if (!isdigit(*options)) {
2133				options[-1] = '\0';
2134				break;
2135			}
2136		}
2137		if (!*this_char)
2138			continue;
2139		if ((value = strchr(this_char,'=')) != NULL) {
2140			*value++ = 0;
2141		} else {
2142			printk(KERN_ERR
2143			    "tmpfs: No value for mount option '%s'\n",
2144			    this_char);
2145			return 1;
2146		}
2147
2148		if (!strcmp(this_char,"size")) {
2149			unsigned long long size;
2150			size = memparse(value,&rest);
2151			if (*rest == '%') {
2152				size <<= PAGE_SHIFT;
2153				size *= totalram_pages;
2154				do_div(size, 100);
2155				rest++;
2156			}
2157			if (*rest)
2158				goto bad_val;
2159			*blocks = size >> PAGE_CACHE_SHIFT;
2160		} else if (!strcmp(this_char,"nr_blocks")) {
2161			*blocks = memparse(value,&rest);
2162			if (*rest)
2163				goto bad_val;
2164		} else if (!strcmp(this_char,"nr_inodes")) {
2165			*inodes = memparse(value,&rest);
2166			if (*rest)
2167				goto bad_val;
2168		} else if (!strcmp(this_char,"mode")) {
2169			if (!mode)
2170				continue;
2171			*mode = simple_strtoul(value,&rest,8);
2172			if (*rest)
2173				goto bad_val;
2174		} else if (!strcmp(this_char,"uid")) {
2175			if (!uid)
2176				continue;
2177			*uid = simple_strtoul(value,&rest,0);
2178			if (*rest)
2179				goto bad_val;
2180		} else if (!strcmp(this_char,"gid")) {
2181			if (!gid)
2182				continue;
2183			*gid = simple_strtoul(value,&rest,0);
2184			if (*rest)
2185				goto bad_val;
2186		} else if (!strcmp(this_char,"mpol")) {
2187			if (shmem_parse_mpol(value,policy,policy_nodes))
2188				goto bad_val;
2189		} else {
2190			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2191			       this_char);
2192			return 1;
2193		}
2194	}
2195	return 0;
2196
2197bad_val:
2198	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2199	       value, this_char);
2200	return 1;
2201
2202}
2203
2204static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2205{
2206	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2207	unsigned long max_blocks = sbinfo->max_blocks;
2208	unsigned long max_inodes = sbinfo->max_inodes;
2209	int policy = sbinfo->policy;
2210	nodemask_t policy_nodes = sbinfo->policy_nodes;
2211	unsigned long blocks;
2212	unsigned long inodes;
2213	int error = -EINVAL;
2214
2215	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2216				&max_inodes, &policy, &policy_nodes))
2217		return error;
2218
2219	spin_lock(&sbinfo->stat_lock);
2220	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2221	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2222	if (max_blocks < blocks)
2223		goto out;
2224	if (max_inodes < inodes)
2225		goto out;
2226	/*
2227	 * Those tests also disallow limited->unlimited while any are in
2228	 * use, so i_blocks will always be zero when max_blocks is zero;
2229	 * but we must separately disallow unlimited->limited, because
2230	 * in that case we have no record of how much is already in use.
2231	 */
2232	if (max_blocks && !sbinfo->max_blocks)
2233		goto out;
2234	if (max_inodes && !sbinfo->max_inodes)
2235		goto out;
2236
2237	error = 0;
2238	sbinfo->max_blocks  = max_blocks;
2239	sbinfo->free_blocks = max_blocks - blocks;
2240	sbinfo->max_inodes  = max_inodes;
2241	sbinfo->free_inodes = max_inodes - inodes;
2242	sbinfo->policy = policy;
2243	sbinfo->policy_nodes = policy_nodes;
2244out:
2245	spin_unlock(&sbinfo->stat_lock);
2246	return error;
2247}
2248#endif
2249
2250static void shmem_put_super(struct super_block *sb)
2251{
2252	kfree(sb->s_fs_info);
2253	sb->s_fs_info = NULL;
2254}
2255
2256static int shmem_fill_super(struct super_block *sb,
2257			    void *data, int silent)
2258{
2259	struct inode *inode;
2260	struct dentry *root;
2261	int mode   = S_IRWXUGO | S_ISVTX;
2262	uid_t uid = current->fsuid;
2263	gid_t gid = current->fsgid;
2264	int err = -ENOMEM;
2265	struct shmem_sb_info *sbinfo;
2266	unsigned long blocks = 0;
2267	unsigned long inodes = 0;
2268	int policy = MPOL_DEFAULT;
2269	nodemask_t policy_nodes = node_online_map;
2270
2271#ifdef CONFIG_TMPFS
2272	/*
2273	 * Per default we only allow half of the physical ram per
2274	 * tmpfs instance, limiting inodes to one per page of lowmem;
2275	 * but the internal instance is left unlimited.
2276	 */
2277	if (!(sb->s_flags & MS_NOUSER)) {
2278		blocks = totalram_pages / 2;
2279		inodes = totalram_pages - totalhigh_pages;
2280		if (inodes > blocks)
2281			inodes = blocks;
2282		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2283					&inodes, &policy, &policy_nodes))
2284			return -EINVAL;
2285	}
2286	sb->s_export_op = &shmem_export_ops;
2287#else
2288	sb->s_flags |= MS_NOUSER;
2289#endif
2290
2291	/* Round up to L1_CACHE_BYTES to resist false sharing */
2292	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2293				L1_CACHE_BYTES), GFP_KERNEL);
2294	if (!sbinfo)
2295		return -ENOMEM;
2296
2297	spin_lock_init(&sbinfo->stat_lock);
2298	sbinfo->max_blocks = blocks;
2299	sbinfo->free_blocks = blocks;
2300	sbinfo->max_inodes = inodes;
2301	sbinfo->free_inodes = inodes;
2302	sbinfo->policy = policy;
2303	sbinfo->policy_nodes = policy_nodes;
2304
2305	sb->s_fs_info = sbinfo;
2306	sb->s_maxbytes = SHMEM_MAX_BYTES;
2307	sb->s_blocksize = PAGE_CACHE_SIZE;
2308	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2309	sb->s_magic = TMPFS_MAGIC;
2310	sb->s_op = &shmem_ops;
2311	sb->s_time_gran = 1;
2312#ifdef CONFIG_TMPFS_POSIX_ACL
2313	sb->s_xattr = shmem_xattr_handlers;
2314	sb->s_flags |= MS_POSIXACL;
2315#endif
2316
2317	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2318	if (!inode)
2319		goto failed;
2320	inode->i_uid = uid;
2321	inode->i_gid = gid;
2322	root = d_alloc_root(inode);
2323	if (!root)
2324		goto failed_iput;
2325	sb->s_root = root;
2326	return 0;
2327
2328failed_iput:
2329	iput(inode);
2330failed:
2331	shmem_put_super(sb);
2332	return err;
2333}
2334
2335static struct kmem_cache *shmem_inode_cachep;
2336
2337static struct inode *shmem_alloc_inode(struct super_block *sb)
2338{
2339	struct shmem_inode_info *p;
2340	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2341	if (!p)
2342		return NULL;
2343	return &p->vfs_inode;
2344}
2345
2346static void shmem_destroy_inode(struct inode *inode)
2347{
2348	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2349		/* only struct inode is valid if it's an inline symlink */
2350		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2351	}
2352	shmem_acl_destroy_inode(inode);
2353	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2354}
2355
2356static void init_once(void *foo, struct kmem_cache *cachep,
2357		      unsigned long flags)
2358{
2359	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2360
2361	inode_init_once(&p->vfs_inode);
2362#ifdef CONFIG_TMPFS_POSIX_ACL
2363	p->i_acl = NULL;
2364	p->i_default_acl = NULL;
2365#endif
2366}
2367
2368static int init_inodecache(void)
2369{
2370	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2371				sizeof(struct shmem_inode_info),
2372				0, 0, init_once, NULL);
2373	if (shmem_inode_cachep == NULL)
2374		return -ENOMEM;
2375	return 0;
2376}
2377
2378static void destroy_inodecache(void)
2379{
2380	kmem_cache_destroy(shmem_inode_cachep);
2381}
2382
2383static const struct address_space_operations shmem_aops = {
2384	.writepage	= shmem_writepage,
2385	.set_page_dirty	= __set_page_dirty_no_writeback,
2386#ifdef CONFIG_TMPFS
2387	.prepare_write	= shmem_prepare_write,
2388	.commit_write	= simple_commit_write,
2389#endif
2390	.migratepage	= migrate_page,
2391};
2392
2393static const struct file_operations shmem_file_operations = {
2394	.mmap		= shmem_mmap,
2395#ifdef CONFIG_TMPFS
2396	.llseek		= generic_file_llseek,
2397	.read		= shmem_file_read,
2398	.write		= shmem_file_write,
2399	.fsync		= simple_sync_file,
2400	.sendfile	= shmem_file_sendfile,
2401#endif
2402};
2403
2404static const struct inode_operations shmem_inode_operations = {
2405	.truncate	= shmem_truncate,
2406	.setattr	= shmem_notify_change,
2407	.truncate_range	= shmem_truncate_range,
2408#ifdef CONFIG_TMPFS_POSIX_ACL
2409	.setxattr	= generic_setxattr,
2410	.getxattr	= generic_getxattr,
2411	.listxattr	= generic_listxattr,
2412	.removexattr	= generic_removexattr,
2413	.permission	= shmem_permission,
2414#endif
2415
2416};
2417
2418static const struct inode_operations shmem_dir_inode_operations = {
2419#ifdef CONFIG_TMPFS
2420	.create		= shmem_create,
2421	.lookup		= simple_lookup,
2422	.link		= shmem_link,
2423	.unlink		= shmem_unlink,
2424	.symlink	= shmem_symlink,
2425	.mkdir		= shmem_mkdir,
2426	.rmdir		= shmem_rmdir,
2427	.mknod		= shmem_mknod,
2428	.rename		= shmem_rename,
2429#endif
2430#ifdef CONFIG_TMPFS_POSIX_ACL
2431	.setattr	= shmem_notify_change,
2432	.setxattr	= generic_setxattr,
2433	.getxattr	= generic_getxattr,
2434	.listxattr	= generic_listxattr,
2435	.removexattr	= generic_removexattr,
2436	.permission	= shmem_permission,
2437#endif
2438};
2439
2440static const struct inode_operations shmem_special_inode_operations = {
2441#ifdef CONFIG_TMPFS_POSIX_ACL
2442	.setattr	= shmem_notify_change,
2443	.setxattr	= generic_setxattr,
2444	.getxattr	= generic_getxattr,
2445	.listxattr	= generic_listxattr,
2446	.removexattr	= generic_removexattr,
2447	.permission	= shmem_permission,
2448#endif
2449};
2450
2451static const struct super_operations shmem_ops = {
2452	.alloc_inode	= shmem_alloc_inode,
2453	.destroy_inode	= shmem_destroy_inode,
2454#ifdef CONFIG_TMPFS
2455	.statfs		= shmem_statfs,
2456	.remount_fs	= shmem_remount_fs,
2457#endif
2458	.delete_inode	= shmem_delete_inode,
2459	.drop_inode	= generic_delete_inode,
2460	.put_super	= shmem_put_super,
2461};
2462
2463static struct vm_operations_struct shmem_vm_ops = {
2464	.nopage		= shmem_nopage,
2465	.populate	= shmem_populate,
2466#ifdef CONFIG_NUMA
2467	.set_policy     = shmem_set_policy,
2468	.get_policy     = shmem_get_policy,
2469#endif
2470};
2471
2472
2473static int shmem_get_sb(struct file_system_type *fs_type,
2474	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2475{
2476	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2477}
2478
2479static struct file_system_type tmpfs_fs_type = {
2480	.owner		= THIS_MODULE,
2481	.name		= "tmpfs",
2482	.get_sb		= shmem_get_sb,
2483	.kill_sb	= kill_litter_super,
2484};
2485static struct vfsmount *shm_mnt;
2486
2487static int __init init_tmpfs(void)
2488{
2489	int error;
2490
2491	error = init_inodecache();
2492	if (error)
2493		goto out3;
2494
2495	error = register_filesystem(&tmpfs_fs_type);
2496	if (error) {
2497		printk(KERN_ERR "Could not register tmpfs\n");
2498		goto out2;
2499	}
2500
2501	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2502				tmpfs_fs_type.name, NULL);
2503	if (IS_ERR(shm_mnt)) {
2504		error = PTR_ERR(shm_mnt);
2505		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2506		goto out1;
2507	}
2508	return 0;
2509
2510out1:
2511	unregister_filesystem(&tmpfs_fs_type);
2512out2:
2513	destroy_inodecache();
2514out3:
2515	shm_mnt = ERR_PTR(error);
2516	return error;
2517}
2518module_init(init_tmpfs)
2519
2520/*
2521 * shmem_file_setup - get an unlinked file living in tmpfs
2522 *
2523 * @name: name for dentry (to be seen in /proc/<pid>/maps
2524 * @size: size to be set for the file
2525 *
2526 */
2527struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2528{
2529	int error;
2530	struct file *file;
2531	struct inode *inode;
2532	struct dentry *dentry, *root;
2533	struct qstr this;
2534
2535	if (IS_ERR(shm_mnt))
2536		return (void *)shm_mnt;
2537
2538	if (size < 0 || size > SHMEM_MAX_BYTES)
2539		return ERR_PTR(-EINVAL);
2540
2541	if (shmem_acct_size(flags, size))
2542		return ERR_PTR(-ENOMEM);
2543
2544	error = -ENOMEM;
2545	this.name = name;
2546	this.len = strlen(name);
2547	this.hash = 0; /* will go */
2548	root = shm_mnt->mnt_root;
2549	dentry = d_alloc(root, &this);
2550	if (!dentry)
2551		goto put_memory;
2552
2553	error = -ENFILE;
2554	file = get_empty_filp();
2555	if (!file)
2556		goto put_dentry;
2557
2558	error = -ENOSPC;
2559	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2560	if (!inode)
2561		goto close_file;
2562
2563	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2564	d_instantiate(dentry, inode);
2565	inode->i_size = size;
2566	inode->i_nlink = 0;	/* It is unlinked */
2567	file->f_path.mnt = mntget(shm_mnt);
2568	file->f_path.dentry = dentry;
2569	file->f_mapping = inode->i_mapping;
2570	file->f_op = &shmem_file_operations;
2571	file->f_mode = FMODE_WRITE | FMODE_READ;
2572	return file;
2573
2574close_file:
2575	put_filp(file);
2576put_dentry:
2577	dput(dentry);
2578put_memory:
2579	shmem_unacct_size(flags, size);
2580	return ERR_PTR(error);
2581}
2582
2583/*
2584 * shmem_zero_setup - setup a shared anonymous mapping
2585 *
2586 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2587 */
2588int shmem_zero_setup(struct vm_area_struct *vma)
2589{
2590	struct file *file;
2591	loff_t size = vma->vm_end - vma->vm_start;
2592
2593	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2594	if (IS_ERR(file))
2595		return PTR_ERR(file);
2596
2597	if (vma->vm_file)
2598		fput(vma->vm_file);
2599	vma->vm_file = file;
2600	vma->vm_ops = &shmem_vm_ops;
2601	return 0;
2602}
2603