shmem.c revision a786c06d9f2719203c00b3d97b21f9a96980d0b5
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/aio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69
70#include <asm/uaccess.h>
71#include <asm/pgtable.h>
72
73#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
82/*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87struct shmem_falloc {
88	pgoff_t start;		/* start of range currently being fallocated */
89	pgoff_t next;		/* the next page offset to be fallocated */
90	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
91	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
92};
93
94/* Flag allocation requirements to shmem_getpage */
95enum sgp_type {
96	SGP_READ,	/* don't exceed i_size, don't allocate page */
97	SGP_CACHE,	/* don't exceed i_size, may allocate page */
98	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
99	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
100	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
101};
102
103#ifdef CONFIG_TMPFS
104static unsigned long shmem_default_max_blocks(void)
105{
106	return totalram_pages / 2;
107}
108
109static unsigned long shmem_default_max_inodes(void)
110{
111	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112}
113#endif
114
115static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117				struct shmem_inode_info *info, pgoff_t index);
118static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122	struct page **pagep, enum sgp_type sgp, int *fault_type)
123{
124	return shmem_getpage_gfp(inode, index, pagep, sgp,
125			mapping_gfp_mask(inode->i_mapping), fault_type);
126}
127
128static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129{
130	return sb->s_fs_info;
131}
132
133/*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139static inline int shmem_acct_size(unsigned long flags, loff_t size)
140{
141	return (flags & VM_NORESERVE) ?
142		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143}
144
145static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146{
147	if (!(flags & VM_NORESERVE))
148		vm_unacct_memory(VM_ACCT(size));
149}
150
151/*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157static inline int shmem_acct_block(unsigned long flags)
158{
159	return (flags & VM_NORESERVE) ?
160		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161}
162
163static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164{
165	if (flags & VM_NORESERVE)
166		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167}
168
169static const struct super_operations shmem_ops;
170static const struct address_space_operations shmem_aops;
171static const struct file_operations shmem_file_operations;
172static const struct inode_operations shmem_inode_operations;
173static const struct inode_operations shmem_dir_inode_operations;
174static const struct inode_operations shmem_special_inode_operations;
175static const struct vm_operations_struct shmem_vm_ops;
176
177static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
178	.ra_pages	= 0,	/* No readahead */
179	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180};
181
182static LIST_HEAD(shmem_swaplist);
183static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185static int shmem_reserve_inode(struct super_block *sb)
186{
187	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188	if (sbinfo->max_inodes) {
189		spin_lock(&sbinfo->stat_lock);
190		if (!sbinfo->free_inodes) {
191			spin_unlock(&sbinfo->stat_lock);
192			return -ENOSPC;
193		}
194		sbinfo->free_inodes--;
195		spin_unlock(&sbinfo->stat_lock);
196	}
197	return 0;
198}
199
200static void shmem_free_inode(struct super_block *sb)
201{
202	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203	if (sbinfo->max_inodes) {
204		spin_lock(&sbinfo->stat_lock);
205		sbinfo->free_inodes++;
206		spin_unlock(&sbinfo->stat_lock);
207	}
208}
209
210/**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222static void shmem_recalc_inode(struct inode *inode)
223{
224	struct shmem_inode_info *info = SHMEM_I(inode);
225	long freed;
226
227	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228	if (freed > 0) {
229		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230		if (sbinfo->max_blocks)
231			percpu_counter_add(&sbinfo->used_blocks, -freed);
232		info->alloced -= freed;
233		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234		shmem_unacct_blocks(info->flags, freed);
235	}
236}
237
238/*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241static int shmem_radix_tree_replace(struct address_space *mapping,
242			pgoff_t index, void *expected, void *replacement)
243{
244	void **pslot;
245	void *item = NULL;
246
247	VM_BUG_ON(!expected);
248	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
249	if (pslot)
250		item = radix_tree_deref_slot_protected(pslot,
251							&mapping->tree_lock);
252	if (item != expected)
253		return -ENOENT;
254	if (replacement)
255		radix_tree_replace_slot(pslot, replacement);
256	else
257		radix_tree_delete(&mapping->page_tree, index);
258	return 0;
259}
260
261/*
262 * Sometimes, before we decide whether to proceed or to fail, we must check
263 * that an entry was not already brought back from swap by a racing thread.
264 *
265 * Checking page is not enough: by the time a SwapCache page is locked, it
266 * might be reused, and again be SwapCache, using the same swap as before.
267 */
268static bool shmem_confirm_swap(struct address_space *mapping,
269			       pgoff_t index, swp_entry_t swap)
270{
271	void *item;
272
273	rcu_read_lock();
274	item = radix_tree_lookup(&mapping->page_tree, index);
275	rcu_read_unlock();
276	return item == swp_to_radix_entry(swap);
277}
278
279/*
280 * Like add_to_page_cache_locked, but error if expected item has gone.
281 */
282static int shmem_add_to_page_cache(struct page *page,
283				   struct address_space *mapping,
284				   pgoff_t index, gfp_t gfp, void *expected)
285{
286	int error;
287
288	VM_BUG_ON_PAGE(!PageLocked(page), page);
289	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
290
291	page_cache_get(page);
292	page->mapping = mapping;
293	page->index = index;
294
295	spin_lock_irq(&mapping->tree_lock);
296	if (!expected)
297		error = radix_tree_insert(&mapping->page_tree, index, page);
298	else
299		error = shmem_radix_tree_replace(mapping, index, expected,
300								 page);
301	if (!error) {
302		mapping->nrpages++;
303		__inc_zone_page_state(page, NR_FILE_PAGES);
304		__inc_zone_page_state(page, NR_SHMEM);
305		spin_unlock_irq(&mapping->tree_lock);
306	} else {
307		page->mapping = NULL;
308		spin_unlock_irq(&mapping->tree_lock);
309		page_cache_release(page);
310	}
311	return error;
312}
313
314/*
315 * Like delete_from_page_cache, but substitutes swap for page.
316 */
317static void shmem_delete_from_page_cache(struct page *page, void *radswap)
318{
319	struct address_space *mapping = page->mapping;
320	int error;
321
322	spin_lock_irq(&mapping->tree_lock);
323	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
324	page->mapping = NULL;
325	mapping->nrpages--;
326	__dec_zone_page_state(page, NR_FILE_PAGES);
327	__dec_zone_page_state(page, NR_SHMEM);
328	spin_unlock_irq(&mapping->tree_lock);
329	page_cache_release(page);
330	BUG_ON(error);
331}
332
333/*
334 * Like find_get_pages, but collecting swap entries as well as pages.
335 */
336static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
337					pgoff_t start, unsigned int nr_pages,
338					struct page **pages, pgoff_t *indices)
339{
340	void **slot;
341	unsigned int ret = 0;
342	struct radix_tree_iter iter;
343
344	if (!nr_pages)
345		return 0;
346
347	rcu_read_lock();
348restart:
349	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
350		struct page *page;
351repeat:
352		page = radix_tree_deref_slot(slot);
353		if (unlikely(!page))
354			continue;
355		if (radix_tree_exception(page)) {
356			if (radix_tree_deref_retry(page))
357				goto restart;
358			/*
359			 * Otherwise, we must be storing a swap entry
360			 * here as an exceptional entry: so return it
361			 * without attempting to raise page count.
362			 */
363			goto export;
364		}
365		if (!page_cache_get_speculative(page))
366			goto repeat;
367
368		/* Has the page moved? */
369		if (unlikely(page != *slot)) {
370			page_cache_release(page);
371			goto repeat;
372		}
373export:
374		indices[ret] = iter.index;
375		pages[ret] = page;
376		if (++ret == nr_pages)
377			break;
378	}
379	rcu_read_unlock();
380	return ret;
381}
382
383/*
384 * Remove swap entry from radix tree, free the swap and its page cache.
385 */
386static int shmem_free_swap(struct address_space *mapping,
387			   pgoff_t index, void *radswap)
388{
389	int error;
390
391	spin_lock_irq(&mapping->tree_lock);
392	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
393	spin_unlock_irq(&mapping->tree_lock);
394	if (!error)
395		free_swap_and_cache(radix_to_swp_entry(radswap));
396	return error;
397}
398
399/*
400 * Pagevec may contain swap entries, so shuffle up pages before releasing.
401 */
402static void shmem_deswap_pagevec(struct pagevec *pvec)
403{
404	int i, j;
405
406	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
407		struct page *page = pvec->pages[i];
408		if (!radix_tree_exceptional_entry(page))
409			pvec->pages[j++] = page;
410	}
411	pvec->nr = j;
412}
413
414/*
415 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416 */
417void shmem_unlock_mapping(struct address_space *mapping)
418{
419	struct pagevec pvec;
420	pgoff_t indices[PAGEVEC_SIZE];
421	pgoff_t index = 0;
422
423	pagevec_init(&pvec, 0);
424	/*
425	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426	 */
427	while (!mapping_unevictable(mapping)) {
428		/*
429		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
430		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431		 */
432		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
433					PAGEVEC_SIZE, pvec.pages, indices);
434		if (!pvec.nr)
435			break;
436		index = indices[pvec.nr - 1] + 1;
437		shmem_deswap_pagevec(&pvec);
438		check_move_unevictable_pages(pvec.pages, pvec.nr);
439		pagevec_release(&pvec);
440		cond_resched();
441	}
442}
443
444/*
445 * Remove range of pages and swap entries from radix tree, and free them.
446 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447 */
448static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
449								 bool unfalloc)
450{
451	struct address_space *mapping = inode->i_mapping;
452	struct shmem_inode_info *info = SHMEM_I(inode);
453	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
454	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
455	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
456	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
457	struct pagevec pvec;
458	pgoff_t indices[PAGEVEC_SIZE];
459	long nr_swaps_freed = 0;
460	pgoff_t index;
461	int i;
462
463	if (lend == -1)
464		end = -1;	/* unsigned, so actually very big */
465
466	pagevec_init(&pvec, 0);
467	index = start;
468	while (index < end) {
469		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
470				min(end - index, (pgoff_t)PAGEVEC_SIZE),
471							pvec.pages, indices);
472		if (!pvec.nr)
473			break;
474		mem_cgroup_uncharge_start();
475		for (i = 0; i < pagevec_count(&pvec); i++) {
476			struct page *page = pvec.pages[i];
477
478			index = indices[i];
479			if (index >= end)
480				break;
481
482			if (radix_tree_exceptional_entry(page)) {
483				if (unfalloc)
484					continue;
485				nr_swaps_freed += !shmem_free_swap(mapping,
486								index, page);
487				continue;
488			}
489
490			if (!trylock_page(page))
491				continue;
492			if (!unfalloc || !PageUptodate(page)) {
493				if (page->mapping == mapping) {
494					VM_BUG_ON_PAGE(PageWriteback(page), page);
495					truncate_inode_page(mapping, page);
496				}
497			}
498			unlock_page(page);
499		}
500		shmem_deswap_pagevec(&pvec);
501		pagevec_release(&pvec);
502		mem_cgroup_uncharge_end();
503		cond_resched();
504		index++;
505	}
506
507	if (partial_start) {
508		struct page *page = NULL;
509		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
510		if (page) {
511			unsigned int top = PAGE_CACHE_SIZE;
512			if (start > end) {
513				top = partial_end;
514				partial_end = 0;
515			}
516			zero_user_segment(page, partial_start, top);
517			set_page_dirty(page);
518			unlock_page(page);
519			page_cache_release(page);
520		}
521	}
522	if (partial_end) {
523		struct page *page = NULL;
524		shmem_getpage(inode, end, &page, SGP_READ, NULL);
525		if (page) {
526			zero_user_segment(page, 0, partial_end);
527			set_page_dirty(page);
528			unlock_page(page);
529			page_cache_release(page);
530		}
531	}
532	if (start >= end)
533		return;
534
535	index = start;
536	for ( ; ; ) {
537		cond_resched();
538		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
539				min(end - index, (pgoff_t)PAGEVEC_SIZE),
540							pvec.pages, indices);
541		if (!pvec.nr) {
542			if (index == start || unfalloc)
543				break;
544			index = start;
545			continue;
546		}
547		if ((index == start || unfalloc) && indices[0] >= end) {
548			shmem_deswap_pagevec(&pvec);
549			pagevec_release(&pvec);
550			break;
551		}
552		mem_cgroup_uncharge_start();
553		for (i = 0; i < pagevec_count(&pvec); i++) {
554			struct page *page = pvec.pages[i];
555
556			index = indices[i];
557			if (index >= end)
558				break;
559
560			if (radix_tree_exceptional_entry(page)) {
561				if (unfalloc)
562					continue;
563				nr_swaps_freed += !shmem_free_swap(mapping,
564								index, page);
565				continue;
566			}
567
568			lock_page(page);
569			if (!unfalloc || !PageUptodate(page)) {
570				if (page->mapping == mapping) {
571					VM_BUG_ON_PAGE(PageWriteback(page), page);
572					truncate_inode_page(mapping, page);
573				}
574			}
575			unlock_page(page);
576		}
577		shmem_deswap_pagevec(&pvec);
578		pagevec_release(&pvec);
579		mem_cgroup_uncharge_end();
580		index++;
581	}
582
583	spin_lock(&info->lock);
584	info->swapped -= nr_swaps_freed;
585	shmem_recalc_inode(inode);
586	spin_unlock(&info->lock);
587}
588
589void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
590{
591	shmem_undo_range(inode, lstart, lend, false);
592	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
593}
594EXPORT_SYMBOL_GPL(shmem_truncate_range);
595
596static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
597{
598	struct inode *inode = dentry->d_inode;
599	int error;
600
601	error = inode_change_ok(inode, attr);
602	if (error)
603		return error;
604
605	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
606		loff_t oldsize = inode->i_size;
607		loff_t newsize = attr->ia_size;
608
609		if (newsize != oldsize) {
610			i_size_write(inode, newsize);
611			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
612		}
613		if (newsize < oldsize) {
614			loff_t holebegin = round_up(newsize, PAGE_SIZE);
615			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616			shmem_truncate_range(inode, newsize, (loff_t)-1);
617			/* unmap again to remove racily COWed private pages */
618			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
619		}
620	}
621
622	setattr_copy(inode, attr);
623	if (attr->ia_valid & ATTR_MODE)
624		error = posix_acl_chmod(inode, inode->i_mode);
625	return error;
626}
627
628static void shmem_evict_inode(struct inode *inode)
629{
630	struct shmem_inode_info *info = SHMEM_I(inode);
631
632	if (inode->i_mapping->a_ops == &shmem_aops) {
633		shmem_unacct_size(info->flags, inode->i_size);
634		inode->i_size = 0;
635		shmem_truncate_range(inode, 0, (loff_t)-1);
636		if (!list_empty(&info->swaplist)) {
637			mutex_lock(&shmem_swaplist_mutex);
638			list_del_init(&info->swaplist);
639			mutex_unlock(&shmem_swaplist_mutex);
640		}
641	} else
642		kfree(info->symlink);
643
644	simple_xattrs_free(&info->xattrs);
645	WARN_ON(inode->i_blocks);
646	shmem_free_inode(inode->i_sb);
647	clear_inode(inode);
648}
649
650/*
651 * If swap found in inode, free it and move page from swapcache to filecache.
652 */
653static int shmem_unuse_inode(struct shmem_inode_info *info,
654			     swp_entry_t swap, struct page **pagep)
655{
656	struct address_space *mapping = info->vfs_inode.i_mapping;
657	void *radswap;
658	pgoff_t index;
659	gfp_t gfp;
660	int error = 0;
661
662	radswap = swp_to_radix_entry(swap);
663	index = radix_tree_locate_item(&mapping->page_tree, radswap);
664	if (index == -1)
665		return 0;
666
667	/*
668	 * Move _head_ to start search for next from here.
669	 * But be careful: shmem_evict_inode checks list_empty without taking
670	 * mutex, and there's an instant in list_move_tail when info->swaplist
671	 * would appear empty, if it were the only one on shmem_swaplist.
672	 */
673	if (shmem_swaplist.next != &info->swaplist)
674		list_move_tail(&shmem_swaplist, &info->swaplist);
675
676	gfp = mapping_gfp_mask(mapping);
677	if (shmem_should_replace_page(*pagep, gfp)) {
678		mutex_unlock(&shmem_swaplist_mutex);
679		error = shmem_replace_page(pagep, gfp, info, index);
680		mutex_lock(&shmem_swaplist_mutex);
681		/*
682		 * We needed to drop mutex to make that restrictive page
683		 * allocation, but the inode might have been freed while we
684		 * dropped it: although a racing shmem_evict_inode() cannot
685		 * complete without emptying the radix_tree, our page lock
686		 * on this swapcache page is not enough to prevent that -
687		 * free_swap_and_cache() of our swap entry will only
688		 * trylock_page(), removing swap from radix_tree whatever.
689		 *
690		 * We must not proceed to shmem_add_to_page_cache() if the
691		 * inode has been freed, but of course we cannot rely on
692		 * inode or mapping or info to check that.  However, we can
693		 * safely check if our swap entry is still in use (and here
694		 * it can't have got reused for another page): if it's still
695		 * in use, then the inode cannot have been freed yet, and we
696		 * can safely proceed (if it's no longer in use, that tells
697		 * nothing about the inode, but we don't need to unuse swap).
698		 */
699		if (!page_swapcount(*pagep))
700			error = -ENOENT;
701	}
702
703	/*
704	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
705	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
706	 * beneath us (pagelock doesn't help until the page is in pagecache).
707	 */
708	if (!error)
709		error = shmem_add_to_page_cache(*pagep, mapping, index,
710						GFP_NOWAIT, radswap);
711	if (error != -ENOMEM) {
712		/*
713		 * Truncation and eviction use free_swap_and_cache(), which
714		 * only does trylock page: if we raced, best clean up here.
715		 */
716		delete_from_swap_cache(*pagep);
717		set_page_dirty(*pagep);
718		if (!error) {
719			spin_lock(&info->lock);
720			info->swapped--;
721			spin_unlock(&info->lock);
722			swap_free(swap);
723		}
724		error = 1;	/* not an error, but entry was found */
725	}
726	return error;
727}
728
729/*
730 * Search through swapped inodes to find and replace swap by page.
731 */
732int shmem_unuse(swp_entry_t swap, struct page *page)
733{
734	struct list_head *this, *next;
735	struct shmem_inode_info *info;
736	int found = 0;
737	int error = 0;
738
739	/*
740	 * There's a faint possibility that swap page was replaced before
741	 * caller locked it: caller will come back later with the right page.
742	 */
743	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
744		goto out;
745
746	/*
747	 * Charge page using GFP_KERNEL while we can wait, before taking
748	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
749	 * Charged back to the user (not to caller) when swap account is used.
750	 */
751	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
752	if (error)
753		goto out;
754	/* No radix_tree_preload: swap entry keeps a place for page in tree */
755
756	mutex_lock(&shmem_swaplist_mutex);
757	list_for_each_safe(this, next, &shmem_swaplist) {
758		info = list_entry(this, struct shmem_inode_info, swaplist);
759		if (info->swapped)
760			found = shmem_unuse_inode(info, swap, &page);
761		else
762			list_del_init(&info->swaplist);
763		cond_resched();
764		if (found)
765			break;
766	}
767	mutex_unlock(&shmem_swaplist_mutex);
768
769	if (found < 0)
770		error = found;
771out:
772	unlock_page(page);
773	page_cache_release(page);
774	return error;
775}
776
777/*
778 * Move the page from the page cache to the swap cache.
779 */
780static int shmem_writepage(struct page *page, struct writeback_control *wbc)
781{
782	struct shmem_inode_info *info;
783	struct address_space *mapping;
784	struct inode *inode;
785	swp_entry_t swap;
786	pgoff_t index;
787
788	BUG_ON(!PageLocked(page));
789	mapping = page->mapping;
790	index = page->index;
791	inode = mapping->host;
792	info = SHMEM_I(inode);
793	if (info->flags & VM_LOCKED)
794		goto redirty;
795	if (!total_swap_pages)
796		goto redirty;
797
798	/*
799	 * shmem_backing_dev_info's capabilities prevent regular writeback or
800	 * sync from ever calling shmem_writepage; but a stacking filesystem
801	 * might use ->writepage of its underlying filesystem, in which case
802	 * tmpfs should write out to swap only in response to memory pressure,
803	 * and not for the writeback threads or sync.
804	 */
805	if (!wbc->for_reclaim) {
806		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
807		goto redirty;
808	}
809
810	/*
811	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
812	 * value into swapfile.c, the only way we can correctly account for a
813	 * fallocated page arriving here is now to initialize it and write it.
814	 *
815	 * That's okay for a page already fallocated earlier, but if we have
816	 * not yet completed the fallocation, then (a) we want to keep track
817	 * of this page in case we have to undo it, and (b) it may not be a
818	 * good idea to continue anyway, once we're pushing into swap.  So
819	 * reactivate the page, and let shmem_fallocate() quit when too many.
820	 */
821	if (!PageUptodate(page)) {
822		if (inode->i_private) {
823			struct shmem_falloc *shmem_falloc;
824			spin_lock(&inode->i_lock);
825			shmem_falloc = inode->i_private;
826			if (shmem_falloc &&
827			    index >= shmem_falloc->start &&
828			    index < shmem_falloc->next)
829				shmem_falloc->nr_unswapped++;
830			else
831				shmem_falloc = NULL;
832			spin_unlock(&inode->i_lock);
833			if (shmem_falloc)
834				goto redirty;
835		}
836		clear_highpage(page);
837		flush_dcache_page(page);
838		SetPageUptodate(page);
839	}
840
841	swap = get_swap_page();
842	if (!swap.val)
843		goto redirty;
844
845	/*
846	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
847	 * if it's not already there.  Do it now before the page is
848	 * moved to swap cache, when its pagelock no longer protects
849	 * the inode from eviction.  But don't unlock the mutex until
850	 * we've incremented swapped, because shmem_unuse_inode() will
851	 * prune a !swapped inode from the swaplist under this mutex.
852	 */
853	mutex_lock(&shmem_swaplist_mutex);
854	if (list_empty(&info->swaplist))
855		list_add_tail(&info->swaplist, &shmem_swaplist);
856
857	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
858		swap_shmem_alloc(swap);
859		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
860
861		spin_lock(&info->lock);
862		info->swapped++;
863		shmem_recalc_inode(inode);
864		spin_unlock(&info->lock);
865
866		mutex_unlock(&shmem_swaplist_mutex);
867		BUG_ON(page_mapped(page));
868		swap_writepage(page, wbc);
869		return 0;
870	}
871
872	mutex_unlock(&shmem_swaplist_mutex);
873	swapcache_free(swap, NULL);
874redirty:
875	set_page_dirty(page);
876	if (wbc->for_reclaim)
877		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
878	unlock_page(page);
879	return 0;
880}
881
882#ifdef CONFIG_NUMA
883#ifdef CONFIG_TMPFS
884static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
885{
886	char buffer[64];
887
888	if (!mpol || mpol->mode == MPOL_DEFAULT)
889		return;		/* show nothing */
890
891	mpol_to_str(buffer, sizeof(buffer), mpol);
892
893	seq_printf(seq, ",mpol=%s", buffer);
894}
895
896static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
897{
898	struct mempolicy *mpol = NULL;
899	if (sbinfo->mpol) {
900		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
901		mpol = sbinfo->mpol;
902		mpol_get(mpol);
903		spin_unlock(&sbinfo->stat_lock);
904	}
905	return mpol;
906}
907#endif /* CONFIG_TMPFS */
908
909static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
910			struct shmem_inode_info *info, pgoff_t index)
911{
912	struct vm_area_struct pvma;
913	struct page *page;
914
915	/* Create a pseudo vma that just contains the policy */
916	pvma.vm_start = 0;
917	/* Bias interleave by inode number to distribute better across nodes */
918	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
919	pvma.vm_ops = NULL;
920	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
921
922	page = swapin_readahead(swap, gfp, &pvma, 0);
923
924	/* Drop reference taken by mpol_shared_policy_lookup() */
925	mpol_cond_put(pvma.vm_policy);
926
927	return page;
928}
929
930static struct page *shmem_alloc_page(gfp_t gfp,
931			struct shmem_inode_info *info, pgoff_t index)
932{
933	struct vm_area_struct pvma;
934	struct page *page;
935
936	/* Create a pseudo vma that just contains the policy */
937	pvma.vm_start = 0;
938	/* Bias interleave by inode number to distribute better across nodes */
939	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
940	pvma.vm_ops = NULL;
941	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
942
943	page = alloc_page_vma(gfp, &pvma, 0);
944
945	/* Drop reference taken by mpol_shared_policy_lookup() */
946	mpol_cond_put(pvma.vm_policy);
947
948	return page;
949}
950#else /* !CONFIG_NUMA */
951#ifdef CONFIG_TMPFS
952static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
953{
954}
955#endif /* CONFIG_TMPFS */
956
957static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
958			struct shmem_inode_info *info, pgoff_t index)
959{
960	return swapin_readahead(swap, gfp, NULL, 0);
961}
962
963static inline struct page *shmem_alloc_page(gfp_t gfp,
964			struct shmem_inode_info *info, pgoff_t index)
965{
966	return alloc_page(gfp);
967}
968#endif /* CONFIG_NUMA */
969
970#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
971static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
972{
973	return NULL;
974}
975#endif
976
977/*
978 * When a page is moved from swapcache to shmem filecache (either by the
979 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
980 * shmem_unuse_inode()), it may have been read in earlier from swap, in
981 * ignorance of the mapping it belongs to.  If that mapping has special
982 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
983 * we may need to copy to a suitable page before moving to filecache.
984 *
985 * In a future release, this may well be extended to respect cpuset and
986 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
987 * but for now it is a simple matter of zone.
988 */
989static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
990{
991	return page_zonenum(page) > gfp_zone(gfp);
992}
993
994static int shmem_replace_page(struct page **pagep, gfp_t gfp,
995				struct shmem_inode_info *info, pgoff_t index)
996{
997	struct page *oldpage, *newpage;
998	struct address_space *swap_mapping;
999	pgoff_t swap_index;
1000	int error;
1001
1002	oldpage = *pagep;
1003	swap_index = page_private(oldpage);
1004	swap_mapping = page_mapping(oldpage);
1005
1006	/*
1007	 * We have arrived here because our zones are constrained, so don't
1008	 * limit chance of success by further cpuset and node constraints.
1009	 */
1010	gfp &= ~GFP_CONSTRAINT_MASK;
1011	newpage = shmem_alloc_page(gfp, info, index);
1012	if (!newpage)
1013		return -ENOMEM;
1014
1015	page_cache_get(newpage);
1016	copy_highpage(newpage, oldpage);
1017	flush_dcache_page(newpage);
1018
1019	__set_page_locked(newpage);
1020	SetPageUptodate(newpage);
1021	SetPageSwapBacked(newpage);
1022	set_page_private(newpage, swap_index);
1023	SetPageSwapCache(newpage);
1024
1025	/*
1026	 * Our caller will very soon move newpage out of swapcache, but it's
1027	 * a nice clean interface for us to replace oldpage by newpage there.
1028	 */
1029	spin_lock_irq(&swap_mapping->tree_lock);
1030	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1031								   newpage);
1032	if (!error) {
1033		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1034		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1035	}
1036	spin_unlock_irq(&swap_mapping->tree_lock);
1037
1038	if (unlikely(error)) {
1039		/*
1040		 * Is this possible?  I think not, now that our callers check
1041		 * both PageSwapCache and page_private after getting page lock;
1042		 * but be defensive.  Reverse old to newpage for clear and free.
1043		 */
1044		oldpage = newpage;
1045	} else {
1046		mem_cgroup_replace_page_cache(oldpage, newpage);
1047		lru_cache_add_anon(newpage);
1048		*pagep = newpage;
1049	}
1050
1051	ClearPageSwapCache(oldpage);
1052	set_page_private(oldpage, 0);
1053
1054	unlock_page(oldpage);
1055	page_cache_release(oldpage);
1056	page_cache_release(oldpage);
1057	return error;
1058}
1059
1060/*
1061 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1062 *
1063 * If we allocate a new one we do not mark it dirty. That's up to the
1064 * vm. If we swap it in we mark it dirty since we also free the swap
1065 * entry since a page cannot live in both the swap and page cache
1066 */
1067static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1068	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1069{
1070	struct address_space *mapping = inode->i_mapping;
1071	struct shmem_inode_info *info;
1072	struct shmem_sb_info *sbinfo;
1073	struct page *page;
1074	swp_entry_t swap;
1075	int error;
1076	int once = 0;
1077	int alloced = 0;
1078
1079	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1080		return -EFBIG;
1081repeat:
1082	swap.val = 0;
1083	page = find_lock_page(mapping, index);
1084	if (radix_tree_exceptional_entry(page)) {
1085		swap = radix_to_swp_entry(page);
1086		page = NULL;
1087	}
1088
1089	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1090	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1091		error = -EINVAL;
1092		goto failed;
1093	}
1094
1095	/* fallocated page? */
1096	if (page && !PageUptodate(page)) {
1097		if (sgp != SGP_READ)
1098			goto clear;
1099		unlock_page(page);
1100		page_cache_release(page);
1101		page = NULL;
1102	}
1103	if (page || (sgp == SGP_READ && !swap.val)) {
1104		*pagep = page;
1105		return 0;
1106	}
1107
1108	/*
1109	 * Fast cache lookup did not find it:
1110	 * bring it back from swap or allocate.
1111	 */
1112	info = SHMEM_I(inode);
1113	sbinfo = SHMEM_SB(inode->i_sb);
1114
1115	if (swap.val) {
1116		/* Look it up and read it in.. */
1117		page = lookup_swap_cache(swap);
1118		if (!page) {
1119			/* here we actually do the io */
1120			if (fault_type)
1121				*fault_type |= VM_FAULT_MAJOR;
1122			page = shmem_swapin(swap, gfp, info, index);
1123			if (!page) {
1124				error = -ENOMEM;
1125				goto failed;
1126			}
1127		}
1128
1129		/* We have to do this with page locked to prevent races */
1130		lock_page(page);
1131		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1132		    !shmem_confirm_swap(mapping, index, swap)) {
1133			error = -EEXIST;	/* try again */
1134			goto unlock;
1135		}
1136		if (!PageUptodate(page)) {
1137			error = -EIO;
1138			goto failed;
1139		}
1140		wait_on_page_writeback(page);
1141
1142		if (shmem_should_replace_page(page, gfp)) {
1143			error = shmem_replace_page(&page, gfp, info, index);
1144			if (error)
1145				goto failed;
1146		}
1147
1148		error = mem_cgroup_cache_charge(page, current->mm,
1149						gfp & GFP_RECLAIM_MASK);
1150		if (!error) {
1151			error = shmem_add_to_page_cache(page, mapping, index,
1152						gfp, swp_to_radix_entry(swap));
1153			/*
1154			 * We already confirmed swap under page lock, and make
1155			 * no memory allocation here, so usually no possibility
1156			 * of error; but free_swap_and_cache() only trylocks a
1157			 * page, so it is just possible that the entry has been
1158			 * truncated or holepunched since swap was confirmed.
1159			 * shmem_undo_range() will have done some of the
1160			 * unaccounting, now delete_from_swap_cache() will do
1161			 * the rest (including mem_cgroup_uncharge_swapcache).
1162			 * Reset swap.val? No, leave it so "failed" goes back to
1163			 * "repeat": reading a hole and writing should succeed.
1164			 */
1165			if (error)
1166				delete_from_swap_cache(page);
1167		}
1168		if (error)
1169			goto failed;
1170
1171		spin_lock(&info->lock);
1172		info->swapped--;
1173		shmem_recalc_inode(inode);
1174		spin_unlock(&info->lock);
1175
1176		delete_from_swap_cache(page);
1177		set_page_dirty(page);
1178		swap_free(swap);
1179
1180	} else {
1181		if (shmem_acct_block(info->flags)) {
1182			error = -ENOSPC;
1183			goto failed;
1184		}
1185		if (sbinfo->max_blocks) {
1186			if (percpu_counter_compare(&sbinfo->used_blocks,
1187						sbinfo->max_blocks) >= 0) {
1188				error = -ENOSPC;
1189				goto unacct;
1190			}
1191			percpu_counter_inc(&sbinfo->used_blocks);
1192		}
1193
1194		page = shmem_alloc_page(gfp, info, index);
1195		if (!page) {
1196			error = -ENOMEM;
1197			goto decused;
1198		}
1199
1200		SetPageSwapBacked(page);
1201		__set_page_locked(page);
1202		error = mem_cgroup_cache_charge(page, current->mm,
1203						gfp & GFP_RECLAIM_MASK);
1204		if (error)
1205			goto decused;
1206		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1207		if (!error) {
1208			error = shmem_add_to_page_cache(page, mapping, index,
1209							gfp, NULL);
1210			radix_tree_preload_end();
1211		}
1212		if (error) {
1213			mem_cgroup_uncharge_cache_page(page);
1214			goto decused;
1215		}
1216		lru_cache_add_anon(page);
1217
1218		spin_lock(&info->lock);
1219		info->alloced++;
1220		inode->i_blocks += BLOCKS_PER_PAGE;
1221		shmem_recalc_inode(inode);
1222		spin_unlock(&info->lock);
1223		alloced = true;
1224
1225		/*
1226		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1227		 */
1228		if (sgp == SGP_FALLOC)
1229			sgp = SGP_WRITE;
1230clear:
1231		/*
1232		 * Let SGP_WRITE caller clear ends if write does not fill page;
1233		 * but SGP_FALLOC on a page fallocated earlier must initialize
1234		 * it now, lest undo on failure cancel our earlier guarantee.
1235		 */
1236		if (sgp != SGP_WRITE) {
1237			clear_highpage(page);
1238			flush_dcache_page(page);
1239			SetPageUptodate(page);
1240		}
1241		if (sgp == SGP_DIRTY)
1242			set_page_dirty(page);
1243	}
1244
1245	/* Perhaps the file has been truncated since we checked */
1246	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1247	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1248		error = -EINVAL;
1249		if (alloced)
1250			goto trunc;
1251		else
1252			goto failed;
1253	}
1254	*pagep = page;
1255	return 0;
1256
1257	/*
1258	 * Error recovery.
1259	 */
1260trunc:
1261	info = SHMEM_I(inode);
1262	ClearPageDirty(page);
1263	delete_from_page_cache(page);
1264	spin_lock(&info->lock);
1265	info->alloced--;
1266	inode->i_blocks -= BLOCKS_PER_PAGE;
1267	spin_unlock(&info->lock);
1268decused:
1269	sbinfo = SHMEM_SB(inode->i_sb);
1270	if (sbinfo->max_blocks)
1271		percpu_counter_add(&sbinfo->used_blocks, -1);
1272unacct:
1273	shmem_unacct_blocks(info->flags, 1);
1274failed:
1275	if (swap.val && error != -EINVAL &&
1276	    !shmem_confirm_swap(mapping, index, swap))
1277		error = -EEXIST;
1278unlock:
1279	if (page) {
1280		unlock_page(page);
1281		page_cache_release(page);
1282	}
1283	if (error == -ENOSPC && !once++) {
1284		info = SHMEM_I(inode);
1285		spin_lock(&info->lock);
1286		shmem_recalc_inode(inode);
1287		spin_unlock(&info->lock);
1288		goto repeat;
1289	}
1290	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1291		goto repeat;
1292	return error;
1293}
1294
1295static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1296{
1297	struct inode *inode = file_inode(vma->vm_file);
1298	int error;
1299	int ret = VM_FAULT_LOCKED;
1300
1301	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1302	if (error)
1303		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1304
1305	if (ret & VM_FAULT_MAJOR) {
1306		count_vm_event(PGMAJFAULT);
1307		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1308	}
1309	return ret;
1310}
1311
1312#ifdef CONFIG_NUMA
1313static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1314{
1315	struct inode *inode = file_inode(vma->vm_file);
1316	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1317}
1318
1319static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1320					  unsigned long addr)
1321{
1322	struct inode *inode = file_inode(vma->vm_file);
1323	pgoff_t index;
1324
1325	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1326	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1327}
1328#endif
1329
1330int shmem_lock(struct file *file, int lock, struct user_struct *user)
1331{
1332	struct inode *inode = file_inode(file);
1333	struct shmem_inode_info *info = SHMEM_I(inode);
1334	int retval = -ENOMEM;
1335
1336	spin_lock(&info->lock);
1337	if (lock && !(info->flags & VM_LOCKED)) {
1338		if (!user_shm_lock(inode->i_size, user))
1339			goto out_nomem;
1340		info->flags |= VM_LOCKED;
1341		mapping_set_unevictable(file->f_mapping);
1342	}
1343	if (!lock && (info->flags & VM_LOCKED) && user) {
1344		user_shm_unlock(inode->i_size, user);
1345		info->flags &= ~VM_LOCKED;
1346		mapping_clear_unevictable(file->f_mapping);
1347	}
1348	retval = 0;
1349
1350out_nomem:
1351	spin_unlock(&info->lock);
1352	return retval;
1353}
1354
1355static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1356{
1357	file_accessed(file);
1358	vma->vm_ops = &shmem_vm_ops;
1359	return 0;
1360}
1361
1362static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1363				     umode_t mode, dev_t dev, unsigned long flags)
1364{
1365	struct inode *inode;
1366	struct shmem_inode_info *info;
1367	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1368
1369	if (shmem_reserve_inode(sb))
1370		return NULL;
1371
1372	inode = new_inode(sb);
1373	if (inode) {
1374		inode->i_ino = get_next_ino();
1375		inode_init_owner(inode, dir, mode);
1376		inode->i_blocks = 0;
1377		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1378		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1379		inode->i_generation = get_seconds();
1380		info = SHMEM_I(inode);
1381		memset(info, 0, (char *)inode - (char *)info);
1382		spin_lock_init(&info->lock);
1383		info->flags = flags & VM_NORESERVE;
1384		INIT_LIST_HEAD(&info->swaplist);
1385		simple_xattrs_init(&info->xattrs);
1386		cache_no_acl(inode);
1387
1388		switch (mode & S_IFMT) {
1389		default:
1390			inode->i_op = &shmem_special_inode_operations;
1391			init_special_inode(inode, mode, dev);
1392			break;
1393		case S_IFREG:
1394			inode->i_mapping->a_ops = &shmem_aops;
1395			inode->i_op = &shmem_inode_operations;
1396			inode->i_fop = &shmem_file_operations;
1397			mpol_shared_policy_init(&info->policy,
1398						 shmem_get_sbmpol(sbinfo));
1399			break;
1400		case S_IFDIR:
1401			inc_nlink(inode);
1402			/* Some things misbehave if size == 0 on a directory */
1403			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1404			inode->i_op = &shmem_dir_inode_operations;
1405			inode->i_fop = &simple_dir_operations;
1406			break;
1407		case S_IFLNK:
1408			/*
1409			 * Must not load anything in the rbtree,
1410			 * mpol_free_shared_policy will not be called.
1411			 */
1412			mpol_shared_policy_init(&info->policy, NULL);
1413			break;
1414		}
1415	} else
1416		shmem_free_inode(sb);
1417	return inode;
1418}
1419
1420#ifdef CONFIG_TMPFS
1421static const struct inode_operations shmem_symlink_inode_operations;
1422static const struct inode_operations shmem_short_symlink_operations;
1423
1424#ifdef CONFIG_TMPFS_XATTR
1425static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1426#else
1427#define shmem_initxattrs NULL
1428#endif
1429
1430static int
1431shmem_write_begin(struct file *file, struct address_space *mapping,
1432			loff_t pos, unsigned len, unsigned flags,
1433			struct page **pagep, void **fsdata)
1434{
1435	struct inode *inode = mapping->host;
1436	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1437	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1438}
1439
1440static int
1441shmem_write_end(struct file *file, struct address_space *mapping,
1442			loff_t pos, unsigned len, unsigned copied,
1443			struct page *page, void *fsdata)
1444{
1445	struct inode *inode = mapping->host;
1446
1447	if (pos + copied > inode->i_size)
1448		i_size_write(inode, pos + copied);
1449
1450	if (!PageUptodate(page)) {
1451		if (copied < PAGE_CACHE_SIZE) {
1452			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1453			zero_user_segments(page, 0, from,
1454					from + copied, PAGE_CACHE_SIZE);
1455		}
1456		SetPageUptodate(page);
1457	}
1458	set_page_dirty(page);
1459	unlock_page(page);
1460	page_cache_release(page);
1461
1462	return copied;
1463}
1464
1465static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1466		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1467{
1468	struct file *file = iocb->ki_filp;
1469	struct inode *inode = file_inode(file);
1470	struct address_space *mapping = inode->i_mapping;
1471	pgoff_t index;
1472	unsigned long offset;
1473	enum sgp_type sgp = SGP_READ;
1474	int error;
1475	ssize_t retval;
1476	size_t count;
1477	loff_t *ppos = &iocb->ki_pos;
1478	struct iov_iter iter;
1479
1480	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1481	if (retval)
1482		return retval;
1483	iov_iter_init(&iter, iov, nr_segs, count, 0);
1484
1485	/*
1486	 * Might this read be for a stacking filesystem?  Then when reading
1487	 * holes of a sparse file, we actually need to allocate those pages,
1488	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1489	 */
1490	if (segment_eq(get_fs(), KERNEL_DS))
1491		sgp = SGP_DIRTY;
1492
1493	index = *ppos >> PAGE_CACHE_SHIFT;
1494	offset = *ppos & ~PAGE_CACHE_MASK;
1495
1496	for (;;) {
1497		struct page *page = NULL;
1498		pgoff_t end_index;
1499		unsigned long nr, ret;
1500		loff_t i_size = i_size_read(inode);
1501
1502		end_index = i_size >> PAGE_CACHE_SHIFT;
1503		if (index > end_index)
1504			break;
1505		if (index == end_index) {
1506			nr = i_size & ~PAGE_CACHE_MASK;
1507			if (nr <= offset)
1508				break;
1509		}
1510
1511		error = shmem_getpage(inode, index, &page, sgp, NULL);
1512		if (error) {
1513			if (error == -EINVAL)
1514				error = 0;
1515			break;
1516		}
1517		if (page)
1518			unlock_page(page);
1519
1520		/*
1521		 * We must evaluate after, since reads (unlike writes)
1522		 * are called without i_mutex protection against truncate
1523		 */
1524		nr = PAGE_CACHE_SIZE;
1525		i_size = i_size_read(inode);
1526		end_index = i_size >> PAGE_CACHE_SHIFT;
1527		if (index == end_index) {
1528			nr = i_size & ~PAGE_CACHE_MASK;
1529			if (nr <= offset) {
1530				if (page)
1531					page_cache_release(page);
1532				break;
1533			}
1534		}
1535		nr -= offset;
1536
1537		if (page) {
1538			/*
1539			 * If users can be writing to this page using arbitrary
1540			 * virtual addresses, take care about potential aliasing
1541			 * before reading the page on the kernel side.
1542			 */
1543			if (mapping_writably_mapped(mapping))
1544				flush_dcache_page(page);
1545			/*
1546			 * Mark the page accessed if we read the beginning.
1547			 */
1548			if (!offset)
1549				mark_page_accessed(page);
1550		} else {
1551			page = ZERO_PAGE(0);
1552			page_cache_get(page);
1553		}
1554
1555		/*
1556		 * Ok, we have the page, and it's up-to-date, so
1557		 * now we can copy it to user space...
1558		 */
1559		ret = copy_page_to_iter(page, offset, nr, &iter);
1560		retval += ret;
1561		offset += ret;
1562		index += offset >> PAGE_CACHE_SHIFT;
1563		offset &= ~PAGE_CACHE_MASK;
1564
1565		page_cache_release(page);
1566		if (!iov_iter_count(&iter))
1567			break;
1568		if (ret < nr) {
1569			error = -EFAULT;
1570			break;
1571		}
1572		cond_resched();
1573	}
1574
1575	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1576	file_accessed(file);
1577	return retval ? retval : error;
1578}
1579
1580static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1581				struct pipe_inode_info *pipe, size_t len,
1582				unsigned int flags)
1583{
1584	struct address_space *mapping = in->f_mapping;
1585	struct inode *inode = mapping->host;
1586	unsigned int loff, nr_pages, req_pages;
1587	struct page *pages[PIPE_DEF_BUFFERS];
1588	struct partial_page partial[PIPE_DEF_BUFFERS];
1589	struct page *page;
1590	pgoff_t index, end_index;
1591	loff_t isize, left;
1592	int error, page_nr;
1593	struct splice_pipe_desc spd = {
1594		.pages = pages,
1595		.partial = partial,
1596		.nr_pages_max = PIPE_DEF_BUFFERS,
1597		.flags = flags,
1598		.ops = &page_cache_pipe_buf_ops,
1599		.spd_release = spd_release_page,
1600	};
1601
1602	isize = i_size_read(inode);
1603	if (unlikely(*ppos >= isize))
1604		return 0;
1605
1606	left = isize - *ppos;
1607	if (unlikely(left < len))
1608		len = left;
1609
1610	if (splice_grow_spd(pipe, &spd))
1611		return -ENOMEM;
1612
1613	index = *ppos >> PAGE_CACHE_SHIFT;
1614	loff = *ppos & ~PAGE_CACHE_MASK;
1615	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1616	nr_pages = min(req_pages, spd.nr_pages_max);
1617
1618	spd.nr_pages = find_get_pages_contig(mapping, index,
1619						nr_pages, spd.pages);
1620	index += spd.nr_pages;
1621	error = 0;
1622
1623	while (spd.nr_pages < nr_pages) {
1624		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1625		if (error)
1626			break;
1627		unlock_page(page);
1628		spd.pages[spd.nr_pages++] = page;
1629		index++;
1630	}
1631
1632	index = *ppos >> PAGE_CACHE_SHIFT;
1633	nr_pages = spd.nr_pages;
1634	spd.nr_pages = 0;
1635
1636	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1637		unsigned int this_len;
1638
1639		if (!len)
1640			break;
1641
1642		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1643		page = spd.pages[page_nr];
1644
1645		if (!PageUptodate(page) || page->mapping != mapping) {
1646			error = shmem_getpage(inode, index, &page,
1647							SGP_CACHE, NULL);
1648			if (error)
1649				break;
1650			unlock_page(page);
1651			page_cache_release(spd.pages[page_nr]);
1652			spd.pages[page_nr] = page;
1653		}
1654
1655		isize = i_size_read(inode);
1656		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1657		if (unlikely(!isize || index > end_index))
1658			break;
1659
1660		if (end_index == index) {
1661			unsigned int plen;
1662
1663			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1664			if (plen <= loff)
1665				break;
1666
1667			this_len = min(this_len, plen - loff);
1668			len = this_len;
1669		}
1670
1671		spd.partial[page_nr].offset = loff;
1672		spd.partial[page_nr].len = this_len;
1673		len -= this_len;
1674		loff = 0;
1675		spd.nr_pages++;
1676		index++;
1677	}
1678
1679	while (page_nr < nr_pages)
1680		page_cache_release(spd.pages[page_nr++]);
1681
1682	if (spd.nr_pages)
1683		error = splice_to_pipe(pipe, &spd);
1684
1685	splice_shrink_spd(&spd);
1686
1687	if (error > 0) {
1688		*ppos += error;
1689		file_accessed(in);
1690	}
1691	return error;
1692}
1693
1694/*
1695 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1696 */
1697static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1698				    pgoff_t index, pgoff_t end, int whence)
1699{
1700	struct page *page;
1701	struct pagevec pvec;
1702	pgoff_t indices[PAGEVEC_SIZE];
1703	bool done = false;
1704	int i;
1705
1706	pagevec_init(&pvec, 0);
1707	pvec.nr = 1;		/* start small: we may be there already */
1708	while (!done) {
1709		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1710					pvec.nr, pvec.pages, indices);
1711		if (!pvec.nr) {
1712			if (whence == SEEK_DATA)
1713				index = end;
1714			break;
1715		}
1716		for (i = 0; i < pvec.nr; i++, index++) {
1717			if (index < indices[i]) {
1718				if (whence == SEEK_HOLE) {
1719					done = true;
1720					break;
1721				}
1722				index = indices[i];
1723			}
1724			page = pvec.pages[i];
1725			if (page && !radix_tree_exceptional_entry(page)) {
1726				if (!PageUptodate(page))
1727					page = NULL;
1728			}
1729			if (index >= end ||
1730			    (page && whence == SEEK_DATA) ||
1731			    (!page && whence == SEEK_HOLE)) {
1732				done = true;
1733				break;
1734			}
1735		}
1736		shmem_deswap_pagevec(&pvec);
1737		pagevec_release(&pvec);
1738		pvec.nr = PAGEVEC_SIZE;
1739		cond_resched();
1740	}
1741	return index;
1742}
1743
1744static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1745{
1746	struct address_space *mapping = file->f_mapping;
1747	struct inode *inode = mapping->host;
1748	pgoff_t start, end;
1749	loff_t new_offset;
1750
1751	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1752		return generic_file_llseek_size(file, offset, whence,
1753					MAX_LFS_FILESIZE, i_size_read(inode));
1754	mutex_lock(&inode->i_mutex);
1755	/* We're holding i_mutex so we can access i_size directly */
1756
1757	if (offset < 0)
1758		offset = -EINVAL;
1759	else if (offset >= inode->i_size)
1760		offset = -ENXIO;
1761	else {
1762		start = offset >> PAGE_CACHE_SHIFT;
1763		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1764		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1765		new_offset <<= PAGE_CACHE_SHIFT;
1766		if (new_offset > offset) {
1767			if (new_offset < inode->i_size)
1768				offset = new_offset;
1769			else if (whence == SEEK_DATA)
1770				offset = -ENXIO;
1771			else
1772				offset = inode->i_size;
1773		}
1774	}
1775
1776	if (offset >= 0)
1777		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1778	mutex_unlock(&inode->i_mutex);
1779	return offset;
1780}
1781
1782static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1783							 loff_t len)
1784{
1785	struct inode *inode = file_inode(file);
1786	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1787	struct shmem_falloc shmem_falloc;
1788	pgoff_t start, index, end;
1789	int error;
1790
1791	mutex_lock(&inode->i_mutex);
1792
1793	if (mode & FALLOC_FL_PUNCH_HOLE) {
1794		struct address_space *mapping = file->f_mapping;
1795		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1796		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1797
1798		if ((u64)unmap_end > (u64)unmap_start)
1799			unmap_mapping_range(mapping, unmap_start,
1800					    1 + unmap_end - unmap_start, 0);
1801		shmem_truncate_range(inode, offset, offset + len - 1);
1802		/* No need to unmap again: hole-punching leaves COWed pages */
1803		error = 0;
1804		goto out;
1805	}
1806
1807	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1808	error = inode_newsize_ok(inode, offset + len);
1809	if (error)
1810		goto out;
1811
1812	start = offset >> PAGE_CACHE_SHIFT;
1813	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1814	/* Try to avoid a swapstorm if len is impossible to satisfy */
1815	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1816		error = -ENOSPC;
1817		goto out;
1818	}
1819
1820	shmem_falloc.start = start;
1821	shmem_falloc.next  = start;
1822	shmem_falloc.nr_falloced = 0;
1823	shmem_falloc.nr_unswapped = 0;
1824	spin_lock(&inode->i_lock);
1825	inode->i_private = &shmem_falloc;
1826	spin_unlock(&inode->i_lock);
1827
1828	for (index = start; index < end; index++) {
1829		struct page *page;
1830
1831		/*
1832		 * Good, the fallocate(2) manpage permits EINTR: we may have
1833		 * been interrupted because we are using up too much memory.
1834		 */
1835		if (signal_pending(current))
1836			error = -EINTR;
1837		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1838			error = -ENOMEM;
1839		else
1840			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1841									NULL);
1842		if (error) {
1843			/* Remove the !PageUptodate pages we added */
1844			shmem_undo_range(inode,
1845				(loff_t)start << PAGE_CACHE_SHIFT,
1846				(loff_t)index << PAGE_CACHE_SHIFT, true);
1847			goto undone;
1848		}
1849
1850		/*
1851		 * Inform shmem_writepage() how far we have reached.
1852		 * No need for lock or barrier: we have the page lock.
1853		 */
1854		shmem_falloc.next++;
1855		if (!PageUptodate(page))
1856			shmem_falloc.nr_falloced++;
1857
1858		/*
1859		 * If !PageUptodate, leave it that way so that freeable pages
1860		 * can be recognized if we need to rollback on error later.
1861		 * But set_page_dirty so that memory pressure will swap rather
1862		 * than free the pages we are allocating (and SGP_CACHE pages
1863		 * might still be clean: we now need to mark those dirty too).
1864		 */
1865		set_page_dirty(page);
1866		unlock_page(page);
1867		page_cache_release(page);
1868		cond_resched();
1869	}
1870
1871	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1872		i_size_write(inode, offset + len);
1873	inode->i_ctime = CURRENT_TIME;
1874undone:
1875	spin_lock(&inode->i_lock);
1876	inode->i_private = NULL;
1877	spin_unlock(&inode->i_lock);
1878out:
1879	mutex_unlock(&inode->i_mutex);
1880	return error;
1881}
1882
1883static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1884{
1885	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1886
1887	buf->f_type = TMPFS_MAGIC;
1888	buf->f_bsize = PAGE_CACHE_SIZE;
1889	buf->f_namelen = NAME_MAX;
1890	if (sbinfo->max_blocks) {
1891		buf->f_blocks = sbinfo->max_blocks;
1892		buf->f_bavail =
1893		buf->f_bfree  = sbinfo->max_blocks -
1894				percpu_counter_sum(&sbinfo->used_blocks);
1895	}
1896	if (sbinfo->max_inodes) {
1897		buf->f_files = sbinfo->max_inodes;
1898		buf->f_ffree = sbinfo->free_inodes;
1899	}
1900	/* else leave those fields 0 like simple_statfs */
1901	return 0;
1902}
1903
1904/*
1905 * File creation. Allocate an inode, and we're done..
1906 */
1907static int
1908shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1909{
1910	struct inode *inode;
1911	int error = -ENOSPC;
1912
1913	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1914	if (inode) {
1915		error = simple_acl_create(dir, inode);
1916		if (error)
1917			goto out_iput;
1918		error = security_inode_init_security(inode, dir,
1919						     &dentry->d_name,
1920						     shmem_initxattrs, NULL);
1921		if (error && error != -EOPNOTSUPP)
1922			goto out_iput;
1923
1924		error = 0;
1925		dir->i_size += BOGO_DIRENT_SIZE;
1926		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1927		d_instantiate(dentry, inode);
1928		dget(dentry); /* Extra count - pin the dentry in core */
1929	}
1930	return error;
1931out_iput:
1932	iput(inode);
1933	return error;
1934}
1935
1936static int
1937shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1938{
1939	struct inode *inode;
1940	int error = -ENOSPC;
1941
1942	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1943	if (inode) {
1944		error = security_inode_init_security(inode, dir,
1945						     NULL,
1946						     shmem_initxattrs, NULL);
1947		if (error && error != -EOPNOTSUPP)
1948			goto out_iput;
1949		error = simple_acl_create(dir, inode);
1950		if (error)
1951			goto out_iput;
1952		d_tmpfile(dentry, inode);
1953	}
1954	return error;
1955out_iput:
1956	iput(inode);
1957	return error;
1958}
1959
1960static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1961{
1962	int error;
1963
1964	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1965		return error;
1966	inc_nlink(dir);
1967	return 0;
1968}
1969
1970static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1971		bool excl)
1972{
1973	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1974}
1975
1976/*
1977 * Link a file..
1978 */
1979static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1980{
1981	struct inode *inode = old_dentry->d_inode;
1982	int ret;
1983
1984	/*
1985	 * No ordinary (disk based) filesystem counts links as inodes;
1986	 * but each new link needs a new dentry, pinning lowmem, and
1987	 * tmpfs dentries cannot be pruned until they are unlinked.
1988	 */
1989	ret = shmem_reserve_inode(inode->i_sb);
1990	if (ret)
1991		goto out;
1992
1993	dir->i_size += BOGO_DIRENT_SIZE;
1994	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1995	inc_nlink(inode);
1996	ihold(inode);	/* New dentry reference */
1997	dget(dentry);		/* Extra pinning count for the created dentry */
1998	d_instantiate(dentry, inode);
1999out:
2000	return ret;
2001}
2002
2003static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2004{
2005	struct inode *inode = dentry->d_inode;
2006
2007	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2008		shmem_free_inode(inode->i_sb);
2009
2010	dir->i_size -= BOGO_DIRENT_SIZE;
2011	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2012	drop_nlink(inode);
2013	dput(dentry);	/* Undo the count from "create" - this does all the work */
2014	return 0;
2015}
2016
2017static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2018{
2019	if (!simple_empty(dentry))
2020		return -ENOTEMPTY;
2021
2022	drop_nlink(dentry->d_inode);
2023	drop_nlink(dir);
2024	return shmem_unlink(dir, dentry);
2025}
2026
2027/*
2028 * The VFS layer already does all the dentry stuff for rename,
2029 * we just have to decrement the usage count for the target if
2030 * it exists so that the VFS layer correctly free's it when it
2031 * gets overwritten.
2032 */
2033static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2034{
2035	struct inode *inode = old_dentry->d_inode;
2036	int they_are_dirs = S_ISDIR(inode->i_mode);
2037
2038	if (!simple_empty(new_dentry))
2039		return -ENOTEMPTY;
2040
2041	if (new_dentry->d_inode) {
2042		(void) shmem_unlink(new_dir, new_dentry);
2043		if (they_are_dirs)
2044			drop_nlink(old_dir);
2045	} else if (they_are_dirs) {
2046		drop_nlink(old_dir);
2047		inc_nlink(new_dir);
2048	}
2049
2050	old_dir->i_size -= BOGO_DIRENT_SIZE;
2051	new_dir->i_size += BOGO_DIRENT_SIZE;
2052	old_dir->i_ctime = old_dir->i_mtime =
2053	new_dir->i_ctime = new_dir->i_mtime =
2054	inode->i_ctime = CURRENT_TIME;
2055	return 0;
2056}
2057
2058static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2059{
2060	int error;
2061	int len;
2062	struct inode *inode;
2063	struct page *page;
2064	char *kaddr;
2065	struct shmem_inode_info *info;
2066
2067	len = strlen(symname) + 1;
2068	if (len > PAGE_CACHE_SIZE)
2069		return -ENAMETOOLONG;
2070
2071	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2072	if (!inode)
2073		return -ENOSPC;
2074
2075	error = security_inode_init_security(inode, dir, &dentry->d_name,
2076					     shmem_initxattrs, NULL);
2077	if (error) {
2078		if (error != -EOPNOTSUPP) {
2079			iput(inode);
2080			return error;
2081		}
2082		error = 0;
2083	}
2084
2085	info = SHMEM_I(inode);
2086	inode->i_size = len-1;
2087	if (len <= SHORT_SYMLINK_LEN) {
2088		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2089		if (!info->symlink) {
2090			iput(inode);
2091			return -ENOMEM;
2092		}
2093		inode->i_op = &shmem_short_symlink_operations;
2094	} else {
2095		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2096		if (error) {
2097			iput(inode);
2098			return error;
2099		}
2100		inode->i_mapping->a_ops = &shmem_aops;
2101		inode->i_op = &shmem_symlink_inode_operations;
2102		kaddr = kmap_atomic(page);
2103		memcpy(kaddr, symname, len);
2104		kunmap_atomic(kaddr);
2105		SetPageUptodate(page);
2106		set_page_dirty(page);
2107		unlock_page(page);
2108		page_cache_release(page);
2109	}
2110	dir->i_size += BOGO_DIRENT_SIZE;
2111	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2112	d_instantiate(dentry, inode);
2113	dget(dentry);
2114	return 0;
2115}
2116
2117static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2118{
2119	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2120	return NULL;
2121}
2122
2123static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2124{
2125	struct page *page = NULL;
2126	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2127	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2128	if (page)
2129		unlock_page(page);
2130	return page;
2131}
2132
2133static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2134{
2135	if (!IS_ERR(nd_get_link(nd))) {
2136		struct page *page = cookie;
2137		kunmap(page);
2138		mark_page_accessed(page);
2139		page_cache_release(page);
2140	}
2141}
2142
2143#ifdef CONFIG_TMPFS_XATTR
2144/*
2145 * Superblocks without xattr inode operations may get some security.* xattr
2146 * support from the LSM "for free". As soon as we have any other xattrs
2147 * like ACLs, we also need to implement the security.* handlers at
2148 * filesystem level, though.
2149 */
2150
2151/*
2152 * Callback for security_inode_init_security() for acquiring xattrs.
2153 */
2154static int shmem_initxattrs(struct inode *inode,
2155			    const struct xattr *xattr_array,
2156			    void *fs_info)
2157{
2158	struct shmem_inode_info *info = SHMEM_I(inode);
2159	const struct xattr *xattr;
2160	struct simple_xattr *new_xattr;
2161	size_t len;
2162
2163	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2164		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2165		if (!new_xattr)
2166			return -ENOMEM;
2167
2168		len = strlen(xattr->name) + 1;
2169		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2170					  GFP_KERNEL);
2171		if (!new_xattr->name) {
2172			kfree(new_xattr);
2173			return -ENOMEM;
2174		}
2175
2176		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2177		       XATTR_SECURITY_PREFIX_LEN);
2178		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2179		       xattr->name, len);
2180
2181		simple_xattr_list_add(&info->xattrs, new_xattr);
2182	}
2183
2184	return 0;
2185}
2186
2187static const struct xattr_handler *shmem_xattr_handlers[] = {
2188#ifdef CONFIG_TMPFS_POSIX_ACL
2189	&posix_acl_access_xattr_handler,
2190	&posix_acl_default_xattr_handler,
2191#endif
2192	NULL
2193};
2194
2195static int shmem_xattr_validate(const char *name)
2196{
2197	struct { const char *prefix; size_t len; } arr[] = {
2198		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2199		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2200	};
2201	int i;
2202
2203	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2204		size_t preflen = arr[i].len;
2205		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2206			if (!name[preflen])
2207				return -EINVAL;
2208			return 0;
2209		}
2210	}
2211	return -EOPNOTSUPP;
2212}
2213
2214static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2215			      void *buffer, size_t size)
2216{
2217	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2218	int err;
2219
2220	/*
2221	 * If this is a request for a synthetic attribute in the system.*
2222	 * namespace use the generic infrastructure to resolve a handler
2223	 * for it via sb->s_xattr.
2224	 */
2225	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2226		return generic_getxattr(dentry, name, buffer, size);
2227
2228	err = shmem_xattr_validate(name);
2229	if (err)
2230		return err;
2231
2232	return simple_xattr_get(&info->xattrs, name, buffer, size);
2233}
2234
2235static int shmem_setxattr(struct dentry *dentry, const char *name,
2236			  const void *value, size_t size, int flags)
2237{
2238	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2239	int err;
2240
2241	/*
2242	 * If this is a request for a synthetic attribute in the system.*
2243	 * namespace use the generic infrastructure to resolve a handler
2244	 * for it via sb->s_xattr.
2245	 */
2246	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2247		return generic_setxattr(dentry, name, value, size, flags);
2248
2249	err = shmem_xattr_validate(name);
2250	if (err)
2251		return err;
2252
2253	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2254}
2255
2256static int shmem_removexattr(struct dentry *dentry, const char *name)
2257{
2258	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2259	int err;
2260
2261	/*
2262	 * If this is a request for a synthetic attribute in the system.*
2263	 * namespace use the generic infrastructure to resolve a handler
2264	 * for it via sb->s_xattr.
2265	 */
2266	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2267		return generic_removexattr(dentry, name);
2268
2269	err = shmem_xattr_validate(name);
2270	if (err)
2271		return err;
2272
2273	return simple_xattr_remove(&info->xattrs, name);
2274}
2275
2276static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2277{
2278	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2279	return simple_xattr_list(&info->xattrs, buffer, size);
2280}
2281#endif /* CONFIG_TMPFS_XATTR */
2282
2283static const struct inode_operations shmem_short_symlink_operations = {
2284	.readlink	= generic_readlink,
2285	.follow_link	= shmem_follow_short_symlink,
2286#ifdef CONFIG_TMPFS_XATTR
2287	.setxattr	= shmem_setxattr,
2288	.getxattr	= shmem_getxattr,
2289	.listxattr	= shmem_listxattr,
2290	.removexattr	= shmem_removexattr,
2291#endif
2292};
2293
2294static const struct inode_operations shmem_symlink_inode_operations = {
2295	.readlink	= generic_readlink,
2296	.follow_link	= shmem_follow_link,
2297	.put_link	= shmem_put_link,
2298#ifdef CONFIG_TMPFS_XATTR
2299	.setxattr	= shmem_setxattr,
2300	.getxattr	= shmem_getxattr,
2301	.listxattr	= shmem_listxattr,
2302	.removexattr	= shmem_removexattr,
2303#endif
2304};
2305
2306static struct dentry *shmem_get_parent(struct dentry *child)
2307{
2308	return ERR_PTR(-ESTALE);
2309}
2310
2311static int shmem_match(struct inode *ino, void *vfh)
2312{
2313	__u32 *fh = vfh;
2314	__u64 inum = fh[2];
2315	inum = (inum << 32) | fh[1];
2316	return ino->i_ino == inum && fh[0] == ino->i_generation;
2317}
2318
2319static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2320		struct fid *fid, int fh_len, int fh_type)
2321{
2322	struct inode *inode;
2323	struct dentry *dentry = NULL;
2324	u64 inum;
2325
2326	if (fh_len < 3)
2327		return NULL;
2328
2329	inum = fid->raw[2];
2330	inum = (inum << 32) | fid->raw[1];
2331
2332	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2333			shmem_match, fid->raw);
2334	if (inode) {
2335		dentry = d_find_alias(inode);
2336		iput(inode);
2337	}
2338
2339	return dentry;
2340}
2341
2342static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2343				struct inode *parent)
2344{
2345	if (*len < 3) {
2346		*len = 3;
2347		return FILEID_INVALID;
2348	}
2349
2350	if (inode_unhashed(inode)) {
2351		/* Unfortunately insert_inode_hash is not idempotent,
2352		 * so as we hash inodes here rather than at creation
2353		 * time, we need a lock to ensure we only try
2354		 * to do it once
2355		 */
2356		static DEFINE_SPINLOCK(lock);
2357		spin_lock(&lock);
2358		if (inode_unhashed(inode))
2359			__insert_inode_hash(inode,
2360					    inode->i_ino + inode->i_generation);
2361		spin_unlock(&lock);
2362	}
2363
2364	fh[0] = inode->i_generation;
2365	fh[1] = inode->i_ino;
2366	fh[2] = ((__u64)inode->i_ino) >> 32;
2367
2368	*len = 3;
2369	return 1;
2370}
2371
2372static const struct export_operations shmem_export_ops = {
2373	.get_parent     = shmem_get_parent,
2374	.encode_fh      = shmem_encode_fh,
2375	.fh_to_dentry	= shmem_fh_to_dentry,
2376};
2377
2378static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2379			       bool remount)
2380{
2381	char *this_char, *value, *rest;
2382	struct mempolicy *mpol = NULL;
2383	uid_t uid;
2384	gid_t gid;
2385
2386	while (options != NULL) {
2387		this_char = options;
2388		for (;;) {
2389			/*
2390			 * NUL-terminate this option: unfortunately,
2391			 * mount options form a comma-separated list,
2392			 * but mpol's nodelist may also contain commas.
2393			 */
2394			options = strchr(options, ',');
2395			if (options == NULL)
2396				break;
2397			options++;
2398			if (!isdigit(*options)) {
2399				options[-1] = '\0';
2400				break;
2401			}
2402		}
2403		if (!*this_char)
2404			continue;
2405		if ((value = strchr(this_char,'=')) != NULL) {
2406			*value++ = 0;
2407		} else {
2408			printk(KERN_ERR
2409			    "tmpfs: No value for mount option '%s'\n",
2410			    this_char);
2411			goto error;
2412		}
2413
2414		if (!strcmp(this_char,"size")) {
2415			unsigned long long size;
2416			size = memparse(value,&rest);
2417			if (*rest == '%') {
2418				size <<= PAGE_SHIFT;
2419				size *= totalram_pages;
2420				do_div(size, 100);
2421				rest++;
2422			}
2423			if (*rest)
2424				goto bad_val;
2425			sbinfo->max_blocks =
2426				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2427		} else if (!strcmp(this_char,"nr_blocks")) {
2428			sbinfo->max_blocks = memparse(value, &rest);
2429			if (*rest)
2430				goto bad_val;
2431		} else if (!strcmp(this_char,"nr_inodes")) {
2432			sbinfo->max_inodes = memparse(value, &rest);
2433			if (*rest)
2434				goto bad_val;
2435		} else if (!strcmp(this_char,"mode")) {
2436			if (remount)
2437				continue;
2438			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2439			if (*rest)
2440				goto bad_val;
2441		} else if (!strcmp(this_char,"uid")) {
2442			if (remount)
2443				continue;
2444			uid = simple_strtoul(value, &rest, 0);
2445			if (*rest)
2446				goto bad_val;
2447			sbinfo->uid = make_kuid(current_user_ns(), uid);
2448			if (!uid_valid(sbinfo->uid))
2449				goto bad_val;
2450		} else if (!strcmp(this_char,"gid")) {
2451			if (remount)
2452				continue;
2453			gid = simple_strtoul(value, &rest, 0);
2454			if (*rest)
2455				goto bad_val;
2456			sbinfo->gid = make_kgid(current_user_ns(), gid);
2457			if (!gid_valid(sbinfo->gid))
2458				goto bad_val;
2459		} else if (!strcmp(this_char,"mpol")) {
2460			mpol_put(mpol);
2461			mpol = NULL;
2462			if (mpol_parse_str(value, &mpol))
2463				goto bad_val;
2464		} else {
2465			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2466			       this_char);
2467			goto error;
2468		}
2469	}
2470	sbinfo->mpol = mpol;
2471	return 0;
2472
2473bad_val:
2474	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2475	       value, this_char);
2476error:
2477	mpol_put(mpol);
2478	return 1;
2479
2480}
2481
2482static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2483{
2484	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2485	struct shmem_sb_info config = *sbinfo;
2486	unsigned long inodes;
2487	int error = -EINVAL;
2488
2489	config.mpol = NULL;
2490	if (shmem_parse_options(data, &config, true))
2491		return error;
2492
2493	spin_lock(&sbinfo->stat_lock);
2494	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2495	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2496		goto out;
2497	if (config.max_inodes < inodes)
2498		goto out;
2499	/*
2500	 * Those tests disallow limited->unlimited while any are in use;
2501	 * but we must separately disallow unlimited->limited, because
2502	 * in that case we have no record of how much is already in use.
2503	 */
2504	if (config.max_blocks && !sbinfo->max_blocks)
2505		goto out;
2506	if (config.max_inodes && !sbinfo->max_inodes)
2507		goto out;
2508
2509	error = 0;
2510	sbinfo->max_blocks  = config.max_blocks;
2511	sbinfo->max_inodes  = config.max_inodes;
2512	sbinfo->free_inodes = config.max_inodes - inodes;
2513
2514	/*
2515	 * Preserve previous mempolicy unless mpol remount option was specified.
2516	 */
2517	if (config.mpol) {
2518		mpol_put(sbinfo->mpol);
2519		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2520	}
2521out:
2522	spin_unlock(&sbinfo->stat_lock);
2523	return error;
2524}
2525
2526static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2527{
2528	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2529
2530	if (sbinfo->max_blocks != shmem_default_max_blocks())
2531		seq_printf(seq, ",size=%luk",
2532			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2533	if (sbinfo->max_inodes != shmem_default_max_inodes())
2534		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2535	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2536		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2537	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2538		seq_printf(seq, ",uid=%u",
2539				from_kuid_munged(&init_user_ns, sbinfo->uid));
2540	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2541		seq_printf(seq, ",gid=%u",
2542				from_kgid_munged(&init_user_ns, sbinfo->gid));
2543	shmem_show_mpol(seq, sbinfo->mpol);
2544	return 0;
2545}
2546#endif /* CONFIG_TMPFS */
2547
2548static void shmem_put_super(struct super_block *sb)
2549{
2550	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2551
2552	percpu_counter_destroy(&sbinfo->used_blocks);
2553	mpol_put(sbinfo->mpol);
2554	kfree(sbinfo);
2555	sb->s_fs_info = NULL;
2556}
2557
2558int shmem_fill_super(struct super_block *sb, void *data, int silent)
2559{
2560	struct inode *inode;
2561	struct shmem_sb_info *sbinfo;
2562	int err = -ENOMEM;
2563
2564	/* Round up to L1_CACHE_BYTES to resist false sharing */
2565	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2566				L1_CACHE_BYTES), GFP_KERNEL);
2567	if (!sbinfo)
2568		return -ENOMEM;
2569
2570	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2571	sbinfo->uid = current_fsuid();
2572	sbinfo->gid = current_fsgid();
2573	sb->s_fs_info = sbinfo;
2574
2575#ifdef CONFIG_TMPFS
2576	/*
2577	 * Per default we only allow half of the physical ram per
2578	 * tmpfs instance, limiting inodes to one per page of lowmem;
2579	 * but the internal instance is left unlimited.
2580	 */
2581	if (!(sb->s_flags & MS_KERNMOUNT)) {
2582		sbinfo->max_blocks = shmem_default_max_blocks();
2583		sbinfo->max_inodes = shmem_default_max_inodes();
2584		if (shmem_parse_options(data, sbinfo, false)) {
2585			err = -EINVAL;
2586			goto failed;
2587		}
2588	} else {
2589		sb->s_flags |= MS_NOUSER;
2590	}
2591	sb->s_export_op = &shmem_export_ops;
2592	sb->s_flags |= MS_NOSEC;
2593#else
2594	sb->s_flags |= MS_NOUSER;
2595#endif
2596
2597	spin_lock_init(&sbinfo->stat_lock);
2598	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2599		goto failed;
2600	sbinfo->free_inodes = sbinfo->max_inodes;
2601
2602	sb->s_maxbytes = MAX_LFS_FILESIZE;
2603	sb->s_blocksize = PAGE_CACHE_SIZE;
2604	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2605	sb->s_magic = TMPFS_MAGIC;
2606	sb->s_op = &shmem_ops;
2607	sb->s_time_gran = 1;
2608#ifdef CONFIG_TMPFS_XATTR
2609	sb->s_xattr = shmem_xattr_handlers;
2610#endif
2611#ifdef CONFIG_TMPFS_POSIX_ACL
2612	sb->s_flags |= MS_POSIXACL;
2613#endif
2614
2615	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2616	if (!inode)
2617		goto failed;
2618	inode->i_uid = sbinfo->uid;
2619	inode->i_gid = sbinfo->gid;
2620	sb->s_root = d_make_root(inode);
2621	if (!sb->s_root)
2622		goto failed;
2623	return 0;
2624
2625failed:
2626	shmem_put_super(sb);
2627	return err;
2628}
2629
2630static struct kmem_cache *shmem_inode_cachep;
2631
2632static struct inode *shmem_alloc_inode(struct super_block *sb)
2633{
2634	struct shmem_inode_info *info;
2635	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2636	if (!info)
2637		return NULL;
2638	return &info->vfs_inode;
2639}
2640
2641static void shmem_destroy_callback(struct rcu_head *head)
2642{
2643	struct inode *inode = container_of(head, struct inode, i_rcu);
2644	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2645}
2646
2647static void shmem_destroy_inode(struct inode *inode)
2648{
2649	if (S_ISREG(inode->i_mode))
2650		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2651	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2652}
2653
2654static void shmem_init_inode(void *foo)
2655{
2656	struct shmem_inode_info *info = foo;
2657	inode_init_once(&info->vfs_inode);
2658}
2659
2660static int shmem_init_inodecache(void)
2661{
2662	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2663				sizeof(struct shmem_inode_info),
2664				0, SLAB_PANIC, shmem_init_inode);
2665	return 0;
2666}
2667
2668static void shmem_destroy_inodecache(void)
2669{
2670	kmem_cache_destroy(shmem_inode_cachep);
2671}
2672
2673static const struct address_space_operations shmem_aops = {
2674	.writepage	= shmem_writepage,
2675	.set_page_dirty	= __set_page_dirty_no_writeback,
2676#ifdef CONFIG_TMPFS
2677	.write_begin	= shmem_write_begin,
2678	.write_end	= shmem_write_end,
2679#endif
2680	.migratepage	= migrate_page,
2681	.error_remove_page = generic_error_remove_page,
2682};
2683
2684static const struct file_operations shmem_file_operations = {
2685	.mmap		= shmem_mmap,
2686#ifdef CONFIG_TMPFS
2687	.llseek		= shmem_file_llseek,
2688	.read		= do_sync_read,
2689	.write		= do_sync_write,
2690	.aio_read	= shmem_file_aio_read,
2691	.aio_write	= generic_file_aio_write,
2692	.fsync		= noop_fsync,
2693	.splice_read	= shmem_file_splice_read,
2694	.splice_write	= generic_file_splice_write,
2695	.fallocate	= shmem_fallocate,
2696#endif
2697};
2698
2699static const struct inode_operations shmem_inode_operations = {
2700	.setattr	= shmem_setattr,
2701#ifdef CONFIG_TMPFS_XATTR
2702	.setxattr	= shmem_setxattr,
2703	.getxattr	= shmem_getxattr,
2704	.listxattr	= shmem_listxattr,
2705	.removexattr	= shmem_removexattr,
2706	.set_acl	= simple_set_acl,
2707#endif
2708};
2709
2710static const struct inode_operations shmem_dir_inode_operations = {
2711#ifdef CONFIG_TMPFS
2712	.create		= shmem_create,
2713	.lookup		= simple_lookup,
2714	.link		= shmem_link,
2715	.unlink		= shmem_unlink,
2716	.symlink	= shmem_symlink,
2717	.mkdir		= shmem_mkdir,
2718	.rmdir		= shmem_rmdir,
2719	.mknod		= shmem_mknod,
2720	.rename		= shmem_rename,
2721	.tmpfile	= shmem_tmpfile,
2722#endif
2723#ifdef CONFIG_TMPFS_XATTR
2724	.setxattr	= shmem_setxattr,
2725	.getxattr	= shmem_getxattr,
2726	.listxattr	= shmem_listxattr,
2727	.removexattr	= shmem_removexattr,
2728#endif
2729#ifdef CONFIG_TMPFS_POSIX_ACL
2730	.setattr	= shmem_setattr,
2731	.set_acl	= simple_set_acl,
2732#endif
2733};
2734
2735static const struct inode_operations shmem_special_inode_operations = {
2736#ifdef CONFIG_TMPFS_XATTR
2737	.setxattr	= shmem_setxattr,
2738	.getxattr	= shmem_getxattr,
2739	.listxattr	= shmem_listxattr,
2740	.removexattr	= shmem_removexattr,
2741#endif
2742#ifdef CONFIG_TMPFS_POSIX_ACL
2743	.setattr	= shmem_setattr,
2744	.set_acl	= simple_set_acl,
2745#endif
2746};
2747
2748static const struct super_operations shmem_ops = {
2749	.alloc_inode	= shmem_alloc_inode,
2750	.destroy_inode	= shmem_destroy_inode,
2751#ifdef CONFIG_TMPFS
2752	.statfs		= shmem_statfs,
2753	.remount_fs	= shmem_remount_fs,
2754	.show_options	= shmem_show_options,
2755#endif
2756	.evict_inode	= shmem_evict_inode,
2757	.drop_inode	= generic_delete_inode,
2758	.put_super	= shmem_put_super,
2759};
2760
2761static const struct vm_operations_struct shmem_vm_ops = {
2762	.fault		= shmem_fault,
2763#ifdef CONFIG_NUMA
2764	.set_policy     = shmem_set_policy,
2765	.get_policy     = shmem_get_policy,
2766#endif
2767	.remap_pages	= generic_file_remap_pages,
2768};
2769
2770static struct dentry *shmem_mount(struct file_system_type *fs_type,
2771	int flags, const char *dev_name, void *data)
2772{
2773	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2774}
2775
2776static struct file_system_type shmem_fs_type = {
2777	.owner		= THIS_MODULE,
2778	.name		= "tmpfs",
2779	.mount		= shmem_mount,
2780	.kill_sb	= kill_litter_super,
2781	.fs_flags	= FS_USERNS_MOUNT,
2782};
2783
2784int __init shmem_init(void)
2785{
2786	int error;
2787
2788	/* If rootfs called this, don't re-init */
2789	if (shmem_inode_cachep)
2790		return 0;
2791
2792	error = bdi_init(&shmem_backing_dev_info);
2793	if (error)
2794		goto out4;
2795
2796	error = shmem_init_inodecache();
2797	if (error)
2798		goto out3;
2799
2800	error = register_filesystem(&shmem_fs_type);
2801	if (error) {
2802		printk(KERN_ERR "Could not register tmpfs\n");
2803		goto out2;
2804	}
2805
2806	shm_mnt = kern_mount(&shmem_fs_type);
2807	if (IS_ERR(shm_mnt)) {
2808		error = PTR_ERR(shm_mnt);
2809		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2810		goto out1;
2811	}
2812	return 0;
2813
2814out1:
2815	unregister_filesystem(&shmem_fs_type);
2816out2:
2817	shmem_destroy_inodecache();
2818out3:
2819	bdi_destroy(&shmem_backing_dev_info);
2820out4:
2821	shm_mnt = ERR_PTR(error);
2822	return error;
2823}
2824
2825#else /* !CONFIG_SHMEM */
2826
2827/*
2828 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2829 *
2830 * This is intended for small system where the benefits of the full
2831 * shmem code (swap-backed and resource-limited) are outweighed by
2832 * their complexity. On systems without swap this code should be
2833 * effectively equivalent, but much lighter weight.
2834 */
2835
2836static struct file_system_type shmem_fs_type = {
2837	.name		= "tmpfs",
2838	.mount		= ramfs_mount,
2839	.kill_sb	= kill_litter_super,
2840	.fs_flags	= FS_USERNS_MOUNT,
2841};
2842
2843int __init shmem_init(void)
2844{
2845	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2846
2847	shm_mnt = kern_mount(&shmem_fs_type);
2848	BUG_ON(IS_ERR(shm_mnt));
2849
2850	return 0;
2851}
2852
2853int shmem_unuse(swp_entry_t swap, struct page *page)
2854{
2855	return 0;
2856}
2857
2858int shmem_lock(struct file *file, int lock, struct user_struct *user)
2859{
2860	return 0;
2861}
2862
2863void shmem_unlock_mapping(struct address_space *mapping)
2864{
2865}
2866
2867void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2868{
2869	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2870}
2871EXPORT_SYMBOL_GPL(shmem_truncate_range);
2872
2873#define shmem_vm_ops				generic_file_vm_ops
2874#define shmem_file_operations			ramfs_file_operations
2875#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2876#define shmem_acct_size(flags, size)		0
2877#define shmem_unacct_size(flags, size)		do {} while (0)
2878
2879#endif /* CONFIG_SHMEM */
2880
2881/* common code */
2882
2883static struct dentry_operations anon_ops = {
2884	.d_dname = simple_dname
2885};
2886
2887static struct file *__shmem_file_setup(const char *name, loff_t size,
2888				       unsigned long flags, unsigned int i_flags)
2889{
2890	struct file *res;
2891	struct inode *inode;
2892	struct path path;
2893	struct super_block *sb;
2894	struct qstr this;
2895
2896	if (IS_ERR(shm_mnt))
2897		return ERR_CAST(shm_mnt);
2898
2899	if (size < 0 || size > MAX_LFS_FILESIZE)
2900		return ERR_PTR(-EINVAL);
2901
2902	if (shmem_acct_size(flags, size))
2903		return ERR_PTR(-ENOMEM);
2904
2905	res = ERR_PTR(-ENOMEM);
2906	this.name = name;
2907	this.len = strlen(name);
2908	this.hash = 0; /* will go */
2909	sb = shm_mnt->mnt_sb;
2910	path.dentry = d_alloc_pseudo(sb, &this);
2911	if (!path.dentry)
2912		goto put_memory;
2913	d_set_d_op(path.dentry, &anon_ops);
2914	path.mnt = mntget(shm_mnt);
2915
2916	res = ERR_PTR(-ENOSPC);
2917	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2918	if (!inode)
2919		goto put_dentry;
2920
2921	inode->i_flags |= i_flags;
2922	d_instantiate(path.dentry, inode);
2923	inode->i_size = size;
2924	clear_nlink(inode);	/* It is unlinked */
2925	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2926	if (IS_ERR(res))
2927		goto put_dentry;
2928
2929	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2930		  &shmem_file_operations);
2931	if (IS_ERR(res))
2932		goto put_dentry;
2933
2934	return res;
2935
2936put_dentry:
2937	path_put(&path);
2938put_memory:
2939	shmem_unacct_size(flags, size);
2940	return res;
2941}
2942
2943/**
2944 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2945 * 	kernel internal.  There will be NO LSM permission checks against the
2946 * 	underlying inode.  So users of this interface must do LSM checks at a
2947 * 	higher layer.  The one user is the big_key implementation.  LSM checks
2948 * 	are provided at the key level rather than the inode level.
2949 * @name: name for dentry (to be seen in /proc/<pid>/maps
2950 * @size: size to be set for the file
2951 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2952 */
2953struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2954{
2955	return __shmem_file_setup(name, size, flags, S_PRIVATE);
2956}
2957
2958/**
2959 * shmem_file_setup - get an unlinked file living in tmpfs
2960 * @name: name for dentry (to be seen in /proc/<pid>/maps
2961 * @size: size to be set for the file
2962 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2963 */
2964struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2965{
2966	return __shmem_file_setup(name, size, flags, 0);
2967}
2968EXPORT_SYMBOL_GPL(shmem_file_setup);
2969
2970/**
2971 * shmem_zero_setup - setup a shared anonymous mapping
2972 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2973 */
2974int shmem_zero_setup(struct vm_area_struct *vma)
2975{
2976	struct file *file;
2977	loff_t size = vma->vm_end - vma->vm_start;
2978
2979	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2980	if (IS_ERR(file))
2981		return PTR_ERR(file);
2982
2983	if (vma->vm_file)
2984		fput(vma->vm_file);
2985	vma->vm_file = file;
2986	vma->vm_ops = &shmem_vm_ops;
2987	return 0;
2988}
2989
2990/**
2991 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2992 * @mapping:	the page's address_space
2993 * @index:	the page index
2994 * @gfp:	the page allocator flags to use if allocating
2995 *
2996 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2997 * with any new page allocations done using the specified allocation flags.
2998 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2999 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3000 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3001 *
3002 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3003 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3004 */
3005struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3006					 pgoff_t index, gfp_t gfp)
3007{
3008#ifdef CONFIG_SHMEM
3009	struct inode *inode = mapping->host;
3010	struct page *page;
3011	int error;
3012
3013	BUG_ON(mapping->a_ops != &shmem_aops);
3014	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3015	if (error)
3016		page = ERR_PTR(error);
3017	else
3018		unlock_page(page);
3019	return page;
3020#else
3021	/*
3022	 * The tiny !SHMEM case uses ramfs without swap
3023	 */
3024	return read_cache_page_gfp(mapping, index, gfp);
3025#endif
3026}
3027EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3028