shmem.c revision ae976416464b741913a13eea62eb6953ee065733
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/generic_acl.h>
31#include <linux/mm.h>
32#include <linux/mman.h>
33#include <linux/file.h>
34#include <linux/swap.h>
35#include <linux/pagemap.h>
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/backing-dev.h>
39#include <linux/shmem_fs.h>
40#include <linux/mount.h>
41#include <linux/writeback.h>
42#include <linux/vfs.h>
43#include <linux/blkdev.h>
44#include <linux/security.h>
45#include <linux/swapops.h>
46#include <linux/mempolicy.h>
47#include <linux/namei.h>
48#include <linux/ctype.h>
49#include <linux/migrate.h>
50#include <linux/highmem.h>
51#include <linux/backing-dev.h>
52
53#include <asm/uaccess.h>
54#include <asm/div64.h>
55#include <asm/pgtable.h>
56
57/* This magic number is used in glibc for posix shared memory */
58#define TMPFS_MAGIC	0x01021994
59
60#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70#define SHMEM_PAGEIN	 VM_READ
71#define SHMEM_TRUNCATE	 VM_WRITE
72
73/* Definition to limit shmem_truncate's steps between cond_rescheds */
74#define LATENCY_LIMIT	 64
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80enum sgp_type {
81	SGP_QUICK,	/* don't try more than file page cache lookup */
82	SGP_READ,	/* don't exceed i_size, don't allocate page */
83	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84	SGP_WRITE,	/* may exceed i_size, may allocate page */
85};
86
87static int shmem_getpage(struct inode *inode, unsigned long idx,
88			 struct page **pagep, enum sgp_type sgp, int *type);
89
90static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91{
92	/*
93	 * The above definition of ENTRIES_PER_PAGE, and the use of
94	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95	 * might be reconsidered if it ever diverges from PAGE_SIZE.
96	 */
97	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
98}
99
100static inline void shmem_dir_free(struct page *page)
101{
102	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
103}
104
105static struct page **shmem_dir_map(struct page *page)
106{
107	return (struct page **)kmap_atomic(page, KM_USER0);
108}
109
110static inline void shmem_dir_unmap(struct page **dir)
111{
112	kunmap_atomic(dir, KM_USER0);
113}
114
115static swp_entry_t *shmem_swp_map(struct page *page)
116{
117	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
118}
119
120static inline void shmem_swp_balance_unmap(void)
121{
122	/*
123	 * When passing a pointer to an i_direct entry, to code which
124	 * also handles indirect entries and so will shmem_swp_unmap,
125	 * we must arrange for the preempt count to remain in balance.
126	 * What kmap_atomic of a lowmem page does depends on config
127	 * and architecture, so pretend to kmap_atomic some lowmem page.
128	 */
129	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
130}
131
132static inline void shmem_swp_unmap(swp_entry_t *entry)
133{
134	kunmap_atomic(entry, KM_USER1);
135}
136
137static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
138{
139	return sb->s_fs_info;
140}
141
142/*
143 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
144 * for shared memory and for shared anonymous (/dev/zero) mappings
145 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
146 * consistent with the pre-accounting of private mappings ...
147 */
148static inline int shmem_acct_size(unsigned long flags, loff_t size)
149{
150	return (flags & VM_ACCOUNT)?
151		security_vm_enough_memory(VM_ACCT(size)): 0;
152}
153
154static inline void shmem_unacct_size(unsigned long flags, loff_t size)
155{
156	if (flags & VM_ACCOUNT)
157		vm_unacct_memory(VM_ACCT(size));
158}
159
160/*
161 * ... whereas tmpfs objects are accounted incrementally as
162 * pages are allocated, in order to allow huge sparse files.
163 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
164 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
165 */
166static inline int shmem_acct_block(unsigned long flags)
167{
168	return (flags & VM_ACCOUNT)?
169		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
170}
171
172static inline void shmem_unacct_blocks(unsigned long flags, long pages)
173{
174	if (!(flags & VM_ACCOUNT))
175		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
176}
177
178static const struct super_operations shmem_ops;
179static const struct address_space_operations shmem_aops;
180static const struct file_operations shmem_file_operations;
181static const struct inode_operations shmem_inode_operations;
182static const struct inode_operations shmem_dir_inode_operations;
183static const struct inode_operations shmem_special_inode_operations;
184static struct vm_operations_struct shmem_vm_ops;
185
186static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
187	.ra_pages	= 0,	/* No readahead */
188	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
189	.unplug_io_fn	= default_unplug_io_fn,
190};
191
192static LIST_HEAD(shmem_swaplist);
193static DEFINE_SPINLOCK(shmem_swaplist_lock);
194
195static void shmem_free_blocks(struct inode *inode, long pages)
196{
197	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
198	if (sbinfo->max_blocks) {
199		spin_lock(&sbinfo->stat_lock);
200		sbinfo->free_blocks += pages;
201		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
202		spin_unlock(&sbinfo->stat_lock);
203	}
204}
205
206/*
207 * shmem_recalc_inode - recalculate the size of an inode
208 *
209 * @inode: inode to recalc
210 *
211 * We have to calculate the free blocks since the mm can drop
212 * undirtied hole pages behind our back.
213 *
214 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
215 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
216 *
217 * It has to be called with the spinlock held.
218 */
219static void shmem_recalc_inode(struct inode *inode)
220{
221	struct shmem_inode_info *info = SHMEM_I(inode);
222	long freed;
223
224	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
225	if (freed > 0) {
226		info->alloced -= freed;
227		shmem_unacct_blocks(info->flags, freed);
228		shmem_free_blocks(inode, freed);
229	}
230}
231
232/*
233 * shmem_swp_entry - find the swap vector position in the info structure
234 *
235 * @info:  info structure for the inode
236 * @index: index of the page to find
237 * @page:  optional page to add to the structure. Has to be preset to
238 *         all zeros
239 *
240 * If there is no space allocated yet it will return NULL when
241 * page is NULL, else it will use the page for the needed block,
242 * setting it to NULL on return to indicate that it has been used.
243 *
244 * The swap vector is organized the following way:
245 *
246 * There are SHMEM_NR_DIRECT entries directly stored in the
247 * shmem_inode_info structure. So small files do not need an addional
248 * allocation.
249 *
250 * For pages with index > SHMEM_NR_DIRECT there is the pointer
251 * i_indirect which points to a page which holds in the first half
252 * doubly indirect blocks, in the second half triple indirect blocks:
253 *
254 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
255 * following layout (for SHMEM_NR_DIRECT == 16):
256 *
257 * i_indirect -> dir --> 16-19
258 * 	      |	     +-> 20-23
259 * 	      |
260 * 	      +-->dir2 --> 24-27
261 * 	      |	       +-> 28-31
262 * 	      |	       +-> 32-35
263 * 	      |	       +-> 36-39
264 * 	      |
265 * 	      +-->dir3 --> 40-43
266 * 	       	       +-> 44-47
267 * 	      	       +-> 48-51
268 * 	      	       +-> 52-55
269 */
270static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
271{
272	unsigned long offset;
273	struct page **dir;
274	struct page *subdir;
275
276	if (index < SHMEM_NR_DIRECT) {
277		shmem_swp_balance_unmap();
278		return info->i_direct+index;
279	}
280	if (!info->i_indirect) {
281		if (page) {
282			info->i_indirect = *page;
283			*page = NULL;
284		}
285		return NULL;			/* need another page */
286	}
287
288	index -= SHMEM_NR_DIRECT;
289	offset = index % ENTRIES_PER_PAGE;
290	index /= ENTRIES_PER_PAGE;
291	dir = shmem_dir_map(info->i_indirect);
292
293	if (index >= ENTRIES_PER_PAGE/2) {
294		index -= ENTRIES_PER_PAGE/2;
295		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
296		index %= ENTRIES_PER_PAGE;
297		subdir = *dir;
298		if (!subdir) {
299			if (page) {
300				*dir = *page;
301				*page = NULL;
302			}
303			shmem_dir_unmap(dir);
304			return NULL;		/* need another page */
305		}
306		shmem_dir_unmap(dir);
307		dir = shmem_dir_map(subdir);
308	}
309
310	dir += index;
311	subdir = *dir;
312	if (!subdir) {
313		if (!page || !(subdir = *page)) {
314			shmem_dir_unmap(dir);
315			return NULL;		/* need a page */
316		}
317		*dir = subdir;
318		*page = NULL;
319	}
320	shmem_dir_unmap(dir);
321	return shmem_swp_map(subdir) + offset;
322}
323
324static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
325{
326	long incdec = value? 1: -1;
327
328	entry->val = value;
329	info->swapped += incdec;
330	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
331		struct page *page = kmap_atomic_to_page(entry);
332		set_page_private(page, page_private(page) + incdec);
333	}
334}
335
336/*
337 * shmem_swp_alloc - get the position of the swap entry for the page.
338 *                   If it does not exist allocate the entry.
339 *
340 * @info:	info structure for the inode
341 * @index:	index of the page to find
342 * @sgp:	check and recheck i_size? skip allocation?
343 */
344static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
345{
346	struct inode *inode = &info->vfs_inode;
347	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
348	struct page *page = NULL;
349	swp_entry_t *entry;
350
351	if (sgp != SGP_WRITE &&
352	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
353		return ERR_PTR(-EINVAL);
354
355	while (!(entry = shmem_swp_entry(info, index, &page))) {
356		if (sgp == SGP_READ)
357			return shmem_swp_map(ZERO_PAGE(0));
358		/*
359		 * Test free_blocks against 1 not 0, since we have 1 data
360		 * page (and perhaps indirect index pages) yet to allocate:
361		 * a waste to allocate index if we cannot allocate data.
362		 */
363		if (sbinfo->max_blocks) {
364			spin_lock(&sbinfo->stat_lock);
365			if (sbinfo->free_blocks <= 1) {
366				spin_unlock(&sbinfo->stat_lock);
367				return ERR_PTR(-ENOSPC);
368			}
369			sbinfo->free_blocks--;
370			inode->i_blocks += BLOCKS_PER_PAGE;
371			spin_unlock(&sbinfo->stat_lock);
372		}
373
374		spin_unlock(&info->lock);
375		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
376		if (page)
377			set_page_private(page, 0);
378		spin_lock(&info->lock);
379
380		if (!page) {
381			shmem_free_blocks(inode, 1);
382			return ERR_PTR(-ENOMEM);
383		}
384		if (sgp != SGP_WRITE &&
385		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
386			entry = ERR_PTR(-EINVAL);
387			break;
388		}
389		if (info->next_index <= index)
390			info->next_index = index + 1;
391	}
392	if (page) {
393		/* another task gave its page, or truncated the file */
394		shmem_free_blocks(inode, 1);
395		shmem_dir_free(page);
396	}
397	if (info->next_index <= index && !IS_ERR(entry))
398		info->next_index = index + 1;
399	return entry;
400}
401
402/*
403 * shmem_free_swp - free some swap entries in a directory
404 *
405 * @dir:        pointer to the directory
406 * @edir:       pointer after last entry of the directory
407 * @punch_lock: pointer to spinlock when needed for the holepunch case
408 */
409static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
410						spinlock_t *punch_lock)
411{
412	spinlock_t *punch_unlock = NULL;
413	swp_entry_t *ptr;
414	int freed = 0;
415
416	for (ptr = dir; ptr < edir; ptr++) {
417		if (ptr->val) {
418			if (unlikely(punch_lock)) {
419				punch_unlock = punch_lock;
420				punch_lock = NULL;
421				spin_lock(punch_unlock);
422				if (!ptr->val)
423					continue;
424			}
425			free_swap_and_cache(*ptr);
426			*ptr = (swp_entry_t){0};
427			freed++;
428		}
429	}
430	if (punch_unlock)
431		spin_unlock(punch_unlock);
432	return freed;
433}
434
435static int shmem_map_and_free_swp(struct page *subdir, int offset,
436		int limit, struct page ***dir, spinlock_t *punch_lock)
437{
438	swp_entry_t *ptr;
439	int freed = 0;
440
441	ptr = shmem_swp_map(subdir);
442	for (; offset < limit; offset += LATENCY_LIMIT) {
443		int size = limit - offset;
444		if (size > LATENCY_LIMIT)
445			size = LATENCY_LIMIT;
446		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
447							punch_lock);
448		if (need_resched()) {
449			shmem_swp_unmap(ptr);
450			if (*dir) {
451				shmem_dir_unmap(*dir);
452				*dir = NULL;
453			}
454			cond_resched();
455			ptr = shmem_swp_map(subdir);
456		}
457	}
458	shmem_swp_unmap(ptr);
459	return freed;
460}
461
462static void shmem_free_pages(struct list_head *next)
463{
464	struct page *page;
465	int freed = 0;
466
467	do {
468		page = container_of(next, struct page, lru);
469		next = next->next;
470		shmem_dir_free(page);
471		freed++;
472		if (freed >= LATENCY_LIMIT) {
473			cond_resched();
474			freed = 0;
475		}
476	} while (next);
477}
478
479static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
480{
481	struct shmem_inode_info *info = SHMEM_I(inode);
482	unsigned long idx;
483	unsigned long size;
484	unsigned long limit;
485	unsigned long stage;
486	unsigned long diroff;
487	struct page **dir;
488	struct page *topdir;
489	struct page *middir;
490	struct page *subdir;
491	swp_entry_t *ptr;
492	LIST_HEAD(pages_to_free);
493	long nr_pages_to_free = 0;
494	long nr_swaps_freed = 0;
495	int offset;
496	int freed;
497	int punch_hole;
498	spinlock_t *needs_lock;
499	spinlock_t *punch_lock;
500	unsigned long upper_limit;
501
502	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
503	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
504	if (idx >= info->next_index)
505		return;
506
507	spin_lock(&info->lock);
508	info->flags |= SHMEM_TRUNCATE;
509	if (likely(end == (loff_t) -1)) {
510		limit = info->next_index;
511		upper_limit = SHMEM_MAX_INDEX;
512		info->next_index = idx;
513		needs_lock = NULL;
514		punch_hole = 0;
515	} else {
516		if (end + 1 >= inode->i_size) {	/* we may free a little more */
517			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
518							PAGE_CACHE_SHIFT;
519			upper_limit = SHMEM_MAX_INDEX;
520		} else {
521			limit = (end + 1) >> PAGE_CACHE_SHIFT;
522			upper_limit = limit;
523		}
524		needs_lock = &info->lock;
525		punch_hole = 1;
526	}
527
528	topdir = info->i_indirect;
529	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
530		info->i_indirect = NULL;
531		nr_pages_to_free++;
532		list_add(&topdir->lru, &pages_to_free);
533	}
534	spin_unlock(&info->lock);
535
536	if (info->swapped && idx < SHMEM_NR_DIRECT) {
537		ptr = info->i_direct;
538		size = limit;
539		if (size > SHMEM_NR_DIRECT)
540			size = SHMEM_NR_DIRECT;
541		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
542	}
543
544	/*
545	 * If there are no indirect blocks or we are punching a hole
546	 * below indirect blocks, nothing to be done.
547	 */
548	if (!topdir || limit <= SHMEM_NR_DIRECT)
549		goto done2;
550
551	/*
552	 * The truncation case has already dropped info->lock, and we're safe
553	 * because i_size and next_index have already been lowered, preventing
554	 * access beyond.  But in the punch_hole case, we still need to take
555	 * the lock when updating the swap directory, because there might be
556	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
557	 * shmem_writepage.  However, whenever we find we can remove a whole
558	 * directory page (not at the misaligned start or end of the range),
559	 * we first NULLify its pointer in the level above, and then have no
560	 * need to take the lock when updating its contents: needs_lock and
561	 * punch_lock (either pointing to info->lock or NULL) manage this.
562	 */
563
564	upper_limit -= SHMEM_NR_DIRECT;
565	limit -= SHMEM_NR_DIRECT;
566	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
567	offset = idx % ENTRIES_PER_PAGE;
568	idx -= offset;
569
570	dir = shmem_dir_map(topdir);
571	stage = ENTRIES_PER_PAGEPAGE/2;
572	if (idx < ENTRIES_PER_PAGEPAGE/2) {
573		middir = topdir;
574		diroff = idx/ENTRIES_PER_PAGE;
575	} else {
576		dir += ENTRIES_PER_PAGE/2;
577		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
578		while (stage <= idx)
579			stage += ENTRIES_PER_PAGEPAGE;
580		middir = *dir;
581		if (*dir) {
582			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
583				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
584			if (!diroff && !offset && upper_limit >= stage) {
585				if (needs_lock) {
586					spin_lock(needs_lock);
587					*dir = NULL;
588					spin_unlock(needs_lock);
589					needs_lock = NULL;
590				} else
591					*dir = NULL;
592				nr_pages_to_free++;
593				list_add(&middir->lru, &pages_to_free);
594			}
595			shmem_dir_unmap(dir);
596			dir = shmem_dir_map(middir);
597		} else {
598			diroff = 0;
599			offset = 0;
600			idx = stage;
601		}
602	}
603
604	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
605		if (unlikely(idx == stage)) {
606			shmem_dir_unmap(dir);
607			dir = shmem_dir_map(topdir) +
608			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
609			while (!*dir) {
610				dir++;
611				idx += ENTRIES_PER_PAGEPAGE;
612				if (idx >= limit)
613					goto done1;
614			}
615			stage = idx + ENTRIES_PER_PAGEPAGE;
616			middir = *dir;
617			if (punch_hole)
618				needs_lock = &info->lock;
619			if (upper_limit >= stage) {
620				if (needs_lock) {
621					spin_lock(needs_lock);
622					*dir = NULL;
623					spin_unlock(needs_lock);
624					needs_lock = NULL;
625				} else
626					*dir = NULL;
627				nr_pages_to_free++;
628				list_add(&middir->lru, &pages_to_free);
629			}
630			shmem_dir_unmap(dir);
631			cond_resched();
632			dir = shmem_dir_map(middir);
633			diroff = 0;
634		}
635		punch_lock = needs_lock;
636		subdir = dir[diroff];
637		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
638			if (needs_lock) {
639				spin_lock(needs_lock);
640				dir[diroff] = NULL;
641				spin_unlock(needs_lock);
642				punch_lock = NULL;
643			} else
644				dir[diroff] = NULL;
645			nr_pages_to_free++;
646			list_add(&subdir->lru, &pages_to_free);
647		}
648		if (subdir && page_private(subdir) /* has swap entries */) {
649			size = limit - idx;
650			if (size > ENTRIES_PER_PAGE)
651				size = ENTRIES_PER_PAGE;
652			freed = shmem_map_and_free_swp(subdir,
653					offset, size, &dir, punch_lock);
654			if (!dir)
655				dir = shmem_dir_map(middir);
656			nr_swaps_freed += freed;
657			if (offset || punch_lock) {
658				spin_lock(&info->lock);
659				set_page_private(subdir,
660					page_private(subdir) - freed);
661				spin_unlock(&info->lock);
662			} else
663				BUG_ON(page_private(subdir) != freed);
664		}
665		offset = 0;
666	}
667done1:
668	shmem_dir_unmap(dir);
669done2:
670	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
671		/*
672		 * Call truncate_inode_pages again: racing shmem_unuse_inode
673		 * may have swizzled a page in from swap since vmtruncate or
674		 * generic_delete_inode did it, before we lowered next_index.
675		 * Also, though shmem_getpage checks i_size before adding to
676		 * cache, no recheck after: so fix the narrow window there too.
677		 *
678		 * Recalling truncate_inode_pages_range and unmap_mapping_range
679		 * every time for punch_hole (which never got a chance to clear
680		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
681		 * yet hardly ever necessary: try to optimize them out later.
682		 */
683		truncate_inode_pages_range(inode->i_mapping, start, end);
684		if (punch_hole)
685			unmap_mapping_range(inode->i_mapping, start,
686							end - start, 1);
687	}
688
689	spin_lock(&info->lock);
690	info->flags &= ~SHMEM_TRUNCATE;
691	info->swapped -= nr_swaps_freed;
692	if (nr_pages_to_free)
693		shmem_free_blocks(inode, nr_pages_to_free);
694	shmem_recalc_inode(inode);
695	spin_unlock(&info->lock);
696
697	/*
698	 * Empty swap vector directory pages to be freed?
699	 */
700	if (!list_empty(&pages_to_free)) {
701		pages_to_free.prev->next = NULL;
702		shmem_free_pages(pages_to_free.next);
703	}
704}
705
706static void shmem_truncate(struct inode *inode)
707{
708	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
709}
710
711static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
712{
713	struct inode *inode = dentry->d_inode;
714	struct page *page = NULL;
715	int error;
716
717	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
718		if (attr->ia_size < inode->i_size) {
719			/*
720			 * If truncating down to a partial page, then
721			 * if that page is already allocated, hold it
722			 * in memory until the truncation is over, so
723			 * truncate_partial_page cannnot miss it were
724			 * it assigned to swap.
725			 */
726			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
727				(void) shmem_getpage(inode,
728					attr->ia_size>>PAGE_CACHE_SHIFT,
729						&page, SGP_READ, NULL);
730			}
731			/*
732			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
733			 * detect if any pages might have been added to cache
734			 * after truncate_inode_pages.  But we needn't bother
735			 * if it's being fully truncated to zero-length: the
736			 * nrpages check is efficient enough in that case.
737			 */
738			if (attr->ia_size) {
739				struct shmem_inode_info *info = SHMEM_I(inode);
740				spin_lock(&info->lock);
741				info->flags &= ~SHMEM_PAGEIN;
742				spin_unlock(&info->lock);
743			}
744		}
745	}
746
747	error = inode_change_ok(inode, attr);
748	if (!error)
749		error = inode_setattr(inode, attr);
750#ifdef CONFIG_TMPFS_POSIX_ACL
751	if (!error && (attr->ia_valid & ATTR_MODE))
752		error = generic_acl_chmod(inode, &shmem_acl_ops);
753#endif
754	if (page)
755		page_cache_release(page);
756	return error;
757}
758
759static void shmem_delete_inode(struct inode *inode)
760{
761	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
762	struct shmem_inode_info *info = SHMEM_I(inode);
763
764	if (inode->i_op->truncate == shmem_truncate) {
765		truncate_inode_pages(inode->i_mapping, 0);
766		shmem_unacct_size(info->flags, inode->i_size);
767		inode->i_size = 0;
768		shmem_truncate(inode);
769		if (!list_empty(&info->swaplist)) {
770			spin_lock(&shmem_swaplist_lock);
771			list_del_init(&info->swaplist);
772			spin_unlock(&shmem_swaplist_lock);
773		}
774	}
775	BUG_ON(inode->i_blocks);
776	if (sbinfo->max_inodes) {
777		spin_lock(&sbinfo->stat_lock);
778		sbinfo->free_inodes++;
779		spin_unlock(&sbinfo->stat_lock);
780	}
781	clear_inode(inode);
782}
783
784static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
785{
786	swp_entry_t *ptr;
787
788	for (ptr = dir; ptr < edir; ptr++) {
789		if (ptr->val == entry.val)
790			return ptr - dir;
791	}
792	return -1;
793}
794
795static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
796{
797	struct inode *inode;
798	unsigned long idx;
799	unsigned long size;
800	unsigned long limit;
801	unsigned long stage;
802	struct page **dir;
803	struct page *subdir;
804	swp_entry_t *ptr;
805	int offset;
806
807	idx = 0;
808	ptr = info->i_direct;
809	spin_lock(&info->lock);
810	limit = info->next_index;
811	size = limit;
812	if (size > SHMEM_NR_DIRECT)
813		size = SHMEM_NR_DIRECT;
814	offset = shmem_find_swp(entry, ptr, ptr+size);
815	if (offset >= 0) {
816		shmem_swp_balance_unmap();
817		goto found;
818	}
819	if (!info->i_indirect)
820		goto lost2;
821
822	dir = shmem_dir_map(info->i_indirect);
823	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
824
825	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
826		if (unlikely(idx == stage)) {
827			shmem_dir_unmap(dir-1);
828			dir = shmem_dir_map(info->i_indirect) +
829			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
830			while (!*dir) {
831				dir++;
832				idx += ENTRIES_PER_PAGEPAGE;
833				if (idx >= limit)
834					goto lost1;
835			}
836			stage = idx + ENTRIES_PER_PAGEPAGE;
837			subdir = *dir;
838			shmem_dir_unmap(dir);
839			dir = shmem_dir_map(subdir);
840		}
841		subdir = *dir;
842		if (subdir && page_private(subdir)) {
843			ptr = shmem_swp_map(subdir);
844			size = limit - idx;
845			if (size > ENTRIES_PER_PAGE)
846				size = ENTRIES_PER_PAGE;
847			offset = shmem_find_swp(entry, ptr, ptr+size);
848			if (offset >= 0) {
849				shmem_dir_unmap(dir);
850				goto found;
851			}
852			shmem_swp_unmap(ptr);
853		}
854	}
855lost1:
856	shmem_dir_unmap(dir-1);
857lost2:
858	spin_unlock(&info->lock);
859	return 0;
860found:
861	idx += offset;
862	inode = &info->vfs_inode;
863	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
864		info->flags |= SHMEM_PAGEIN;
865		shmem_swp_set(info, ptr + offset, 0);
866	}
867	shmem_swp_unmap(ptr);
868	spin_unlock(&info->lock);
869	/*
870	 * Decrement swap count even when the entry is left behind:
871	 * try_to_unuse will skip over mms, then reincrement count.
872	 */
873	swap_free(entry);
874	return 1;
875}
876
877/*
878 * shmem_unuse() search for an eventually swapped out shmem page.
879 */
880int shmem_unuse(swp_entry_t entry, struct page *page)
881{
882	struct list_head *p, *next;
883	struct shmem_inode_info *info;
884	int found = 0;
885
886	spin_lock(&shmem_swaplist_lock);
887	list_for_each_safe(p, next, &shmem_swaplist) {
888		info = list_entry(p, struct shmem_inode_info, swaplist);
889		if (!info->swapped)
890			list_del_init(&info->swaplist);
891		else if (shmem_unuse_inode(info, entry, page)) {
892			/* move head to start search for next from here */
893			list_move_tail(&shmem_swaplist, &info->swaplist);
894			found = 1;
895			break;
896		}
897	}
898	spin_unlock(&shmem_swaplist_lock);
899	return found;
900}
901
902/*
903 * Move the page from the page cache to the swap cache.
904 */
905static int shmem_writepage(struct page *page, struct writeback_control *wbc)
906{
907	struct shmem_inode_info *info;
908	swp_entry_t *entry, swap;
909	struct address_space *mapping;
910	unsigned long index;
911	struct inode *inode;
912
913	BUG_ON(!PageLocked(page));
914	BUG_ON(page_mapped(page));
915
916	mapping = page->mapping;
917	index = page->index;
918	inode = mapping->host;
919	info = SHMEM_I(inode);
920	if (info->flags & VM_LOCKED)
921		goto redirty;
922	swap = get_swap_page();
923	if (!swap.val)
924		goto redirty;
925
926	spin_lock(&info->lock);
927	shmem_recalc_inode(inode);
928	if (index >= info->next_index) {
929		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
930		goto unlock;
931	}
932	entry = shmem_swp_entry(info, index, NULL);
933	BUG_ON(!entry);
934	BUG_ON(entry->val);
935
936	if (move_to_swap_cache(page, swap) == 0) {
937		shmem_swp_set(info, entry, swap.val);
938		shmem_swp_unmap(entry);
939		spin_unlock(&info->lock);
940		if (list_empty(&info->swaplist)) {
941			spin_lock(&shmem_swaplist_lock);
942			/* move instead of add in case we're racing */
943			list_move_tail(&info->swaplist, &shmem_swaplist);
944			spin_unlock(&shmem_swaplist_lock);
945		}
946		unlock_page(page);
947		return 0;
948	}
949
950	shmem_swp_unmap(entry);
951unlock:
952	spin_unlock(&info->lock);
953	swap_free(swap);
954redirty:
955	set_page_dirty(page);
956	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
957}
958
959#ifdef CONFIG_NUMA
960static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
961{
962	char *nodelist = strchr(value, ':');
963	int err = 1;
964
965	if (nodelist) {
966		/* NUL-terminate policy string */
967		*nodelist++ = '\0';
968		if (nodelist_parse(nodelist, *policy_nodes))
969			goto out;
970		if (!nodes_subset(*policy_nodes, node_online_map))
971			goto out;
972	}
973	if (!strcmp(value, "default")) {
974		*policy = MPOL_DEFAULT;
975		/* Don't allow a nodelist */
976		if (!nodelist)
977			err = 0;
978	} else if (!strcmp(value, "prefer")) {
979		*policy = MPOL_PREFERRED;
980		/* Insist on a nodelist of one node only */
981		if (nodelist) {
982			char *rest = nodelist;
983			while (isdigit(*rest))
984				rest++;
985			if (!*rest)
986				err = 0;
987		}
988	} else if (!strcmp(value, "bind")) {
989		*policy = MPOL_BIND;
990		/* Insist on a nodelist */
991		if (nodelist)
992			err = 0;
993	} else if (!strcmp(value, "interleave")) {
994		*policy = MPOL_INTERLEAVE;
995		/* Default to nodes online if no nodelist */
996		if (!nodelist)
997			*policy_nodes = node_online_map;
998		err = 0;
999	}
1000out:
1001	/* Restore string for error message */
1002	if (nodelist)
1003		*--nodelist = ':';
1004	return err;
1005}
1006
1007static struct page *shmem_swapin_async(struct shared_policy *p,
1008				       swp_entry_t entry, unsigned long idx)
1009{
1010	struct page *page;
1011	struct vm_area_struct pvma;
1012
1013	/* Create a pseudo vma that just contains the policy */
1014	memset(&pvma, 0, sizeof(struct vm_area_struct));
1015	pvma.vm_end = PAGE_SIZE;
1016	pvma.vm_pgoff = idx;
1017	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1018	page = read_swap_cache_async(entry, &pvma, 0);
1019	mpol_free(pvma.vm_policy);
1020	return page;
1021}
1022
1023struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
1024			  unsigned long idx)
1025{
1026	struct shared_policy *p = &info->policy;
1027	int i, num;
1028	struct page *page;
1029	unsigned long offset;
1030
1031	num = valid_swaphandles(entry, &offset);
1032	for (i = 0; i < num; offset++, i++) {
1033		page = shmem_swapin_async(p,
1034				swp_entry(swp_type(entry), offset), idx);
1035		if (!page)
1036			break;
1037		page_cache_release(page);
1038	}
1039	lru_add_drain();	/* Push any new pages onto the LRU now */
1040	return shmem_swapin_async(p, entry, idx);
1041}
1042
1043static struct page *
1044shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1045		 unsigned long idx)
1046{
1047	struct vm_area_struct pvma;
1048	struct page *page;
1049
1050	memset(&pvma, 0, sizeof(struct vm_area_struct));
1051	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1052	pvma.vm_pgoff = idx;
1053	pvma.vm_end = PAGE_SIZE;
1054	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1055	mpol_free(pvma.vm_policy);
1056	return page;
1057}
1058#else
1059static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1060{
1061	return 1;
1062}
1063
1064static inline struct page *
1065shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1066{
1067	swapin_readahead(entry, 0, NULL);
1068	return read_swap_cache_async(entry, NULL, 0);
1069}
1070
1071static inline struct page *
1072shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1073{
1074	return alloc_page(gfp | __GFP_ZERO);
1075}
1076#endif
1077
1078/*
1079 * shmem_getpage - either get the page from swap or allocate a new one
1080 *
1081 * If we allocate a new one we do not mark it dirty. That's up to the
1082 * vm. If we swap it in we mark it dirty since we also free the swap
1083 * entry since a page cannot live in both the swap and page cache
1084 */
1085static int shmem_getpage(struct inode *inode, unsigned long idx,
1086			struct page **pagep, enum sgp_type sgp, int *type)
1087{
1088	struct address_space *mapping = inode->i_mapping;
1089	struct shmem_inode_info *info = SHMEM_I(inode);
1090	struct shmem_sb_info *sbinfo;
1091	struct page *filepage = *pagep;
1092	struct page *swappage;
1093	swp_entry_t *entry;
1094	swp_entry_t swap;
1095	int error;
1096
1097	if (idx >= SHMEM_MAX_INDEX)
1098		return -EFBIG;
1099	/*
1100	 * Normally, filepage is NULL on entry, and either found
1101	 * uptodate immediately, or allocated and zeroed, or read
1102	 * in under swappage, which is then assigned to filepage.
1103	 * But shmem_readpage and shmem_prepare_write pass in a locked
1104	 * filepage, which may be found not uptodate by other callers
1105	 * too, and may need to be copied from the swappage read in.
1106	 */
1107repeat:
1108	if (!filepage)
1109		filepage = find_lock_page(mapping, idx);
1110	if (filepage && PageUptodate(filepage))
1111		goto done;
1112	error = 0;
1113	if (sgp == SGP_QUICK)
1114		goto failed;
1115
1116	spin_lock(&info->lock);
1117	shmem_recalc_inode(inode);
1118	entry = shmem_swp_alloc(info, idx, sgp);
1119	if (IS_ERR(entry)) {
1120		spin_unlock(&info->lock);
1121		error = PTR_ERR(entry);
1122		goto failed;
1123	}
1124	swap = *entry;
1125
1126	if (swap.val) {
1127		/* Look it up and read it in.. */
1128		swappage = lookup_swap_cache(swap);
1129		if (!swappage) {
1130			shmem_swp_unmap(entry);
1131			/* here we actually do the io */
1132			if (type && *type == VM_FAULT_MINOR) {
1133				__count_vm_event(PGMAJFAULT);
1134				*type = VM_FAULT_MAJOR;
1135			}
1136			spin_unlock(&info->lock);
1137			swappage = shmem_swapin(info, swap, idx);
1138			if (!swappage) {
1139				spin_lock(&info->lock);
1140				entry = shmem_swp_alloc(info, idx, sgp);
1141				if (IS_ERR(entry))
1142					error = PTR_ERR(entry);
1143				else {
1144					if (entry->val == swap.val)
1145						error = -ENOMEM;
1146					shmem_swp_unmap(entry);
1147				}
1148				spin_unlock(&info->lock);
1149				if (error)
1150					goto failed;
1151				goto repeat;
1152			}
1153			wait_on_page_locked(swappage);
1154			page_cache_release(swappage);
1155			goto repeat;
1156		}
1157
1158		/* We have to do this with page locked to prevent races */
1159		if (TestSetPageLocked(swappage)) {
1160			shmem_swp_unmap(entry);
1161			spin_unlock(&info->lock);
1162			wait_on_page_locked(swappage);
1163			page_cache_release(swappage);
1164			goto repeat;
1165		}
1166		if (PageWriteback(swappage)) {
1167			shmem_swp_unmap(entry);
1168			spin_unlock(&info->lock);
1169			wait_on_page_writeback(swappage);
1170			unlock_page(swappage);
1171			page_cache_release(swappage);
1172			goto repeat;
1173		}
1174		if (!PageUptodate(swappage)) {
1175			shmem_swp_unmap(entry);
1176			spin_unlock(&info->lock);
1177			unlock_page(swappage);
1178			page_cache_release(swappage);
1179			error = -EIO;
1180			goto failed;
1181		}
1182
1183		if (filepage) {
1184			shmem_swp_set(info, entry, 0);
1185			shmem_swp_unmap(entry);
1186			delete_from_swap_cache(swappage);
1187			spin_unlock(&info->lock);
1188			copy_highpage(filepage, swappage);
1189			unlock_page(swappage);
1190			page_cache_release(swappage);
1191			flush_dcache_page(filepage);
1192			SetPageUptodate(filepage);
1193			set_page_dirty(filepage);
1194			swap_free(swap);
1195		} else if (!(error = move_from_swap_cache(
1196				swappage, idx, mapping))) {
1197			info->flags |= SHMEM_PAGEIN;
1198			shmem_swp_set(info, entry, 0);
1199			shmem_swp_unmap(entry);
1200			spin_unlock(&info->lock);
1201			filepage = swappage;
1202			swap_free(swap);
1203		} else {
1204			shmem_swp_unmap(entry);
1205			spin_unlock(&info->lock);
1206			unlock_page(swappage);
1207			page_cache_release(swappage);
1208			if (error == -ENOMEM) {
1209				/* let kswapd refresh zone for GFP_ATOMICs */
1210				congestion_wait(WRITE, HZ/50);
1211			}
1212			goto repeat;
1213		}
1214	} else if (sgp == SGP_READ && !filepage) {
1215		shmem_swp_unmap(entry);
1216		filepage = find_get_page(mapping, idx);
1217		if (filepage &&
1218		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1219			spin_unlock(&info->lock);
1220			wait_on_page_locked(filepage);
1221			page_cache_release(filepage);
1222			filepage = NULL;
1223			goto repeat;
1224		}
1225		spin_unlock(&info->lock);
1226	} else {
1227		shmem_swp_unmap(entry);
1228		sbinfo = SHMEM_SB(inode->i_sb);
1229		if (sbinfo->max_blocks) {
1230			spin_lock(&sbinfo->stat_lock);
1231			if (sbinfo->free_blocks == 0 ||
1232			    shmem_acct_block(info->flags)) {
1233				spin_unlock(&sbinfo->stat_lock);
1234				spin_unlock(&info->lock);
1235				error = -ENOSPC;
1236				goto failed;
1237			}
1238			sbinfo->free_blocks--;
1239			inode->i_blocks += BLOCKS_PER_PAGE;
1240			spin_unlock(&sbinfo->stat_lock);
1241		} else if (shmem_acct_block(info->flags)) {
1242			spin_unlock(&info->lock);
1243			error = -ENOSPC;
1244			goto failed;
1245		}
1246
1247		if (!filepage) {
1248			spin_unlock(&info->lock);
1249			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1250						    info,
1251						    idx);
1252			if (!filepage) {
1253				shmem_unacct_blocks(info->flags, 1);
1254				shmem_free_blocks(inode, 1);
1255				error = -ENOMEM;
1256				goto failed;
1257			}
1258
1259			spin_lock(&info->lock);
1260			entry = shmem_swp_alloc(info, idx, sgp);
1261			if (IS_ERR(entry))
1262				error = PTR_ERR(entry);
1263			else {
1264				swap = *entry;
1265				shmem_swp_unmap(entry);
1266			}
1267			if (error || swap.val || 0 != add_to_page_cache_lru(
1268					filepage, mapping, idx, GFP_ATOMIC)) {
1269				spin_unlock(&info->lock);
1270				page_cache_release(filepage);
1271				shmem_unacct_blocks(info->flags, 1);
1272				shmem_free_blocks(inode, 1);
1273				filepage = NULL;
1274				if (error)
1275					goto failed;
1276				goto repeat;
1277			}
1278			info->flags |= SHMEM_PAGEIN;
1279		}
1280
1281		info->alloced++;
1282		spin_unlock(&info->lock);
1283		flush_dcache_page(filepage);
1284		SetPageUptodate(filepage);
1285	}
1286done:
1287	if (*pagep != filepage) {
1288		unlock_page(filepage);
1289		*pagep = filepage;
1290	}
1291	return 0;
1292
1293failed:
1294	if (*pagep != filepage) {
1295		unlock_page(filepage);
1296		page_cache_release(filepage);
1297	}
1298	return error;
1299}
1300
1301static struct page *shmem_nopage(struct vm_area_struct *vma,
1302				 unsigned long address, int *type)
1303{
1304	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1305	struct page *page = NULL;
1306	unsigned long idx;
1307	int error;
1308
1309	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1310	idx += vma->vm_pgoff;
1311	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1312	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1313		return NOPAGE_SIGBUS;
1314
1315	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1316	if (error)
1317		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1318
1319	mark_page_accessed(page);
1320	return page;
1321}
1322
1323static int shmem_populate(struct vm_area_struct *vma,
1324	unsigned long addr, unsigned long len,
1325	pgprot_t prot, unsigned long pgoff, int nonblock)
1326{
1327	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1328	struct mm_struct *mm = vma->vm_mm;
1329	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1330	unsigned long size;
1331
1332	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1333	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1334		return -EINVAL;
1335
1336	while ((long) len > 0) {
1337		struct page *page = NULL;
1338		int err;
1339		/*
1340		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1341		 */
1342		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1343		if (err)
1344			return err;
1345		/* Page may still be null, but only if nonblock was set. */
1346		if (page) {
1347			mark_page_accessed(page);
1348			err = install_page(mm, vma, addr, page, prot);
1349			if (err) {
1350				page_cache_release(page);
1351				return err;
1352			}
1353		} else if (vma->vm_flags & VM_NONLINEAR) {
1354			/* No page was found just because we can't read it in
1355			 * now (being here implies nonblock != 0), but the page
1356			 * may exist, so set the PTE to fault it in later. */
1357    			err = install_file_pte(mm, vma, addr, pgoff, prot);
1358			if (err)
1359	    			return err;
1360		}
1361
1362		len -= PAGE_SIZE;
1363		addr += PAGE_SIZE;
1364		pgoff++;
1365	}
1366	return 0;
1367}
1368
1369#ifdef CONFIG_NUMA
1370int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1371{
1372	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1373	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1374}
1375
1376struct mempolicy *
1377shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1378{
1379	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1380	unsigned long idx;
1381
1382	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1383	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1384}
1385#endif
1386
1387int shmem_lock(struct file *file, int lock, struct user_struct *user)
1388{
1389	struct inode *inode = file->f_path.dentry->d_inode;
1390	struct shmem_inode_info *info = SHMEM_I(inode);
1391	int retval = -ENOMEM;
1392
1393	spin_lock(&info->lock);
1394	if (lock && !(info->flags & VM_LOCKED)) {
1395		if (!user_shm_lock(inode->i_size, user))
1396			goto out_nomem;
1397		info->flags |= VM_LOCKED;
1398	}
1399	if (!lock && (info->flags & VM_LOCKED) && user) {
1400		user_shm_unlock(inode->i_size, user);
1401		info->flags &= ~VM_LOCKED;
1402	}
1403	retval = 0;
1404out_nomem:
1405	spin_unlock(&info->lock);
1406	return retval;
1407}
1408
1409static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1410{
1411	file_accessed(file);
1412	vma->vm_ops = &shmem_vm_ops;
1413	return 0;
1414}
1415
1416static struct inode *
1417shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1418{
1419	struct inode *inode;
1420	struct shmem_inode_info *info;
1421	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1422
1423	if (sbinfo->max_inodes) {
1424		spin_lock(&sbinfo->stat_lock);
1425		if (!sbinfo->free_inodes) {
1426			spin_unlock(&sbinfo->stat_lock);
1427			return NULL;
1428		}
1429		sbinfo->free_inodes--;
1430		spin_unlock(&sbinfo->stat_lock);
1431	}
1432
1433	inode = new_inode(sb);
1434	if (inode) {
1435		inode->i_mode = mode;
1436		inode->i_uid = current->fsuid;
1437		inode->i_gid = current->fsgid;
1438		inode->i_blocks = 0;
1439		inode->i_mapping->a_ops = &shmem_aops;
1440		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1441		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1442		inode->i_generation = get_seconds();
1443		info = SHMEM_I(inode);
1444		memset(info, 0, (char *)inode - (char *)info);
1445		spin_lock_init(&info->lock);
1446		INIT_LIST_HEAD(&info->swaplist);
1447
1448		switch (mode & S_IFMT) {
1449		default:
1450			inode->i_op = &shmem_special_inode_operations;
1451			init_special_inode(inode, mode, dev);
1452			break;
1453		case S_IFREG:
1454			inode->i_op = &shmem_inode_operations;
1455			inode->i_fop = &shmem_file_operations;
1456			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1457							&sbinfo->policy_nodes);
1458			break;
1459		case S_IFDIR:
1460			inc_nlink(inode);
1461			/* Some things misbehave if size == 0 on a directory */
1462			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1463			inode->i_op = &shmem_dir_inode_operations;
1464			inode->i_fop = &simple_dir_operations;
1465			break;
1466		case S_IFLNK:
1467			/*
1468			 * Must not load anything in the rbtree,
1469			 * mpol_free_shared_policy will not be called.
1470			 */
1471			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1472						NULL);
1473			break;
1474		}
1475	} else if (sbinfo->max_inodes) {
1476		spin_lock(&sbinfo->stat_lock);
1477		sbinfo->free_inodes++;
1478		spin_unlock(&sbinfo->stat_lock);
1479	}
1480	return inode;
1481}
1482
1483#ifdef CONFIG_TMPFS
1484static const struct inode_operations shmem_symlink_inode_operations;
1485static const struct inode_operations shmem_symlink_inline_operations;
1486
1487/*
1488 * Normally tmpfs avoids the use of shmem_readpage and shmem_prepare_write;
1489 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1490 * below the loop driver, in the generic fashion that many filesystems support.
1491 */
1492static int shmem_readpage(struct file *file, struct page *page)
1493{
1494	struct inode *inode = page->mapping->host;
1495	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1496	unlock_page(page);
1497	return error;
1498}
1499
1500static int
1501shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1502{
1503	struct inode *inode = page->mapping->host;
1504	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1505}
1506
1507static ssize_t
1508shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1509{
1510	struct inode	*inode = file->f_path.dentry->d_inode;
1511	loff_t		pos;
1512	unsigned long	written;
1513	ssize_t		err;
1514
1515	if ((ssize_t) count < 0)
1516		return -EINVAL;
1517
1518	if (!access_ok(VERIFY_READ, buf, count))
1519		return -EFAULT;
1520
1521	mutex_lock(&inode->i_mutex);
1522
1523	pos = *ppos;
1524	written = 0;
1525
1526	err = generic_write_checks(file, &pos, &count, 0);
1527	if (err || !count)
1528		goto out;
1529
1530	err = remove_suid(file->f_path.dentry);
1531	if (err)
1532		goto out;
1533
1534	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1535
1536	do {
1537		struct page *page = NULL;
1538		unsigned long bytes, index, offset;
1539		char *kaddr;
1540		int left;
1541
1542		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1543		index = pos >> PAGE_CACHE_SHIFT;
1544		bytes = PAGE_CACHE_SIZE - offset;
1545		if (bytes > count)
1546			bytes = count;
1547
1548		/*
1549		 * We don't hold page lock across copy from user -
1550		 * what would it guard against? - so no deadlock here.
1551		 * But it still may be a good idea to prefault below.
1552		 */
1553
1554		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1555		if (err)
1556			break;
1557
1558		left = bytes;
1559		if (PageHighMem(page)) {
1560			volatile unsigned char dummy;
1561			__get_user(dummy, buf);
1562			__get_user(dummy, buf + bytes - 1);
1563
1564			kaddr = kmap_atomic(page, KM_USER0);
1565			left = __copy_from_user_inatomic(kaddr + offset,
1566							buf, bytes);
1567			kunmap_atomic(kaddr, KM_USER0);
1568		}
1569		if (left) {
1570			kaddr = kmap(page);
1571			left = __copy_from_user(kaddr + offset, buf, bytes);
1572			kunmap(page);
1573		}
1574
1575		written += bytes;
1576		count -= bytes;
1577		pos += bytes;
1578		buf += bytes;
1579		if (pos > inode->i_size)
1580			i_size_write(inode, pos);
1581
1582		flush_dcache_page(page);
1583		set_page_dirty(page);
1584		mark_page_accessed(page);
1585		page_cache_release(page);
1586
1587		if (left) {
1588			pos -= left;
1589			written -= left;
1590			err = -EFAULT;
1591			break;
1592		}
1593
1594		/*
1595		 * Our dirty pages are not counted in nr_dirty,
1596		 * and we do not attempt to balance dirty pages.
1597		 */
1598
1599		cond_resched();
1600	} while (count);
1601
1602	*ppos = pos;
1603	if (written)
1604		err = written;
1605out:
1606	mutex_unlock(&inode->i_mutex);
1607	return err;
1608}
1609
1610static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1611{
1612	struct inode *inode = filp->f_path.dentry->d_inode;
1613	struct address_space *mapping = inode->i_mapping;
1614	unsigned long index, offset;
1615
1616	index = *ppos >> PAGE_CACHE_SHIFT;
1617	offset = *ppos & ~PAGE_CACHE_MASK;
1618
1619	for (;;) {
1620		struct page *page = NULL;
1621		unsigned long end_index, nr, ret;
1622		loff_t i_size = i_size_read(inode);
1623
1624		end_index = i_size >> PAGE_CACHE_SHIFT;
1625		if (index > end_index)
1626			break;
1627		if (index == end_index) {
1628			nr = i_size & ~PAGE_CACHE_MASK;
1629			if (nr <= offset)
1630				break;
1631		}
1632
1633		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1634		if (desc->error) {
1635			if (desc->error == -EINVAL)
1636				desc->error = 0;
1637			break;
1638		}
1639
1640		/*
1641		 * We must evaluate after, since reads (unlike writes)
1642		 * are called without i_mutex protection against truncate
1643		 */
1644		nr = PAGE_CACHE_SIZE;
1645		i_size = i_size_read(inode);
1646		end_index = i_size >> PAGE_CACHE_SHIFT;
1647		if (index == end_index) {
1648			nr = i_size & ~PAGE_CACHE_MASK;
1649			if (nr <= offset) {
1650				if (page)
1651					page_cache_release(page);
1652				break;
1653			}
1654		}
1655		nr -= offset;
1656
1657		if (page) {
1658			/*
1659			 * If users can be writing to this page using arbitrary
1660			 * virtual addresses, take care about potential aliasing
1661			 * before reading the page on the kernel side.
1662			 */
1663			if (mapping_writably_mapped(mapping))
1664				flush_dcache_page(page);
1665			/*
1666			 * Mark the page accessed if we read the beginning.
1667			 */
1668			if (!offset)
1669				mark_page_accessed(page);
1670		} else {
1671			page = ZERO_PAGE(0);
1672			page_cache_get(page);
1673		}
1674
1675		/*
1676		 * Ok, we have the page, and it's up-to-date, so
1677		 * now we can copy it to user space...
1678		 *
1679		 * The actor routine returns how many bytes were actually used..
1680		 * NOTE! This may not be the same as how much of a user buffer
1681		 * we filled up (we may be padding etc), so we can only update
1682		 * "pos" here (the actor routine has to update the user buffer
1683		 * pointers and the remaining count).
1684		 */
1685		ret = actor(desc, page, offset, nr);
1686		offset += ret;
1687		index += offset >> PAGE_CACHE_SHIFT;
1688		offset &= ~PAGE_CACHE_MASK;
1689
1690		page_cache_release(page);
1691		if (ret != nr || !desc->count)
1692			break;
1693
1694		cond_resched();
1695	}
1696
1697	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1698	file_accessed(filp);
1699}
1700
1701static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1702{
1703	read_descriptor_t desc;
1704
1705	if ((ssize_t) count < 0)
1706		return -EINVAL;
1707	if (!access_ok(VERIFY_WRITE, buf, count))
1708		return -EFAULT;
1709	if (!count)
1710		return 0;
1711
1712	desc.written = 0;
1713	desc.count = count;
1714	desc.arg.buf = buf;
1715	desc.error = 0;
1716
1717	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1718	if (desc.written)
1719		return desc.written;
1720	return desc.error;
1721}
1722
1723static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1724{
1725	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1726
1727	buf->f_type = TMPFS_MAGIC;
1728	buf->f_bsize = PAGE_CACHE_SIZE;
1729	buf->f_namelen = NAME_MAX;
1730	spin_lock(&sbinfo->stat_lock);
1731	if (sbinfo->max_blocks) {
1732		buf->f_blocks = sbinfo->max_blocks;
1733		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1734	}
1735	if (sbinfo->max_inodes) {
1736		buf->f_files = sbinfo->max_inodes;
1737		buf->f_ffree = sbinfo->free_inodes;
1738	}
1739	/* else leave those fields 0 like simple_statfs */
1740	spin_unlock(&sbinfo->stat_lock);
1741	return 0;
1742}
1743
1744/*
1745 * File creation. Allocate an inode, and we're done..
1746 */
1747static int
1748shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1749{
1750	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1751	int error = -ENOSPC;
1752
1753	if (inode) {
1754		error = security_inode_init_security(inode, dir, NULL, NULL,
1755						     NULL);
1756		if (error) {
1757			if (error != -EOPNOTSUPP) {
1758				iput(inode);
1759				return error;
1760			}
1761		}
1762		error = shmem_acl_init(inode, dir);
1763		if (error) {
1764			iput(inode);
1765			return error;
1766		}
1767		if (dir->i_mode & S_ISGID) {
1768			inode->i_gid = dir->i_gid;
1769			if (S_ISDIR(mode))
1770				inode->i_mode |= S_ISGID;
1771		}
1772		dir->i_size += BOGO_DIRENT_SIZE;
1773		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1774		d_instantiate(dentry, inode);
1775		dget(dentry); /* Extra count - pin the dentry in core */
1776	}
1777	return error;
1778}
1779
1780static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1781{
1782	int error;
1783
1784	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1785		return error;
1786	inc_nlink(dir);
1787	return 0;
1788}
1789
1790static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1791		struct nameidata *nd)
1792{
1793	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1794}
1795
1796/*
1797 * Link a file..
1798 */
1799static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1800{
1801	struct inode *inode = old_dentry->d_inode;
1802	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1803
1804	/*
1805	 * No ordinary (disk based) filesystem counts links as inodes;
1806	 * but each new link needs a new dentry, pinning lowmem, and
1807	 * tmpfs dentries cannot be pruned until they are unlinked.
1808	 */
1809	if (sbinfo->max_inodes) {
1810		spin_lock(&sbinfo->stat_lock);
1811		if (!sbinfo->free_inodes) {
1812			spin_unlock(&sbinfo->stat_lock);
1813			return -ENOSPC;
1814		}
1815		sbinfo->free_inodes--;
1816		spin_unlock(&sbinfo->stat_lock);
1817	}
1818
1819	dir->i_size += BOGO_DIRENT_SIZE;
1820	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1821	inc_nlink(inode);
1822	atomic_inc(&inode->i_count);	/* New dentry reference */
1823	dget(dentry);		/* Extra pinning count for the created dentry */
1824	d_instantiate(dentry, inode);
1825	return 0;
1826}
1827
1828static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1829{
1830	struct inode *inode = dentry->d_inode;
1831
1832	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1833		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1834		if (sbinfo->max_inodes) {
1835			spin_lock(&sbinfo->stat_lock);
1836			sbinfo->free_inodes++;
1837			spin_unlock(&sbinfo->stat_lock);
1838		}
1839	}
1840
1841	dir->i_size -= BOGO_DIRENT_SIZE;
1842	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1843	drop_nlink(inode);
1844	dput(dentry);	/* Undo the count from "create" - this does all the work */
1845	return 0;
1846}
1847
1848static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1849{
1850	if (!simple_empty(dentry))
1851		return -ENOTEMPTY;
1852
1853	drop_nlink(dentry->d_inode);
1854	drop_nlink(dir);
1855	return shmem_unlink(dir, dentry);
1856}
1857
1858/*
1859 * The VFS layer already does all the dentry stuff for rename,
1860 * we just have to decrement the usage count for the target if
1861 * it exists so that the VFS layer correctly free's it when it
1862 * gets overwritten.
1863 */
1864static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1865{
1866	struct inode *inode = old_dentry->d_inode;
1867	int they_are_dirs = S_ISDIR(inode->i_mode);
1868
1869	if (!simple_empty(new_dentry))
1870		return -ENOTEMPTY;
1871
1872	if (new_dentry->d_inode) {
1873		(void) shmem_unlink(new_dir, new_dentry);
1874		if (they_are_dirs)
1875			drop_nlink(old_dir);
1876	} else if (they_are_dirs) {
1877		drop_nlink(old_dir);
1878		inc_nlink(new_dir);
1879	}
1880
1881	old_dir->i_size -= BOGO_DIRENT_SIZE;
1882	new_dir->i_size += BOGO_DIRENT_SIZE;
1883	old_dir->i_ctime = old_dir->i_mtime =
1884	new_dir->i_ctime = new_dir->i_mtime =
1885	inode->i_ctime = CURRENT_TIME;
1886	return 0;
1887}
1888
1889static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1890{
1891	int error;
1892	int len;
1893	struct inode *inode;
1894	struct page *page = NULL;
1895	char *kaddr;
1896	struct shmem_inode_info *info;
1897
1898	len = strlen(symname) + 1;
1899	if (len > PAGE_CACHE_SIZE)
1900		return -ENAMETOOLONG;
1901
1902	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1903	if (!inode)
1904		return -ENOSPC;
1905
1906	error = security_inode_init_security(inode, dir, NULL, NULL,
1907					     NULL);
1908	if (error) {
1909		if (error != -EOPNOTSUPP) {
1910			iput(inode);
1911			return error;
1912		}
1913		error = 0;
1914	}
1915
1916	info = SHMEM_I(inode);
1917	inode->i_size = len-1;
1918	if (len <= (char *)inode - (char *)info) {
1919		/* do it inline */
1920		memcpy(info, symname, len);
1921		inode->i_op = &shmem_symlink_inline_operations;
1922	} else {
1923		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1924		if (error) {
1925			iput(inode);
1926			return error;
1927		}
1928		inode->i_op = &shmem_symlink_inode_operations;
1929		kaddr = kmap_atomic(page, KM_USER0);
1930		memcpy(kaddr, symname, len);
1931		kunmap_atomic(kaddr, KM_USER0);
1932		set_page_dirty(page);
1933		page_cache_release(page);
1934	}
1935	if (dir->i_mode & S_ISGID)
1936		inode->i_gid = dir->i_gid;
1937	dir->i_size += BOGO_DIRENT_SIZE;
1938	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1939	d_instantiate(dentry, inode);
1940	dget(dentry);
1941	return 0;
1942}
1943
1944static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1945{
1946	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1947	return NULL;
1948}
1949
1950static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1951{
1952	struct page *page = NULL;
1953	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1954	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1955	return page;
1956}
1957
1958static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1959{
1960	if (!IS_ERR(nd_get_link(nd))) {
1961		struct page *page = cookie;
1962		kunmap(page);
1963		mark_page_accessed(page);
1964		page_cache_release(page);
1965	}
1966}
1967
1968static const struct inode_operations shmem_symlink_inline_operations = {
1969	.readlink	= generic_readlink,
1970	.follow_link	= shmem_follow_link_inline,
1971};
1972
1973static const struct inode_operations shmem_symlink_inode_operations = {
1974	.truncate	= shmem_truncate,
1975	.readlink	= generic_readlink,
1976	.follow_link	= shmem_follow_link,
1977	.put_link	= shmem_put_link,
1978};
1979
1980#ifdef CONFIG_TMPFS_POSIX_ACL
1981/**
1982 * Superblocks without xattr inode operations will get security.* xattr
1983 * support from the VFS "for free". As soon as we have any other xattrs
1984 * like ACLs, we also need to implement the security.* handlers at
1985 * filesystem level, though.
1986 */
1987
1988static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1989					size_t list_len, const char *name,
1990					size_t name_len)
1991{
1992	return security_inode_listsecurity(inode, list, list_len);
1993}
1994
1995static int shmem_xattr_security_get(struct inode *inode, const char *name,
1996				    void *buffer, size_t size)
1997{
1998	if (strcmp(name, "") == 0)
1999		return -EINVAL;
2000	return security_inode_getsecurity(inode, name, buffer, size,
2001					  -EOPNOTSUPP);
2002}
2003
2004static int shmem_xattr_security_set(struct inode *inode, const char *name,
2005				    const void *value, size_t size, int flags)
2006{
2007	if (strcmp(name, "") == 0)
2008		return -EINVAL;
2009	return security_inode_setsecurity(inode, name, value, size, flags);
2010}
2011
2012static struct xattr_handler shmem_xattr_security_handler = {
2013	.prefix = XATTR_SECURITY_PREFIX,
2014	.list   = shmem_xattr_security_list,
2015	.get    = shmem_xattr_security_get,
2016	.set    = shmem_xattr_security_set,
2017};
2018
2019static struct xattr_handler *shmem_xattr_handlers[] = {
2020	&shmem_xattr_acl_access_handler,
2021	&shmem_xattr_acl_default_handler,
2022	&shmem_xattr_security_handler,
2023	NULL
2024};
2025#endif
2026
2027static struct dentry *shmem_get_parent(struct dentry *child)
2028{
2029	return ERR_PTR(-ESTALE);
2030}
2031
2032static int shmem_match(struct inode *ino, void *vfh)
2033{
2034	__u32 *fh = vfh;
2035	__u64 inum = fh[2];
2036	inum = (inum << 32) | fh[1];
2037	return ino->i_ino == inum && fh[0] == ino->i_generation;
2038}
2039
2040static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2041{
2042	struct dentry *de = NULL;
2043	struct inode *inode;
2044	__u32 *fh = vfh;
2045	__u64 inum = fh[2];
2046	inum = (inum << 32) | fh[1];
2047
2048	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2049	if (inode) {
2050		de = d_find_alias(inode);
2051		iput(inode);
2052	}
2053
2054	return de? de: ERR_PTR(-ESTALE);
2055}
2056
2057static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2058		int len, int type,
2059		int (*acceptable)(void *context, struct dentry *de),
2060		void *context)
2061{
2062	if (len < 3)
2063		return ERR_PTR(-ESTALE);
2064
2065	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2066							context);
2067}
2068
2069static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2070				int connectable)
2071{
2072	struct inode *inode = dentry->d_inode;
2073
2074	if (*len < 3)
2075		return 255;
2076
2077	if (hlist_unhashed(&inode->i_hash)) {
2078		/* Unfortunately insert_inode_hash is not idempotent,
2079		 * so as we hash inodes here rather than at creation
2080		 * time, we need a lock to ensure we only try
2081		 * to do it once
2082		 */
2083		static DEFINE_SPINLOCK(lock);
2084		spin_lock(&lock);
2085		if (hlist_unhashed(&inode->i_hash))
2086			__insert_inode_hash(inode,
2087					    inode->i_ino + inode->i_generation);
2088		spin_unlock(&lock);
2089	}
2090
2091	fh[0] = inode->i_generation;
2092	fh[1] = inode->i_ino;
2093	fh[2] = ((__u64)inode->i_ino) >> 32;
2094
2095	*len = 3;
2096	return 1;
2097}
2098
2099static struct export_operations shmem_export_ops = {
2100	.get_parent     = shmem_get_parent,
2101	.get_dentry     = shmem_get_dentry,
2102	.encode_fh      = shmem_encode_fh,
2103	.decode_fh      = shmem_decode_fh,
2104};
2105
2106static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2107	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2108	int *policy, nodemask_t *policy_nodes)
2109{
2110	char *this_char, *value, *rest;
2111
2112	while (options != NULL) {
2113		this_char = options;
2114		for (;;) {
2115			/*
2116			 * NUL-terminate this option: unfortunately,
2117			 * mount options form a comma-separated list,
2118			 * but mpol's nodelist may also contain commas.
2119			 */
2120			options = strchr(options, ',');
2121			if (options == NULL)
2122				break;
2123			options++;
2124			if (!isdigit(*options)) {
2125				options[-1] = '\0';
2126				break;
2127			}
2128		}
2129		if (!*this_char)
2130			continue;
2131		if ((value = strchr(this_char,'=')) != NULL) {
2132			*value++ = 0;
2133		} else {
2134			printk(KERN_ERR
2135			    "tmpfs: No value for mount option '%s'\n",
2136			    this_char);
2137			return 1;
2138		}
2139
2140		if (!strcmp(this_char,"size")) {
2141			unsigned long long size;
2142			size = memparse(value,&rest);
2143			if (*rest == '%') {
2144				size <<= PAGE_SHIFT;
2145				size *= totalram_pages;
2146				do_div(size, 100);
2147				rest++;
2148			}
2149			if (*rest)
2150				goto bad_val;
2151			*blocks = size >> PAGE_CACHE_SHIFT;
2152		} else if (!strcmp(this_char,"nr_blocks")) {
2153			*blocks = memparse(value,&rest);
2154			if (*rest)
2155				goto bad_val;
2156		} else if (!strcmp(this_char,"nr_inodes")) {
2157			*inodes = memparse(value,&rest);
2158			if (*rest)
2159				goto bad_val;
2160		} else if (!strcmp(this_char,"mode")) {
2161			if (!mode)
2162				continue;
2163			*mode = simple_strtoul(value,&rest,8);
2164			if (*rest)
2165				goto bad_val;
2166		} else if (!strcmp(this_char,"uid")) {
2167			if (!uid)
2168				continue;
2169			*uid = simple_strtoul(value,&rest,0);
2170			if (*rest)
2171				goto bad_val;
2172		} else if (!strcmp(this_char,"gid")) {
2173			if (!gid)
2174				continue;
2175			*gid = simple_strtoul(value,&rest,0);
2176			if (*rest)
2177				goto bad_val;
2178		} else if (!strcmp(this_char,"mpol")) {
2179			if (shmem_parse_mpol(value,policy,policy_nodes))
2180				goto bad_val;
2181		} else {
2182			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2183			       this_char);
2184			return 1;
2185		}
2186	}
2187	return 0;
2188
2189bad_val:
2190	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2191	       value, this_char);
2192	return 1;
2193
2194}
2195
2196static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2197{
2198	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2199	unsigned long max_blocks = sbinfo->max_blocks;
2200	unsigned long max_inodes = sbinfo->max_inodes;
2201	int policy = sbinfo->policy;
2202	nodemask_t policy_nodes = sbinfo->policy_nodes;
2203	unsigned long blocks;
2204	unsigned long inodes;
2205	int error = -EINVAL;
2206
2207	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2208				&max_inodes, &policy, &policy_nodes))
2209		return error;
2210
2211	spin_lock(&sbinfo->stat_lock);
2212	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2213	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2214	if (max_blocks < blocks)
2215		goto out;
2216	if (max_inodes < inodes)
2217		goto out;
2218	/*
2219	 * Those tests also disallow limited->unlimited while any are in
2220	 * use, so i_blocks will always be zero when max_blocks is zero;
2221	 * but we must separately disallow unlimited->limited, because
2222	 * in that case we have no record of how much is already in use.
2223	 */
2224	if (max_blocks && !sbinfo->max_blocks)
2225		goto out;
2226	if (max_inodes && !sbinfo->max_inodes)
2227		goto out;
2228
2229	error = 0;
2230	sbinfo->max_blocks  = max_blocks;
2231	sbinfo->free_blocks = max_blocks - blocks;
2232	sbinfo->max_inodes  = max_inodes;
2233	sbinfo->free_inodes = max_inodes - inodes;
2234	sbinfo->policy = policy;
2235	sbinfo->policy_nodes = policy_nodes;
2236out:
2237	spin_unlock(&sbinfo->stat_lock);
2238	return error;
2239}
2240#endif
2241
2242static void shmem_put_super(struct super_block *sb)
2243{
2244	kfree(sb->s_fs_info);
2245	sb->s_fs_info = NULL;
2246}
2247
2248static int shmem_fill_super(struct super_block *sb,
2249			    void *data, int silent)
2250{
2251	struct inode *inode;
2252	struct dentry *root;
2253	int mode   = S_IRWXUGO | S_ISVTX;
2254	uid_t uid = current->fsuid;
2255	gid_t gid = current->fsgid;
2256	int err = -ENOMEM;
2257	struct shmem_sb_info *sbinfo;
2258	unsigned long blocks = 0;
2259	unsigned long inodes = 0;
2260	int policy = MPOL_DEFAULT;
2261	nodemask_t policy_nodes = node_online_map;
2262
2263#ifdef CONFIG_TMPFS
2264	/*
2265	 * Per default we only allow half of the physical ram per
2266	 * tmpfs instance, limiting inodes to one per page of lowmem;
2267	 * but the internal instance is left unlimited.
2268	 */
2269	if (!(sb->s_flags & MS_NOUSER)) {
2270		blocks = totalram_pages / 2;
2271		inodes = totalram_pages - totalhigh_pages;
2272		if (inodes > blocks)
2273			inodes = blocks;
2274		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2275					&inodes, &policy, &policy_nodes))
2276			return -EINVAL;
2277	}
2278	sb->s_export_op = &shmem_export_ops;
2279#else
2280	sb->s_flags |= MS_NOUSER;
2281#endif
2282
2283	/* Round up to L1_CACHE_BYTES to resist false sharing */
2284	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2285				L1_CACHE_BYTES), GFP_KERNEL);
2286	if (!sbinfo)
2287		return -ENOMEM;
2288
2289	spin_lock_init(&sbinfo->stat_lock);
2290	sbinfo->max_blocks = blocks;
2291	sbinfo->free_blocks = blocks;
2292	sbinfo->max_inodes = inodes;
2293	sbinfo->free_inodes = inodes;
2294	sbinfo->policy = policy;
2295	sbinfo->policy_nodes = policy_nodes;
2296
2297	sb->s_fs_info = sbinfo;
2298	sb->s_maxbytes = SHMEM_MAX_BYTES;
2299	sb->s_blocksize = PAGE_CACHE_SIZE;
2300	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2301	sb->s_magic = TMPFS_MAGIC;
2302	sb->s_op = &shmem_ops;
2303	sb->s_time_gran = 1;
2304#ifdef CONFIG_TMPFS_POSIX_ACL
2305	sb->s_xattr = shmem_xattr_handlers;
2306	sb->s_flags |= MS_POSIXACL;
2307#endif
2308
2309	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2310	if (!inode)
2311		goto failed;
2312	inode->i_uid = uid;
2313	inode->i_gid = gid;
2314	root = d_alloc_root(inode);
2315	if (!root)
2316		goto failed_iput;
2317	sb->s_root = root;
2318	return 0;
2319
2320failed_iput:
2321	iput(inode);
2322failed:
2323	shmem_put_super(sb);
2324	return err;
2325}
2326
2327static struct kmem_cache *shmem_inode_cachep;
2328
2329static struct inode *shmem_alloc_inode(struct super_block *sb)
2330{
2331	struct shmem_inode_info *p;
2332	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2333	if (!p)
2334		return NULL;
2335	return &p->vfs_inode;
2336}
2337
2338static void shmem_destroy_inode(struct inode *inode)
2339{
2340	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2341		/* only struct inode is valid if it's an inline symlink */
2342		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2343	}
2344	shmem_acl_destroy_inode(inode);
2345	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2346}
2347
2348static void init_once(void *foo, struct kmem_cache *cachep,
2349		      unsigned long flags)
2350{
2351	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2352
2353	inode_init_once(&p->vfs_inode);
2354#ifdef CONFIG_TMPFS_POSIX_ACL
2355	p->i_acl = NULL;
2356	p->i_default_acl = NULL;
2357#endif
2358}
2359
2360static int init_inodecache(void)
2361{
2362	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2363				sizeof(struct shmem_inode_info),
2364				0, 0, init_once, NULL);
2365	if (shmem_inode_cachep == NULL)
2366		return -ENOMEM;
2367	return 0;
2368}
2369
2370static void destroy_inodecache(void)
2371{
2372	kmem_cache_destroy(shmem_inode_cachep);
2373}
2374
2375static const struct address_space_operations shmem_aops = {
2376	.writepage	= shmem_writepage,
2377	.set_page_dirty	= __set_page_dirty_no_writeback,
2378#ifdef CONFIG_TMPFS
2379	.readpage	= shmem_readpage,
2380	.prepare_write	= shmem_prepare_write,
2381	.commit_write	= simple_commit_write,
2382#endif
2383	.migratepage	= migrate_page,
2384};
2385
2386static const struct file_operations shmem_file_operations = {
2387	.mmap		= shmem_mmap,
2388#ifdef CONFIG_TMPFS
2389	.llseek		= generic_file_llseek,
2390	.read		= shmem_file_read,
2391	.write		= shmem_file_write,
2392	.fsync		= simple_sync_file,
2393	.splice_read	= generic_file_splice_read,
2394	.splice_write	= generic_file_splice_write,
2395#endif
2396};
2397
2398static const struct inode_operations shmem_inode_operations = {
2399	.truncate	= shmem_truncate,
2400	.setattr	= shmem_notify_change,
2401	.truncate_range	= shmem_truncate_range,
2402#ifdef CONFIG_TMPFS_POSIX_ACL
2403	.setxattr	= generic_setxattr,
2404	.getxattr	= generic_getxattr,
2405	.listxattr	= generic_listxattr,
2406	.removexattr	= generic_removexattr,
2407	.permission	= shmem_permission,
2408#endif
2409
2410};
2411
2412static const struct inode_operations shmem_dir_inode_operations = {
2413#ifdef CONFIG_TMPFS
2414	.create		= shmem_create,
2415	.lookup		= simple_lookup,
2416	.link		= shmem_link,
2417	.unlink		= shmem_unlink,
2418	.symlink	= shmem_symlink,
2419	.mkdir		= shmem_mkdir,
2420	.rmdir		= shmem_rmdir,
2421	.mknod		= shmem_mknod,
2422	.rename		= shmem_rename,
2423#endif
2424#ifdef CONFIG_TMPFS_POSIX_ACL
2425	.setattr	= shmem_notify_change,
2426	.setxattr	= generic_setxattr,
2427	.getxattr	= generic_getxattr,
2428	.listxattr	= generic_listxattr,
2429	.removexattr	= generic_removexattr,
2430	.permission	= shmem_permission,
2431#endif
2432};
2433
2434static const struct inode_operations shmem_special_inode_operations = {
2435#ifdef CONFIG_TMPFS_POSIX_ACL
2436	.setattr	= shmem_notify_change,
2437	.setxattr	= generic_setxattr,
2438	.getxattr	= generic_getxattr,
2439	.listxattr	= generic_listxattr,
2440	.removexattr	= generic_removexattr,
2441	.permission	= shmem_permission,
2442#endif
2443};
2444
2445static const struct super_operations shmem_ops = {
2446	.alloc_inode	= shmem_alloc_inode,
2447	.destroy_inode	= shmem_destroy_inode,
2448#ifdef CONFIG_TMPFS
2449	.statfs		= shmem_statfs,
2450	.remount_fs	= shmem_remount_fs,
2451#endif
2452	.delete_inode	= shmem_delete_inode,
2453	.drop_inode	= generic_delete_inode,
2454	.put_super	= shmem_put_super,
2455};
2456
2457static struct vm_operations_struct shmem_vm_ops = {
2458	.nopage		= shmem_nopage,
2459	.populate	= shmem_populate,
2460#ifdef CONFIG_NUMA
2461	.set_policy     = shmem_set_policy,
2462	.get_policy     = shmem_get_policy,
2463#endif
2464};
2465
2466
2467static int shmem_get_sb(struct file_system_type *fs_type,
2468	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2469{
2470	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2471}
2472
2473static struct file_system_type tmpfs_fs_type = {
2474	.owner		= THIS_MODULE,
2475	.name		= "tmpfs",
2476	.get_sb		= shmem_get_sb,
2477	.kill_sb	= kill_litter_super,
2478};
2479static struct vfsmount *shm_mnt;
2480
2481static int __init init_tmpfs(void)
2482{
2483	int error;
2484
2485	error = init_inodecache();
2486	if (error)
2487		goto out3;
2488
2489	error = register_filesystem(&tmpfs_fs_type);
2490	if (error) {
2491		printk(KERN_ERR "Could not register tmpfs\n");
2492		goto out2;
2493	}
2494
2495	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2496				tmpfs_fs_type.name, NULL);
2497	if (IS_ERR(shm_mnt)) {
2498		error = PTR_ERR(shm_mnt);
2499		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2500		goto out1;
2501	}
2502	return 0;
2503
2504out1:
2505	unregister_filesystem(&tmpfs_fs_type);
2506out2:
2507	destroy_inodecache();
2508out3:
2509	shm_mnt = ERR_PTR(error);
2510	return error;
2511}
2512module_init(init_tmpfs)
2513
2514/*
2515 * shmem_file_setup - get an unlinked file living in tmpfs
2516 *
2517 * @name: name for dentry (to be seen in /proc/<pid>/maps
2518 * @size: size to be set for the file
2519 *
2520 */
2521struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2522{
2523	int error;
2524	struct file *file;
2525	struct inode *inode;
2526	struct dentry *dentry, *root;
2527	struct qstr this;
2528
2529	if (IS_ERR(shm_mnt))
2530		return (void *)shm_mnt;
2531
2532	if (size < 0 || size > SHMEM_MAX_BYTES)
2533		return ERR_PTR(-EINVAL);
2534
2535	if (shmem_acct_size(flags, size))
2536		return ERR_PTR(-ENOMEM);
2537
2538	error = -ENOMEM;
2539	this.name = name;
2540	this.len = strlen(name);
2541	this.hash = 0; /* will go */
2542	root = shm_mnt->mnt_root;
2543	dentry = d_alloc(root, &this);
2544	if (!dentry)
2545		goto put_memory;
2546
2547	error = -ENFILE;
2548	file = get_empty_filp();
2549	if (!file)
2550		goto put_dentry;
2551
2552	error = -ENOSPC;
2553	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2554	if (!inode)
2555		goto close_file;
2556
2557	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2558	d_instantiate(dentry, inode);
2559	inode->i_size = size;
2560	inode->i_nlink = 0;	/* It is unlinked */
2561	file->f_path.mnt = mntget(shm_mnt);
2562	file->f_path.dentry = dentry;
2563	file->f_mapping = inode->i_mapping;
2564	file->f_op = &shmem_file_operations;
2565	file->f_mode = FMODE_WRITE | FMODE_READ;
2566	return file;
2567
2568close_file:
2569	put_filp(file);
2570put_dentry:
2571	dput(dentry);
2572put_memory:
2573	shmem_unacct_size(flags, size);
2574	return ERR_PTR(error);
2575}
2576
2577/*
2578 * shmem_zero_setup - setup a shared anonymous mapping
2579 *
2580 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2581 */
2582int shmem_zero_setup(struct vm_area_struct *vma)
2583{
2584	struct file *file;
2585	loff_t size = vma->vm_end - vma->vm_start;
2586
2587	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2588	if (IS_ERR(file))
2589		return PTR_ERR(file);
2590
2591	if (vma->vm_file)
2592		fput(vma->vm_file);
2593	vma->vm_file = file;
2594	vma->vm_ops = &shmem_vm_ops;
2595	return 0;
2596}
2597