shmem.c revision b065b4321fa78e83bf8f5b0d79d0b5424b57998b
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/file.h>
30#include <linux/mm.h>
31#include <linux/export.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/pagevec.h>
55#include <linux/percpu_counter.h>
56#include <linux/falloc.h>
57#include <linux/splice.h>
58#include <linux/security.h>
59#include <linux/swapops.h>
60#include <linux/mempolicy.h>
61#include <linux/namei.h>
62#include <linux/ctype.h>
63#include <linux/migrate.h>
64#include <linux/highmem.h>
65#include <linux/seq_file.h>
66#include <linux/magic.h>
67
68#include <asm/uaccess.h>
69#include <asm/pgtable.h>
70
71#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74/* Pretend that each entry is of this size in directory's i_size */
75#define BOGO_DIRENT_SIZE 20
76
77/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78#define SHORT_SYMLINK_LEN 128
79
80struct shmem_xattr {
81	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
82	char *name;		/* xattr name */
83	size_t size;
84	char value[0];
85};
86
87/*
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
91 */
92struct shmem_falloc {
93	pgoff_t start;		/* start of range currently being fallocated */
94	pgoff_t next;		/* the next page offset to be fallocated */
95	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
96	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
97};
98
99/* Flag allocation requirements to shmem_getpage */
100enum sgp_type {
101	SGP_READ,	/* don't exceed i_size, don't allocate page */
102	SGP_CACHE,	/* don't exceed i_size, may allocate page */
103	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
104	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
105	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
106};
107
108#ifdef CONFIG_TMPFS
109static unsigned long shmem_default_max_blocks(void)
110{
111	return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
118#endif
119
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122				struct shmem_inode_info *info, pgoff_t index);
123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125
126static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127	struct page **pagep, enum sgp_type sgp, int *fault_type)
128{
129	return shmem_getpage_gfp(inode, index, pagep, sgp,
130			mapping_gfp_mask(inode->i_mapping), fault_type);
131}
132
133static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134{
135	return sb->s_fs_info;
136}
137
138/*
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
143 */
144static inline int shmem_acct_size(unsigned long flags, loff_t size)
145{
146	return (flags & VM_NORESERVE) ?
147		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148}
149
150static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151{
152	if (!(flags & VM_NORESERVE))
153		vm_unacct_memory(VM_ACCT(size));
154}
155
156/*
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161 */
162static inline int shmem_acct_block(unsigned long flags)
163{
164	return (flags & VM_NORESERVE) ?
165		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166}
167
168static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169{
170	if (flags & VM_NORESERVE)
171		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172}
173
174static const struct super_operations shmem_ops;
175static const struct address_space_operations shmem_aops;
176static const struct file_operations shmem_file_operations;
177static const struct inode_operations shmem_inode_operations;
178static const struct inode_operations shmem_dir_inode_operations;
179static const struct inode_operations shmem_special_inode_operations;
180static const struct vm_operations_struct shmem_vm_ops;
181
182static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
183	.ra_pages	= 0,	/* No readahead */
184	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185};
186
187static LIST_HEAD(shmem_swaplist);
188static DEFINE_MUTEX(shmem_swaplist_mutex);
189
190static int shmem_reserve_inode(struct super_block *sb)
191{
192	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193	if (sbinfo->max_inodes) {
194		spin_lock(&sbinfo->stat_lock);
195		if (!sbinfo->free_inodes) {
196			spin_unlock(&sbinfo->stat_lock);
197			return -ENOSPC;
198		}
199		sbinfo->free_inodes--;
200		spin_unlock(&sbinfo->stat_lock);
201	}
202	return 0;
203}
204
205static void shmem_free_inode(struct super_block *sb)
206{
207	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208	if (sbinfo->max_inodes) {
209		spin_lock(&sbinfo->stat_lock);
210		sbinfo->free_inodes++;
211		spin_unlock(&sbinfo->stat_lock);
212	}
213}
214
215/**
216 * shmem_recalc_inode - recalculate the block usage of an inode
217 * @inode: inode to recalc
218 *
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
221 *
222 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224 *
225 * It has to be called with the spinlock held.
226 */
227static void shmem_recalc_inode(struct inode *inode)
228{
229	struct shmem_inode_info *info = SHMEM_I(inode);
230	long freed;
231
232	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233	if (freed > 0) {
234		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235		if (sbinfo->max_blocks)
236			percpu_counter_add(&sbinfo->used_blocks, -freed);
237		info->alloced -= freed;
238		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239		shmem_unacct_blocks(info->flags, freed);
240	}
241}
242
243/*
244 * Replace item expected in radix tree by a new item, while holding tree lock.
245 */
246static int shmem_radix_tree_replace(struct address_space *mapping,
247			pgoff_t index, void *expected, void *replacement)
248{
249	void **pslot;
250	void *item = NULL;
251
252	VM_BUG_ON(!expected);
253	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254	if (pslot)
255		item = radix_tree_deref_slot_protected(pslot,
256							&mapping->tree_lock);
257	if (item != expected)
258		return -ENOENT;
259	if (replacement)
260		radix_tree_replace_slot(pslot, replacement);
261	else
262		radix_tree_delete(&mapping->page_tree, index);
263	return 0;
264}
265
266/*
267 * Sometimes, before we decide whether to proceed or to fail, we must check
268 * that an entry was not already brought back from swap by a racing thread.
269 *
270 * Checking page is not enough: by the time a SwapCache page is locked, it
271 * might be reused, and again be SwapCache, using the same swap as before.
272 */
273static bool shmem_confirm_swap(struct address_space *mapping,
274			       pgoff_t index, swp_entry_t swap)
275{
276	void *item;
277
278	rcu_read_lock();
279	item = radix_tree_lookup(&mapping->page_tree, index);
280	rcu_read_unlock();
281	return item == swp_to_radix_entry(swap);
282}
283
284/*
285 * Like add_to_page_cache_locked, but error if expected item has gone.
286 */
287static int shmem_add_to_page_cache(struct page *page,
288				   struct address_space *mapping,
289				   pgoff_t index, gfp_t gfp, void *expected)
290{
291	int error;
292
293	VM_BUG_ON(!PageLocked(page));
294	VM_BUG_ON(!PageSwapBacked(page));
295
296	page_cache_get(page);
297	page->mapping = mapping;
298	page->index = index;
299
300	spin_lock_irq(&mapping->tree_lock);
301	if (!expected)
302		error = radix_tree_insert(&mapping->page_tree, index, page);
303	else
304		error = shmem_radix_tree_replace(mapping, index, expected,
305								 page);
306	if (!error) {
307		mapping->nrpages++;
308		__inc_zone_page_state(page, NR_FILE_PAGES);
309		__inc_zone_page_state(page, NR_SHMEM);
310		spin_unlock_irq(&mapping->tree_lock);
311	} else {
312		page->mapping = NULL;
313		spin_unlock_irq(&mapping->tree_lock);
314		page_cache_release(page);
315	}
316	return error;
317}
318
319/*
320 * Like delete_from_page_cache, but substitutes swap for page.
321 */
322static void shmem_delete_from_page_cache(struct page *page, void *radswap)
323{
324	struct address_space *mapping = page->mapping;
325	int error;
326
327	spin_lock_irq(&mapping->tree_lock);
328	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
329	page->mapping = NULL;
330	mapping->nrpages--;
331	__dec_zone_page_state(page, NR_FILE_PAGES);
332	__dec_zone_page_state(page, NR_SHMEM);
333	spin_unlock_irq(&mapping->tree_lock);
334	page_cache_release(page);
335	BUG_ON(error);
336}
337
338/*
339 * Like find_get_pages, but collecting swap entries as well as pages.
340 */
341static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
342					pgoff_t start, unsigned int nr_pages,
343					struct page **pages, pgoff_t *indices)
344{
345	unsigned int i;
346	unsigned int ret;
347	unsigned int nr_found;
348
349	rcu_read_lock();
350restart:
351	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
352				(void ***)pages, indices, start, nr_pages);
353	ret = 0;
354	for (i = 0; i < nr_found; i++) {
355		struct page *page;
356repeat:
357		page = radix_tree_deref_slot((void **)pages[i]);
358		if (unlikely(!page))
359			continue;
360		if (radix_tree_exception(page)) {
361			if (radix_tree_deref_retry(page))
362				goto restart;
363			/*
364			 * Otherwise, we must be storing a swap entry
365			 * here as an exceptional entry: so return it
366			 * without attempting to raise page count.
367			 */
368			goto export;
369		}
370		if (!page_cache_get_speculative(page))
371			goto repeat;
372
373		/* Has the page moved? */
374		if (unlikely(page != *((void **)pages[i]))) {
375			page_cache_release(page);
376			goto repeat;
377		}
378export:
379		indices[ret] = indices[i];
380		pages[ret] = page;
381		ret++;
382	}
383	if (unlikely(!ret && nr_found))
384		goto restart;
385	rcu_read_unlock();
386	return ret;
387}
388
389/*
390 * Remove swap entry from radix tree, free the swap and its page cache.
391 */
392static int shmem_free_swap(struct address_space *mapping,
393			   pgoff_t index, void *radswap)
394{
395	int error;
396
397	spin_lock_irq(&mapping->tree_lock);
398	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
399	spin_unlock_irq(&mapping->tree_lock);
400	if (!error)
401		free_swap_and_cache(radix_to_swp_entry(radswap));
402	return error;
403}
404
405/*
406 * Pagevec may contain swap entries, so shuffle up pages before releasing.
407 */
408static void shmem_deswap_pagevec(struct pagevec *pvec)
409{
410	int i, j;
411
412	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
413		struct page *page = pvec->pages[i];
414		if (!radix_tree_exceptional_entry(page))
415			pvec->pages[j++] = page;
416	}
417	pvec->nr = j;
418}
419
420/*
421 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
422 */
423void shmem_unlock_mapping(struct address_space *mapping)
424{
425	struct pagevec pvec;
426	pgoff_t indices[PAGEVEC_SIZE];
427	pgoff_t index = 0;
428
429	pagevec_init(&pvec, 0);
430	/*
431	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
432	 */
433	while (!mapping_unevictable(mapping)) {
434		/*
435		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
436		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
437		 */
438		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
439					PAGEVEC_SIZE, pvec.pages, indices);
440		if (!pvec.nr)
441			break;
442		index = indices[pvec.nr - 1] + 1;
443		shmem_deswap_pagevec(&pvec);
444		check_move_unevictable_pages(pvec.pages, pvec.nr);
445		pagevec_release(&pvec);
446		cond_resched();
447	}
448}
449
450/*
451 * Remove range of pages and swap entries from radix tree, and free them.
452 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
453 */
454static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
455								 bool unfalloc)
456{
457	struct address_space *mapping = inode->i_mapping;
458	struct shmem_inode_info *info = SHMEM_I(inode);
459	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
460	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
461	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
462	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
463	struct pagevec pvec;
464	pgoff_t indices[PAGEVEC_SIZE];
465	long nr_swaps_freed = 0;
466	pgoff_t index;
467	int i;
468
469	if (lend == -1)
470		end = -1;	/* unsigned, so actually very big */
471
472	pagevec_init(&pvec, 0);
473	index = start;
474	while (index < end) {
475		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
476				min(end - index, (pgoff_t)PAGEVEC_SIZE),
477							pvec.pages, indices);
478		if (!pvec.nr)
479			break;
480		mem_cgroup_uncharge_start();
481		for (i = 0; i < pagevec_count(&pvec); i++) {
482			struct page *page = pvec.pages[i];
483
484			index = indices[i];
485			if (index >= end)
486				break;
487
488			if (radix_tree_exceptional_entry(page)) {
489				if (unfalloc)
490					continue;
491				nr_swaps_freed += !shmem_free_swap(mapping,
492								index, page);
493				continue;
494			}
495
496			if (!trylock_page(page))
497				continue;
498			if (!unfalloc || !PageUptodate(page)) {
499				if (page->mapping == mapping) {
500					VM_BUG_ON(PageWriteback(page));
501					truncate_inode_page(mapping, page);
502				}
503			}
504			unlock_page(page);
505		}
506		shmem_deswap_pagevec(&pvec);
507		pagevec_release(&pvec);
508		mem_cgroup_uncharge_end();
509		cond_resched();
510		index++;
511	}
512
513	if (partial_start) {
514		struct page *page = NULL;
515		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
516		if (page) {
517			unsigned int top = PAGE_CACHE_SIZE;
518			if (start > end) {
519				top = partial_end;
520				partial_end = 0;
521			}
522			zero_user_segment(page, partial_start, top);
523			set_page_dirty(page);
524			unlock_page(page);
525			page_cache_release(page);
526		}
527	}
528	if (partial_end) {
529		struct page *page = NULL;
530		shmem_getpage(inode, end, &page, SGP_READ, NULL);
531		if (page) {
532			zero_user_segment(page, 0, partial_end);
533			set_page_dirty(page);
534			unlock_page(page);
535			page_cache_release(page);
536		}
537	}
538	if (start >= end)
539		return;
540
541	index = start;
542	for ( ; ; ) {
543		cond_resched();
544		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
545				min(end - index, (pgoff_t)PAGEVEC_SIZE),
546							pvec.pages, indices);
547		if (!pvec.nr) {
548			if (index == start || unfalloc)
549				break;
550			index = start;
551			continue;
552		}
553		if ((index == start || unfalloc) && indices[0] >= end) {
554			shmem_deswap_pagevec(&pvec);
555			pagevec_release(&pvec);
556			break;
557		}
558		mem_cgroup_uncharge_start();
559		for (i = 0; i < pagevec_count(&pvec); i++) {
560			struct page *page = pvec.pages[i];
561
562			index = indices[i];
563			if (index >= end)
564				break;
565
566			if (radix_tree_exceptional_entry(page)) {
567				if (unfalloc)
568					continue;
569				nr_swaps_freed += !shmem_free_swap(mapping,
570								index, page);
571				continue;
572			}
573
574			lock_page(page);
575			if (!unfalloc || !PageUptodate(page)) {
576				if (page->mapping == mapping) {
577					VM_BUG_ON(PageWriteback(page));
578					truncate_inode_page(mapping, page);
579				}
580			}
581			unlock_page(page);
582		}
583		shmem_deswap_pagevec(&pvec);
584		pagevec_release(&pvec);
585		mem_cgroup_uncharge_end();
586		index++;
587	}
588
589	spin_lock(&info->lock);
590	info->swapped -= nr_swaps_freed;
591	shmem_recalc_inode(inode);
592	spin_unlock(&info->lock);
593}
594
595void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
596{
597	shmem_undo_range(inode, lstart, lend, false);
598	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
599}
600EXPORT_SYMBOL_GPL(shmem_truncate_range);
601
602static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
603{
604	struct inode *inode = dentry->d_inode;
605	int error;
606
607	error = inode_change_ok(inode, attr);
608	if (error)
609		return error;
610
611	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
612		loff_t oldsize = inode->i_size;
613		loff_t newsize = attr->ia_size;
614
615		if (newsize != oldsize) {
616			i_size_write(inode, newsize);
617			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
618		}
619		if (newsize < oldsize) {
620			loff_t holebegin = round_up(newsize, PAGE_SIZE);
621			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
622			shmem_truncate_range(inode, newsize, (loff_t)-1);
623			/* unmap again to remove racily COWed private pages */
624			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
625		}
626	}
627
628	setattr_copy(inode, attr);
629#ifdef CONFIG_TMPFS_POSIX_ACL
630	if (attr->ia_valid & ATTR_MODE)
631		error = generic_acl_chmod(inode);
632#endif
633	return error;
634}
635
636static void shmem_evict_inode(struct inode *inode)
637{
638	struct shmem_inode_info *info = SHMEM_I(inode);
639	struct shmem_xattr *xattr, *nxattr;
640
641	if (inode->i_mapping->a_ops == &shmem_aops) {
642		shmem_unacct_size(info->flags, inode->i_size);
643		inode->i_size = 0;
644		shmem_truncate_range(inode, 0, (loff_t)-1);
645		if (!list_empty(&info->swaplist)) {
646			mutex_lock(&shmem_swaplist_mutex);
647			list_del_init(&info->swaplist);
648			mutex_unlock(&shmem_swaplist_mutex);
649		}
650	} else
651		kfree(info->symlink);
652
653	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
654		kfree(xattr->name);
655		kfree(xattr);
656	}
657	BUG_ON(inode->i_blocks);
658	shmem_free_inode(inode->i_sb);
659	clear_inode(inode);
660}
661
662/*
663 * If swap found in inode, free it and move page from swapcache to filecache.
664 */
665static int shmem_unuse_inode(struct shmem_inode_info *info,
666			     swp_entry_t swap, struct page **pagep)
667{
668	struct address_space *mapping = info->vfs_inode.i_mapping;
669	void *radswap;
670	pgoff_t index;
671	gfp_t gfp;
672	int error = 0;
673
674	radswap = swp_to_radix_entry(swap);
675	index = radix_tree_locate_item(&mapping->page_tree, radswap);
676	if (index == -1)
677		return 0;
678
679	/*
680	 * Move _head_ to start search for next from here.
681	 * But be careful: shmem_evict_inode checks list_empty without taking
682	 * mutex, and there's an instant in list_move_tail when info->swaplist
683	 * would appear empty, if it were the only one on shmem_swaplist.
684	 */
685	if (shmem_swaplist.next != &info->swaplist)
686		list_move_tail(&shmem_swaplist, &info->swaplist);
687
688	gfp = mapping_gfp_mask(mapping);
689	if (shmem_should_replace_page(*pagep, gfp)) {
690		mutex_unlock(&shmem_swaplist_mutex);
691		error = shmem_replace_page(pagep, gfp, info, index);
692		mutex_lock(&shmem_swaplist_mutex);
693		/*
694		 * We needed to drop mutex to make that restrictive page
695		 * allocation, but the inode might have been freed while we
696		 * dropped it: although a racing shmem_evict_inode() cannot
697		 * complete without emptying the radix_tree, our page lock
698		 * on this swapcache page is not enough to prevent that -
699		 * free_swap_and_cache() of our swap entry will only
700		 * trylock_page(), removing swap from radix_tree whatever.
701		 *
702		 * We must not proceed to shmem_add_to_page_cache() if the
703		 * inode has been freed, but of course we cannot rely on
704		 * inode or mapping or info to check that.  However, we can
705		 * safely check if our swap entry is still in use (and here
706		 * it can't have got reused for another page): if it's still
707		 * in use, then the inode cannot have been freed yet, and we
708		 * can safely proceed (if it's no longer in use, that tells
709		 * nothing about the inode, but we don't need to unuse swap).
710		 */
711		if (!page_swapcount(*pagep))
712			error = -ENOENT;
713	}
714
715	/*
716	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
717	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
718	 * beneath us (pagelock doesn't help until the page is in pagecache).
719	 */
720	if (!error)
721		error = shmem_add_to_page_cache(*pagep, mapping, index,
722						GFP_NOWAIT, radswap);
723	if (error != -ENOMEM) {
724		/*
725		 * Truncation and eviction use free_swap_and_cache(), which
726		 * only does trylock page: if we raced, best clean up here.
727		 */
728		delete_from_swap_cache(*pagep);
729		set_page_dirty(*pagep);
730		if (!error) {
731			spin_lock(&info->lock);
732			info->swapped--;
733			spin_unlock(&info->lock);
734			swap_free(swap);
735		}
736		error = 1;	/* not an error, but entry was found */
737	}
738	return error;
739}
740
741/*
742 * Search through swapped inodes to find and replace swap by page.
743 */
744int shmem_unuse(swp_entry_t swap, struct page *page)
745{
746	struct list_head *this, *next;
747	struct shmem_inode_info *info;
748	int found = 0;
749	int error = 0;
750
751	/*
752	 * There's a faint possibility that swap page was replaced before
753	 * caller locked it: caller will come back later with the right page.
754	 */
755	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
756		goto out;
757
758	/*
759	 * Charge page using GFP_KERNEL while we can wait, before taking
760	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
761	 * Charged back to the user (not to caller) when swap account is used.
762	 */
763	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
764	if (error)
765		goto out;
766	/* No radix_tree_preload: swap entry keeps a place for page in tree */
767
768	mutex_lock(&shmem_swaplist_mutex);
769	list_for_each_safe(this, next, &shmem_swaplist) {
770		info = list_entry(this, struct shmem_inode_info, swaplist);
771		if (info->swapped)
772			found = shmem_unuse_inode(info, swap, &page);
773		else
774			list_del_init(&info->swaplist);
775		cond_resched();
776		if (found)
777			break;
778	}
779	mutex_unlock(&shmem_swaplist_mutex);
780
781	if (found < 0)
782		error = found;
783out:
784	unlock_page(page);
785	page_cache_release(page);
786	return error;
787}
788
789/*
790 * Move the page from the page cache to the swap cache.
791 */
792static int shmem_writepage(struct page *page, struct writeback_control *wbc)
793{
794	struct shmem_inode_info *info;
795	struct address_space *mapping;
796	struct inode *inode;
797	swp_entry_t swap;
798	pgoff_t index;
799
800	BUG_ON(!PageLocked(page));
801	mapping = page->mapping;
802	index = page->index;
803	inode = mapping->host;
804	info = SHMEM_I(inode);
805	if (info->flags & VM_LOCKED)
806		goto redirty;
807	if (!total_swap_pages)
808		goto redirty;
809
810	/*
811	 * shmem_backing_dev_info's capabilities prevent regular writeback or
812	 * sync from ever calling shmem_writepage; but a stacking filesystem
813	 * might use ->writepage of its underlying filesystem, in which case
814	 * tmpfs should write out to swap only in response to memory pressure,
815	 * and not for the writeback threads or sync.
816	 */
817	if (!wbc->for_reclaim) {
818		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
819		goto redirty;
820	}
821
822	/*
823	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
824	 * value into swapfile.c, the only way we can correctly account for a
825	 * fallocated page arriving here is now to initialize it and write it.
826	 *
827	 * That's okay for a page already fallocated earlier, but if we have
828	 * not yet completed the fallocation, then (a) we want to keep track
829	 * of this page in case we have to undo it, and (b) it may not be a
830	 * good idea to continue anyway, once we're pushing into swap.  So
831	 * reactivate the page, and let shmem_fallocate() quit when too many.
832	 */
833	if (!PageUptodate(page)) {
834		if (inode->i_private) {
835			struct shmem_falloc *shmem_falloc;
836			spin_lock(&inode->i_lock);
837			shmem_falloc = inode->i_private;
838			if (shmem_falloc &&
839			    index >= shmem_falloc->start &&
840			    index < shmem_falloc->next)
841				shmem_falloc->nr_unswapped++;
842			else
843				shmem_falloc = NULL;
844			spin_unlock(&inode->i_lock);
845			if (shmem_falloc)
846				goto redirty;
847		}
848		clear_highpage(page);
849		flush_dcache_page(page);
850		SetPageUptodate(page);
851	}
852
853	swap = get_swap_page();
854	if (!swap.val)
855		goto redirty;
856
857	/*
858	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
859	 * if it's not already there.  Do it now before the page is
860	 * moved to swap cache, when its pagelock no longer protects
861	 * the inode from eviction.  But don't unlock the mutex until
862	 * we've incremented swapped, because shmem_unuse_inode() will
863	 * prune a !swapped inode from the swaplist under this mutex.
864	 */
865	mutex_lock(&shmem_swaplist_mutex);
866	if (list_empty(&info->swaplist))
867		list_add_tail(&info->swaplist, &shmem_swaplist);
868
869	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
870		swap_shmem_alloc(swap);
871		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
872
873		spin_lock(&info->lock);
874		info->swapped++;
875		shmem_recalc_inode(inode);
876		spin_unlock(&info->lock);
877
878		mutex_unlock(&shmem_swaplist_mutex);
879		BUG_ON(page_mapped(page));
880		swap_writepage(page, wbc);
881		return 0;
882	}
883
884	mutex_unlock(&shmem_swaplist_mutex);
885	swapcache_free(swap, NULL);
886redirty:
887	set_page_dirty(page);
888	if (wbc->for_reclaim)
889		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
890	unlock_page(page);
891	return 0;
892}
893
894#ifdef CONFIG_NUMA
895#ifdef CONFIG_TMPFS
896static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
897{
898	char buffer[64];
899
900	if (!mpol || mpol->mode == MPOL_DEFAULT)
901		return;		/* show nothing */
902
903	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
904
905	seq_printf(seq, ",mpol=%s", buffer);
906}
907
908static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909{
910	struct mempolicy *mpol = NULL;
911	if (sbinfo->mpol) {
912		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
913		mpol = sbinfo->mpol;
914		mpol_get(mpol);
915		spin_unlock(&sbinfo->stat_lock);
916	}
917	return mpol;
918}
919#endif /* CONFIG_TMPFS */
920
921static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
922			struct shmem_inode_info *info, pgoff_t index)
923{
924	struct mempolicy mpol, *spol;
925	struct vm_area_struct pvma;
926
927	spol = mpol_cond_copy(&mpol,
928			mpol_shared_policy_lookup(&info->policy, index));
929
930	/* Create a pseudo vma that just contains the policy */
931	pvma.vm_start = 0;
932	pvma.vm_pgoff = index;
933	pvma.vm_ops = NULL;
934	pvma.vm_policy = spol;
935	return swapin_readahead(swap, gfp, &pvma, 0);
936}
937
938static struct page *shmem_alloc_page(gfp_t gfp,
939			struct shmem_inode_info *info, pgoff_t index)
940{
941	struct vm_area_struct pvma;
942
943	/* Create a pseudo vma that just contains the policy */
944	pvma.vm_start = 0;
945	pvma.vm_pgoff = index;
946	pvma.vm_ops = NULL;
947	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
948
949	/*
950	 * alloc_page_vma() will drop the shared policy reference
951	 */
952	return alloc_page_vma(gfp, &pvma, 0);
953}
954#else /* !CONFIG_NUMA */
955#ifdef CONFIG_TMPFS
956static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
957{
958}
959#endif /* CONFIG_TMPFS */
960
961static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
962			struct shmem_inode_info *info, pgoff_t index)
963{
964	return swapin_readahead(swap, gfp, NULL, 0);
965}
966
967static inline struct page *shmem_alloc_page(gfp_t gfp,
968			struct shmem_inode_info *info, pgoff_t index)
969{
970	return alloc_page(gfp);
971}
972#endif /* CONFIG_NUMA */
973
974#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
975static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
976{
977	return NULL;
978}
979#endif
980
981/*
982 * When a page is moved from swapcache to shmem filecache (either by the
983 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
984 * shmem_unuse_inode()), it may have been read in earlier from swap, in
985 * ignorance of the mapping it belongs to.  If that mapping has special
986 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
987 * we may need to copy to a suitable page before moving to filecache.
988 *
989 * In a future release, this may well be extended to respect cpuset and
990 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
991 * but for now it is a simple matter of zone.
992 */
993static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
994{
995	return page_zonenum(page) > gfp_zone(gfp);
996}
997
998static int shmem_replace_page(struct page **pagep, gfp_t gfp,
999				struct shmem_inode_info *info, pgoff_t index)
1000{
1001	struct page *oldpage, *newpage;
1002	struct address_space *swap_mapping;
1003	pgoff_t swap_index;
1004	int error;
1005
1006	oldpage = *pagep;
1007	swap_index = page_private(oldpage);
1008	swap_mapping = page_mapping(oldpage);
1009
1010	/*
1011	 * We have arrived here because our zones are constrained, so don't
1012	 * limit chance of success by further cpuset and node constraints.
1013	 */
1014	gfp &= ~GFP_CONSTRAINT_MASK;
1015	newpage = shmem_alloc_page(gfp, info, index);
1016	if (!newpage)
1017		return -ENOMEM;
1018
1019	page_cache_get(newpage);
1020	copy_highpage(newpage, oldpage);
1021	flush_dcache_page(newpage);
1022
1023	__set_page_locked(newpage);
1024	SetPageUptodate(newpage);
1025	SetPageSwapBacked(newpage);
1026	set_page_private(newpage, swap_index);
1027	SetPageSwapCache(newpage);
1028
1029	/*
1030	 * Our caller will very soon move newpage out of swapcache, but it's
1031	 * a nice clean interface for us to replace oldpage by newpage there.
1032	 */
1033	spin_lock_irq(&swap_mapping->tree_lock);
1034	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1035								   newpage);
1036	if (!error) {
1037		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1038		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1039	}
1040	spin_unlock_irq(&swap_mapping->tree_lock);
1041
1042	if (unlikely(error)) {
1043		/*
1044		 * Is this possible?  I think not, now that our callers check
1045		 * both PageSwapCache and page_private after getting page lock;
1046		 * but be defensive.  Reverse old to newpage for clear and free.
1047		 */
1048		oldpage = newpage;
1049	} else {
1050		mem_cgroup_replace_page_cache(oldpage, newpage);
1051		lru_cache_add_anon(newpage);
1052		*pagep = newpage;
1053	}
1054
1055	ClearPageSwapCache(oldpage);
1056	set_page_private(oldpage, 0);
1057
1058	unlock_page(oldpage);
1059	page_cache_release(oldpage);
1060	page_cache_release(oldpage);
1061	return error;
1062}
1063
1064/*
1065 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1066 *
1067 * If we allocate a new one we do not mark it dirty. That's up to the
1068 * vm. If we swap it in we mark it dirty since we also free the swap
1069 * entry since a page cannot live in both the swap and page cache
1070 */
1071static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1072	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1073{
1074	struct address_space *mapping = inode->i_mapping;
1075	struct shmem_inode_info *info;
1076	struct shmem_sb_info *sbinfo;
1077	struct page *page;
1078	swp_entry_t swap;
1079	int error;
1080	int once = 0;
1081	int alloced = 0;
1082
1083	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1084		return -EFBIG;
1085repeat:
1086	swap.val = 0;
1087	page = find_lock_page(mapping, index);
1088	if (radix_tree_exceptional_entry(page)) {
1089		swap = radix_to_swp_entry(page);
1090		page = NULL;
1091	}
1092
1093	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1094	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1095		error = -EINVAL;
1096		goto failed;
1097	}
1098
1099	/* fallocated page? */
1100	if (page && !PageUptodate(page)) {
1101		if (sgp != SGP_READ)
1102			goto clear;
1103		unlock_page(page);
1104		page_cache_release(page);
1105		page = NULL;
1106	}
1107	if (page || (sgp == SGP_READ && !swap.val)) {
1108		*pagep = page;
1109		return 0;
1110	}
1111
1112	/*
1113	 * Fast cache lookup did not find it:
1114	 * bring it back from swap or allocate.
1115	 */
1116	info = SHMEM_I(inode);
1117	sbinfo = SHMEM_SB(inode->i_sb);
1118
1119	if (swap.val) {
1120		/* Look it up and read it in.. */
1121		page = lookup_swap_cache(swap);
1122		if (!page) {
1123			/* here we actually do the io */
1124			if (fault_type)
1125				*fault_type |= VM_FAULT_MAJOR;
1126			page = shmem_swapin(swap, gfp, info, index);
1127			if (!page) {
1128				error = -ENOMEM;
1129				goto failed;
1130			}
1131		}
1132
1133		/* We have to do this with page locked to prevent races */
1134		lock_page(page);
1135		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1136		    !shmem_confirm_swap(mapping, index, swap)) {
1137			error = -EEXIST;	/* try again */
1138			goto unlock;
1139		}
1140		if (!PageUptodate(page)) {
1141			error = -EIO;
1142			goto failed;
1143		}
1144		wait_on_page_writeback(page);
1145
1146		if (shmem_should_replace_page(page, gfp)) {
1147			error = shmem_replace_page(&page, gfp, info, index);
1148			if (error)
1149				goto failed;
1150		}
1151
1152		error = mem_cgroup_cache_charge(page, current->mm,
1153						gfp & GFP_RECLAIM_MASK);
1154		if (!error) {
1155			error = shmem_add_to_page_cache(page, mapping, index,
1156						gfp, swp_to_radix_entry(swap));
1157			/* We already confirmed swap, and make no allocation */
1158			VM_BUG_ON(error);
1159		}
1160		if (error)
1161			goto failed;
1162
1163		spin_lock(&info->lock);
1164		info->swapped--;
1165		shmem_recalc_inode(inode);
1166		spin_unlock(&info->lock);
1167
1168		delete_from_swap_cache(page);
1169		set_page_dirty(page);
1170		swap_free(swap);
1171
1172	} else {
1173		if (shmem_acct_block(info->flags)) {
1174			error = -ENOSPC;
1175			goto failed;
1176		}
1177		if (sbinfo->max_blocks) {
1178			if (percpu_counter_compare(&sbinfo->used_blocks,
1179						sbinfo->max_blocks) >= 0) {
1180				error = -ENOSPC;
1181				goto unacct;
1182			}
1183			percpu_counter_inc(&sbinfo->used_blocks);
1184		}
1185
1186		page = shmem_alloc_page(gfp, info, index);
1187		if (!page) {
1188			error = -ENOMEM;
1189			goto decused;
1190		}
1191
1192		SetPageSwapBacked(page);
1193		__set_page_locked(page);
1194		error = mem_cgroup_cache_charge(page, current->mm,
1195						gfp & GFP_RECLAIM_MASK);
1196		if (error)
1197			goto decused;
1198		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1199		if (!error) {
1200			error = shmem_add_to_page_cache(page, mapping, index,
1201							gfp, NULL);
1202			radix_tree_preload_end();
1203		}
1204		if (error) {
1205			mem_cgroup_uncharge_cache_page(page);
1206			goto decused;
1207		}
1208		lru_cache_add_anon(page);
1209
1210		spin_lock(&info->lock);
1211		info->alloced++;
1212		inode->i_blocks += BLOCKS_PER_PAGE;
1213		shmem_recalc_inode(inode);
1214		spin_unlock(&info->lock);
1215		alloced = true;
1216
1217		/*
1218		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1219		 */
1220		if (sgp == SGP_FALLOC)
1221			sgp = SGP_WRITE;
1222clear:
1223		/*
1224		 * Let SGP_WRITE caller clear ends if write does not fill page;
1225		 * but SGP_FALLOC on a page fallocated earlier must initialize
1226		 * it now, lest undo on failure cancel our earlier guarantee.
1227		 */
1228		if (sgp != SGP_WRITE) {
1229			clear_highpage(page);
1230			flush_dcache_page(page);
1231			SetPageUptodate(page);
1232		}
1233		if (sgp == SGP_DIRTY)
1234			set_page_dirty(page);
1235	}
1236
1237	/* Perhaps the file has been truncated since we checked */
1238	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1239	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1240		error = -EINVAL;
1241		if (alloced)
1242			goto trunc;
1243		else
1244			goto failed;
1245	}
1246	*pagep = page;
1247	return 0;
1248
1249	/*
1250	 * Error recovery.
1251	 */
1252trunc:
1253	info = SHMEM_I(inode);
1254	ClearPageDirty(page);
1255	delete_from_page_cache(page);
1256	spin_lock(&info->lock);
1257	info->alloced--;
1258	inode->i_blocks -= BLOCKS_PER_PAGE;
1259	spin_unlock(&info->lock);
1260decused:
1261	sbinfo = SHMEM_SB(inode->i_sb);
1262	if (sbinfo->max_blocks)
1263		percpu_counter_add(&sbinfo->used_blocks, -1);
1264unacct:
1265	shmem_unacct_blocks(info->flags, 1);
1266failed:
1267	if (swap.val && error != -EINVAL &&
1268	    !shmem_confirm_swap(mapping, index, swap))
1269		error = -EEXIST;
1270unlock:
1271	if (page) {
1272		unlock_page(page);
1273		page_cache_release(page);
1274	}
1275	if (error == -ENOSPC && !once++) {
1276		info = SHMEM_I(inode);
1277		spin_lock(&info->lock);
1278		shmem_recalc_inode(inode);
1279		spin_unlock(&info->lock);
1280		goto repeat;
1281	}
1282	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1283		goto repeat;
1284	return error;
1285}
1286
1287static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1288{
1289	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1290	int error;
1291	int ret = VM_FAULT_LOCKED;
1292
1293	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1294	if (error)
1295		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1296
1297	if (ret & VM_FAULT_MAJOR) {
1298		count_vm_event(PGMAJFAULT);
1299		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1300	}
1301	return ret;
1302}
1303
1304#ifdef CONFIG_NUMA
1305static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1306{
1307	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1308	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1309}
1310
1311static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1312					  unsigned long addr)
1313{
1314	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1315	pgoff_t index;
1316
1317	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1318	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1319}
1320#endif
1321
1322int shmem_lock(struct file *file, int lock, struct user_struct *user)
1323{
1324	struct inode *inode = file->f_path.dentry->d_inode;
1325	struct shmem_inode_info *info = SHMEM_I(inode);
1326	int retval = -ENOMEM;
1327
1328	spin_lock(&info->lock);
1329	if (lock && !(info->flags & VM_LOCKED)) {
1330		if (!user_shm_lock(inode->i_size, user))
1331			goto out_nomem;
1332		info->flags |= VM_LOCKED;
1333		mapping_set_unevictable(file->f_mapping);
1334	}
1335	if (!lock && (info->flags & VM_LOCKED) && user) {
1336		user_shm_unlock(inode->i_size, user);
1337		info->flags &= ~VM_LOCKED;
1338		mapping_clear_unevictable(file->f_mapping);
1339	}
1340	retval = 0;
1341
1342out_nomem:
1343	spin_unlock(&info->lock);
1344	return retval;
1345}
1346
1347static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1348{
1349	file_accessed(file);
1350	vma->vm_ops = &shmem_vm_ops;
1351	vma->vm_flags |= VM_CAN_NONLINEAR;
1352	return 0;
1353}
1354
1355static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1356				     umode_t mode, dev_t dev, unsigned long flags)
1357{
1358	struct inode *inode;
1359	struct shmem_inode_info *info;
1360	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1361
1362	if (shmem_reserve_inode(sb))
1363		return NULL;
1364
1365	inode = new_inode(sb);
1366	if (inode) {
1367		inode->i_ino = get_next_ino();
1368		inode_init_owner(inode, dir, mode);
1369		inode->i_blocks = 0;
1370		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1371		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1372		inode->i_generation = get_seconds();
1373		info = SHMEM_I(inode);
1374		memset(info, 0, (char *)inode - (char *)info);
1375		spin_lock_init(&info->lock);
1376		info->flags = flags & VM_NORESERVE;
1377		INIT_LIST_HEAD(&info->swaplist);
1378		INIT_LIST_HEAD(&info->xattr_list);
1379		cache_no_acl(inode);
1380
1381		switch (mode & S_IFMT) {
1382		default:
1383			inode->i_op = &shmem_special_inode_operations;
1384			init_special_inode(inode, mode, dev);
1385			break;
1386		case S_IFREG:
1387			inode->i_mapping->a_ops = &shmem_aops;
1388			inode->i_op = &shmem_inode_operations;
1389			inode->i_fop = &shmem_file_operations;
1390			mpol_shared_policy_init(&info->policy,
1391						 shmem_get_sbmpol(sbinfo));
1392			break;
1393		case S_IFDIR:
1394			inc_nlink(inode);
1395			/* Some things misbehave if size == 0 on a directory */
1396			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1397			inode->i_op = &shmem_dir_inode_operations;
1398			inode->i_fop = &simple_dir_operations;
1399			break;
1400		case S_IFLNK:
1401			/*
1402			 * Must not load anything in the rbtree,
1403			 * mpol_free_shared_policy will not be called.
1404			 */
1405			mpol_shared_policy_init(&info->policy, NULL);
1406			break;
1407		}
1408	} else
1409		shmem_free_inode(sb);
1410	return inode;
1411}
1412
1413#ifdef CONFIG_TMPFS
1414static const struct inode_operations shmem_symlink_inode_operations;
1415static const struct inode_operations shmem_short_symlink_operations;
1416
1417#ifdef CONFIG_TMPFS_XATTR
1418static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1419#else
1420#define shmem_initxattrs NULL
1421#endif
1422
1423static int
1424shmem_write_begin(struct file *file, struct address_space *mapping,
1425			loff_t pos, unsigned len, unsigned flags,
1426			struct page **pagep, void **fsdata)
1427{
1428	struct inode *inode = mapping->host;
1429	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1430	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1431}
1432
1433static int
1434shmem_write_end(struct file *file, struct address_space *mapping,
1435			loff_t pos, unsigned len, unsigned copied,
1436			struct page *page, void *fsdata)
1437{
1438	struct inode *inode = mapping->host;
1439
1440	if (pos + copied > inode->i_size)
1441		i_size_write(inode, pos + copied);
1442
1443	if (!PageUptodate(page)) {
1444		if (copied < PAGE_CACHE_SIZE) {
1445			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1446			zero_user_segments(page, 0, from,
1447					from + copied, PAGE_CACHE_SIZE);
1448		}
1449		SetPageUptodate(page);
1450	}
1451	set_page_dirty(page);
1452	unlock_page(page);
1453	page_cache_release(page);
1454
1455	return copied;
1456}
1457
1458static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1459{
1460	struct inode *inode = filp->f_path.dentry->d_inode;
1461	struct address_space *mapping = inode->i_mapping;
1462	pgoff_t index;
1463	unsigned long offset;
1464	enum sgp_type sgp = SGP_READ;
1465
1466	/*
1467	 * Might this read be for a stacking filesystem?  Then when reading
1468	 * holes of a sparse file, we actually need to allocate those pages,
1469	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1470	 */
1471	if (segment_eq(get_fs(), KERNEL_DS))
1472		sgp = SGP_DIRTY;
1473
1474	index = *ppos >> PAGE_CACHE_SHIFT;
1475	offset = *ppos & ~PAGE_CACHE_MASK;
1476
1477	for (;;) {
1478		struct page *page = NULL;
1479		pgoff_t end_index;
1480		unsigned long nr, ret;
1481		loff_t i_size = i_size_read(inode);
1482
1483		end_index = i_size >> PAGE_CACHE_SHIFT;
1484		if (index > end_index)
1485			break;
1486		if (index == end_index) {
1487			nr = i_size & ~PAGE_CACHE_MASK;
1488			if (nr <= offset)
1489				break;
1490		}
1491
1492		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1493		if (desc->error) {
1494			if (desc->error == -EINVAL)
1495				desc->error = 0;
1496			break;
1497		}
1498		if (page)
1499			unlock_page(page);
1500
1501		/*
1502		 * We must evaluate after, since reads (unlike writes)
1503		 * are called without i_mutex protection against truncate
1504		 */
1505		nr = PAGE_CACHE_SIZE;
1506		i_size = i_size_read(inode);
1507		end_index = i_size >> PAGE_CACHE_SHIFT;
1508		if (index == end_index) {
1509			nr = i_size & ~PAGE_CACHE_MASK;
1510			if (nr <= offset) {
1511				if (page)
1512					page_cache_release(page);
1513				break;
1514			}
1515		}
1516		nr -= offset;
1517
1518		if (page) {
1519			/*
1520			 * If users can be writing to this page using arbitrary
1521			 * virtual addresses, take care about potential aliasing
1522			 * before reading the page on the kernel side.
1523			 */
1524			if (mapping_writably_mapped(mapping))
1525				flush_dcache_page(page);
1526			/*
1527			 * Mark the page accessed if we read the beginning.
1528			 */
1529			if (!offset)
1530				mark_page_accessed(page);
1531		} else {
1532			page = ZERO_PAGE(0);
1533			page_cache_get(page);
1534		}
1535
1536		/*
1537		 * Ok, we have the page, and it's up-to-date, so
1538		 * now we can copy it to user space...
1539		 *
1540		 * The actor routine returns how many bytes were actually used..
1541		 * NOTE! This may not be the same as how much of a user buffer
1542		 * we filled up (we may be padding etc), so we can only update
1543		 * "pos" here (the actor routine has to update the user buffer
1544		 * pointers and the remaining count).
1545		 */
1546		ret = actor(desc, page, offset, nr);
1547		offset += ret;
1548		index += offset >> PAGE_CACHE_SHIFT;
1549		offset &= ~PAGE_CACHE_MASK;
1550
1551		page_cache_release(page);
1552		if (ret != nr || !desc->count)
1553			break;
1554
1555		cond_resched();
1556	}
1557
1558	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1559	file_accessed(filp);
1560}
1561
1562static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1563		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1564{
1565	struct file *filp = iocb->ki_filp;
1566	ssize_t retval;
1567	unsigned long seg;
1568	size_t count;
1569	loff_t *ppos = &iocb->ki_pos;
1570
1571	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1572	if (retval)
1573		return retval;
1574
1575	for (seg = 0; seg < nr_segs; seg++) {
1576		read_descriptor_t desc;
1577
1578		desc.written = 0;
1579		desc.arg.buf = iov[seg].iov_base;
1580		desc.count = iov[seg].iov_len;
1581		if (desc.count == 0)
1582			continue;
1583		desc.error = 0;
1584		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1585		retval += desc.written;
1586		if (desc.error) {
1587			retval = retval ?: desc.error;
1588			break;
1589		}
1590		if (desc.count > 0)
1591			break;
1592	}
1593	return retval;
1594}
1595
1596static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1597				struct pipe_inode_info *pipe, size_t len,
1598				unsigned int flags)
1599{
1600	struct address_space *mapping = in->f_mapping;
1601	struct inode *inode = mapping->host;
1602	unsigned int loff, nr_pages, req_pages;
1603	struct page *pages[PIPE_DEF_BUFFERS];
1604	struct partial_page partial[PIPE_DEF_BUFFERS];
1605	struct page *page;
1606	pgoff_t index, end_index;
1607	loff_t isize, left;
1608	int error, page_nr;
1609	struct splice_pipe_desc spd = {
1610		.pages = pages,
1611		.partial = partial,
1612		.nr_pages_max = PIPE_DEF_BUFFERS,
1613		.flags = flags,
1614		.ops = &page_cache_pipe_buf_ops,
1615		.spd_release = spd_release_page,
1616	};
1617
1618	isize = i_size_read(inode);
1619	if (unlikely(*ppos >= isize))
1620		return 0;
1621
1622	left = isize - *ppos;
1623	if (unlikely(left < len))
1624		len = left;
1625
1626	if (splice_grow_spd(pipe, &spd))
1627		return -ENOMEM;
1628
1629	index = *ppos >> PAGE_CACHE_SHIFT;
1630	loff = *ppos & ~PAGE_CACHE_MASK;
1631	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1632	nr_pages = min(req_pages, pipe->buffers);
1633
1634	spd.nr_pages = find_get_pages_contig(mapping, index,
1635						nr_pages, spd.pages);
1636	index += spd.nr_pages;
1637	error = 0;
1638
1639	while (spd.nr_pages < nr_pages) {
1640		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1641		if (error)
1642			break;
1643		unlock_page(page);
1644		spd.pages[spd.nr_pages++] = page;
1645		index++;
1646	}
1647
1648	index = *ppos >> PAGE_CACHE_SHIFT;
1649	nr_pages = spd.nr_pages;
1650	spd.nr_pages = 0;
1651
1652	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1653		unsigned int this_len;
1654
1655		if (!len)
1656			break;
1657
1658		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1659		page = spd.pages[page_nr];
1660
1661		if (!PageUptodate(page) || page->mapping != mapping) {
1662			error = shmem_getpage(inode, index, &page,
1663							SGP_CACHE, NULL);
1664			if (error)
1665				break;
1666			unlock_page(page);
1667			page_cache_release(spd.pages[page_nr]);
1668			spd.pages[page_nr] = page;
1669		}
1670
1671		isize = i_size_read(inode);
1672		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1673		if (unlikely(!isize || index > end_index))
1674			break;
1675
1676		if (end_index == index) {
1677			unsigned int plen;
1678
1679			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1680			if (plen <= loff)
1681				break;
1682
1683			this_len = min(this_len, plen - loff);
1684			len = this_len;
1685		}
1686
1687		spd.partial[page_nr].offset = loff;
1688		spd.partial[page_nr].len = this_len;
1689		len -= this_len;
1690		loff = 0;
1691		spd.nr_pages++;
1692		index++;
1693	}
1694
1695	while (page_nr < nr_pages)
1696		page_cache_release(spd.pages[page_nr++]);
1697
1698	if (spd.nr_pages)
1699		error = splice_to_pipe(pipe, &spd);
1700
1701	splice_shrink_spd(&spd);
1702
1703	if (error > 0) {
1704		*ppos += error;
1705		file_accessed(in);
1706	}
1707	return error;
1708}
1709
1710static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1711							 loff_t len)
1712{
1713	struct inode *inode = file->f_path.dentry->d_inode;
1714	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1715	struct shmem_falloc shmem_falloc;
1716	pgoff_t start, index, end;
1717	int error;
1718
1719	mutex_lock(&inode->i_mutex);
1720
1721	if (mode & FALLOC_FL_PUNCH_HOLE) {
1722		struct address_space *mapping = file->f_mapping;
1723		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1724		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1725
1726		if ((u64)unmap_end > (u64)unmap_start)
1727			unmap_mapping_range(mapping, unmap_start,
1728					    1 + unmap_end - unmap_start, 0);
1729		shmem_truncate_range(inode, offset, offset + len - 1);
1730		/* No need to unmap again: hole-punching leaves COWed pages */
1731		error = 0;
1732		goto out;
1733	}
1734
1735	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1736	error = inode_newsize_ok(inode, offset + len);
1737	if (error)
1738		goto out;
1739
1740	start = offset >> PAGE_CACHE_SHIFT;
1741	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1742	/* Try to avoid a swapstorm if len is impossible to satisfy */
1743	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1744		error = -ENOSPC;
1745		goto out;
1746	}
1747
1748	shmem_falloc.start = start;
1749	shmem_falloc.next  = start;
1750	shmem_falloc.nr_falloced = 0;
1751	shmem_falloc.nr_unswapped = 0;
1752	spin_lock(&inode->i_lock);
1753	inode->i_private = &shmem_falloc;
1754	spin_unlock(&inode->i_lock);
1755
1756	for (index = start; index < end; index++) {
1757		struct page *page;
1758
1759		/*
1760		 * Good, the fallocate(2) manpage permits EINTR: we may have
1761		 * been interrupted because we are using up too much memory.
1762		 */
1763		if (signal_pending(current))
1764			error = -EINTR;
1765		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1766			error = -ENOMEM;
1767		else
1768			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1769									NULL);
1770		if (error) {
1771			/* Remove the !PageUptodate pages we added */
1772			shmem_undo_range(inode,
1773				(loff_t)start << PAGE_CACHE_SHIFT,
1774				(loff_t)index << PAGE_CACHE_SHIFT, true);
1775			goto undone;
1776		}
1777
1778		/*
1779		 * Inform shmem_writepage() how far we have reached.
1780		 * No need for lock or barrier: we have the page lock.
1781		 */
1782		shmem_falloc.next++;
1783		if (!PageUptodate(page))
1784			shmem_falloc.nr_falloced++;
1785
1786		/*
1787		 * If !PageUptodate, leave it that way so that freeable pages
1788		 * can be recognized if we need to rollback on error later.
1789		 * But set_page_dirty so that memory pressure will swap rather
1790		 * than free the pages we are allocating (and SGP_CACHE pages
1791		 * might still be clean: we now need to mark those dirty too).
1792		 */
1793		set_page_dirty(page);
1794		unlock_page(page);
1795		page_cache_release(page);
1796		cond_resched();
1797	}
1798
1799	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1800		i_size_write(inode, offset + len);
1801	inode->i_ctime = CURRENT_TIME;
1802undone:
1803	spin_lock(&inode->i_lock);
1804	inode->i_private = NULL;
1805	spin_unlock(&inode->i_lock);
1806out:
1807	mutex_unlock(&inode->i_mutex);
1808	return error;
1809}
1810
1811static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1812{
1813	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1814
1815	buf->f_type = TMPFS_MAGIC;
1816	buf->f_bsize = PAGE_CACHE_SIZE;
1817	buf->f_namelen = NAME_MAX;
1818	if (sbinfo->max_blocks) {
1819		buf->f_blocks = sbinfo->max_blocks;
1820		buf->f_bavail =
1821		buf->f_bfree  = sbinfo->max_blocks -
1822				percpu_counter_sum(&sbinfo->used_blocks);
1823	}
1824	if (sbinfo->max_inodes) {
1825		buf->f_files = sbinfo->max_inodes;
1826		buf->f_ffree = sbinfo->free_inodes;
1827	}
1828	/* else leave those fields 0 like simple_statfs */
1829	return 0;
1830}
1831
1832/*
1833 * File creation. Allocate an inode, and we're done..
1834 */
1835static int
1836shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1837{
1838	struct inode *inode;
1839	int error = -ENOSPC;
1840
1841	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1842	if (inode) {
1843		error = security_inode_init_security(inode, dir,
1844						     &dentry->d_name,
1845						     shmem_initxattrs, NULL);
1846		if (error) {
1847			if (error != -EOPNOTSUPP) {
1848				iput(inode);
1849				return error;
1850			}
1851		}
1852#ifdef CONFIG_TMPFS_POSIX_ACL
1853		error = generic_acl_init(inode, dir);
1854		if (error) {
1855			iput(inode);
1856			return error;
1857		}
1858#else
1859		error = 0;
1860#endif
1861		dir->i_size += BOGO_DIRENT_SIZE;
1862		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1863		d_instantiate(dentry, inode);
1864		dget(dentry); /* Extra count - pin the dentry in core */
1865	}
1866	return error;
1867}
1868
1869static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1870{
1871	int error;
1872
1873	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1874		return error;
1875	inc_nlink(dir);
1876	return 0;
1877}
1878
1879static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1880		struct nameidata *nd)
1881{
1882	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1883}
1884
1885/*
1886 * Link a file..
1887 */
1888static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1889{
1890	struct inode *inode = old_dentry->d_inode;
1891	int ret;
1892
1893	/*
1894	 * No ordinary (disk based) filesystem counts links as inodes;
1895	 * but each new link needs a new dentry, pinning lowmem, and
1896	 * tmpfs dentries cannot be pruned until they are unlinked.
1897	 */
1898	ret = shmem_reserve_inode(inode->i_sb);
1899	if (ret)
1900		goto out;
1901
1902	dir->i_size += BOGO_DIRENT_SIZE;
1903	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1904	inc_nlink(inode);
1905	ihold(inode);	/* New dentry reference */
1906	dget(dentry);		/* Extra pinning count for the created dentry */
1907	d_instantiate(dentry, inode);
1908out:
1909	return ret;
1910}
1911
1912static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1913{
1914	struct inode *inode = dentry->d_inode;
1915
1916	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1917		shmem_free_inode(inode->i_sb);
1918
1919	dir->i_size -= BOGO_DIRENT_SIZE;
1920	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1921	drop_nlink(inode);
1922	dput(dentry);	/* Undo the count from "create" - this does all the work */
1923	return 0;
1924}
1925
1926static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1927{
1928	if (!simple_empty(dentry))
1929		return -ENOTEMPTY;
1930
1931	drop_nlink(dentry->d_inode);
1932	drop_nlink(dir);
1933	return shmem_unlink(dir, dentry);
1934}
1935
1936/*
1937 * The VFS layer already does all the dentry stuff for rename,
1938 * we just have to decrement the usage count for the target if
1939 * it exists so that the VFS layer correctly free's it when it
1940 * gets overwritten.
1941 */
1942static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1943{
1944	struct inode *inode = old_dentry->d_inode;
1945	int they_are_dirs = S_ISDIR(inode->i_mode);
1946
1947	if (!simple_empty(new_dentry))
1948		return -ENOTEMPTY;
1949
1950	if (new_dentry->d_inode) {
1951		(void) shmem_unlink(new_dir, new_dentry);
1952		if (they_are_dirs)
1953			drop_nlink(old_dir);
1954	} else if (they_are_dirs) {
1955		drop_nlink(old_dir);
1956		inc_nlink(new_dir);
1957	}
1958
1959	old_dir->i_size -= BOGO_DIRENT_SIZE;
1960	new_dir->i_size += BOGO_DIRENT_SIZE;
1961	old_dir->i_ctime = old_dir->i_mtime =
1962	new_dir->i_ctime = new_dir->i_mtime =
1963	inode->i_ctime = CURRENT_TIME;
1964	return 0;
1965}
1966
1967static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1968{
1969	int error;
1970	int len;
1971	struct inode *inode;
1972	struct page *page;
1973	char *kaddr;
1974	struct shmem_inode_info *info;
1975
1976	len = strlen(symname) + 1;
1977	if (len > PAGE_CACHE_SIZE)
1978		return -ENAMETOOLONG;
1979
1980	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1981	if (!inode)
1982		return -ENOSPC;
1983
1984	error = security_inode_init_security(inode, dir, &dentry->d_name,
1985					     shmem_initxattrs, NULL);
1986	if (error) {
1987		if (error != -EOPNOTSUPP) {
1988			iput(inode);
1989			return error;
1990		}
1991		error = 0;
1992	}
1993
1994	info = SHMEM_I(inode);
1995	inode->i_size = len-1;
1996	if (len <= SHORT_SYMLINK_LEN) {
1997		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1998		if (!info->symlink) {
1999			iput(inode);
2000			return -ENOMEM;
2001		}
2002		inode->i_op = &shmem_short_symlink_operations;
2003	} else {
2004		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2005		if (error) {
2006			iput(inode);
2007			return error;
2008		}
2009		inode->i_mapping->a_ops = &shmem_aops;
2010		inode->i_op = &shmem_symlink_inode_operations;
2011		kaddr = kmap_atomic(page);
2012		memcpy(kaddr, symname, len);
2013		kunmap_atomic(kaddr);
2014		SetPageUptodate(page);
2015		set_page_dirty(page);
2016		unlock_page(page);
2017		page_cache_release(page);
2018	}
2019	dir->i_size += BOGO_DIRENT_SIZE;
2020	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2021	d_instantiate(dentry, inode);
2022	dget(dentry);
2023	return 0;
2024}
2025
2026static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2027{
2028	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2029	return NULL;
2030}
2031
2032static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2033{
2034	struct page *page = NULL;
2035	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2036	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2037	if (page)
2038		unlock_page(page);
2039	return page;
2040}
2041
2042static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2043{
2044	if (!IS_ERR(nd_get_link(nd))) {
2045		struct page *page = cookie;
2046		kunmap(page);
2047		mark_page_accessed(page);
2048		page_cache_release(page);
2049	}
2050}
2051
2052#ifdef CONFIG_TMPFS_XATTR
2053/*
2054 * Superblocks without xattr inode operations may get some security.* xattr
2055 * support from the LSM "for free". As soon as we have any other xattrs
2056 * like ACLs, we also need to implement the security.* handlers at
2057 * filesystem level, though.
2058 */
2059
2060/*
2061 * Allocate new xattr and copy in the value; but leave the name to callers.
2062 */
2063static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2064{
2065	struct shmem_xattr *new_xattr;
2066	size_t len;
2067
2068	/* wrap around? */
2069	len = sizeof(*new_xattr) + size;
2070	if (len <= sizeof(*new_xattr))
2071		return NULL;
2072
2073	new_xattr = kmalloc(len, GFP_KERNEL);
2074	if (!new_xattr)
2075		return NULL;
2076
2077	new_xattr->size = size;
2078	memcpy(new_xattr->value, value, size);
2079	return new_xattr;
2080}
2081
2082/*
2083 * Callback for security_inode_init_security() for acquiring xattrs.
2084 */
2085static int shmem_initxattrs(struct inode *inode,
2086			    const struct xattr *xattr_array,
2087			    void *fs_info)
2088{
2089	struct shmem_inode_info *info = SHMEM_I(inode);
2090	const struct xattr *xattr;
2091	struct shmem_xattr *new_xattr;
2092	size_t len;
2093
2094	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2095		new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2096		if (!new_xattr)
2097			return -ENOMEM;
2098
2099		len = strlen(xattr->name) + 1;
2100		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2101					  GFP_KERNEL);
2102		if (!new_xattr->name) {
2103			kfree(new_xattr);
2104			return -ENOMEM;
2105		}
2106
2107		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2108		       XATTR_SECURITY_PREFIX_LEN);
2109		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2110		       xattr->name, len);
2111
2112		spin_lock(&info->lock);
2113		list_add(&new_xattr->list, &info->xattr_list);
2114		spin_unlock(&info->lock);
2115	}
2116
2117	return 0;
2118}
2119
2120static int shmem_xattr_get(struct dentry *dentry, const char *name,
2121			   void *buffer, size_t size)
2122{
2123	struct shmem_inode_info *info;
2124	struct shmem_xattr *xattr;
2125	int ret = -ENODATA;
2126
2127	info = SHMEM_I(dentry->d_inode);
2128
2129	spin_lock(&info->lock);
2130	list_for_each_entry(xattr, &info->xattr_list, list) {
2131		if (strcmp(name, xattr->name))
2132			continue;
2133
2134		ret = xattr->size;
2135		if (buffer) {
2136			if (size < xattr->size)
2137				ret = -ERANGE;
2138			else
2139				memcpy(buffer, xattr->value, xattr->size);
2140		}
2141		break;
2142	}
2143	spin_unlock(&info->lock);
2144	return ret;
2145}
2146
2147static int shmem_xattr_set(struct inode *inode, const char *name,
2148			   const void *value, size_t size, int flags)
2149{
2150	struct shmem_inode_info *info = SHMEM_I(inode);
2151	struct shmem_xattr *xattr;
2152	struct shmem_xattr *new_xattr = NULL;
2153	int err = 0;
2154
2155	/* value == NULL means remove */
2156	if (value) {
2157		new_xattr = shmem_xattr_alloc(value, size);
2158		if (!new_xattr)
2159			return -ENOMEM;
2160
2161		new_xattr->name = kstrdup(name, GFP_KERNEL);
2162		if (!new_xattr->name) {
2163			kfree(new_xattr);
2164			return -ENOMEM;
2165		}
2166	}
2167
2168	spin_lock(&info->lock);
2169	list_for_each_entry(xattr, &info->xattr_list, list) {
2170		if (!strcmp(name, xattr->name)) {
2171			if (flags & XATTR_CREATE) {
2172				xattr = new_xattr;
2173				err = -EEXIST;
2174			} else if (new_xattr) {
2175				list_replace(&xattr->list, &new_xattr->list);
2176			} else {
2177				list_del(&xattr->list);
2178			}
2179			goto out;
2180		}
2181	}
2182	if (flags & XATTR_REPLACE) {
2183		xattr = new_xattr;
2184		err = -ENODATA;
2185	} else {
2186		list_add(&new_xattr->list, &info->xattr_list);
2187		xattr = NULL;
2188	}
2189out:
2190	spin_unlock(&info->lock);
2191	if (xattr)
2192		kfree(xattr->name);
2193	kfree(xattr);
2194	return err;
2195}
2196
2197static const struct xattr_handler *shmem_xattr_handlers[] = {
2198#ifdef CONFIG_TMPFS_POSIX_ACL
2199	&generic_acl_access_handler,
2200	&generic_acl_default_handler,
2201#endif
2202	NULL
2203};
2204
2205static int shmem_xattr_validate(const char *name)
2206{
2207	struct { const char *prefix; size_t len; } arr[] = {
2208		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2209		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2210	};
2211	int i;
2212
2213	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2214		size_t preflen = arr[i].len;
2215		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2216			if (!name[preflen])
2217				return -EINVAL;
2218			return 0;
2219		}
2220	}
2221	return -EOPNOTSUPP;
2222}
2223
2224static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2225			      void *buffer, size_t size)
2226{
2227	int err;
2228
2229	/*
2230	 * If this is a request for a synthetic attribute in the system.*
2231	 * namespace use the generic infrastructure to resolve a handler
2232	 * for it via sb->s_xattr.
2233	 */
2234	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2235		return generic_getxattr(dentry, name, buffer, size);
2236
2237	err = shmem_xattr_validate(name);
2238	if (err)
2239		return err;
2240
2241	return shmem_xattr_get(dentry, name, buffer, size);
2242}
2243
2244static int shmem_setxattr(struct dentry *dentry, const char *name,
2245			  const void *value, size_t size, int flags)
2246{
2247	int err;
2248
2249	/*
2250	 * If this is a request for a synthetic attribute in the system.*
2251	 * namespace use the generic infrastructure to resolve a handler
2252	 * for it via sb->s_xattr.
2253	 */
2254	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2255		return generic_setxattr(dentry, name, value, size, flags);
2256
2257	err = shmem_xattr_validate(name);
2258	if (err)
2259		return err;
2260
2261	if (size == 0)
2262		value = "";  /* empty EA, do not remove */
2263
2264	return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2265
2266}
2267
2268static int shmem_removexattr(struct dentry *dentry, const char *name)
2269{
2270	int err;
2271
2272	/*
2273	 * If this is a request for a synthetic attribute in the system.*
2274	 * namespace use the generic infrastructure to resolve a handler
2275	 * for it via sb->s_xattr.
2276	 */
2277	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2278		return generic_removexattr(dentry, name);
2279
2280	err = shmem_xattr_validate(name);
2281	if (err)
2282		return err;
2283
2284	return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2285}
2286
2287static bool xattr_is_trusted(const char *name)
2288{
2289	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2290}
2291
2292static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2293{
2294	bool trusted = capable(CAP_SYS_ADMIN);
2295	struct shmem_xattr *xattr;
2296	struct shmem_inode_info *info;
2297	size_t used = 0;
2298
2299	info = SHMEM_I(dentry->d_inode);
2300
2301	spin_lock(&info->lock);
2302	list_for_each_entry(xattr, &info->xattr_list, list) {
2303		size_t len;
2304
2305		/* skip "trusted." attributes for unprivileged callers */
2306		if (!trusted && xattr_is_trusted(xattr->name))
2307			continue;
2308
2309		len = strlen(xattr->name) + 1;
2310		used += len;
2311		if (buffer) {
2312			if (size < used) {
2313				used = -ERANGE;
2314				break;
2315			}
2316			memcpy(buffer, xattr->name, len);
2317			buffer += len;
2318		}
2319	}
2320	spin_unlock(&info->lock);
2321
2322	return used;
2323}
2324#endif /* CONFIG_TMPFS_XATTR */
2325
2326static const struct inode_operations shmem_short_symlink_operations = {
2327	.readlink	= generic_readlink,
2328	.follow_link	= shmem_follow_short_symlink,
2329#ifdef CONFIG_TMPFS_XATTR
2330	.setxattr	= shmem_setxattr,
2331	.getxattr	= shmem_getxattr,
2332	.listxattr	= shmem_listxattr,
2333	.removexattr	= shmem_removexattr,
2334#endif
2335};
2336
2337static const struct inode_operations shmem_symlink_inode_operations = {
2338	.readlink	= generic_readlink,
2339	.follow_link	= shmem_follow_link,
2340	.put_link	= shmem_put_link,
2341#ifdef CONFIG_TMPFS_XATTR
2342	.setxattr	= shmem_setxattr,
2343	.getxattr	= shmem_getxattr,
2344	.listxattr	= shmem_listxattr,
2345	.removexattr	= shmem_removexattr,
2346#endif
2347};
2348
2349static struct dentry *shmem_get_parent(struct dentry *child)
2350{
2351	return ERR_PTR(-ESTALE);
2352}
2353
2354static int shmem_match(struct inode *ino, void *vfh)
2355{
2356	__u32 *fh = vfh;
2357	__u64 inum = fh[2];
2358	inum = (inum << 32) | fh[1];
2359	return ino->i_ino == inum && fh[0] == ino->i_generation;
2360}
2361
2362static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2363		struct fid *fid, int fh_len, int fh_type)
2364{
2365	struct inode *inode;
2366	struct dentry *dentry = NULL;
2367	u64 inum = fid->raw[2];
2368	inum = (inum << 32) | fid->raw[1];
2369
2370	if (fh_len < 3)
2371		return NULL;
2372
2373	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2374			shmem_match, fid->raw);
2375	if (inode) {
2376		dentry = d_find_alias(inode);
2377		iput(inode);
2378	}
2379
2380	return dentry;
2381}
2382
2383static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2384				struct inode *parent)
2385{
2386	if (*len < 3) {
2387		*len = 3;
2388		return 255;
2389	}
2390
2391	if (inode_unhashed(inode)) {
2392		/* Unfortunately insert_inode_hash is not idempotent,
2393		 * so as we hash inodes here rather than at creation
2394		 * time, we need a lock to ensure we only try
2395		 * to do it once
2396		 */
2397		static DEFINE_SPINLOCK(lock);
2398		spin_lock(&lock);
2399		if (inode_unhashed(inode))
2400			__insert_inode_hash(inode,
2401					    inode->i_ino + inode->i_generation);
2402		spin_unlock(&lock);
2403	}
2404
2405	fh[0] = inode->i_generation;
2406	fh[1] = inode->i_ino;
2407	fh[2] = ((__u64)inode->i_ino) >> 32;
2408
2409	*len = 3;
2410	return 1;
2411}
2412
2413static const struct export_operations shmem_export_ops = {
2414	.get_parent     = shmem_get_parent,
2415	.encode_fh      = shmem_encode_fh,
2416	.fh_to_dentry	= shmem_fh_to_dentry,
2417};
2418
2419static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2420			       bool remount)
2421{
2422	char *this_char, *value, *rest;
2423	uid_t uid;
2424	gid_t gid;
2425
2426	while (options != NULL) {
2427		this_char = options;
2428		for (;;) {
2429			/*
2430			 * NUL-terminate this option: unfortunately,
2431			 * mount options form a comma-separated list,
2432			 * but mpol's nodelist may also contain commas.
2433			 */
2434			options = strchr(options, ',');
2435			if (options == NULL)
2436				break;
2437			options++;
2438			if (!isdigit(*options)) {
2439				options[-1] = '\0';
2440				break;
2441			}
2442		}
2443		if (!*this_char)
2444			continue;
2445		if ((value = strchr(this_char,'=')) != NULL) {
2446			*value++ = 0;
2447		} else {
2448			printk(KERN_ERR
2449			    "tmpfs: No value for mount option '%s'\n",
2450			    this_char);
2451			return 1;
2452		}
2453
2454		if (!strcmp(this_char,"size")) {
2455			unsigned long long size;
2456			size = memparse(value,&rest);
2457			if (*rest == '%') {
2458				size <<= PAGE_SHIFT;
2459				size *= totalram_pages;
2460				do_div(size, 100);
2461				rest++;
2462			}
2463			if (*rest)
2464				goto bad_val;
2465			sbinfo->max_blocks =
2466				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2467		} else if (!strcmp(this_char,"nr_blocks")) {
2468			sbinfo->max_blocks = memparse(value, &rest);
2469			if (*rest)
2470				goto bad_val;
2471		} else if (!strcmp(this_char,"nr_inodes")) {
2472			sbinfo->max_inodes = memparse(value, &rest);
2473			if (*rest)
2474				goto bad_val;
2475		} else if (!strcmp(this_char,"mode")) {
2476			if (remount)
2477				continue;
2478			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2479			if (*rest)
2480				goto bad_val;
2481		} else if (!strcmp(this_char,"uid")) {
2482			if (remount)
2483				continue;
2484			uid = simple_strtoul(value, &rest, 0);
2485			if (*rest)
2486				goto bad_val;
2487			sbinfo->uid = make_kuid(current_user_ns(), uid);
2488			if (!uid_valid(sbinfo->uid))
2489				goto bad_val;
2490		} else if (!strcmp(this_char,"gid")) {
2491			if (remount)
2492				continue;
2493			gid = simple_strtoul(value, &rest, 0);
2494			if (*rest)
2495				goto bad_val;
2496			sbinfo->gid = make_kgid(current_user_ns(), gid);
2497			if (!gid_valid(sbinfo->gid))
2498				goto bad_val;
2499		} else if (!strcmp(this_char,"mpol")) {
2500			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2501				goto bad_val;
2502		} else {
2503			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2504			       this_char);
2505			return 1;
2506		}
2507	}
2508	return 0;
2509
2510bad_val:
2511	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2512	       value, this_char);
2513	return 1;
2514
2515}
2516
2517static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2518{
2519	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2520	struct shmem_sb_info config = *sbinfo;
2521	unsigned long inodes;
2522	int error = -EINVAL;
2523
2524	if (shmem_parse_options(data, &config, true))
2525		return error;
2526
2527	spin_lock(&sbinfo->stat_lock);
2528	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2529	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2530		goto out;
2531	if (config.max_inodes < inodes)
2532		goto out;
2533	/*
2534	 * Those tests disallow limited->unlimited while any are in use;
2535	 * but we must separately disallow unlimited->limited, because
2536	 * in that case we have no record of how much is already in use.
2537	 */
2538	if (config.max_blocks && !sbinfo->max_blocks)
2539		goto out;
2540	if (config.max_inodes && !sbinfo->max_inodes)
2541		goto out;
2542
2543	error = 0;
2544	sbinfo->max_blocks  = config.max_blocks;
2545	sbinfo->max_inodes  = config.max_inodes;
2546	sbinfo->free_inodes = config.max_inodes - inodes;
2547
2548	mpol_put(sbinfo->mpol);
2549	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2550out:
2551	spin_unlock(&sbinfo->stat_lock);
2552	return error;
2553}
2554
2555static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2556{
2557	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2558
2559	if (sbinfo->max_blocks != shmem_default_max_blocks())
2560		seq_printf(seq, ",size=%luk",
2561			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2562	if (sbinfo->max_inodes != shmem_default_max_inodes())
2563		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2564	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2565		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2566	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2567		seq_printf(seq, ",uid=%u",
2568				from_kuid_munged(&init_user_ns, sbinfo->uid));
2569	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2570		seq_printf(seq, ",gid=%u",
2571				from_kgid_munged(&init_user_ns, sbinfo->gid));
2572	shmem_show_mpol(seq, sbinfo->mpol);
2573	return 0;
2574}
2575#endif /* CONFIG_TMPFS */
2576
2577static void shmem_put_super(struct super_block *sb)
2578{
2579	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2580
2581	percpu_counter_destroy(&sbinfo->used_blocks);
2582	kfree(sbinfo);
2583	sb->s_fs_info = NULL;
2584}
2585
2586int shmem_fill_super(struct super_block *sb, void *data, int silent)
2587{
2588	struct inode *inode;
2589	struct shmem_sb_info *sbinfo;
2590	int err = -ENOMEM;
2591
2592	/* Round up to L1_CACHE_BYTES to resist false sharing */
2593	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2594				L1_CACHE_BYTES), GFP_KERNEL);
2595	if (!sbinfo)
2596		return -ENOMEM;
2597
2598	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2599	sbinfo->uid = current_fsuid();
2600	sbinfo->gid = current_fsgid();
2601	sb->s_fs_info = sbinfo;
2602
2603#ifdef CONFIG_TMPFS
2604	/*
2605	 * Per default we only allow half of the physical ram per
2606	 * tmpfs instance, limiting inodes to one per page of lowmem;
2607	 * but the internal instance is left unlimited.
2608	 */
2609	if (!(sb->s_flags & MS_NOUSER)) {
2610		sbinfo->max_blocks = shmem_default_max_blocks();
2611		sbinfo->max_inodes = shmem_default_max_inodes();
2612		if (shmem_parse_options(data, sbinfo, false)) {
2613			err = -EINVAL;
2614			goto failed;
2615		}
2616	}
2617	sb->s_export_op = &shmem_export_ops;
2618	sb->s_flags |= MS_NOSEC;
2619#else
2620	sb->s_flags |= MS_NOUSER;
2621#endif
2622
2623	spin_lock_init(&sbinfo->stat_lock);
2624	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2625		goto failed;
2626	sbinfo->free_inodes = sbinfo->max_inodes;
2627
2628	sb->s_maxbytes = MAX_LFS_FILESIZE;
2629	sb->s_blocksize = PAGE_CACHE_SIZE;
2630	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2631	sb->s_magic = TMPFS_MAGIC;
2632	sb->s_op = &shmem_ops;
2633	sb->s_time_gran = 1;
2634#ifdef CONFIG_TMPFS_XATTR
2635	sb->s_xattr = shmem_xattr_handlers;
2636#endif
2637#ifdef CONFIG_TMPFS_POSIX_ACL
2638	sb->s_flags |= MS_POSIXACL;
2639#endif
2640
2641	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2642	if (!inode)
2643		goto failed;
2644	inode->i_uid = sbinfo->uid;
2645	inode->i_gid = sbinfo->gid;
2646	sb->s_root = d_make_root(inode);
2647	if (!sb->s_root)
2648		goto failed;
2649	return 0;
2650
2651failed:
2652	shmem_put_super(sb);
2653	return err;
2654}
2655
2656static struct kmem_cache *shmem_inode_cachep;
2657
2658static struct inode *shmem_alloc_inode(struct super_block *sb)
2659{
2660	struct shmem_inode_info *info;
2661	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2662	if (!info)
2663		return NULL;
2664	return &info->vfs_inode;
2665}
2666
2667static void shmem_destroy_callback(struct rcu_head *head)
2668{
2669	struct inode *inode = container_of(head, struct inode, i_rcu);
2670	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2671}
2672
2673static void shmem_destroy_inode(struct inode *inode)
2674{
2675	if (S_ISREG(inode->i_mode))
2676		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2677	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2678}
2679
2680static void shmem_init_inode(void *foo)
2681{
2682	struct shmem_inode_info *info = foo;
2683	inode_init_once(&info->vfs_inode);
2684}
2685
2686static int shmem_init_inodecache(void)
2687{
2688	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2689				sizeof(struct shmem_inode_info),
2690				0, SLAB_PANIC, shmem_init_inode);
2691	return 0;
2692}
2693
2694static void shmem_destroy_inodecache(void)
2695{
2696	kmem_cache_destroy(shmem_inode_cachep);
2697}
2698
2699static const struct address_space_operations shmem_aops = {
2700	.writepage	= shmem_writepage,
2701	.set_page_dirty	= __set_page_dirty_no_writeback,
2702#ifdef CONFIG_TMPFS
2703	.write_begin	= shmem_write_begin,
2704	.write_end	= shmem_write_end,
2705#endif
2706	.migratepage	= migrate_page,
2707	.error_remove_page = generic_error_remove_page,
2708};
2709
2710static const struct file_operations shmem_file_operations = {
2711	.mmap		= shmem_mmap,
2712#ifdef CONFIG_TMPFS
2713	.llseek		= generic_file_llseek,
2714	.read		= do_sync_read,
2715	.write		= do_sync_write,
2716	.aio_read	= shmem_file_aio_read,
2717	.aio_write	= generic_file_aio_write,
2718	.fsync		= noop_fsync,
2719	.splice_read	= shmem_file_splice_read,
2720	.splice_write	= generic_file_splice_write,
2721	.fallocate	= shmem_fallocate,
2722#endif
2723};
2724
2725static const struct inode_operations shmem_inode_operations = {
2726	.setattr	= shmem_setattr,
2727#ifdef CONFIG_TMPFS_XATTR
2728	.setxattr	= shmem_setxattr,
2729	.getxattr	= shmem_getxattr,
2730	.listxattr	= shmem_listxattr,
2731	.removexattr	= shmem_removexattr,
2732#endif
2733};
2734
2735static const struct inode_operations shmem_dir_inode_operations = {
2736#ifdef CONFIG_TMPFS
2737	.create		= shmem_create,
2738	.lookup		= simple_lookup,
2739	.link		= shmem_link,
2740	.unlink		= shmem_unlink,
2741	.symlink	= shmem_symlink,
2742	.mkdir		= shmem_mkdir,
2743	.rmdir		= shmem_rmdir,
2744	.mknod		= shmem_mknod,
2745	.rename		= shmem_rename,
2746#endif
2747#ifdef CONFIG_TMPFS_XATTR
2748	.setxattr	= shmem_setxattr,
2749	.getxattr	= shmem_getxattr,
2750	.listxattr	= shmem_listxattr,
2751	.removexattr	= shmem_removexattr,
2752#endif
2753#ifdef CONFIG_TMPFS_POSIX_ACL
2754	.setattr	= shmem_setattr,
2755#endif
2756};
2757
2758static const struct inode_operations shmem_special_inode_operations = {
2759#ifdef CONFIG_TMPFS_XATTR
2760	.setxattr	= shmem_setxattr,
2761	.getxattr	= shmem_getxattr,
2762	.listxattr	= shmem_listxattr,
2763	.removexattr	= shmem_removexattr,
2764#endif
2765#ifdef CONFIG_TMPFS_POSIX_ACL
2766	.setattr	= shmem_setattr,
2767#endif
2768};
2769
2770static const struct super_operations shmem_ops = {
2771	.alloc_inode	= shmem_alloc_inode,
2772	.destroy_inode	= shmem_destroy_inode,
2773#ifdef CONFIG_TMPFS
2774	.statfs		= shmem_statfs,
2775	.remount_fs	= shmem_remount_fs,
2776	.show_options	= shmem_show_options,
2777#endif
2778	.evict_inode	= shmem_evict_inode,
2779	.drop_inode	= generic_delete_inode,
2780	.put_super	= shmem_put_super,
2781};
2782
2783static const struct vm_operations_struct shmem_vm_ops = {
2784	.fault		= shmem_fault,
2785#ifdef CONFIG_NUMA
2786	.set_policy     = shmem_set_policy,
2787	.get_policy     = shmem_get_policy,
2788#endif
2789};
2790
2791static struct dentry *shmem_mount(struct file_system_type *fs_type,
2792	int flags, const char *dev_name, void *data)
2793{
2794	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2795}
2796
2797static struct file_system_type shmem_fs_type = {
2798	.owner		= THIS_MODULE,
2799	.name		= "tmpfs",
2800	.mount		= shmem_mount,
2801	.kill_sb	= kill_litter_super,
2802};
2803
2804int __init shmem_init(void)
2805{
2806	int error;
2807
2808	error = bdi_init(&shmem_backing_dev_info);
2809	if (error)
2810		goto out4;
2811
2812	error = shmem_init_inodecache();
2813	if (error)
2814		goto out3;
2815
2816	error = register_filesystem(&shmem_fs_type);
2817	if (error) {
2818		printk(KERN_ERR "Could not register tmpfs\n");
2819		goto out2;
2820	}
2821
2822	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2823				 shmem_fs_type.name, NULL);
2824	if (IS_ERR(shm_mnt)) {
2825		error = PTR_ERR(shm_mnt);
2826		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2827		goto out1;
2828	}
2829	return 0;
2830
2831out1:
2832	unregister_filesystem(&shmem_fs_type);
2833out2:
2834	shmem_destroy_inodecache();
2835out3:
2836	bdi_destroy(&shmem_backing_dev_info);
2837out4:
2838	shm_mnt = ERR_PTR(error);
2839	return error;
2840}
2841
2842#else /* !CONFIG_SHMEM */
2843
2844/*
2845 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2846 *
2847 * This is intended for small system where the benefits of the full
2848 * shmem code (swap-backed and resource-limited) are outweighed by
2849 * their complexity. On systems without swap this code should be
2850 * effectively equivalent, but much lighter weight.
2851 */
2852
2853#include <linux/ramfs.h>
2854
2855static struct file_system_type shmem_fs_type = {
2856	.name		= "tmpfs",
2857	.mount		= ramfs_mount,
2858	.kill_sb	= kill_litter_super,
2859};
2860
2861int __init shmem_init(void)
2862{
2863	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2864
2865	shm_mnt = kern_mount(&shmem_fs_type);
2866	BUG_ON(IS_ERR(shm_mnt));
2867
2868	return 0;
2869}
2870
2871int shmem_unuse(swp_entry_t swap, struct page *page)
2872{
2873	return 0;
2874}
2875
2876int shmem_lock(struct file *file, int lock, struct user_struct *user)
2877{
2878	return 0;
2879}
2880
2881void shmem_unlock_mapping(struct address_space *mapping)
2882{
2883}
2884
2885void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2886{
2887	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2888}
2889EXPORT_SYMBOL_GPL(shmem_truncate_range);
2890
2891#define shmem_vm_ops				generic_file_vm_ops
2892#define shmem_file_operations			ramfs_file_operations
2893#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2894#define shmem_acct_size(flags, size)		0
2895#define shmem_unacct_size(flags, size)		do {} while (0)
2896
2897#endif /* CONFIG_SHMEM */
2898
2899/* common code */
2900
2901/**
2902 * shmem_file_setup - get an unlinked file living in tmpfs
2903 * @name: name for dentry (to be seen in /proc/<pid>/maps
2904 * @size: size to be set for the file
2905 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2906 */
2907struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2908{
2909	int error;
2910	struct file *file;
2911	struct inode *inode;
2912	struct path path;
2913	struct dentry *root;
2914	struct qstr this;
2915
2916	if (IS_ERR(shm_mnt))
2917		return (void *)shm_mnt;
2918
2919	if (size < 0 || size > MAX_LFS_FILESIZE)
2920		return ERR_PTR(-EINVAL);
2921
2922	if (shmem_acct_size(flags, size))
2923		return ERR_PTR(-ENOMEM);
2924
2925	error = -ENOMEM;
2926	this.name = name;
2927	this.len = strlen(name);
2928	this.hash = 0; /* will go */
2929	root = shm_mnt->mnt_root;
2930	path.dentry = d_alloc(root, &this);
2931	if (!path.dentry)
2932		goto put_memory;
2933	path.mnt = mntget(shm_mnt);
2934
2935	error = -ENOSPC;
2936	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2937	if (!inode)
2938		goto put_dentry;
2939
2940	d_instantiate(path.dentry, inode);
2941	inode->i_size = size;
2942	clear_nlink(inode);	/* It is unlinked */
2943#ifndef CONFIG_MMU
2944	error = ramfs_nommu_expand_for_mapping(inode, size);
2945	if (error)
2946		goto put_dentry;
2947#endif
2948
2949	error = -ENFILE;
2950	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2951		  &shmem_file_operations);
2952	if (!file)
2953		goto put_dentry;
2954
2955	return file;
2956
2957put_dentry:
2958	path_put(&path);
2959put_memory:
2960	shmem_unacct_size(flags, size);
2961	return ERR_PTR(error);
2962}
2963EXPORT_SYMBOL_GPL(shmem_file_setup);
2964
2965/**
2966 * shmem_zero_setup - setup a shared anonymous mapping
2967 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2968 */
2969int shmem_zero_setup(struct vm_area_struct *vma)
2970{
2971	struct file *file;
2972	loff_t size = vma->vm_end - vma->vm_start;
2973
2974	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2975	if (IS_ERR(file))
2976		return PTR_ERR(file);
2977
2978	if (vma->vm_file)
2979		fput(vma->vm_file);
2980	vma->vm_file = file;
2981	vma->vm_ops = &shmem_vm_ops;
2982	vma->vm_flags |= VM_CAN_NONLINEAR;
2983	return 0;
2984}
2985
2986/**
2987 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2988 * @mapping:	the page's address_space
2989 * @index:	the page index
2990 * @gfp:	the page allocator flags to use if allocating
2991 *
2992 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2993 * with any new page allocations done using the specified allocation flags.
2994 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2995 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2996 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2997 *
2998 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2999 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3000 */
3001struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3002					 pgoff_t index, gfp_t gfp)
3003{
3004#ifdef CONFIG_SHMEM
3005	struct inode *inode = mapping->host;
3006	struct page *page;
3007	int error;
3008
3009	BUG_ON(mapping->a_ops != &shmem_aops);
3010	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3011	if (error)
3012		page = ERR_PTR(error);
3013	else
3014		unlock_page(page);
3015	return page;
3016#else
3017	/*
3018	 * The tiny !SHMEM case uses ramfs without swap
3019	 */
3020	return read_cache_page_gfp(mapping, index, gfp);
3021#endif
3022}
3023EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3024