shmem.c revision b409f9fcf04692c0f603d28c73d2e3dfed27bf54
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52
53#include <asm/uaccess.h>
54#include <asm/div64.h>
55#include <asm/pgtable.h>
56
57/* This magic number is used in glibc for posix shared memory */
58#define TMPFS_MAGIC	0x01021994
59
60#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70#define SHMEM_PAGEIN	 VM_READ
71#define SHMEM_TRUNCATE	 VM_WRITE
72
73/* Definition to limit shmem_truncate's steps between cond_rescheds */
74#define LATENCY_LIMIT	 64
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80enum sgp_type {
81	SGP_READ,	/* don't exceed i_size, don't allocate page */
82	SGP_CACHE,	/* don't exceed i_size, may allocate page */
83	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
84	SGP_WRITE,	/* may exceed i_size, may allocate page */
85};
86
87static int shmem_getpage(struct inode *inode, unsigned long idx,
88			 struct page **pagep, enum sgp_type sgp, int *type);
89
90static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91{
92	/*
93	 * The above definition of ENTRIES_PER_PAGE, and the use of
94	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95	 * might be reconsidered if it ever diverges from PAGE_SIZE.
96	 *
97	 * Mobility flags are masked out as swap vectors cannot move
98	 */
99	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
100				PAGE_CACHE_SHIFT-PAGE_SHIFT);
101}
102
103static inline void shmem_dir_free(struct page *page)
104{
105	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
106}
107
108static struct page **shmem_dir_map(struct page *page)
109{
110	return (struct page **)kmap_atomic(page, KM_USER0);
111}
112
113static inline void shmem_dir_unmap(struct page **dir)
114{
115	kunmap_atomic(dir, KM_USER0);
116}
117
118static swp_entry_t *shmem_swp_map(struct page *page)
119{
120	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
121}
122
123static inline void shmem_swp_balance_unmap(void)
124{
125	/*
126	 * When passing a pointer to an i_direct entry, to code which
127	 * also handles indirect entries and so will shmem_swp_unmap,
128	 * we must arrange for the preempt count to remain in balance.
129	 * What kmap_atomic of a lowmem page does depends on config
130	 * and architecture, so pretend to kmap_atomic some lowmem page.
131	 */
132	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
133}
134
135static inline void shmem_swp_unmap(swp_entry_t *entry)
136{
137	kunmap_atomic(entry, KM_USER1);
138}
139
140static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
141{
142	return sb->s_fs_info;
143}
144
145/*
146 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
147 * for shared memory and for shared anonymous (/dev/zero) mappings
148 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
149 * consistent with the pre-accounting of private mappings ...
150 */
151static inline int shmem_acct_size(unsigned long flags, loff_t size)
152{
153	return (flags & VM_ACCOUNT)?
154		security_vm_enough_memory(VM_ACCT(size)): 0;
155}
156
157static inline void shmem_unacct_size(unsigned long flags, loff_t size)
158{
159	if (flags & VM_ACCOUNT)
160		vm_unacct_memory(VM_ACCT(size));
161}
162
163/*
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow huge sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
169static inline int shmem_acct_block(unsigned long flags)
170{
171	return (flags & VM_ACCOUNT)?
172		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
173}
174
175static inline void shmem_unacct_blocks(unsigned long flags, long pages)
176{
177	if (!(flags & VM_ACCOUNT))
178		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
179}
180
181static const struct super_operations shmem_ops;
182static const struct address_space_operations shmem_aops;
183static const struct file_operations shmem_file_operations;
184static const struct inode_operations shmem_inode_operations;
185static const struct inode_operations shmem_dir_inode_operations;
186static const struct inode_operations shmem_special_inode_operations;
187static struct vm_operations_struct shmem_vm_ops;
188
189static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
190	.ra_pages	= 0,	/* No readahead */
191	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
192	.unplug_io_fn	= default_unplug_io_fn,
193};
194
195static LIST_HEAD(shmem_swaplist);
196static DEFINE_MUTEX(shmem_swaplist_mutex);
197
198static void shmem_free_blocks(struct inode *inode, long pages)
199{
200	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
201	if (sbinfo->max_blocks) {
202		spin_lock(&sbinfo->stat_lock);
203		sbinfo->free_blocks += pages;
204		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
205		spin_unlock(&sbinfo->stat_lock);
206	}
207}
208
209static int shmem_reserve_inode(struct super_block *sb)
210{
211	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
212	if (sbinfo->max_inodes) {
213		spin_lock(&sbinfo->stat_lock);
214		if (!sbinfo->free_inodes) {
215			spin_unlock(&sbinfo->stat_lock);
216			return -ENOSPC;
217		}
218		sbinfo->free_inodes--;
219		spin_unlock(&sbinfo->stat_lock);
220	}
221	return 0;
222}
223
224static void shmem_free_inode(struct super_block *sb)
225{
226	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
227	if (sbinfo->max_inodes) {
228		spin_lock(&sbinfo->stat_lock);
229		sbinfo->free_inodes++;
230		spin_unlock(&sbinfo->stat_lock);
231	}
232}
233
234/*
235 * shmem_recalc_inode - recalculate the size of an inode
236 *
237 * @inode: inode to recalc
238 *
239 * We have to calculate the free blocks since the mm can drop
240 * undirtied hole pages behind our back.
241 *
242 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
243 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
244 *
245 * It has to be called with the spinlock held.
246 */
247static void shmem_recalc_inode(struct inode *inode)
248{
249	struct shmem_inode_info *info = SHMEM_I(inode);
250	long freed;
251
252	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
253	if (freed > 0) {
254		info->alloced -= freed;
255		shmem_unacct_blocks(info->flags, freed);
256		shmem_free_blocks(inode, freed);
257	}
258}
259
260/*
261 * shmem_swp_entry - find the swap vector position in the info structure
262 *
263 * @info:  info structure for the inode
264 * @index: index of the page to find
265 * @page:  optional page to add to the structure. Has to be preset to
266 *         all zeros
267 *
268 * If there is no space allocated yet it will return NULL when
269 * page is NULL, else it will use the page for the needed block,
270 * setting it to NULL on return to indicate that it has been used.
271 *
272 * The swap vector is organized the following way:
273 *
274 * There are SHMEM_NR_DIRECT entries directly stored in the
275 * shmem_inode_info structure. So small files do not need an addional
276 * allocation.
277 *
278 * For pages with index > SHMEM_NR_DIRECT there is the pointer
279 * i_indirect which points to a page which holds in the first half
280 * doubly indirect blocks, in the second half triple indirect blocks:
281 *
282 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
283 * following layout (for SHMEM_NR_DIRECT == 16):
284 *
285 * i_indirect -> dir --> 16-19
286 * 	      |	     +-> 20-23
287 * 	      |
288 * 	      +-->dir2 --> 24-27
289 * 	      |	       +-> 28-31
290 * 	      |	       +-> 32-35
291 * 	      |	       +-> 36-39
292 * 	      |
293 * 	      +-->dir3 --> 40-43
294 * 	       	       +-> 44-47
295 * 	      	       +-> 48-51
296 * 	      	       +-> 52-55
297 */
298static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
299{
300	unsigned long offset;
301	struct page **dir;
302	struct page *subdir;
303
304	if (index < SHMEM_NR_DIRECT) {
305		shmem_swp_balance_unmap();
306		return info->i_direct+index;
307	}
308	if (!info->i_indirect) {
309		if (page) {
310			info->i_indirect = *page;
311			*page = NULL;
312		}
313		return NULL;			/* need another page */
314	}
315
316	index -= SHMEM_NR_DIRECT;
317	offset = index % ENTRIES_PER_PAGE;
318	index /= ENTRIES_PER_PAGE;
319	dir = shmem_dir_map(info->i_indirect);
320
321	if (index >= ENTRIES_PER_PAGE/2) {
322		index -= ENTRIES_PER_PAGE/2;
323		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
324		index %= ENTRIES_PER_PAGE;
325		subdir = *dir;
326		if (!subdir) {
327			if (page) {
328				*dir = *page;
329				*page = NULL;
330			}
331			shmem_dir_unmap(dir);
332			return NULL;		/* need another page */
333		}
334		shmem_dir_unmap(dir);
335		dir = shmem_dir_map(subdir);
336	}
337
338	dir += index;
339	subdir = *dir;
340	if (!subdir) {
341		if (!page || !(subdir = *page)) {
342			shmem_dir_unmap(dir);
343			return NULL;		/* need a page */
344		}
345		*dir = subdir;
346		*page = NULL;
347	}
348	shmem_dir_unmap(dir);
349	return shmem_swp_map(subdir) + offset;
350}
351
352static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
353{
354	long incdec = value? 1: -1;
355
356	entry->val = value;
357	info->swapped += incdec;
358	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
359		struct page *page = kmap_atomic_to_page(entry);
360		set_page_private(page, page_private(page) + incdec);
361	}
362}
363
364/*
365 * shmem_swp_alloc - get the position of the swap entry for the page.
366 *                   If it does not exist allocate the entry.
367 *
368 * @info:	info structure for the inode
369 * @index:	index of the page to find
370 * @sgp:	check and recheck i_size? skip allocation?
371 */
372static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
373{
374	struct inode *inode = &info->vfs_inode;
375	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
376	struct page *page = NULL;
377	swp_entry_t *entry;
378
379	if (sgp != SGP_WRITE &&
380	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
381		return ERR_PTR(-EINVAL);
382
383	while (!(entry = shmem_swp_entry(info, index, &page))) {
384		if (sgp == SGP_READ)
385			return shmem_swp_map(ZERO_PAGE(0));
386		/*
387		 * Test free_blocks against 1 not 0, since we have 1 data
388		 * page (and perhaps indirect index pages) yet to allocate:
389		 * a waste to allocate index if we cannot allocate data.
390		 */
391		if (sbinfo->max_blocks) {
392			spin_lock(&sbinfo->stat_lock);
393			if (sbinfo->free_blocks <= 1) {
394				spin_unlock(&sbinfo->stat_lock);
395				return ERR_PTR(-ENOSPC);
396			}
397			sbinfo->free_blocks--;
398			inode->i_blocks += BLOCKS_PER_PAGE;
399			spin_unlock(&sbinfo->stat_lock);
400		}
401
402		spin_unlock(&info->lock);
403		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
404		if (page)
405			set_page_private(page, 0);
406		spin_lock(&info->lock);
407
408		if (!page) {
409			shmem_free_blocks(inode, 1);
410			return ERR_PTR(-ENOMEM);
411		}
412		if (sgp != SGP_WRITE &&
413		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
414			entry = ERR_PTR(-EINVAL);
415			break;
416		}
417		if (info->next_index <= index)
418			info->next_index = index + 1;
419	}
420	if (page) {
421		/* another task gave its page, or truncated the file */
422		shmem_free_blocks(inode, 1);
423		shmem_dir_free(page);
424	}
425	if (info->next_index <= index && !IS_ERR(entry))
426		info->next_index = index + 1;
427	return entry;
428}
429
430/*
431 * shmem_free_swp - free some swap entries in a directory
432 *
433 * @dir:        pointer to the directory
434 * @edir:       pointer after last entry of the directory
435 * @punch_lock: pointer to spinlock when needed for the holepunch case
436 */
437static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
438						spinlock_t *punch_lock)
439{
440	spinlock_t *punch_unlock = NULL;
441	swp_entry_t *ptr;
442	int freed = 0;
443
444	for (ptr = dir; ptr < edir; ptr++) {
445		if (ptr->val) {
446			if (unlikely(punch_lock)) {
447				punch_unlock = punch_lock;
448				punch_lock = NULL;
449				spin_lock(punch_unlock);
450				if (!ptr->val)
451					continue;
452			}
453			free_swap_and_cache(*ptr);
454			*ptr = (swp_entry_t){0};
455			freed++;
456		}
457	}
458	if (punch_unlock)
459		spin_unlock(punch_unlock);
460	return freed;
461}
462
463static int shmem_map_and_free_swp(struct page *subdir, int offset,
464		int limit, struct page ***dir, spinlock_t *punch_lock)
465{
466	swp_entry_t *ptr;
467	int freed = 0;
468
469	ptr = shmem_swp_map(subdir);
470	for (; offset < limit; offset += LATENCY_LIMIT) {
471		int size = limit - offset;
472		if (size > LATENCY_LIMIT)
473			size = LATENCY_LIMIT;
474		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
475							punch_lock);
476		if (need_resched()) {
477			shmem_swp_unmap(ptr);
478			if (*dir) {
479				shmem_dir_unmap(*dir);
480				*dir = NULL;
481			}
482			cond_resched();
483			ptr = shmem_swp_map(subdir);
484		}
485	}
486	shmem_swp_unmap(ptr);
487	return freed;
488}
489
490static void shmem_free_pages(struct list_head *next)
491{
492	struct page *page;
493	int freed = 0;
494
495	do {
496		page = container_of(next, struct page, lru);
497		next = next->next;
498		shmem_dir_free(page);
499		freed++;
500		if (freed >= LATENCY_LIMIT) {
501			cond_resched();
502			freed = 0;
503		}
504	} while (next);
505}
506
507static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
508{
509	struct shmem_inode_info *info = SHMEM_I(inode);
510	unsigned long idx;
511	unsigned long size;
512	unsigned long limit;
513	unsigned long stage;
514	unsigned long diroff;
515	struct page **dir;
516	struct page *topdir;
517	struct page *middir;
518	struct page *subdir;
519	swp_entry_t *ptr;
520	LIST_HEAD(pages_to_free);
521	long nr_pages_to_free = 0;
522	long nr_swaps_freed = 0;
523	int offset;
524	int freed;
525	int punch_hole;
526	spinlock_t *needs_lock;
527	spinlock_t *punch_lock;
528	unsigned long upper_limit;
529
530	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
531	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
532	if (idx >= info->next_index)
533		return;
534
535	spin_lock(&info->lock);
536	info->flags |= SHMEM_TRUNCATE;
537	if (likely(end == (loff_t) -1)) {
538		limit = info->next_index;
539		upper_limit = SHMEM_MAX_INDEX;
540		info->next_index = idx;
541		needs_lock = NULL;
542		punch_hole = 0;
543	} else {
544		if (end + 1 >= inode->i_size) {	/* we may free a little more */
545			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
546							PAGE_CACHE_SHIFT;
547			upper_limit = SHMEM_MAX_INDEX;
548		} else {
549			limit = (end + 1) >> PAGE_CACHE_SHIFT;
550			upper_limit = limit;
551		}
552		needs_lock = &info->lock;
553		punch_hole = 1;
554	}
555
556	topdir = info->i_indirect;
557	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
558		info->i_indirect = NULL;
559		nr_pages_to_free++;
560		list_add(&topdir->lru, &pages_to_free);
561	}
562	spin_unlock(&info->lock);
563
564	if (info->swapped && idx < SHMEM_NR_DIRECT) {
565		ptr = info->i_direct;
566		size = limit;
567		if (size > SHMEM_NR_DIRECT)
568			size = SHMEM_NR_DIRECT;
569		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
570	}
571
572	/*
573	 * If there are no indirect blocks or we are punching a hole
574	 * below indirect blocks, nothing to be done.
575	 */
576	if (!topdir || limit <= SHMEM_NR_DIRECT)
577		goto done2;
578
579	/*
580	 * The truncation case has already dropped info->lock, and we're safe
581	 * because i_size and next_index have already been lowered, preventing
582	 * access beyond.  But in the punch_hole case, we still need to take
583	 * the lock when updating the swap directory, because there might be
584	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
585	 * shmem_writepage.  However, whenever we find we can remove a whole
586	 * directory page (not at the misaligned start or end of the range),
587	 * we first NULLify its pointer in the level above, and then have no
588	 * need to take the lock when updating its contents: needs_lock and
589	 * punch_lock (either pointing to info->lock or NULL) manage this.
590	 */
591
592	upper_limit -= SHMEM_NR_DIRECT;
593	limit -= SHMEM_NR_DIRECT;
594	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
595	offset = idx % ENTRIES_PER_PAGE;
596	idx -= offset;
597
598	dir = shmem_dir_map(topdir);
599	stage = ENTRIES_PER_PAGEPAGE/2;
600	if (idx < ENTRIES_PER_PAGEPAGE/2) {
601		middir = topdir;
602		diroff = idx/ENTRIES_PER_PAGE;
603	} else {
604		dir += ENTRIES_PER_PAGE/2;
605		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
606		while (stage <= idx)
607			stage += ENTRIES_PER_PAGEPAGE;
608		middir = *dir;
609		if (*dir) {
610			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
611				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
612			if (!diroff && !offset && upper_limit >= stage) {
613				if (needs_lock) {
614					spin_lock(needs_lock);
615					*dir = NULL;
616					spin_unlock(needs_lock);
617					needs_lock = NULL;
618				} else
619					*dir = NULL;
620				nr_pages_to_free++;
621				list_add(&middir->lru, &pages_to_free);
622			}
623			shmem_dir_unmap(dir);
624			dir = shmem_dir_map(middir);
625		} else {
626			diroff = 0;
627			offset = 0;
628			idx = stage;
629		}
630	}
631
632	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
633		if (unlikely(idx == stage)) {
634			shmem_dir_unmap(dir);
635			dir = shmem_dir_map(topdir) +
636			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
637			while (!*dir) {
638				dir++;
639				idx += ENTRIES_PER_PAGEPAGE;
640				if (idx >= limit)
641					goto done1;
642			}
643			stage = idx + ENTRIES_PER_PAGEPAGE;
644			middir = *dir;
645			if (punch_hole)
646				needs_lock = &info->lock;
647			if (upper_limit >= stage) {
648				if (needs_lock) {
649					spin_lock(needs_lock);
650					*dir = NULL;
651					spin_unlock(needs_lock);
652					needs_lock = NULL;
653				} else
654					*dir = NULL;
655				nr_pages_to_free++;
656				list_add(&middir->lru, &pages_to_free);
657			}
658			shmem_dir_unmap(dir);
659			cond_resched();
660			dir = shmem_dir_map(middir);
661			diroff = 0;
662		}
663		punch_lock = needs_lock;
664		subdir = dir[diroff];
665		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
666			if (needs_lock) {
667				spin_lock(needs_lock);
668				dir[diroff] = NULL;
669				spin_unlock(needs_lock);
670				punch_lock = NULL;
671			} else
672				dir[diroff] = NULL;
673			nr_pages_to_free++;
674			list_add(&subdir->lru, &pages_to_free);
675		}
676		if (subdir && page_private(subdir) /* has swap entries */) {
677			size = limit - idx;
678			if (size > ENTRIES_PER_PAGE)
679				size = ENTRIES_PER_PAGE;
680			freed = shmem_map_and_free_swp(subdir,
681					offset, size, &dir, punch_lock);
682			if (!dir)
683				dir = shmem_dir_map(middir);
684			nr_swaps_freed += freed;
685			if (offset || punch_lock) {
686				spin_lock(&info->lock);
687				set_page_private(subdir,
688					page_private(subdir) - freed);
689				spin_unlock(&info->lock);
690			} else
691				BUG_ON(page_private(subdir) != freed);
692		}
693		offset = 0;
694	}
695done1:
696	shmem_dir_unmap(dir);
697done2:
698	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
699		/*
700		 * Call truncate_inode_pages again: racing shmem_unuse_inode
701		 * may have swizzled a page in from swap since vmtruncate or
702		 * generic_delete_inode did it, before we lowered next_index.
703		 * Also, though shmem_getpage checks i_size before adding to
704		 * cache, no recheck after: so fix the narrow window there too.
705		 *
706		 * Recalling truncate_inode_pages_range and unmap_mapping_range
707		 * every time for punch_hole (which never got a chance to clear
708		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
709		 * yet hardly ever necessary: try to optimize them out later.
710		 */
711		truncate_inode_pages_range(inode->i_mapping, start, end);
712		if (punch_hole)
713			unmap_mapping_range(inode->i_mapping, start,
714							end - start, 1);
715	}
716
717	spin_lock(&info->lock);
718	info->flags &= ~SHMEM_TRUNCATE;
719	info->swapped -= nr_swaps_freed;
720	if (nr_pages_to_free)
721		shmem_free_blocks(inode, nr_pages_to_free);
722	shmem_recalc_inode(inode);
723	spin_unlock(&info->lock);
724
725	/*
726	 * Empty swap vector directory pages to be freed?
727	 */
728	if (!list_empty(&pages_to_free)) {
729		pages_to_free.prev->next = NULL;
730		shmem_free_pages(pages_to_free.next);
731	}
732}
733
734static void shmem_truncate(struct inode *inode)
735{
736	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
737}
738
739static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
740{
741	struct inode *inode = dentry->d_inode;
742	struct page *page = NULL;
743	int error;
744
745	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
746		if (attr->ia_size < inode->i_size) {
747			/*
748			 * If truncating down to a partial page, then
749			 * if that page is already allocated, hold it
750			 * in memory until the truncation is over, so
751			 * truncate_partial_page cannnot miss it were
752			 * it assigned to swap.
753			 */
754			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
755				(void) shmem_getpage(inode,
756					attr->ia_size>>PAGE_CACHE_SHIFT,
757						&page, SGP_READ, NULL);
758				if (page)
759					unlock_page(page);
760			}
761			/*
762			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
763			 * detect if any pages might have been added to cache
764			 * after truncate_inode_pages.  But we needn't bother
765			 * if it's being fully truncated to zero-length: the
766			 * nrpages check is efficient enough in that case.
767			 */
768			if (attr->ia_size) {
769				struct shmem_inode_info *info = SHMEM_I(inode);
770				spin_lock(&info->lock);
771				info->flags &= ~SHMEM_PAGEIN;
772				spin_unlock(&info->lock);
773			}
774		}
775	}
776
777	error = inode_change_ok(inode, attr);
778	if (!error)
779		error = inode_setattr(inode, attr);
780#ifdef CONFIG_TMPFS_POSIX_ACL
781	if (!error && (attr->ia_valid & ATTR_MODE))
782		error = generic_acl_chmod(inode, &shmem_acl_ops);
783#endif
784	if (page)
785		page_cache_release(page);
786	return error;
787}
788
789static void shmem_delete_inode(struct inode *inode)
790{
791	struct shmem_inode_info *info = SHMEM_I(inode);
792
793	if (inode->i_op->truncate == shmem_truncate) {
794		truncate_inode_pages(inode->i_mapping, 0);
795		shmem_unacct_size(info->flags, inode->i_size);
796		inode->i_size = 0;
797		shmem_truncate(inode);
798		if (!list_empty(&info->swaplist)) {
799			mutex_lock(&shmem_swaplist_mutex);
800			list_del_init(&info->swaplist);
801			mutex_unlock(&shmem_swaplist_mutex);
802		}
803	}
804	BUG_ON(inode->i_blocks);
805	shmem_free_inode(inode->i_sb);
806	clear_inode(inode);
807}
808
809static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
810{
811	swp_entry_t *ptr;
812
813	for (ptr = dir; ptr < edir; ptr++) {
814		if (ptr->val == entry.val)
815			return ptr - dir;
816	}
817	return -1;
818}
819
820static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
821{
822	struct inode *inode;
823	unsigned long idx;
824	unsigned long size;
825	unsigned long limit;
826	unsigned long stage;
827	struct page **dir;
828	struct page *subdir;
829	swp_entry_t *ptr;
830	int offset;
831	int error;
832
833	idx = 0;
834	ptr = info->i_direct;
835	spin_lock(&info->lock);
836	limit = info->next_index;
837	size = limit;
838	if (size > SHMEM_NR_DIRECT)
839		size = SHMEM_NR_DIRECT;
840	offset = shmem_find_swp(entry, ptr, ptr+size);
841	if (offset >= 0)
842		goto found;
843	if (!info->i_indirect)
844		goto lost2;
845
846	dir = shmem_dir_map(info->i_indirect);
847	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
848
849	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
850		if (unlikely(idx == stage)) {
851			shmem_dir_unmap(dir-1);
852			if (cond_resched_lock(&info->lock)) {
853				/* check it has not been truncated */
854				if (limit > info->next_index) {
855					limit = info->next_index;
856					if (idx >= limit)
857						goto lost2;
858				}
859			}
860			dir = shmem_dir_map(info->i_indirect) +
861			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
862			while (!*dir) {
863				dir++;
864				idx += ENTRIES_PER_PAGEPAGE;
865				if (idx >= limit)
866					goto lost1;
867			}
868			stage = idx + ENTRIES_PER_PAGEPAGE;
869			subdir = *dir;
870			shmem_dir_unmap(dir);
871			dir = shmem_dir_map(subdir);
872		}
873		subdir = *dir;
874		if (subdir && page_private(subdir)) {
875			ptr = shmem_swp_map(subdir);
876			size = limit - idx;
877			if (size > ENTRIES_PER_PAGE)
878				size = ENTRIES_PER_PAGE;
879			offset = shmem_find_swp(entry, ptr, ptr+size);
880			shmem_swp_unmap(ptr);
881			if (offset >= 0) {
882				shmem_dir_unmap(dir);
883				goto found;
884			}
885		}
886	}
887lost1:
888	shmem_dir_unmap(dir-1);
889lost2:
890	spin_unlock(&info->lock);
891	return 0;
892found:
893	idx += offset;
894	inode = igrab(&info->vfs_inode);
895	spin_unlock(&info->lock);
896
897	/* move head to start search for next from here */
898	list_move_tail(&shmem_swaplist, &info->swaplist);
899	mutex_unlock(&shmem_swaplist_mutex);
900
901	error = 1;
902	if (!inode)
903		goto out;
904	error = radix_tree_preload(GFP_KERNEL);
905	if (error)
906		goto out;
907	error = 1;
908
909	spin_lock(&info->lock);
910	ptr = shmem_swp_entry(info, idx, NULL);
911	if (ptr && ptr->val == entry.val)
912		error = add_to_page_cache(page, inode->i_mapping,
913						idx, GFP_NOWAIT);
914	if (error == -EEXIST) {
915		struct page *filepage = find_get_page(inode->i_mapping, idx);
916		error = 1;
917		if (filepage) {
918			/*
919			 * There might be a more uptodate page coming down
920			 * from a stacked writepage: forget our swappage if so.
921			 */
922			if (PageUptodate(filepage))
923				error = 0;
924			page_cache_release(filepage);
925		}
926	}
927	if (!error) {
928		delete_from_swap_cache(page);
929		set_page_dirty(page);
930		info->flags |= SHMEM_PAGEIN;
931		shmem_swp_set(info, ptr, 0);
932		swap_free(entry);
933		error = 1;	/* not an error, but entry was found */
934	}
935	if (ptr)
936		shmem_swp_unmap(ptr);
937	spin_unlock(&info->lock);
938	radix_tree_preload_end();
939out:
940	unlock_page(page);
941	page_cache_release(page);
942	iput(inode);		/* allows for NULL */
943	return error;
944}
945
946/*
947 * shmem_unuse() search for an eventually swapped out shmem page.
948 */
949int shmem_unuse(swp_entry_t entry, struct page *page)
950{
951	struct list_head *p, *next;
952	struct shmem_inode_info *info;
953	int found = 0;
954
955	mutex_lock(&shmem_swaplist_mutex);
956	list_for_each_safe(p, next, &shmem_swaplist) {
957		info = list_entry(p, struct shmem_inode_info, swaplist);
958		if (info->swapped)
959			found = shmem_unuse_inode(info, entry, page);
960		else
961			list_del_init(&info->swaplist);
962		cond_resched();
963		if (found)
964			goto out;
965	}
966	mutex_unlock(&shmem_swaplist_mutex);
967out:	return found;	/* 0 or 1 or -ENOMEM */
968}
969
970/*
971 * Move the page from the page cache to the swap cache.
972 */
973static int shmem_writepage(struct page *page, struct writeback_control *wbc)
974{
975	struct shmem_inode_info *info;
976	swp_entry_t *entry, swap;
977	struct address_space *mapping;
978	unsigned long index;
979	struct inode *inode;
980
981	BUG_ON(!PageLocked(page));
982	mapping = page->mapping;
983	index = page->index;
984	inode = mapping->host;
985	info = SHMEM_I(inode);
986	if (info->flags & VM_LOCKED)
987		goto redirty;
988	if (!total_swap_pages)
989		goto redirty;
990
991	/*
992	 * shmem_backing_dev_info's capabilities prevent regular writeback or
993	 * sync from ever calling shmem_writepage; but a stacking filesystem
994	 * may use the ->writepage of its underlying filesystem, in which case
995	 * tmpfs should write out to swap only in response to memory pressure,
996	 * and not for pdflush or sync.  However, in those cases, we do still
997	 * want to check if there's a redundant swappage to be discarded.
998	 */
999	if (wbc->for_reclaim)
1000		swap = get_swap_page();
1001	else
1002		swap.val = 0;
1003
1004	spin_lock(&info->lock);
1005	if (index >= info->next_index) {
1006		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1007		goto unlock;
1008	}
1009	entry = shmem_swp_entry(info, index, NULL);
1010	if (entry->val) {
1011		/*
1012		 * The more uptodate page coming down from a stacked
1013		 * writepage should replace our old swappage.
1014		 */
1015		free_swap_and_cache(*entry);
1016		shmem_swp_set(info, entry, 0);
1017	}
1018	shmem_recalc_inode(inode);
1019
1020	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1021		remove_from_page_cache(page);
1022		shmem_swp_set(info, entry, swap.val);
1023		shmem_swp_unmap(entry);
1024		spin_unlock(&info->lock);
1025		if (list_empty(&info->swaplist)) {
1026			mutex_lock(&shmem_swaplist_mutex);
1027			/* move instead of add in case we're racing */
1028			list_move_tail(&info->swaplist, &shmem_swaplist);
1029			mutex_unlock(&shmem_swaplist_mutex);
1030		}
1031		swap_duplicate(swap);
1032		BUG_ON(page_mapped(page));
1033		page_cache_release(page);	/* pagecache ref */
1034		set_page_dirty(page);
1035		unlock_page(page);
1036		return 0;
1037	}
1038
1039	shmem_swp_unmap(entry);
1040unlock:
1041	spin_unlock(&info->lock);
1042	swap_free(swap);
1043redirty:
1044	set_page_dirty(page);
1045	if (wbc->for_reclaim)
1046		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1047	unlock_page(page);
1048	return 0;
1049}
1050
1051#ifdef CONFIG_NUMA
1052static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1053{
1054	char *nodelist = strchr(value, ':');
1055	int err = 1;
1056
1057	if (nodelist) {
1058		/* NUL-terminate policy string */
1059		*nodelist++ = '\0';
1060		if (nodelist_parse(nodelist, *policy_nodes))
1061			goto out;
1062		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1063			goto out;
1064	}
1065	if (!strcmp(value, "default")) {
1066		*policy = MPOL_DEFAULT;
1067		/* Don't allow a nodelist */
1068		if (!nodelist)
1069			err = 0;
1070	} else if (!strcmp(value, "prefer")) {
1071		*policy = MPOL_PREFERRED;
1072		/* Insist on a nodelist of one node only */
1073		if (nodelist) {
1074			char *rest = nodelist;
1075			while (isdigit(*rest))
1076				rest++;
1077			if (!*rest)
1078				err = 0;
1079		}
1080	} else if (!strcmp(value, "bind")) {
1081		*policy = MPOL_BIND;
1082		/* Insist on a nodelist */
1083		if (nodelist)
1084			err = 0;
1085	} else if (!strcmp(value, "interleave")) {
1086		*policy = MPOL_INTERLEAVE;
1087		/*
1088		 * Default to online nodes with memory if no nodelist
1089		 */
1090		if (!nodelist)
1091			*policy_nodes = node_states[N_HIGH_MEMORY];
1092		err = 0;
1093	}
1094out:
1095	/* Restore string for error message */
1096	if (nodelist)
1097		*--nodelist = ':';
1098	return err;
1099}
1100
1101static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1102			struct shmem_inode_info *info, unsigned long idx)
1103{
1104	struct vm_area_struct pvma;
1105	struct page *page;
1106
1107	/* Create a pseudo vma that just contains the policy */
1108	pvma.vm_start = 0;
1109	pvma.vm_pgoff = idx;
1110	pvma.vm_ops = NULL;
1111	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1112	page = swapin_readahead(entry, gfp, &pvma, 0);
1113	mpol_free(pvma.vm_policy);
1114	return page;
1115}
1116
1117static struct page *shmem_alloc_page(gfp_t gfp,
1118			struct shmem_inode_info *info, unsigned long idx)
1119{
1120	struct vm_area_struct pvma;
1121	struct page *page;
1122
1123	/* Create a pseudo vma that just contains the policy */
1124	pvma.vm_start = 0;
1125	pvma.vm_pgoff = idx;
1126	pvma.vm_ops = NULL;
1127	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1128	page = alloc_page_vma(gfp, &pvma, 0);
1129	mpol_free(pvma.vm_policy);
1130	return page;
1131}
1132#else
1133static inline int shmem_parse_mpol(char *value, int *policy,
1134						nodemask_t *policy_nodes)
1135{
1136	return 1;
1137}
1138
1139static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1140			struct shmem_inode_info *info, unsigned long idx)
1141{
1142	return swapin_readahead(entry, gfp, NULL, 0);
1143}
1144
1145static inline struct page *shmem_alloc_page(gfp_t gfp,
1146			struct shmem_inode_info *info, unsigned long idx)
1147{
1148	return alloc_page(gfp);
1149}
1150#endif
1151
1152/*
1153 * shmem_getpage - either get the page from swap or allocate a new one
1154 *
1155 * If we allocate a new one we do not mark it dirty. That's up to the
1156 * vm. If we swap it in we mark it dirty since we also free the swap
1157 * entry since a page cannot live in both the swap and page cache
1158 */
1159static int shmem_getpage(struct inode *inode, unsigned long idx,
1160			struct page **pagep, enum sgp_type sgp, int *type)
1161{
1162	struct address_space *mapping = inode->i_mapping;
1163	struct shmem_inode_info *info = SHMEM_I(inode);
1164	struct shmem_sb_info *sbinfo;
1165	struct page *filepage = *pagep;
1166	struct page *swappage;
1167	swp_entry_t *entry;
1168	swp_entry_t swap;
1169	gfp_t gfp;
1170	int error;
1171
1172	if (idx >= SHMEM_MAX_INDEX)
1173		return -EFBIG;
1174
1175	if (type)
1176		*type = 0;
1177
1178	/*
1179	 * Normally, filepage is NULL on entry, and either found
1180	 * uptodate immediately, or allocated and zeroed, or read
1181	 * in under swappage, which is then assigned to filepage.
1182	 * But shmem_readpage (required for splice) passes in a locked
1183	 * filepage, which may be found not uptodate by other callers
1184	 * too, and may need to be copied from the swappage read in.
1185	 */
1186repeat:
1187	if (!filepage)
1188		filepage = find_lock_page(mapping, idx);
1189	if (filepage && PageUptodate(filepage))
1190		goto done;
1191	error = 0;
1192	gfp = mapping_gfp_mask(mapping);
1193	if (!filepage) {
1194		/*
1195		 * Try to preload while we can wait, to not make a habit of
1196		 * draining atomic reserves; but don't latch on to this cpu.
1197		 */
1198		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1199		if (error)
1200			goto failed;
1201		radix_tree_preload_end();
1202	}
1203
1204	spin_lock(&info->lock);
1205	shmem_recalc_inode(inode);
1206	entry = shmem_swp_alloc(info, idx, sgp);
1207	if (IS_ERR(entry)) {
1208		spin_unlock(&info->lock);
1209		error = PTR_ERR(entry);
1210		goto failed;
1211	}
1212	swap = *entry;
1213
1214	if (swap.val) {
1215		/* Look it up and read it in.. */
1216		swappage = lookup_swap_cache(swap);
1217		if (!swappage) {
1218			shmem_swp_unmap(entry);
1219			/* here we actually do the io */
1220			if (type && !(*type & VM_FAULT_MAJOR)) {
1221				__count_vm_event(PGMAJFAULT);
1222				*type |= VM_FAULT_MAJOR;
1223			}
1224			spin_unlock(&info->lock);
1225			swappage = shmem_swapin(swap, gfp, info, idx);
1226			if (!swappage) {
1227				spin_lock(&info->lock);
1228				entry = shmem_swp_alloc(info, idx, sgp);
1229				if (IS_ERR(entry))
1230					error = PTR_ERR(entry);
1231				else {
1232					if (entry->val == swap.val)
1233						error = -ENOMEM;
1234					shmem_swp_unmap(entry);
1235				}
1236				spin_unlock(&info->lock);
1237				if (error)
1238					goto failed;
1239				goto repeat;
1240			}
1241			wait_on_page_locked(swappage);
1242			page_cache_release(swappage);
1243			goto repeat;
1244		}
1245
1246		/* We have to do this with page locked to prevent races */
1247		if (TestSetPageLocked(swappage)) {
1248			shmem_swp_unmap(entry);
1249			spin_unlock(&info->lock);
1250			wait_on_page_locked(swappage);
1251			page_cache_release(swappage);
1252			goto repeat;
1253		}
1254		if (PageWriteback(swappage)) {
1255			shmem_swp_unmap(entry);
1256			spin_unlock(&info->lock);
1257			wait_on_page_writeback(swappage);
1258			unlock_page(swappage);
1259			page_cache_release(swappage);
1260			goto repeat;
1261		}
1262		if (!PageUptodate(swappage)) {
1263			shmem_swp_unmap(entry);
1264			spin_unlock(&info->lock);
1265			unlock_page(swappage);
1266			page_cache_release(swappage);
1267			error = -EIO;
1268			goto failed;
1269		}
1270
1271		if (filepage) {
1272			shmem_swp_set(info, entry, 0);
1273			shmem_swp_unmap(entry);
1274			delete_from_swap_cache(swappage);
1275			spin_unlock(&info->lock);
1276			copy_highpage(filepage, swappage);
1277			unlock_page(swappage);
1278			page_cache_release(swappage);
1279			flush_dcache_page(filepage);
1280			SetPageUptodate(filepage);
1281			set_page_dirty(filepage);
1282			swap_free(swap);
1283		} else if (!(error = add_to_page_cache(
1284				swappage, mapping, idx, GFP_NOWAIT))) {
1285			info->flags |= SHMEM_PAGEIN;
1286			shmem_swp_set(info, entry, 0);
1287			shmem_swp_unmap(entry);
1288			delete_from_swap_cache(swappage);
1289			spin_unlock(&info->lock);
1290			filepage = swappage;
1291			set_page_dirty(filepage);
1292			swap_free(swap);
1293		} else {
1294			shmem_swp_unmap(entry);
1295			spin_unlock(&info->lock);
1296			unlock_page(swappage);
1297			page_cache_release(swappage);
1298			goto repeat;
1299		}
1300	} else if (sgp == SGP_READ && !filepage) {
1301		shmem_swp_unmap(entry);
1302		filepage = find_get_page(mapping, idx);
1303		if (filepage &&
1304		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1305			spin_unlock(&info->lock);
1306			wait_on_page_locked(filepage);
1307			page_cache_release(filepage);
1308			filepage = NULL;
1309			goto repeat;
1310		}
1311		spin_unlock(&info->lock);
1312	} else {
1313		shmem_swp_unmap(entry);
1314		sbinfo = SHMEM_SB(inode->i_sb);
1315		if (sbinfo->max_blocks) {
1316			spin_lock(&sbinfo->stat_lock);
1317			if (sbinfo->free_blocks == 0 ||
1318			    shmem_acct_block(info->flags)) {
1319				spin_unlock(&sbinfo->stat_lock);
1320				spin_unlock(&info->lock);
1321				error = -ENOSPC;
1322				goto failed;
1323			}
1324			sbinfo->free_blocks--;
1325			inode->i_blocks += BLOCKS_PER_PAGE;
1326			spin_unlock(&sbinfo->stat_lock);
1327		} else if (shmem_acct_block(info->flags)) {
1328			spin_unlock(&info->lock);
1329			error = -ENOSPC;
1330			goto failed;
1331		}
1332
1333		if (!filepage) {
1334			spin_unlock(&info->lock);
1335			filepage = shmem_alloc_page(gfp, info, idx);
1336			if (!filepage) {
1337				shmem_unacct_blocks(info->flags, 1);
1338				shmem_free_blocks(inode, 1);
1339				error = -ENOMEM;
1340				goto failed;
1341			}
1342
1343			spin_lock(&info->lock);
1344			entry = shmem_swp_alloc(info, idx, sgp);
1345			if (IS_ERR(entry))
1346				error = PTR_ERR(entry);
1347			else {
1348				swap = *entry;
1349				shmem_swp_unmap(entry);
1350			}
1351			if (error || swap.val || 0 != add_to_page_cache_lru(
1352					filepage, mapping, idx, GFP_NOWAIT)) {
1353				spin_unlock(&info->lock);
1354				page_cache_release(filepage);
1355				shmem_unacct_blocks(info->flags, 1);
1356				shmem_free_blocks(inode, 1);
1357				filepage = NULL;
1358				if (error)
1359					goto failed;
1360				goto repeat;
1361			}
1362			info->flags |= SHMEM_PAGEIN;
1363		}
1364
1365		info->alloced++;
1366		spin_unlock(&info->lock);
1367		clear_highpage(filepage);
1368		flush_dcache_page(filepage);
1369		SetPageUptodate(filepage);
1370		if (sgp == SGP_DIRTY)
1371			set_page_dirty(filepage);
1372	}
1373done:
1374	*pagep = filepage;
1375	return 0;
1376
1377failed:
1378	if (*pagep != filepage) {
1379		unlock_page(filepage);
1380		page_cache_release(filepage);
1381	}
1382	return error;
1383}
1384
1385static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1386{
1387	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1388	int error;
1389	int ret;
1390
1391	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1392		return VM_FAULT_SIGBUS;
1393
1394	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1395	if (error)
1396		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1397
1398	mark_page_accessed(vmf->page);
1399	return ret | VM_FAULT_LOCKED;
1400}
1401
1402#ifdef CONFIG_NUMA
1403static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1404{
1405	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1406	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1407}
1408
1409static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1410					  unsigned long addr)
1411{
1412	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1413	unsigned long idx;
1414
1415	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1416	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1417}
1418#endif
1419
1420int shmem_lock(struct file *file, int lock, struct user_struct *user)
1421{
1422	struct inode *inode = file->f_path.dentry->d_inode;
1423	struct shmem_inode_info *info = SHMEM_I(inode);
1424	int retval = -ENOMEM;
1425
1426	spin_lock(&info->lock);
1427	if (lock && !(info->flags & VM_LOCKED)) {
1428		if (!user_shm_lock(inode->i_size, user))
1429			goto out_nomem;
1430		info->flags |= VM_LOCKED;
1431	}
1432	if (!lock && (info->flags & VM_LOCKED) && user) {
1433		user_shm_unlock(inode->i_size, user);
1434		info->flags &= ~VM_LOCKED;
1435	}
1436	retval = 0;
1437out_nomem:
1438	spin_unlock(&info->lock);
1439	return retval;
1440}
1441
1442static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1443{
1444	file_accessed(file);
1445	vma->vm_ops = &shmem_vm_ops;
1446	vma->vm_flags |= VM_CAN_NONLINEAR;
1447	return 0;
1448}
1449
1450static struct inode *
1451shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1452{
1453	struct inode *inode;
1454	struct shmem_inode_info *info;
1455	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1456
1457	if (shmem_reserve_inode(sb))
1458		return NULL;
1459
1460	inode = new_inode(sb);
1461	if (inode) {
1462		inode->i_mode = mode;
1463		inode->i_uid = current->fsuid;
1464		inode->i_gid = current->fsgid;
1465		inode->i_blocks = 0;
1466		inode->i_mapping->a_ops = &shmem_aops;
1467		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1468		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1469		inode->i_generation = get_seconds();
1470		info = SHMEM_I(inode);
1471		memset(info, 0, (char *)inode - (char *)info);
1472		spin_lock_init(&info->lock);
1473		INIT_LIST_HEAD(&info->swaplist);
1474
1475		switch (mode & S_IFMT) {
1476		default:
1477			inode->i_op = &shmem_special_inode_operations;
1478			init_special_inode(inode, mode, dev);
1479			break;
1480		case S_IFREG:
1481			inode->i_op = &shmem_inode_operations;
1482			inode->i_fop = &shmem_file_operations;
1483			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1484							&sbinfo->policy_nodes);
1485			break;
1486		case S_IFDIR:
1487			inc_nlink(inode);
1488			/* Some things misbehave if size == 0 on a directory */
1489			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1490			inode->i_op = &shmem_dir_inode_operations;
1491			inode->i_fop = &simple_dir_operations;
1492			break;
1493		case S_IFLNK:
1494			/*
1495			 * Must not load anything in the rbtree,
1496			 * mpol_free_shared_policy will not be called.
1497			 */
1498			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1499						NULL);
1500			break;
1501		}
1502	} else
1503		shmem_free_inode(sb);
1504	return inode;
1505}
1506
1507#ifdef CONFIG_TMPFS
1508static const struct inode_operations shmem_symlink_inode_operations;
1509static const struct inode_operations shmem_symlink_inline_operations;
1510
1511/*
1512 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1513 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1514 * below the loop driver, in the generic fashion that many filesystems support.
1515 */
1516static int shmem_readpage(struct file *file, struct page *page)
1517{
1518	struct inode *inode = page->mapping->host;
1519	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1520	unlock_page(page);
1521	return error;
1522}
1523
1524static int
1525shmem_write_begin(struct file *file, struct address_space *mapping,
1526			loff_t pos, unsigned len, unsigned flags,
1527			struct page **pagep, void **fsdata)
1528{
1529	struct inode *inode = mapping->host;
1530	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1531	*pagep = NULL;
1532	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1533}
1534
1535static int
1536shmem_write_end(struct file *file, struct address_space *mapping,
1537			loff_t pos, unsigned len, unsigned copied,
1538			struct page *page, void *fsdata)
1539{
1540	struct inode *inode = mapping->host;
1541
1542	if (pos + copied > inode->i_size)
1543		i_size_write(inode, pos + copied);
1544
1545	unlock_page(page);
1546	set_page_dirty(page);
1547	page_cache_release(page);
1548
1549	return copied;
1550}
1551
1552static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1553{
1554	struct inode *inode = filp->f_path.dentry->d_inode;
1555	struct address_space *mapping = inode->i_mapping;
1556	unsigned long index, offset;
1557	enum sgp_type sgp = SGP_READ;
1558
1559	/*
1560	 * Might this read be for a stacking filesystem?  Then when reading
1561	 * holes of a sparse file, we actually need to allocate those pages,
1562	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1563	 */
1564	if (segment_eq(get_fs(), KERNEL_DS))
1565		sgp = SGP_DIRTY;
1566
1567	index = *ppos >> PAGE_CACHE_SHIFT;
1568	offset = *ppos & ~PAGE_CACHE_MASK;
1569
1570	for (;;) {
1571		struct page *page = NULL;
1572		unsigned long end_index, nr, ret;
1573		loff_t i_size = i_size_read(inode);
1574
1575		end_index = i_size >> PAGE_CACHE_SHIFT;
1576		if (index > end_index)
1577			break;
1578		if (index == end_index) {
1579			nr = i_size & ~PAGE_CACHE_MASK;
1580			if (nr <= offset)
1581				break;
1582		}
1583
1584		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1585		if (desc->error) {
1586			if (desc->error == -EINVAL)
1587				desc->error = 0;
1588			break;
1589		}
1590		if (page)
1591			unlock_page(page);
1592
1593		/*
1594		 * We must evaluate after, since reads (unlike writes)
1595		 * are called without i_mutex protection against truncate
1596		 */
1597		nr = PAGE_CACHE_SIZE;
1598		i_size = i_size_read(inode);
1599		end_index = i_size >> PAGE_CACHE_SHIFT;
1600		if (index == end_index) {
1601			nr = i_size & ~PAGE_CACHE_MASK;
1602			if (nr <= offset) {
1603				if (page)
1604					page_cache_release(page);
1605				break;
1606			}
1607		}
1608		nr -= offset;
1609
1610		if (page) {
1611			/*
1612			 * If users can be writing to this page using arbitrary
1613			 * virtual addresses, take care about potential aliasing
1614			 * before reading the page on the kernel side.
1615			 */
1616			if (mapping_writably_mapped(mapping))
1617				flush_dcache_page(page);
1618			/*
1619			 * Mark the page accessed if we read the beginning.
1620			 */
1621			if (!offset)
1622				mark_page_accessed(page);
1623		} else {
1624			page = ZERO_PAGE(0);
1625			page_cache_get(page);
1626		}
1627
1628		/*
1629		 * Ok, we have the page, and it's up-to-date, so
1630		 * now we can copy it to user space...
1631		 *
1632		 * The actor routine returns how many bytes were actually used..
1633		 * NOTE! This may not be the same as how much of a user buffer
1634		 * we filled up (we may be padding etc), so we can only update
1635		 * "pos" here (the actor routine has to update the user buffer
1636		 * pointers and the remaining count).
1637		 */
1638		ret = actor(desc, page, offset, nr);
1639		offset += ret;
1640		index += offset >> PAGE_CACHE_SHIFT;
1641		offset &= ~PAGE_CACHE_MASK;
1642
1643		page_cache_release(page);
1644		if (ret != nr || !desc->count)
1645			break;
1646
1647		cond_resched();
1648	}
1649
1650	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1651	file_accessed(filp);
1652}
1653
1654static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1655{
1656	read_descriptor_t desc;
1657
1658	if ((ssize_t) count < 0)
1659		return -EINVAL;
1660	if (!access_ok(VERIFY_WRITE, buf, count))
1661		return -EFAULT;
1662	if (!count)
1663		return 0;
1664
1665	desc.written = 0;
1666	desc.count = count;
1667	desc.arg.buf = buf;
1668	desc.error = 0;
1669
1670	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1671	if (desc.written)
1672		return desc.written;
1673	return desc.error;
1674}
1675
1676static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1677{
1678	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1679
1680	buf->f_type = TMPFS_MAGIC;
1681	buf->f_bsize = PAGE_CACHE_SIZE;
1682	buf->f_namelen = NAME_MAX;
1683	spin_lock(&sbinfo->stat_lock);
1684	if (sbinfo->max_blocks) {
1685		buf->f_blocks = sbinfo->max_blocks;
1686		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1687	}
1688	if (sbinfo->max_inodes) {
1689		buf->f_files = sbinfo->max_inodes;
1690		buf->f_ffree = sbinfo->free_inodes;
1691	}
1692	/* else leave those fields 0 like simple_statfs */
1693	spin_unlock(&sbinfo->stat_lock);
1694	return 0;
1695}
1696
1697/*
1698 * File creation. Allocate an inode, and we're done..
1699 */
1700static int
1701shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1702{
1703	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1704	int error = -ENOSPC;
1705
1706	if (inode) {
1707		error = security_inode_init_security(inode, dir, NULL, NULL,
1708						     NULL);
1709		if (error) {
1710			if (error != -EOPNOTSUPP) {
1711				iput(inode);
1712				return error;
1713			}
1714		}
1715		error = shmem_acl_init(inode, dir);
1716		if (error) {
1717			iput(inode);
1718			return error;
1719		}
1720		if (dir->i_mode & S_ISGID) {
1721			inode->i_gid = dir->i_gid;
1722			if (S_ISDIR(mode))
1723				inode->i_mode |= S_ISGID;
1724		}
1725		dir->i_size += BOGO_DIRENT_SIZE;
1726		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1727		d_instantiate(dentry, inode);
1728		dget(dentry); /* Extra count - pin the dentry in core */
1729	}
1730	return error;
1731}
1732
1733static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1734{
1735	int error;
1736
1737	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1738		return error;
1739	inc_nlink(dir);
1740	return 0;
1741}
1742
1743static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1744		struct nameidata *nd)
1745{
1746	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1747}
1748
1749/*
1750 * Link a file..
1751 */
1752static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1753{
1754	struct inode *inode = old_dentry->d_inode;
1755	int ret;
1756
1757	/*
1758	 * No ordinary (disk based) filesystem counts links as inodes;
1759	 * but each new link needs a new dentry, pinning lowmem, and
1760	 * tmpfs dentries cannot be pruned until they are unlinked.
1761	 */
1762	ret = shmem_reserve_inode(inode->i_sb);
1763	if (ret)
1764		goto out;
1765
1766	dir->i_size += BOGO_DIRENT_SIZE;
1767	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1768	inc_nlink(inode);
1769	atomic_inc(&inode->i_count);	/* New dentry reference */
1770	dget(dentry);		/* Extra pinning count for the created dentry */
1771	d_instantiate(dentry, inode);
1772out:
1773	return ret;
1774}
1775
1776static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1777{
1778	struct inode *inode = dentry->d_inode;
1779
1780	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1781		shmem_free_inode(inode->i_sb);
1782
1783	dir->i_size -= BOGO_DIRENT_SIZE;
1784	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1785	drop_nlink(inode);
1786	dput(dentry);	/* Undo the count from "create" - this does all the work */
1787	return 0;
1788}
1789
1790static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1791{
1792	if (!simple_empty(dentry))
1793		return -ENOTEMPTY;
1794
1795	drop_nlink(dentry->d_inode);
1796	drop_nlink(dir);
1797	return shmem_unlink(dir, dentry);
1798}
1799
1800/*
1801 * The VFS layer already does all the dentry stuff for rename,
1802 * we just have to decrement the usage count for the target if
1803 * it exists so that the VFS layer correctly free's it when it
1804 * gets overwritten.
1805 */
1806static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1807{
1808	struct inode *inode = old_dentry->d_inode;
1809	int they_are_dirs = S_ISDIR(inode->i_mode);
1810
1811	if (!simple_empty(new_dentry))
1812		return -ENOTEMPTY;
1813
1814	if (new_dentry->d_inode) {
1815		(void) shmem_unlink(new_dir, new_dentry);
1816		if (they_are_dirs)
1817			drop_nlink(old_dir);
1818	} else if (they_are_dirs) {
1819		drop_nlink(old_dir);
1820		inc_nlink(new_dir);
1821	}
1822
1823	old_dir->i_size -= BOGO_DIRENT_SIZE;
1824	new_dir->i_size += BOGO_DIRENT_SIZE;
1825	old_dir->i_ctime = old_dir->i_mtime =
1826	new_dir->i_ctime = new_dir->i_mtime =
1827	inode->i_ctime = CURRENT_TIME;
1828	return 0;
1829}
1830
1831static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1832{
1833	int error;
1834	int len;
1835	struct inode *inode;
1836	struct page *page = NULL;
1837	char *kaddr;
1838	struct shmem_inode_info *info;
1839
1840	len = strlen(symname) + 1;
1841	if (len > PAGE_CACHE_SIZE)
1842		return -ENAMETOOLONG;
1843
1844	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1845	if (!inode)
1846		return -ENOSPC;
1847
1848	error = security_inode_init_security(inode, dir, NULL, NULL,
1849					     NULL);
1850	if (error) {
1851		if (error != -EOPNOTSUPP) {
1852			iput(inode);
1853			return error;
1854		}
1855		error = 0;
1856	}
1857
1858	info = SHMEM_I(inode);
1859	inode->i_size = len-1;
1860	if (len <= (char *)inode - (char *)info) {
1861		/* do it inline */
1862		memcpy(info, symname, len);
1863		inode->i_op = &shmem_symlink_inline_operations;
1864	} else {
1865		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1866		if (error) {
1867			iput(inode);
1868			return error;
1869		}
1870		unlock_page(page);
1871		inode->i_op = &shmem_symlink_inode_operations;
1872		kaddr = kmap_atomic(page, KM_USER0);
1873		memcpy(kaddr, symname, len);
1874		kunmap_atomic(kaddr, KM_USER0);
1875		set_page_dirty(page);
1876		page_cache_release(page);
1877	}
1878	if (dir->i_mode & S_ISGID)
1879		inode->i_gid = dir->i_gid;
1880	dir->i_size += BOGO_DIRENT_SIZE;
1881	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1882	d_instantiate(dentry, inode);
1883	dget(dentry);
1884	return 0;
1885}
1886
1887static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1888{
1889	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1890	return NULL;
1891}
1892
1893static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1894{
1895	struct page *page = NULL;
1896	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1897	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1898	if (page)
1899		unlock_page(page);
1900	return page;
1901}
1902
1903static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1904{
1905	if (!IS_ERR(nd_get_link(nd))) {
1906		struct page *page = cookie;
1907		kunmap(page);
1908		mark_page_accessed(page);
1909		page_cache_release(page);
1910	}
1911}
1912
1913static const struct inode_operations shmem_symlink_inline_operations = {
1914	.readlink	= generic_readlink,
1915	.follow_link	= shmem_follow_link_inline,
1916};
1917
1918static const struct inode_operations shmem_symlink_inode_operations = {
1919	.truncate	= shmem_truncate,
1920	.readlink	= generic_readlink,
1921	.follow_link	= shmem_follow_link,
1922	.put_link	= shmem_put_link,
1923};
1924
1925#ifdef CONFIG_TMPFS_POSIX_ACL
1926/**
1927 * Superblocks without xattr inode operations will get security.* xattr
1928 * support from the VFS "for free". As soon as we have any other xattrs
1929 * like ACLs, we also need to implement the security.* handlers at
1930 * filesystem level, though.
1931 */
1932
1933static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1934					size_t list_len, const char *name,
1935					size_t name_len)
1936{
1937	return security_inode_listsecurity(inode, list, list_len);
1938}
1939
1940static int shmem_xattr_security_get(struct inode *inode, const char *name,
1941				    void *buffer, size_t size)
1942{
1943	if (strcmp(name, "") == 0)
1944		return -EINVAL;
1945	return security_inode_getsecurity(inode, name, buffer, size,
1946					  -EOPNOTSUPP);
1947}
1948
1949static int shmem_xattr_security_set(struct inode *inode, const char *name,
1950				    const void *value, size_t size, int flags)
1951{
1952	if (strcmp(name, "") == 0)
1953		return -EINVAL;
1954	return security_inode_setsecurity(inode, name, value, size, flags);
1955}
1956
1957static struct xattr_handler shmem_xattr_security_handler = {
1958	.prefix = XATTR_SECURITY_PREFIX,
1959	.list   = shmem_xattr_security_list,
1960	.get    = shmem_xattr_security_get,
1961	.set    = shmem_xattr_security_set,
1962};
1963
1964static struct xattr_handler *shmem_xattr_handlers[] = {
1965	&shmem_xattr_acl_access_handler,
1966	&shmem_xattr_acl_default_handler,
1967	&shmem_xattr_security_handler,
1968	NULL
1969};
1970#endif
1971
1972static struct dentry *shmem_get_parent(struct dentry *child)
1973{
1974	return ERR_PTR(-ESTALE);
1975}
1976
1977static int shmem_match(struct inode *ino, void *vfh)
1978{
1979	__u32 *fh = vfh;
1980	__u64 inum = fh[2];
1981	inum = (inum << 32) | fh[1];
1982	return ino->i_ino == inum && fh[0] == ino->i_generation;
1983}
1984
1985static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1986		struct fid *fid, int fh_len, int fh_type)
1987{
1988	struct inode *inode;
1989	struct dentry *dentry = NULL;
1990	u64 inum = fid->raw[2];
1991	inum = (inum << 32) | fid->raw[1];
1992
1993	if (fh_len < 3)
1994		return NULL;
1995
1996	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1997			shmem_match, fid->raw);
1998	if (inode) {
1999		dentry = d_find_alias(inode);
2000		iput(inode);
2001	}
2002
2003	return dentry;
2004}
2005
2006static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2007				int connectable)
2008{
2009	struct inode *inode = dentry->d_inode;
2010
2011	if (*len < 3)
2012		return 255;
2013
2014	if (hlist_unhashed(&inode->i_hash)) {
2015		/* Unfortunately insert_inode_hash is not idempotent,
2016		 * so as we hash inodes here rather than at creation
2017		 * time, we need a lock to ensure we only try
2018		 * to do it once
2019		 */
2020		static DEFINE_SPINLOCK(lock);
2021		spin_lock(&lock);
2022		if (hlist_unhashed(&inode->i_hash))
2023			__insert_inode_hash(inode,
2024					    inode->i_ino + inode->i_generation);
2025		spin_unlock(&lock);
2026	}
2027
2028	fh[0] = inode->i_generation;
2029	fh[1] = inode->i_ino;
2030	fh[2] = ((__u64)inode->i_ino) >> 32;
2031
2032	*len = 3;
2033	return 1;
2034}
2035
2036static const struct export_operations shmem_export_ops = {
2037	.get_parent     = shmem_get_parent,
2038	.encode_fh      = shmem_encode_fh,
2039	.fh_to_dentry	= shmem_fh_to_dentry,
2040};
2041
2042static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2043	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2044	int *policy, nodemask_t *policy_nodes)
2045{
2046	char *this_char, *value, *rest;
2047
2048	while (options != NULL) {
2049		this_char = options;
2050		for (;;) {
2051			/*
2052			 * NUL-terminate this option: unfortunately,
2053			 * mount options form a comma-separated list,
2054			 * but mpol's nodelist may also contain commas.
2055			 */
2056			options = strchr(options, ',');
2057			if (options == NULL)
2058				break;
2059			options++;
2060			if (!isdigit(*options)) {
2061				options[-1] = '\0';
2062				break;
2063			}
2064		}
2065		if (!*this_char)
2066			continue;
2067		if ((value = strchr(this_char,'=')) != NULL) {
2068			*value++ = 0;
2069		} else {
2070			printk(KERN_ERR
2071			    "tmpfs: No value for mount option '%s'\n",
2072			    this_char);
2073			return 1;
2074		}
2075
2076		if (!strcmp(this_char,"size")) {
2077			unsigned long long size;
2078			size = memparse(value,&rest);
2079			if (*rest == '%') {
2080				size <<= PAGE_SHIFT;
2081				size *= totalram_pages;
2082				do_div(size, 100);
2083				rest++;
2084			}
2085			if (*rest)
2086				goto bad_val;
2087			*blocks = DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2088		} else if (!strcmp(this_char,"nr_blocks")) {
2089			*blocks = memparse(value,&rest);
2090			if (*rest)
2091				goto bad_val;
2092		} else if (!strcmp(this_char,"nr_inodes")) {
2093			*inodes = memparse(value,&rest);
2094			if (*rest)
2095				goto bad_val;
2096		} else if (!strcmp(this_char,"mode")) {
2097			if (!mode)
2098				continue;
2099			*mode = simple_strtoul(value,&rest,8);
2100			if (*rest)
2101				goto bad_val;
2102		} else if (!strcmp(this_char,"uid")) {
2103			if (!uid)
2104				continue;
2105			*uid = simple_strtoul(value,&rest,0);
2106			if (*rest)
2107				goto bad_val;
2108		} else if (!strcmp(this_char,"gid")) {
2109			if (!gid)
2110				continue;
2111			*gid = simple_strtoul(value,&rest,0);
2112			if (*rest)
2113				goto bad_val;
2114		} else if (!strcmp(this_char,"mpol")) {
2115			if (shmem_parse_mpol(value,policy,policy_nodes))
2116				goto bad_val;
2117		} else {
2118			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2119			       this_char);
2120			return 1;
2121		}
2122	}
2123	return 0;
2124
2125bad_val:
2126	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2127	       value, this_char);
2128	return 1;
2129
2130}
2131
2132static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2133{
2134	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2135	unsigned long max_blocks = sbinfo->max_blocks;
2136	unsigned long max_inodes = sbinfo->max_inodes;
2137	int policy = sbinfo->policy;
2138	nodemask_t policy_nodes = sbinfo->policy_nodes;
2139	unsigned long blocks;
2140	unsigned long inodes;
2141	int error = -EINVAL;
2142
2143	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2144				&max_inodes, &policy, &policy_nodes))
2145		return error;
2146
2147	spin_lock(&sbinfo->stat_lock);
2148	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2149	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2150	if (max_blocks < blocks)
2151		goto out;
2152	if (max_inodes < inodes)
2153		goto out;
2154	/*
2155	 * Those tests also disallow limited->unlimited while any are in
2156	 * use, so i_blocks will always be zero when max_blocks is zero;
2157	 * but we must separately disallow unlimited->limited, because
2158	 * in that case we have no record of how much is already in use.
2159	 */
2160	if (max_blocks && !sbinfo->max_blocks)
2161		goto out;
2162	if (max_inodes && !sbinfo->max_inodes)
2163		goto out;
2164
2165	error = 0;
2166	sbinfo->max_blocks  = max_blocks;
2167	sbinfo->free_blocks = max_blocks - blocks;
2168	sbinfo->max_inodes  = max_inodes;
2169	sbinfo->free_inodes = max_inodes - inodes;
2170	sbinfo->policy = policy;
2171	sbinfo->policy_nodes = policy_nodes;
2172out:
2173	spin_unlock(&sbinfo->stat_lock);
2174	return error;
2175}
2176#endif
2177
2178static void shmem_put_super(struct super_block *sb)
2179{
2180	kfree(sb->s_fs_info);
2181	sb->s_fs_info = NULL;
2182}
2183
2184static int shmem_fill_super(struct super_block *sb,
2185			    void *data, int silent)
2186{
2187	struct inode *inode;
2188	struct dentry *root;
2189	int mode   = S_IRWXUGO | S_ISVTX;
2190	uid_t uid = current->fsuid;
2191	gid_t gid = current->fsgid;
2192	int err = -ENOMEM;
2193	struct shmem_sb_info *sbinfo;
2194	unsigned long blocks = 0;
2195	unsigned long inodes = 0;
2196	int policy = MPOL_DEFAULT;
2197	nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2198
2199#ifdef CONFIG_TMPFS
2200	/*
2201	 * Per default we only allow half of the physical ram per
2202	 * tmpfs instance, limiting inodes to one per page of lowmem;
2203	 * but the internal instance is left unlimited.
2204	 */
2205	if (!(sb->s_flags & MS_NOUSER)) {
2206		blocks = totalram_pages / 2;
2207		inodes = totalram_pages - totalhigh_pages;
2208		if (inodes > blocks)
2209			inodes = blocks;
2210		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2211					&inodes, &policy, &policy_nodes))
2212			return -EINVAL;
2213	}
2214	sb->s_export_op = &shmem_export_ops;
2215#else
2216	sb->s_flags |= MS_NOUSER;
2217#endif
2218
2219	/* Round up to L1_CACHE_BYTES to resist false sharing */
2220	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2221				L1_CACHE_BYTES), GFP_KERNEL);
2222	if (!sbinfo)
2223		return -ENOMEM;
2224
2225	spin_lock_init(&sbinfo->stat_lock);
2226	sbinfo->max_blocks = blocks;
2227	sbinfo->free_blocks = blocks;
2228	sbinfo->max_inodes = inodes;
2229	sbinfo->free_inodes = inodes;
2230	sbinfo->policy = policy;
2231	sbinfo->policy_nodes = policy_nodes;
2232
2233	sb->s_fs_info = sbinfo;
2234	sb->s_maxbytes = SHMEM_MAX_BYTES;
2235	sb->s_blocksize = PAGE_CACHE_SIZE;
2236	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2237	sb->s_magic = TMPFS_MAGIC;
2238	sb->s_op = &shmem_ops;
2239	sb->s_time_gran = 1;
2240#ifdef CONFIG_TMPFS_POSIX_ACL
2241	sb->s_xattr = shmem_xattr_handlers;
2242	sb->s_flags |= MS_POSIXACL;
2243#endif
2244
2245	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2246	if (!inode)
2247		goto failed;
2248	inode->i_uid = uid;
2249	inode->i_gid = gid;
2250	root = d_alloc_root(inode);
2251	if (!root)
2252		goto failed_iput;
2253	sb->s_root = root;
2254	return 0;
2255
2256failed_iput:
2257	iput(inode);
2258failed:
2259	shmem_put_super(sb);
2260	return err;
2261}
2262
2263static struct kmem_cache *shmem_inode_cachep;
2264
2265static struct inode *shmem_alloc_inode(struct super_block *sb)
2266{
2267	struct shmem_inode_info *p;
2268	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2269	if (!p)
2270		return NULL;
2271	return &p->vfs_inode;
2272}
2273
2274static void shmem_destroy_inode(struct inode *inode)
2275{
2276	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2277		/* only struct inode is valid if it's an inline symlink */
2278		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2279	}
2280	shmem_acl_destroy_inode(inode);
2281	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2282}
2283
2284static void init_once(struct kmem_cache *cachep, void *foo)
2285{
2286	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2287
2288	inode_init_once(&p->vfs_inode);
2289#ifdef CONFIG_TMPFS_POSIX_ACL
2290	p->i_acl = NULL;
2291	p->i_default_acl = NULL;
2292#endif
2293}
2294
2295static int init_inodecache(void)
2296{
2297	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2298				sizeof(struct shmem_inode_info),
2299				0, SLAB_PANIC, init_once);
2300	return 0;
2301}
2302
2303static void destroy_inodecache(void)
2304{
2305	kmem_cache_destroy(shmem_inode_cachep);
2306}
2307
2308static const struct address_space_operations shmem_aops = {
2309	.writepage	= shmem_writepage,
2310	.set_page_dirty	= __set_page_dirty_no_writeback,
2311#ifdef CONFIG_TMPFS
2312	.readpage	= shmem_readpage,
2313	.write_begin	= shmem_write_begin,
2314	.write_end	= shmem_write_end,
2315#endif
2316	.migratepage	= migrate_page,
2317};
2318
2319static const struct file_operations shmem_file_operations = {
2320	.mmap		= shmem_mmap,
2321#ifdef CONFIG_TMPFS
2322	.llseek		= generic_file_llseek,
2323	.read		= shmem_file_read,
2324	.write		= do_sync_write,
2325	.aio_write	= generic_file_aio_write,
2326	.fsync		= simple_sync_file,
2327	.splice_read	= generic_file_splice_read,
2328	.splice_write	= generic_file_splice_write,
2329#endif
2330};
2331
2332static const struct inode_operations shmem_inode_operations = {
2333	.truncate	= shmem_truncate,
2334	.setattr	= shmem_notify_change,
2335	.truncate_range	= shmem_truncate_range,
2336#ifdef CONFIG_TMPFS_POSIX_ACL
2337	.setxattr	= generic_setxattr,
2338	.getxattr	= generic_getxattr,
2339	.listxattr	= generic_listxattr,
2340	.removexattr	= generic_removexattr,
2341	.permission	= shmem_permission,
2342#endif
2343
2344};
2345
2346static const struct inode_operations shmem_dir_inode_operations = {
2347#ifdef CONFIG_TMPFS
2348	.create		= shmem_create,
2349	.lookup		= simple_lookup,
2350	.link		= shmem_link,
2351	.unlink		= shmem_unlink,
2352	.symlink	= shmem_symlink,
2353	.mkdir		= shmem_mkdir,
2354	.rmdir		= shmem_rmdir,
2355	.mknod		= shmem_mknod,
2356	.rename		= shmem_rename,
2357#endif
2358#ifdef CONFIG_TMPFS_POSIX_ACL
2359	.setattr	= shmem_notify_change,
2360	.setxattr	= generic_setxattr,
2361	.getxattr	= generic_getxattr,
2362	.listxattr	= generic_listxattr,
2363	.removexattr	= generic_removexattr,
2364	.permission	= shmem_permission,
2365#endif
2366};
2367
2368static const struct inode_operations shmem_special_inode_operations = {
2369#ifdef CONFIG_TMPFS_POSIX_ACL
2370	.setattr	= shmem_notify_change,
2371	.setxattr	= generic_setxattr,
2372	.getxattr	= generic_getxattr,
2373	.listxattr	= generic_listxattr,
2374	.removexattr	= generic_removexattr,
2375	.permission	= shmem_permission,
2376#endif
2377};
2378
2379static const struct super_operations shmem_ops = {
2380	.alloc_inode	= shmem_alloc_inode,
2381	.destroy_inode	= shmem_destroy_inode,
2382#ifdef CONFIG_TMPFS
2383	.statfs		= shmem_statfs,
2384	.remount_fs	= shmem_remount_fs,
2385#endif
2386	.delete_inode	= shmem_delete_inode,
2387	.drop_inode	= generic_delete_inode,
2388	.put_super	= shmem_put_super,
2389};
2390
2391static struct vm_operations_struct shmem_vm_ops = {
2392	.fault		= shmem_fault,
2393#ifdef CONFIG_NUMA
2394	.set_policy     = shmem_set_policy,
2395	.get_policy     = shmem_get_policy,
2396#endif
2397};
2398
2399
2400static int shmem_get_sb(struct file_system_type *fs_type,
2401	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2402{
2403	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2404}
2405
2406static struct file_system_type tmpfs_fs_type = {
2407	.owner		= THIS_MODULE,
2408	.name		= "tmpfs",
2409	.get_sb		= shmem_get_sb,
2410	.kill_sb	= kill_litter_super,
2411};
2412static struct vfsmount *shm_mnt;
2413
2414static int __init init_tmpfs(void)
2415{
2416	int error;
2417
2418	error = bdi_init(&shmem_backing_dev_info);
2419	if (error)
2420		goto out4;
2421
2422	error = init_inodecache();
2423	if (error)
2424		goto out3;
2425
2426	error = register_filesystem(&tmpfs_fs_type);
2427	if (error) {
2428		printk(KERN_ERR "Could not register tmpfs\n");
2429		goto out2;
2430	}
2431
2432	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2433				tmpfs_fs_type.name, NULL);
2434	if (IS_ERR(shm_mnt)) {
2435		error = PTR_ERR(shm_mnt);
2436		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2437		goto out1;
2438	}
2439	return 0;
2440
2441out1:
2442	unregister_filesystem(&tmpfs_fs_type);
2443out2:
2444	destroy_inodecache();
2445out3:
2446	bdi_destroy(&shmem_backing_dev_info);
2447out4:
2448	shm_mnt = ERR_PTR(error);
2449	return error;
2450}
2451module_init(init_tmpfs)
2452
2453/*
2454 * shmem_file_setup - get an unlinked file living in tmpfs
2455 *
2456 * @name: name for dentry (to be seen in /proc/<pid>/maps
2457 * @size: size to be set for the file
2458 *
2459 */
2460struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2461{
2462	int error;
2463	struct file *file;
2464	struct inode *inode;
2465	struct dentry *dentry, *root;
2466	struct qstr this;
2467
2468	if (IS_ERR(shm_mnt))
2469		return (void *)shm_mnt;
2470
2471	if (size < 0 || size > SHMEM_MAX_BYTES)
2472		return ERR_PTR(-EINVAL);
2473
2474	if (shmem_acct_size(flags, size))
2475		return ERR_PTR(-ENOMEM);
2476
2477	error = -ENOMEM;
2478	this.name = name;
2479	this.len = strlen(name);
2480	this.hash = 0; /* will go */
2481	root = shm_mnt->mnt_root;
2482	dentry = d_alloc(root, &this);
2483	if (!dentry)
2484		goto put_memory;
2485
2486	error = -ENFILE;
2487	file = get_empty_filp();
2488	if (!file)
2489		goto put_dentry;
2490
2491	error = -ENOSPC;
2492	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2493	if (!inode)
2494		goto close_file;
2495
2496	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2497	d_instantiate(dentry, inode);
2498	inode->i_size = size;
2499	inode->i_nlink = 0;	/* It is unlinked */
2500	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2501			&shmem_file_operations);
2502	return file;
2503
2504close_file:
2505	put_filp(file);
2506put_dentry:
2507	dput(dentry);
2508put_memory:
2509	shmem_unacct_size(flags, size);
2510	return ERR_PTR(error);
2511}
2512
2513/*
2514 * shmem_zero_setup - setup a shared anonymous mapping
2515 *
2516 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2517 */
2518int shmem_zero_setup(struct vm_area_struct *vma)
2519{
2520	struct file *file;
2521	loff_t size = vma->vm_end - vma->vm_start;
2522
2523	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2524	if (IS_ERR(file))
2525		return PTR_ERR(file);
2526
2527	if (vma->vm_file)
2528		fput(vma->vm_file);
2529	vma->vm_file = file;
2530	vma->vm_ops = &shmem_vm_ops;
2531	return 0;
2532}
2533