shmem.c revision ba52de123d454b57369f291348266d86f4b35070
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/mm.h>
30#include <linux/mman.h>
31#include <linux/file.h>
32#include <linux/swap.h>
33#include <linux/pagemap.h>
34#include <linux/string.h>
35#include <linux/slab.h>
36#include <linux/backing-dev.h>
37#include <linux/shmem_fs.h>
38#include <linux/mount.h>
39#include <linux/writeback.h>
40#include <linux/vfs.h>
41#include <linux/blkdev.h>
42#include <linux/security.h>
43#include <linux/swapops.h>
44#include <linux/mempolicy.h>
45#include <linux/namei.h>
46#include <linux/ctype.h>
47#include <linux/migrate.h>
48#include <linux/highmem.h>
49
50#include <asm/uaccess.h>
51#include <asm/div64.h>
52#include <asm/pgtable.h>
53
54/* This magic number is used in glibc for posix shared memory */
55#define TMPFS_MAGIC	0x01021994
56
57#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
58#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
59#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
60
61#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
62#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
63
64#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
65
66/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
67#define SHMEM_PAGEIN	 VM_READ
68#define SHMEM_TRUNCATE	 VM_WRITE
69
70/* Definition to limit shmem_truncate's steps between cond_rescheds */
71#define LATENCY_LIMIT	 64
72
73/* Pretend that each entry is of this size in directory's i_size */
74#define BOGO_DIRENT_SIZE 20
75
76/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
77enum sgp_type {
78	SGP_QUICK,	/* don't try more than file page cache lookup */
79	SGP_READ,	/* don't exceed i_size, don't allocate page */
80	SGP_CACHE,	/* don't exceed i_size, may allocate page */
81	SGP_WRITE,	/* may exceed i_size, may allocate page */
82};
83
84static int shmem_getpage(struct inode *inode, unsigned long idx,
85			 struct page **pagep, enum sgp_type sgp, int *type);
86
87static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
88{
89	/*
90	 * The above definition of ENTRIES_PER_PAGE, and the use of
91	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
92	 * might be reconsidered if it ever diverges from PAGE_SIZE.
93	 */
94	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
95}
96
97static inline void shmem_dir_free(struct page *page)
98{
99	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
100}
101
102static struct page **shmem_dir_map(struct page *page)
103{
104	return (struct page **)kmap_atomic(page, KM_USER0);
105}
106
107static inline void shmem_dir_unmap(struct page **dir)
108{
109	kunmap_atomic(dir, KM_USER0);
110}
111
112static swp_entry_t *shmem_swp_map(struct page *page)
113{
114	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
115}
116
117static inline void shmem_swp_balance_unmap(void)
118{
119	/*
120	 * When passing a pointer to an i_direct entry, to code which
121	 * also handles indirect entries and so will shmem_swp_unmap,
122	 * we must arrange for the preempt count to remain in balance.
123	 * What kmap_atomic of a lowmem page does depends on config
124	 * and architecture, so pretend to kmap_atomic some lowmem page.
125	 */
126	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
127}
128
129static inline void shmem_swp_unmap(swp_entry_t *entry)
130{
131	kunmap_atomic(entry, KM_USER1);
132}
133
134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135{
136	return sb->s_fs_info;
137}
138
139/*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145static inline int shmem_acct_size(unsigned long flags, loff_t size)
146{
147	return (flags & VM_ACCOUNT)?
148		security_vm_enough_memory(VM_ACCT(size)): 0;
149}
150
151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152{
153	if (flags & VM_ACCOUNT)
154		vm_unacct_memory(VM_ACCT(size));
155}
156
157/*
158 * ... whereas tmpfs objects are accounted incrementally as
159 * pages are allocated, in order to allow huge sparse files.
160 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
161 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
162 */
163static inline int shmem_acct_block(unsigned long flags)
164{
165	return (flags & VM_ACCOUNT)?
166		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
167}
168
169static inline void shmem_unacct_blocks(unsigned long flags, long pages)
170{
171	if (!(flags & VM_ACCOUNT))
172		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
173}
174
175static struct super_operations shmem_ops;
176static const struct address_space_operations shmem_aops;
177static struct file_operations shmem_file_operations;
178static struct inode_operations shmem_inode_operations;
179static struct inode_operations shmem_dir_inode_operations;
180static struct vm_operations_struct shmem_vm_ops;
181
182static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
183	.ra_pages	= 0,	/* No readahead */
184	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
185	.unplug_io_fn	= default_unplug_io_fn,
186};
187
188static LIST_HEAD(shmem_swaplist);
189static DEFINE_SPINLOCK(shmem_swaplist_lock);
190
191static void shmem_free_blocks(struct inode *inode, long pages)
192{
193	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
194	if (sbinfo->max_blocks) {
195		spin_lock(&sbinfo->stat_lock);
196		sbinfo->free_blocks += pages;
197		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
198		spin_unlock(&sbinfo->stat_lock);
199	}
200}
201
202/*
203 * shmem_recalc_inode - recalculate the size of an inode
204 *
205 * @inode: inode to recalc
206 *
207 * We have to calculate the free blocks since the mm can drop
208 * undirtied hole pages behind our back.
209 *
210 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
211 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
212 *
213 * It has to be called with the spinlock held.
214 */
215static void shmem_recalc_inode(struct inode *inode)
216{
217	struct shmem_inode_info *info = SHMEM_I(inode);
218	long freed;
219
220	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
221	if (freed > 0) {
222		info->alloced -= freed;
223		shmem_unacct_blocks(info->flags, freed);
224		shmem_free_blocks(inode, freed);
225	}
226}
227
228/*
229 * shmem_swp_entry - find the swap vector position in the info structure
230 *
231 * @info:  info structure for the inode
232 * @index: index of the page to find
233 * @page:  optional page to add to the structure. Has to be preset to
234 *         all zeros
235 *
236 * If there is no space allocated yet it will return NULL when
237 * page is NULL, else it will use the page for the needed block,
238 * setting it to NULL on return to indicate that it has been used.
239 *
240 * The swap vector is organized the following way:
241 *
242 * There are SHMEM_NR_DIRECT entries directly stored in the
243 * shmem_inode_info structure. So small files do not need an addional
244 * allocation.
245 *
246 * For pages with index > SHMEM_NR_DIRECT there is the pointer
247 * i_indirect which points to a page which holds in the first half
248 * doubly indirect blocks, in the second half triple indirect blocks:
249 *
250 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
251 * following layout (for SHMEM_NR_DIRECT == 16):
252 *
253 * i_indirect -> dir --> 16-19
254 * 	      |	     +-> 20-23
255 * 	      |
256 * 	      +-->dir2 --> 24-27
257 * 	      |	       +-> 28-31
258 * 	      |	       +-> 32-35
259 * 	      |	       +-> 36-39
260 * 	      |
261 * 	      +-->dir3 --> 40-43
262 * 	       	       +-> 44-47
263 * 	      	       +-> 48-51
264 * 	      	       +-> 52-55
265 */
266static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
267{
268	unsigned long offset;
269	struct page **dir;
270	struct page *subdir;
271
272	if (index < SHMEM_NR_DIRECT) {
273		shmem_swp_balance_unmap();
274		return info->i_direct+index;
275	}
276	if (!info->i_indirect) {
277		if (page) {
278			info->i_indirect = *page;
279			*page = NULL;
280		}
281		return NULL;			/* need another page */
282	}
283
284	index -= SHMEM_NR_DIRECT;
285	offset = index % ENTRIES_PER_PAGE;
286	index /= ENTRIES_PER_PAGE;
287	dir = shmem_dir_map(info->i_indirect);
288
289	if (index >= ENTRIES_PER_PAGE/2) {
290		index -= ENTRIES_PER_PAGE/2;
291		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
292		index %= ENTRIES_PER_PAGE;
293		subdir = *dir;
294		if (!subdir) {
295			if (page) {
296				*dir = *page;
297				*page = NULL;
298			}
299			shmem_dir_unmap(dir);
300			return NULL;		/* need another page */
301		}
302		shmem_dir_unmap(dir);
303		dir = shmem_dir_map(subdir);
304	}
305
306	dir += index;
307	subdir = *dir;
308	if (!subdir) {
309		if (!page || !(subdir = *page)) {
310			shmem_dir_unmap(dir);
311			return NULL;		/* need a page */
312		}
313		*dir = subdir;
314		*page = NULL;
315	}
316	shmem_dir_unmap(dir);
317	return shmem_swp_map(subdir) + offset;
318}
319
320static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
321{
322	long incdec = value? 1: -1;
323
324	entry->val = value;
325	info->swapped += incdec;
326	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
327		struct page *page = kmap_atomic_to_page(entry);
328		set_page_private(page, page_private(page) + incdec);
329	}
330}
331
332/*
333 * shmem_swp_alloc - get the position of the swap entry for the page.
334 *                   If it does not exist allocate the entry.
335 *
336 * @info:	info structure for the inode
337 * @index:	index of the page to find
338 * @sgp:	check and recheck i_size? skip allocation?
339 */
340static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
341{
342	struct inode *inode = &info->vfs_inode;
343	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
344	struct page *page = NULL;
345	swp_entry_t *entry;
346
347	if (sgp != SGP_WRITE &&
348	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
349		return ERR_PTR(-EINVAL);
350
351	while (!(entry = shmem_swp_entry(info, index, &page))) {
352		if (sgp == SGP_READ)
353			return shmem_swp_map(ZERO_PAGE(0));
354		/*
355		 * Test free_blocks against 1 not 0, since we have 1 data
356		 * page (and perhaps indirect index pages) yet to allocate:
357		 * a waste to allocate index if we cannot allocate data.
358		 */
359		if (sbinfo->max_blocks) {
360			spin_lock(&sbinfo->stat_lock);
361			if (sbinfo->free_blocks <= 1) {
362				spin_unlock(&sbinfo->stat_lock);
363				return ERR_PTR(-ENOSPC);
364			}
365			sbinfo->free_blocks--;
366			inode->i_blocks += BLOCKS_PER_PAGE;
367			spin_unlock(&sbinfo->stat_lock);
368		}
369
370		spin_unlock(&info->lock);
371		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
372		if (page)
373			set_page_private(page, 0);
374		spin_lock(&info->lock);
375
376		if (!page) {
377			shmem_free_blocks(inode, 1);
378			return ERR_PTR(-ENOMEM);
379		}
380		if (sgp != SGP_WRITE &&
381		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
382			entry = ERR_PTR(-EINVAL);
383			break;
384		}
385		if (info->next_index <= index)
386			info->next_index = index + 1;
387	}
388	if (page) {
389		/* another task gave its page, or truncated the file */
390		shmem_free_blocks(inode, 1);
391		shmem_dir_free(page);
392	}
393	if (info->next_index <= index && !IS_ERR(entry))
394		info->next_index = index + 1;
395	return entry;
396}
397
398/*
399 * shmem_free_swp - free some swap entries in a directory
400 *
401 * @dir:   pointer to the directory
402 * @edir:  pointer after last entry of the directory
403 */
404static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
405{
406	swp_entry_t *ptr;
407	int freed = 0;
408
409	for (ptr = dir; ptr < edir; ptr++) {
410		if (ptr->val) {
411			free_swap_and_cache(*ptr);
412			*ptr = (swp_entry_t){0};
413			freed++;
414		}
415	}
416	return freed;
417}
418
419static int shmem_map_and_free_swp(struct page *subdir,
420		int offset, int limit, struct page ***dir)
421{
422	swp_entry_t *ptr;
423	int freed = 0;
424
425	ptr = shmem_swp_map(subdir);
426	for (; offset < limit; offset += LATENCY_LIMIT) {
427		int size = limit - offset;
428		if (size > LATENCY_LIMIT)
429			size = LATENCY_LIMIT;
430		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
431		if (need_resched()) {
432			shmem_swp_unmap(ptr);
433			if (*dir) {
434				shmem_dir_unmap(*dir);
435				*dir = NULL;
436			}
437			cond_resched();
438			ptr = shmem_swp_map(subdir);
439		}
440	}
441	shmem_swp_unmap(ptr);
442	return freed;
443}
444
445static void shmem_free_pages(struct list_head *next)
446{
447	struct page *page;
448	int freed = 0;
449
450	do {
451		page = container_of(next, struct page, lru);
452		next = next->next;
453		shmem_dir_free(page);
454		freed++;
455		if (freed >= LATENCY_LIMIT) {
456			cond_resched();
457			freed = 0;
458		}
459	} while (next);
460}
461
462static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
463{
464	struct shmem_inode_info *info = SHMEM_I(inode);
465	unsigned long idx;
466	unsigned long size;
467	unsigned long limit;
468	unsigned long stage;
469	unsigned long diroff;
470	struct page **dir;
471	struct page *topdir;
472	struct page *middir;
473	struct page *subdir;
474	swp_entry_t *ptr;
475	LIST_HEAD(pages_to_free);
476	long nr_pages_to_free = 0;
477	long nr_swaps_freed = 0;
478	int offset;
479	int freed;
480	int punch_hole = 0;
481
482	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
483	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
484	if (idx >= info->next_index)
485		return;
486
487	spin_lock(&info->lock);
488	info->flags |= SHMEM_TRUNCATE;
489	if (likely(end == (loff_t) -1)) {
490		limit = info->next_index;
491		info->next_index = idx;
492	} else {
493		limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
494		if (limit > info->next_index)
495			limit = info->next_index;
496		punch_hole = 1;
497	}
498
499	topdir = info->i_indirect;
500	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
501		info->i_indirect = NULL;
502		nr_pages_to_free++;
503		list_add(&topdir->lru, &pages_to_free);
504	}
505	spin_unlock(&info->lock);
506
507	if (info->swapped && idx < SHMEM_NR_DIRECT) {
508		ptr = info->i_direct;
509		size = limit;
510		if (size > SHMEM_NR_DIRECT)
511			size = SHMEM_NR_DIRECT;
512		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
513	}
514	if (!topdir)
515		goto done2;
516
517	BUG_ON(limit <= SHMEM_NR_DIRECT);
518	limit -= SHMEM_NR_DIRECT;
519	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
520	offset = idx % ENTRIES_PER_PAGE;
521	idx -= offset;
522
523	dir = shmem_dir_map(topdir);
524	stage = ENTRIES_PER_PAGEPAGE/2;
525	if (idx < ENTRIES_PER_PAGEPAGE/2) {
526		middir = topdir;
527		diroff = idx/ENTRIES_PER_PAGE;
528	} else {
529		dir += ENTRIES_PER_PAGE/2;
530		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
531		while (stage <= idx)
532			stage += ENTRIES_PER_PAGEPAGE;
533		middir = *dir;
534		if (*dir) {
535			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
536				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
537			if (!diroff && !offset) {
538				*dir = NULL;
539				nr_pages_to_free++;
540				list_add(&middir->lru, &pages_to_free);
541			}
542			shmem_dir_unmap(dir);
543			dir = shmem_dir_map(middir);
544		} else {
545			diroff = 0;
546			offset = 0;
547			idx = stage;
548		}
549	}
550
551	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
552		if (unlikely(idx == stage)) {
553			shmem_dir_unmap(dir);
554			dir = shmem_dir_map(topdir) +
555			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
556			while (!*dir) {
557				dir++;
558				idx += ENTRIES_PER_PAGEPAGE;
559				if (idx >= limit)
560					goto done1;
561			}
562			stage = idx + ENTRIES_PER_PAGEPAGE;
563			middir = *dir;
564			*dir = NULL;
565			nr_pages_to_free++;
566			list_add(&middir->lru, &pages_to_free);
567			shmem_dir_unmap(dir);
568			cond_resched();
569			dir = shmem_dir_map(middir);
570			diroff = 0;
571		}
572		subdir = dir[diroff];
573		if (subdir && page_private(subdir)) {
574			size = limit - idx;
575			if (size > ENTRIES_PER_PAGE)
576				size = ENTRIES_PER_PAGE;
577			freed = shmem_map_and_free_swp(subdir,
578						offset, size, &dir);
579			if (!dir)
580				dir = shmem_dir_map(middir);
581			nr_swaps_freed += freed;
582			if (offset)
583				spin_lock(&info->lock);
584			set_page_private(subdir, page_private(subdir) - freed);
585			if (offset)
586				spin_unlock(&info->lock);
587			if (!punch_hole)
588				BUG_ON(page_private(subdir) > offset);
589		}
590		if (offset)
591			offset = 0;
592		else if (subdir && !page_private(subdir)) {
593			dir[diroff] = NULL;
594			nr_pages_to_free++;
595			list_add(&subdir->lru, &pages_to_free);
596		}
597	}
598done1:
599	shmem_dir_unmap(dir);
600done2:
601	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
602		/*
603		 * Call truncate_inode_pages again: racing shmem_unuse_inode
604		 * may have swizzled a page in from swap since vmtruncate or
605		 * generic_delete_inode did it, before we lowered next_index.
606		 * Also, though shmem_getpage checks i_size before adding to
607		 * cache, no recheck after: so fix the narrow window there too.
608		 */
609		truncate_inode_pages_range(inode->i_mapping, start, end);
610	}
611
612	spin_lock(&info->lock);
613	info->flags &= ~SHMEM_TRUNCATE;
614	info->swapped -= nr_swaps_freed;
615	if (nr_pages_to_free)
616		shmem_free_blocks(inode, nr_pages_to_free);
617	shmem_recalc_inode(inode);
618	spin_unlock(&info->lock);
619
620	/*
621	 * Empty swap vector directory pages to be freed?
622	 */
623	if (!list_empty(&pages_to_free)) {
624		pages_to_free.prev->next = NULL;
625		shmem_free_pages(pages_to_free.next);
626	}
627}
628
629static void shmem_truncate(struct inode *inode)
630{
631	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
632}
633
634static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
635{
636	struct inode *inode = dentry->d_inode;
637	struct page *page = NULL;
638	int error;
639
640	if (attr->ia_valid & ATTR_SIZE) {
641		if (attr->ia_size < inode->i_size) {
642			/*
643			 * If truncating down to a partial page, then
644			 * if that page is already allocated, hold it
645			 * in memory until the truncation is over, so
646			 * truncate_partial_page cannnot miss it were
647			 * it assigned to swap.
648			 */
649			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
650				(void) shmem_getpage(inode,
651					attr->ia_size>>PAGE_CACHE_SHIFT,
652						&page, SGP_READ, NULL);
653			}
654			/*
655			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
656			 * detect if any pages might have been added to cache
657			 * after truncate_inode_pages.  But we needn't bother
658			 * if it's being fully truncated to zero-length: the
659			 * nrpages check is efficient enough in that case.
660			 */
661			if (attr->ia_size) {
662				struct shmem_inode_info *info = SHMEM_I(inode);
663				spin_lock(&info->lock);
664				info->flags &= ~SHMEM_PAGEIN;
665				spin_unlock(&info->lock);
666			}
667		}
668	}
669
670	error = inode_change_ok(inode, attr);
671	if (!error)
672		error = inode_setattr(inode, attr);
673	if (page)
674		page_cache_release(page);
675	return error;
676}
677
678static void shmem_delete_inode(struct inode *inode)
679{
680	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
681	struct shmem_inode_info *info = SHMEM_I(inode);
682
683	if (inode->i_op->truncate == shmem_truncate) {
684		truncate_inode_pages(inode->i_mapping, 0);
685		shmem_unacct_size(info->flags, inode->i_size);
686		inode->i_size = 0;
687		shmem_truncate(inode);
688		if (!list_empty(&info->swaplist)) {
689			spin_lock(&shmem_swaplist_lock);
690			list_del_init(&info->swaplist);
691			spin_unlock(&shmem_swaplist_lock);
692		}
693	}
694	BUG_ON(inode->i_blocks);
695	if (sbinfo->max_inodes) {
696		spin_lock(&sbinfo->stat_lock);
697		sbinfo->free_inodes++;
698		spin_unlock(&sbinfo->stat_lock);
699	}
700	clear_inode(inode);
701}
702
703static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
704{
705	swp_entry_t *ptr;
706
707	for (ptr = dir; ptr < edir; ptr++) {
708		if (ptr->val == entry.val)
709			return ptr - dir;
710	}
711	return -1;
712}
713
714static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
715{
716	struct inode *inode;
717	unsigned long idx;
718	unsigned long size;
719	unsigned long limit;
720	unsigned long stage;
721	struct page **dir;
722	struct page *subdir;
723	swp_entry_t *ptr;
724	int offset;
725
726	idx = 0;
727	ptr = info->i_direct;
728	spin_lock(&info->lock);
729	limit = info->next_index;
730	size = limit;
731	if (size > SHMEM_NR_DIRECT)
732		size = SHMEM_NR_DIRECT;
733	offset = shmem_find_swp(entry, ptr, ptr+size);
734	if (offset >= 0) {
735		shmem_swp_balance_unmap();
736		goto found;
737	}
738	if (!info->i_indirect)
739		goto lost2;
740
741	dir = shmem_dir_map(info->i_indirect);
742	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
743
744	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
745		if (unlikely(idx == stage)) {
746			shmem_dir_unmap(dir-1);
747			dir = shmem_dir_map(info->i_indirect) +
748			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
749			while (!*dir) {
750				dir++;
751				idx += ENTRIES_PER_PAGEPAGE;
752				if (idx >= limit)
753					goto lost1;
754			}
755			stage = idx + ENTRIES_PER_PAGEPAGE;
756			subdir = *dir;
757			shmem_dir_unmap(dir);
758			dir = shmem_dir_map(subdir);
759		}
760		subdir = *dir;
761		if (subdir && page_private(subdir)) {
762			ptr = shmem_swp_map(subdir);
763			size = limit - idx;
764			if (size > ENTRIES_PER_PAGE)
765				size = ENTRIES_PER_PAGE;
766			offset = shmem_find_swp(entry, ptr, ptr+size);
767			if (offset >= 0) {
768				shmem_dir_unmap(dir);
769				goto found;
770			}
771			shmem_swp_unmap(ptr);
772		}
773	}
774lost1:
775	shmem_dir_unmap(dir-1);
776lost2:
777	spin_unlock(&info->lock);
778	return 0;
779found:
780	idx += offset;
781	inode = &info->vfs_inode;
782	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
783		info->flags |= SHMEM_PAGEIN;
784		shmem_swp_set(info, ptr + offset, 0);
785	}
786	shmem_swp_unmap(ptr);
787	spin_unlock(&info->lock);
788	/*
789	 * Decrement swap count even when the entry is left behind:
790	 * try_to_unuse will skip over mms, then reincrement count.
791	 */
792	swap_free(entry);
793	return 1;
794}
795
796/*
797 * shmem_unuse() search for an eventually swapped out shmem page.
798 */
799int shmem_unuse(swp_entry_t entry, struct page *page)
800{
801	struct list_head *p, *next;
802	struct shmem_inode_info *info;
803	int found = 0;
804
805	spin_lock(&shmem_swaplist_lock);
806	list_for_each_safe(p, next, &shmem_swaplist) {
807		info = list_entry(p, struct shmem_inode_info, swaplist);
808		if (!info->swapped)
809			list_del_init(&info->swaplist);
810		else if (shmem_unuse_inode(info, entry, page)) {
811			/* move head to start search for next from here */
812			list_move_tail(&shmem_swaplist, &info->swaplist);
813			found = 1;
814			break;
815		}
816	}
817	spin_unlock(&shmem_swaplist_lock);
818	return found;
819}
820
821/*
822 * Move the page from the page cache to the swap cache.
823 */
824static int shmem_writepage(struct page *page, struct writeback_control *wbc)
825{
826	struct shmem_inode_info *info;
827	swp_entry_t *entry, swap;
828	struct address_space *mapping;
829	unsigned long index;
830	struct inode *inode;
831
832	BUG_ON(!PageLocked(page));
833	BUG_ON(page_mapped(page));
834
835	mapping = page->mapping;
836	index = page->index;
837	inode = mapping->host;
838	info = SHMEM_I(inode);
839	if (info->flags & VM_LOCKED)
840		goto redirty;
841	swap = get_swap_page();
842	if (!swap.val)
843		goto redirty;
844
845	spin_lock(&info->lock);
846	shmem_recalc_inode(inode);
847	if (index >= info->next_index) {
848		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
849		goto unlock;
850	}
851	entry = shmem_swp_entry(info, index, NULL);
852	BUG_ON(!entry);
853	BUG_ON(entry->val);
854
855	if (move_to_swap_cache(page, swap) == 0) {
856		shmem_swp_set(info, entry, swap.val);
857		shmem_swp_unmap(entry);
858		spin_unlock(&info->lock);
859		if (list_empty(&info->swaplist)) {
860			spin_lock(&shmem_swaplist_lock);
861			/* move instead of add in case we're racing */
862			list_move_tail(&info->swaplist, &shmem_swaplist);
863			spin_unlock(&shmem_swaplist_lock);
864		}
865		unlock_page(page);
866		return 0;
867	}
868
869	shmem_swp_unmap(entry);
870unlock:
871	spin_unlock(&info->lock);
872	swap_free(swap);
873redirty:
874	set_page_dirty(page);
875	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
876}
877
878#ifdef CONFIG_NUMA
879static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
880{
881	char *nodelist = strchr(value, ':');
882	int err = 1;
883
884	if (nodelist) {
885		/* NUL-terminate policy string */
886		*nodelist++ = '\0';
887		if (nodelist_parse(nodelist, *policy_nodes))
888			goto out;
889	}
890	if (!strcmp(value, "default")) {
891		*policy = MPOL_DEFAULT;
892		/* Don't allow a nodelist */
893		if (!nodelist)
894			err = 0;
895	} else if (!strcmp(value, "prefer")) {
896		*policy = MPOL_PREFERRED;
897		/* Insist on a nodelist of one node only */
898		if (nodelist) {
899			char *rest = nodelist;
900			while (isdigit(*rest))
901				rest++;
902			if (!*rest)
903				err = 0;
904		}
905	} else if (!strcmp(value, "bind")) {
906		*policy = MPOL_BIND;
907		/* Insist on a nodelist */
908		if (nodelist)
909			err = 0;
910	} else if (!strcmp(value, "interleave")) {
911		*policy = MPOL_INTERLEAVE;
912		/* Default to nodes online if no nodelist */
913		if (!nodelist)
914			*policy_nodes = node_online_map;
915		err = 0;
916	}
917out:
918	/* Restore string for error message */
919	if (nodelist)
920		*--nodelist = ':';
921	return err;
922}
923
924static struct page *shmem_swapin_async(struct shared_policy *p,
925				       swp_entry_t entry, unsigned long idx)
926{
927	struct page *page;
928	struct vm_area_struct pvma;
929
930	/* Create a pseudo vma that just contains the policy */
931	memset(&pvma, 0, sizeof(struct vm_area_struct));
932	pvma.vm_end = PAGE_SIZE;
933	pvma.vm_pgoff = idx;
934	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
935	page = read_swap_cache_async(entry, &pvma, 0);
936	mpol_free(pvma.vm_policy);
937	return page;
938}
939
940struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
941			  unsigned long idx)
942{
943	struct shared_policy *p = &info->policy;
944	int i, num;
945	struct page *page;
946	unsigned long offset;
947
948	num = valid_swaphandles(entry, &offset);
949	for (i = 0; i < num; offset++, i++) {
950		page = shmem_swapin_async(p,
951				swp_entry(swp_type(entry), offset), idx);
952		if (!page)
953			break;
954		page_cache_release(page);
955	}
956	lru_add_drain();	/* Push any new pages onto the LRU now */
957	return shmem_swapin_async(p, entry, idx);
958}
959
960static struct page *
961shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
962		 unsigned long idx)
963{
964	struct vm_area_struct pvma;
965	struct page *page;
966
967	memset(&pvma, 0, sizeof(struct vm_area_struct));
968	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
969	pvma.vm_pgoff = idx;
970	pvma.vm_end = PAGE_SIZE;
971	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
972	mpol_free(pvma.vm_policy);
973	return page;
974}
975#else
976static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
977{
978	return 1;
979}
980
981static inline struct page *
982shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
983{
984	swapin_readahead(entry, 0, NULL);
985	return read_swap_cache_async(entry, NULL, 0);
986}
987
988static inline struct page *
989shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
990{
991	return alloc_page(gfp | __GFP_ZERO);
992}
993#endif
994
995/*
996 * shmem_getpage - either get the page from swap or allocate a new one
997 *
998 * If we allocate a new one we do not mark it dirty. That's up to the
999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1001 */
1002static int shmem_getpage(struct inode *inode, unsigned long idx,
1003			struct page **pagep, enum sgp_type sgp, int *type)
1004{
1005	struct address_space *mapping = inode->i_mapping;
1006	struct shmem_inode_info *info = SHMEM_I(inode);
1007	struct shmem_sb_info *sbinfo;
1008	struct page *filepage = *pagep;
1009	struct page *swappage;
1010	swp_entry_t *entry;
1011	swp_entry_t swap;
1012	int error;
1013
1014	if (idx >= SHMEM_MAX_INDEX)
1015		return -EFBIG;
1016	/*
1017	 * Normally, filepage is NULL on entry, and either found
1018	 * uptodate immediately, or allocated and zeroed, or read
1019	 * in under swappage, which is then assigned to filepage.
1020	 * But shmem_prepare_write passes in a locked filepage,
1021	 * which may be found not uptodate by other callers too,
1022	 * and may need to be copied from the swappage read in.
1023	 */
1024repeat:
1025	if (!filepage)
1026		filepage = find_lock_page(mapping, idx);
1027	if (filepage && PageUptodate(filepage))
1028		goto done;
1029	error = 0;
1030	if (sgp == SGP_QUICK)
1031		goto failed;
1032
1033	spin_lock(&info->lock);
1034	shmem_recalc_inode(inode);
1035	entry = shmem_swp_alloc(info, idx, sgp);
1036	if (IS_ERR(entry)) {
1037		spin_unlock(&info->lock);
1038		error = PTR_ERR(entry);
1039		goto failed;
1040	}
1041	swap = *entry;
1042
1043	if (swap.val) {
1044		/* Look it up and read it in.. */
1045		swappage = lookup_swap_cache(swap);
1046		if (!swappage) {
1047			shmem_swp_unmap(entry);
1048			/* here we actually do the io */
1049			if (type && *type == VM_FAULT_MINOR) {
1050				__count_vm_event(PGMAJFAULT);
1051				*type = VM_FAULT_MAJOR;
1052			}
1053			spin_unlock(&info->lock);
1054			swappage = shmem_swapin(info, swap, idx);
1055			if (!swappage) {
1056				spin_lock(&info->lock);
1057				entry = shmem_swp_alloc(info, idx, sgp);
1058				if (IS_ERR(entry))
1059					error = PTR_ERR(entry);
1060				else {
1061					if (entry->val == swap.val)
1062						error = -ENOMEM;
1063					shmem_swp_unmap(entry);
1064				}
1065				spin_unlock(&info->lock);
1066				if (error)
1067					goto failed;
1068				goto repeat;
1069			}
1070			wait_on_page_locked(swappage);
1071			page_cache_release(swappage);
1072			goto repeat;
1073		}
1074
1075		/* We have to do this with page locked to prevent races */
1076		if (TestSetPageLocked(swappage)) {
1077			shmem_swp_unmap(entry);
1078			spin_unlock(&info->lock);
1079			wait_on_page_locked(swappage);
1080			page_cache_release(swappage);
1081			goto repeat;
1082		}
1083		if (PageWriteback(swappage)) {
1084			shmem_swp_unmap(entry);
1085			spin_unlock(&info->lock);
1086			wait_on_page_writeback(swappage);
1087			unlock_page(swappage);
1088			page_cache_release(swappage);
1089			goto repeat;
1090		}
1091		if (!PageUptodate(swappage)) {
1092			shmem_swp_unmap(entry);
1093			spin_unlock(&info->lock);
1094			unlock_page(swappage);
1095			page_cache_release(swappage);
1096			error = -EIO;
1097			goto failed;
1098		}
1099
1100		if (filepage) {
1101			shmem_swp_set(info, entry, 0);
1102			shmem_swp_unmap(entry);
1103			delete_from_swap_cache(swappage);
1104			spin_unlock(&info->lock);
1105			copy_highpage(filepage, swappage);
1106			unlock_page(swappage);
1107			page_cache_release(swappage);
1108			flush_dcache_page(filepage);
1109			SetPageUptodate(filepage);
1110			set_page_dirty(filepage);
1111			swap_free(swap);
1112		} else if (!(error = move_from_swap_cache(
1113				swappage, idx, mapping))) {
1114			info->flags |= SHMEM_PAGEIN;
1115			shmem_swp_set(info, entry, 0);
1116			shmem_swp_unmap(entry);
1117			spin_unlock(&info->lock);
1118			filepage = swappage;
1119			swap_free(swap);
1120		} else {
1121			shmem_swp_unmap(entry);
1122			spin_unlock(&info->lock);
1123			unlock_page(swappage);
1124			page_cache_release(swappage);
1125			if (error == -ENOMEM) {
1126				/* let kswapd refresh zone for GFP_ATOMICs */
1127				blk_congestion_wait(WRITE, HZ/50);
1128			}
1129			goto repeat;
1130		}
1131	} else if (sgp == SGP_READ && !filepage) {
1132		shmem_swp_unmap(entry);
1133		filepage = find_get_page(mapping, idx);
1134		if (filepage &&
1135		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1136			spin_unlock(&info->lock);
1137			wait_on_page_locked(filepage);
1138			page_cache_release(filepage);
1139			filepage = NULL;
1140			goto repeat;
1141		}
1142		spin_unlock(&info->lock);
1143	} else {
1144		shmem_swp_unmap(entry);
1145		sbinfo = SHMEM_SB(inode->i_sb);
1146		if (sbinfo->max_blocks) {
1147			spin_lock(&sbinfo->stat_lock);
1148			if (sbinfo->free_blocks == 0 ||
1149			    shmem_acct_block(info->flags)) {
1150				spin_unlock(&sbinfo->stat_lock);
1151				spin_unlock(&info->lock);
1152				error = -ENOSPC;
1153				goto failed;
1154			}
1155			sbinfo->free_blocks--;
1156			inode->i_blocks += BLOCKS_PER_PAGE;
1157			spin_unlock(&sbinfo->stat_lock);
1158		} else if (shmem_acct_block(info->flags)) {
1159			spin_unlock(&info->lock);
1160			error = -ENOSPC;
1161			goto failed;
1162		}
1163
1164		if (!filepage) {
1165			spin_unlock(&info->lock);
1166			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1167						    info,
1168						    idx);
1169			if (!filepage) {
1170				shmem_unacct_blocks(info->flags, 1);
1171				shmem_free_blocks(inode, 1);
1172				error = -ENOMEM;
1173				goto failed;
1174			}
1175
1176			spin_lock(&info->lock);
1177			entry = shmem_swp_alloc(info, idx, sgp);
1178			if (IS_ERR(entry))
1179				error = PTR_ERR(entry);
1180			else {
1181				swap = *entry;
1182				shmem_swp_unmap(entry);
1183			}
1184			if (error || swap.val || 0 != add_to_page_cache_lru(
1185					filepage, mapping, idx, GFP_ATOMIC)) {
1186				spin_unlock(&info->lock);
1187				page_cache_release(filepage);
1188				shmem_unacct_blocks(info->flags, 1);
1189				shmem_free_blocks(inode, 1);
1190				filepage = NULL;
1191				if (error)
1192					goto failed;
1193				goto repeat;
1194			}
1195			info->flags |= SHMEM_PAGEIN;
1196		}
1197
1198		info->alloced++;
1199		spin_unlock(&info->lock);
1200		flush_dcache_page(filepage);
1201		SetPageUptodate(filepage);
1202	}
1203done:
1204	if (*pagep != filepage) {
1205		unlock_page(filepage);
1206		*pagep = filepage;
1207	}
1208	return 0;
1209
1210failed:
1211	if (*pagep != filepage) {
1212		unlock_page(filepage);
1213		page_cache_release(filepage);
1214	}
1215	return error;
1216}
1217
1218struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1219{
1220	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1221	struct page *page = NULL;
1222	unsigned long idx;
1223	int error;
1224
1225	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1226	idx += vma->vm_pgoff;
1227	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1228	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1229		return NOPAGE_SIGBUS;
1230
1231	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1232	if (error)
1233		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1234
1235	mark_page_accessed(page);
1236	return page;
1237}
1238
1239static int shmem_populate(struct vm_area_struct *vma,
1240	unsigned long addr, unsigned long len,
1241	pgprot_t prot, unsigned long pgoff, int nonblock)
1242{
1243	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1244	struct mm_struct *mm = vma->vm_mm;
1245	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1246	unsigned long size;
1247
1248	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1249	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1250		return -EINVAL;
1251
1252	while ((long) len > 0) {
1253		struct page *page = NULL;
1254		int err;
1255		/*
1256		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1257		 */
1258		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1259		if (err)
1260			return err;
1261		/* Page may still be null, but only if nonblock was set. */
1262		if (page) {
1263			mark_page_accessed(page);
1264			err = install_page(mm, vma, addr, page, prot);
1265			if (err) {
1266				page_cache_release(page);
1267				return err;
1268			}
1269		} else if (vma->vm_flags & VM_NONLINEAR) {
1270			/* No page was found just because we can't read it in
1271			 * now (being here implies nonblock != 0), but the page
1272			 * may exist, so set the PTE to fault it in later. */
1273    			err = install_file_pte(mm, vma, addr, pgoff, prot);
1274			if (err)
1275	    			return err;
1276		}
1277
1278		len -= PAGE_SIZE;
1279		addr += PAGE_SIZE;
1280		pgoff++;
1281	}
1282	return 0;
1283}
1284
1285#ifdef CONFIG_NUMA
1286int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1287{
1288	struct inode *i = vma->vm_file->f_dentry->d_inode;
1289	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1290}
1291
1292struct mempolicy *
1293shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1294{
1295	struct inode *i = vma->vm_file->f_dentry->d_inode;
1296	unsigned long idx;
1297
1298	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1299	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1300}
1301#endif
1302
1303int shmem_lock(struct file *file, int lock, struct user_struct *user)
1304{
1305	struct inode *inode = file->f_dentry->d_inode;
1306	struct shmem_inode_info *info = SHMEM_I(inode);
1307	int retval = -ENOMEM;
1308
1309	spin_lock(&info->lock);
1310	if (lock && !(info->flags & VM_LOCKED)) {
1311		if (!user_shm_lock(inode->i_size, user))
1312			goto out_nomem;
1313		info->flags |= VM_LOCKED;
1314	}
1315	if (!lock && (info->flags & VM_LOCKED) && user) {
1316		user_shm_unlock(inode->i_size, user);
1317		info->flags &= ~VM_LOCKED;
1318	}
1319	retval = 0;
1320out_nomem:
1321	spin_unlock(&info->lock);
1322	return retval;
1323}
1324
1325int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1326{
1327	file_accessed(file);
1328	vma->vm_ops = &shmem_vm_ops;
1329	return 0;
1330}
1331
1332static struct inode *
1333shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1334{
1335	struct inode *inode;
1336	struct shmem_inode_info *info;
1337	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1338
1339	if (sbinfo->max_inodes) {
1340		spin_lock(&sbinfo->stat_lock);
1341		if (!sbinfo->free_inodes) {
1342			spin_unlock(&sbinfo->stat_lock);
1343			return NULL;
1344		}
1345		sbinfo->free_inodes--;
1346		spin_unlock(&sbinfo->stat_lock);
1347	}
1348
1349	inode = new_inode(sb);
1350	if (inode) {
1351		inode->i_mode = mode;
1352		inode->i_uid = current->fsuid;
1353		inode->i_gid = current->fsgid;
1354		inode->i_blocks = 0;
1355		inode->i_mapping->a_ops = &shmem_aops;
1356		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1357		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1358		info = SHMEM_I(inode);
1359		memset(info, 0, (char *)inode - (char *)info);
1360		spin_lock_init(&info->lock);
1361		INIT_LIST_HEAD(&info->swaplist);
1362
1363		switch (mode & S_IFMT) {
1364		default:
1365			init_special_inode(inode, mode, dev);
1366			break;
1367		case S_IFREG:
1368			inode->i_op = &shmem_inode_operations;
1369			inode->i_fop = &shmem_file_operations;
1370			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1371							&sbinfo->policy_nodes);
1372			break;
1373		case S_IFDIR:
1374			inode->i_nlink++;
1375			/* Some things misbehave if size == 0 on a directory */
1376			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1377			inode->i_op = &shmem_dir_inode_operations;
1378			inode->i_fop = &simple_dir_operations;
1379			break;
1380		case S_IFLNK:
1381			/*
1382			 * Must not load anything in the rbtree,
1383			 * mpol_free_shared_policy will not be called.
1384			 */
1385			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1386						NULL);
1387			break;
1388		}
1389	} else if (sbinfo->max_inodes) {
1390		spin_lock(&sbinfo->stat_lock);
1391		sbinfo->free_inodes++;
1392		spin_unlock(&sbinfo->stat_lock);
1393	}
1394	return inode;
1395}
1396
1397#ifdef CONFIG_TMPFS
1398static struct inode_operations shmem_symlink_inode_operations;
1399static struct inode_operations shmem_symlink_inline_operations;
1400
1401/*
1402 * Normally tmpfs makes no use of shmem_prepare_write, but it
1403 * lets a tmpfs file be used read-write below the loop driver.
1404 */
1405static int
1406shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1407{
1408	struct inode *inode = page->mapping->host;
1409	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1410}
1411
1412static ssize_t
1413shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1414{
1415	struct inode	*inode = file->f_dentry->d_inode;
1416	loff_t		pos;
1417	unsigned long	written;
1418	ssize_t		err;
1419
1420	if ((ssize_t) count < 0)
1421		return -EINVAL;
1422
1423	if (!access_ok(VERIFY_READ, buf, count))
1424		return -EFAULT;
1425
1426	mutex_lock(&inode->i_mutex);
1427
1428	pos = *ppos;
1429	written = 0;
1430
1431	err = generic_write_checks(file, &pos, &count, 0);
1432	if (err || !count)
1433		goto out;
1434
1435	err = remove_suid(file->f_dentry);
1436	if (err)
1437		goto out;
1438
1439	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1440
1441	do {
1442		struct page *page = NULL;
1443		unsigned long bytes, index, offset;
1444		char *kaddr;
1445		int left;
1446
1447		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1448		index = pos >> PAGE_CACHE_SHIFT;
1449		bytes = PAGE_CACHE_SIZE - offset;
1450		if (bytes > count)
1451			bytes = count;
1452
1453		/*
1454		 * We don't hold page lock across copy from user -
1455		 * what would it guard against? - so no deadlock here.
1456		 * But it still may be a good idea to prefault below.
1457		 */
1458
1459		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1460		if (err)
1461			break;
1462
1463		left = bytes;
1464		if (PageHighMem(page)) {
1465			volatile unsigned char dummy;
1466			__get_user(dummy, buf);
1467			__get_user(dummy, buf + bytes - 1);
1468
1469			kaddr = kmap_atomic(page, KM_USER0);
1470			left = __copy_from_user_inatomic(kaddr + offset,
1471							buf, bytes);
1472			kunmap_atomic(kaddr, KM_USER0);
1473		}
1474		if (left) {
1475			kaddr = kmap(page);
1476			left = __copy_from_user(kaddr + offset, buf, bytes);
1477			kunmap(page);
1478		}
1479
1480		written += bytes;
1481		count -= bytes;
1482		pos += bytes;
1483		buf += bytes;
1484		if (pos > inode->i_size)
1485			i_size_write(inode, pos);
1486
1487		flush_dcache_page(page);
1488		set_page_dirty(page);
1489		mark_page_accessed(page);
1490		page_cache_release(page);
1491
1492		if (left) {
1493			pos -= left;
1494			written -= left;
1495			err = -EFAULT;
1496			break;
1497		}
1498
1499		/*
1500		 * Our dirty pages are not counted in nr_dirty,
1501		 * and we do not attempt to balance dirty pages.
1502		 */
1503
1504		cond_resched();
1505	} while (count);
1506
1507	*ppos = pos;
1508	if (written)
1509		err = written;
1510out:
1511	mutex_unlock(&inode->i_mutex);
1512	return err;
1513}
1514
1515static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1516{
1517	struct inode *inode = filp->f_dentry->d_inode;
1518	struct address_space *mapping = inode->i_mapping;
1519	unsigned long index, offset;
1520
1521	index = *ppos >> PAGE_CACHE_SHIFT;
1522	offset = *ppos & ~PAGE_CACHE_MASK;
1523
1524	for (;;) {
1525		struct page *page = NULL;
1526		unsigned long end_index, nr, ret;
1527		loff_t i_size = i_size_read(inode);
1528
1529		end_index = i_size >> PAGE_CACHE_SHIFT;
1530		if (index > end_index)
1531			break;
1532		if (index == end_index) {
1533			nr = i_size & ~PAGE_CACHE_MASK;
1534			if (nr <= offset)
1535				break;
1536		}
1537
1538		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1539		if (desc->error) {
1540			if (desc->error == -EINVAL)
1541				desc->error = 0;
1542			break;
1543		}
1544
1545		/*
1546		 * We must evaluate after, since reads (unlike writes)
1547		 * are called without i_mutex protection against truncate
1548		 */
1549		nr = PAGE_CACHE_SIZE;
1550		i_size = i_size_read(inode);
1551		end_index = i_size >> PAGE_CACHE_SHIFT;
1552		if (index == end_index) {
1553			nr = i_size & ~PAGE_CACHE_MASK;
1554			if (nr <= offset) {
1555				if (page)
1556					page_cache_release(page);
1557				break;
1558			}
1559		}
1560		nr -= offset;
1561
1562		if (page) {
1563			/*
1564			 * If users can be writing to this page using arbitrary
1565			 * virtual addresses, take care about potential aliasing
1566			 * before reading the page on the kernel side.
1567			 */
1568			if (mapping_writably_mapped(mapping))
1569				flush_dcache_page(page);
1570			/*
1571			 * Mark the page accessed if we read the beginning.
1572			 */
1573			if (!offset)
1574				mark_page_accessed(page);
1575		} else {
1576			page = ZERO_PAGE(0);
1577			page_cache_get(page);
1578		}
1579
1580		/*
1581		 * Ok, we have the page, and it's up-to-date, so
1582		 * now we can copy it to user space...
1583		 *
1584		 * The actor routine returns how many bytes were actually used..
1585		 * NOTE! This may not be the same as how much of a user buffer
1586		 * we filled up (we may be padding etc), so we can only update
1587		 * "pos" here (the actor routine has to update the user buffer
1588		 * pointers and the remaining count).
1589		 */
1590		ret = actor(desc, page, offset, nr);
1591		offset += ret;
1592		index += offset >> PAGE_CACHE_SHIFT;
1593		offset &= ~PAGE_CACHE_MASK;
1594
1595		page_cache_release(page);
1596		if (ret != nr || !desc->count)
1597			break;
1598
1599		cond_resched();
1600	}
1601
1602	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1603	file_accessed(filp);
1604}
1605
1606static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1607{
1608	read_descriptor_t desc;
1609
1610	if ((ssize_t) count < 0)
1611		return -EINVAL;
1612	if (!access_ok(VERIFY_WRITE, buf, count))
1613		return -EFAULT;
1614	if (!count)
1615		return 0;
1616
1617	desc.written = 0;
1618	desc.count = count;
1619	desc.arg.buf = buf;
1620	desc.error = 0;
1621
1622	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1623	if (desc.written)
1624		return desc.written;
1625	return desc.error;
1626}
1627
1628static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1629			 size_t count, read_actor_t actor, void *target)
1630{
1631	read_descriptor_t desc;
1632
1633	if (!count)
1634		return 0;
1635
1636	desc.written = 0;
1637	desc.count = count;
1638	desc.arg.data = target;
1639	desc.error = 0;
1640
1641	do_shmem_file_read(in_file, ppos, &desc, actor);
1642	if (desc.written)
1643		return desc.written;
1644	return desc.error;
1645}
1646
1647static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1648{
1649	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1650
1651	buf->f_type = TMPFS_MAGIC;
1652	buf->f_bsize = PAGE_CACHE_SIZE;
1653	buf->f_namelen = NAME_MAX;
1654	spin_lock(&sbinfo->stat_lock);
1655	if (sbinfo->max_blocks) {
1656		buf->f_blocks = sbinfo->max_blocks;
1657		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1658	}
1659	if (sbinfo->max_inodes) {
1660		buf->f_files = sbinfo->max_inodes;
1661		buf->f_ffree = sbinfo->free_inodes;
1662	}
1663	/* else leave those fields 0 like simple_statfs */
1664	spin_unlock(&sbinfo->stat_lock);
1665	return 0;
1666}
1667
1668/*
1669 * File creation. Allocate an inode, and we're done..
1670 */
1671static int
1672shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1673{
1674	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1675	int error = -ENOSPC;
1676
1677	if (inode) {
1678		error = security_inode_init_security(inode, dir, NULL, NULL,
1679						     NULL);
1680		if (error) {
1681			if (error != -EOPNOTSUPP) {
1682				iput(inode);
1683				return error;
1684			}
1685			error = 0;
1686		}
1687		if (dir->i_mode & S_ISGID) {
1688			inode->i_gid = dir->i_gid;
1689			if (S_ISDIR(mode))
1690				inode->i_mode |= S_ISGID;
1691		}
1692		dir->i_size += BOGO_DIRENT_SIZE;
1693		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1694		d_instantiate(dentry, inode);
1695		dget(dentry); /* Extra count - pin the dentry in core */
1696	}
1697	return error;
1698}
1699
1700static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1701{
1702	int error;
1703
1704	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1705		return error;
1706	dir->i_nlink++;
1707	return 0;
1708}
1709
1710static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1711		struct nameidata *nd)
1712{
1713	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1714}
1715
1716/*
1717 * Link a file..
1718 */
1719static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1720{
1721	struct inode *inode = old_dentry->d_inode;
1722	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1723
1724	/*
1725	 * No ordinary (disk based) filesystem counts links as inodes;
1726	 * but each new link needs a new dentry, pinning lowmem, and
1727	 * tmpfs dentries cannot be pruned until they are unlinked.
1728	 */
1729	if (sbinfo->max_inodes) {
1730		spin_lock(&sbinfo->stat_lock);
1731		if (!sbinfo->free_inodes) {
1732			spin_unlock(&sbinfo->stat_lock);
1733			return -ENOSPC;
1734		}
1735		sbinfo->free_inodes--;
1736		spin_unlock(&sbinfo->stat_lock);
1737	}
1738
1739	dir->i_size += BOGO_DIRENT_SIZE;
1740	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1741	inode->i_nlink++;
1742	atomic_inc(&inode->i_count);	/* New dentry reference */
1743	dget(dentry);		/* Extra pinning count for the created dentry */
1744	d_instantiate(dentry, inode);
1745	return 0;
1746}
1747
1748static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1749{
1750	struct inode *inode = dentry->d_inode;
1751
1752	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1753		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1754		if (sbinfo->max_inodes) {
1755			spin_lock(&sbinfo->stat_lock);
1756			sbinfo->free_inodes++;
1757			spin_unlock(&sbinfo->stat_lock);
1758		}
1759	}
1760
1761	dir->i_size -= BOGO_DIRENT_SIZE;
1762	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1763	inode->i_nlink--;
1764	dput(dentry);	/* Undo the count from "create" - this does all the work */
1765	return 0;
1766}
1767
1768static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1769{
1770	if (!simple_empty(dentry))
1771		return -ENOTEMPTY;
1772
1773	dentry->d_inode->i_nlink--;
1774	dir->i_nlink--;
1775	return shmem_unlink(dir, dentry);
1776}
1777
1778/*
1779 * The VFS layer already does all the dentry stuff for rename,
1780 * we just have to decrement the usage count for the target if
1781 * it exists so that the VFS layer correctly free's it when it
1782 * gets overwritten.
1783 */
1784static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1785{
1786	struct inode *inode = old_dentry->d_inode;
1787	int they_are_dirs = S_ISDIR(inode->i_mode);
1788
1789	if (!simple_empty(new_dentry))
1790		return -ENOTEMPTY;
1791
1792	if (new_dentry->d_inode) {
1793		(void) shmem_unlink(new_dir, new_dentry);
1794		if (they_are_dirs)
1795			old_dir->i_nlink--;
1796	} else if (they_are_dirs) {
1797		old_dir->i_nlink--;
1798		new_dir->i_nlink++;
1799	}
1800
1801	old_dir->i_size -= BOGO_DIRENT_SIZE;
1802	new_dir->i_size += BOGO_DIRENT_SIZE;
1803	old_dir->i_ctime = old_dir->i_mtime =
1804	new_dir->i_ctime = new_dir->i_mtime =
1805	inode->i_ctime = CURRENT_TIME;
1806	return 0;
1807}
1808
1809static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1810{
1811	int error;
1812	int len;
1813	struct inode *inode;
1814	struct page *page = NULL;
1815	char *kaddr;
1816	struct shmem_inode_info *info;
1817
1818	len = strlen(symname) + 1;
1819	if (len > PAGE_CACHE_SIZE)
1820		return -ENAMETOOLONG;
1821
1822	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1823	if (!inode)
1824		return -ENOSPC;
1825
1826	error = security_inode_init_security(inode, dir, NULL, NULL,
1827					     NULL);
1828	if (error) {
1829		if (error != -EOPNOTSUPP) {
1830			iput(inode);
1831			return error;
1832		}
1833		error = 0;
1834	}
1835
1836	info = SHMEM_I(inode);
1837	inode->i_size = len-1;
1838	if (len <= (char *)inode - (char *)info) {
1839		/* do it inline */
1840		memcpy(info, symname, len);
1841		inode->i_op = &shmem_symlink_inline_operations;
1842	} else {
1843		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1844		if (error) {
1845			iput(inode);
1846			return error;
1847		}
1848		inode->i_op = &shmem_symlink_inode_operations;
1849		kaddr = kmap_atomic(page, KM_USER0);
1850		memcpy(kaddr, symname, len);
1851		kunmap_atomic(kaddr, KM_USER0);
1852		set_page_dirty(page);
1853		page_cache_release(page);
1854	}
1855	if (dir->i_mode & S_ISGID)
1856		inode->i_gid = dir->i_gid;
1857	dir->i_size += BOGO_DIRENT_SIZE;
1858	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1859	d_instantiate(dentry, inode);
1860	dget(dentry);
1861	return 0;
1862}
1863
1864static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1865{
1866	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1867	return NULL;
1868}
1869
1870static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1871{
1872	struct page *page = NULL;
1873	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1874	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1875	return page;
1876}
1877
1878static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1879{
1880	if (!IS_ERR(nd_get_link(nd))) {
1881		struct page *page = cookie;
1882		kunmap(page);
1883		mark_page_accessed(page);
1884		page_cache_release(page);
1885	}
1886}
1887
1888static struct inode_operations shmem_symlink_inline_operations = {
1889	.readlink	= generic_readlink,
1890	.follow_link	= shmem_follow_link_inline,
1891};
1892
1893static struct inode_operations shmem_symlink_inode_operations = {
1894	.truncate	= shmem_truncate,
1895	.readlink	= generic_readlink,
1896	.follow_link	= shmem_follow_link,
1897	.put_link	= shmem_put_link,
1898};
1899
1900static int shmem_parse_options(char *options, int *mode, uid_t *uid,
1901	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
1902	int *policy, nodemask_t *policy_nodes)
1903{
1904	char *this_char, *value, *rest;
1905
1906	while (options != NULL) {
1907		this_char = options;
1908		for (;;) {
1909			/*
1910			 * NUL-terminate this option: unfortunately,
1911			 * mount options form a comma-separated list,
1912			 * but mpol's nodelist may also contain commas.
1913			 */
1914			options = strchr(options, ',');
1915			if (options == NULL)
1916				break;
1917			options++;
1918			if (!isdigit(*options)) {
1919				options[-1] = '\0';
1920				break;
1921			}
1922		}
1923		if (!*this_char)
1924			continue;
1925		if ((value = strchr(this_char,'=')) != NULL) {
1926			*value++ = 0;
1927		} else {
1928			printk(KERN_ERR
1929			    "tmpfs: No value for mount option '%s'\n",
1930			    this_char);
1931			return 1;
1932		}
1933
1934		if (!strcmp(this_char,"size")) {
1935			unsigned long long size;
1936			size = memparse(value,&rest);
1937			if (*rest == '%') {
1938				size <<= PAGE_SHIFT;
1939				size *= totalram_pages;
1940				do_div(size, 100);
1941				rest++;
1942			}
1943			if (*rest)
1944				goto bad_val;
1945			*blocks = size >> PAGE_CACHE_SHIFT;
1946		} else if (!strcmp(this_char,"nr_blocks")) {
1947			*blocks = memparse(value,&rest);
1948			if (*rest)
1949				goto bad_val;
1950		} else if (!strcmp(this_char,"nr_inodes")) {
1951			*inodes = memparse(value,&rest);
1952			if (*rest)
1953				goto bad_val;
1954		} else if (!strcmp(this_char,"mode")) {
1955			if (!mode)
1956				continue;
1957			*mode = simple_strtoul(value,&rest,8);
1958			if (*rest)
1959				goto bad_val;
1960		} else if (!strcmp(this_char,"uid")) {
1961			if (!uid)
1962				continue;
1963			*uid = simple_strtoul(value,&rest,0);
1964			if (*rest)
1965				goto bad_val;
1966		} else if (!strcmp(this_char,"gid")) {
1967			if (!gid)
1968				continue;
1969			*gid = simple_strtoul(value,&rest,0);
1970			if (*rest)
1971				goto bad_val;
1972		} else if (!strcmp(this_char,"mpol")) {
1973			if (shmem_parse_mpol(value,policy,policy_nodes))
1974				goto bad_val;
1975		} else {
1976			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1977			       this_char);
1978			return 1;
1979		}
1980	}
1981	return 0;
1982
1983bad_val:
1984	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1985	       value, this_char);
1986	return 1;
1987
1988}
1989
1990static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1991{
1992	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1993	unsigned long max_blocks = sbinfo->max_blocks;
1994	unsigned long max_inodes = sbinfo->max_inodes;
1995	int policy = sbinfo->policy;
1996	nodemask_t policy_nodes = sbinfo->policy_nodes;
1997	unsigned long blocks;
1998	unsigned long inodes;
1999	int error = -EINVAL;
2000
2001	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2002				&max_inodes, &policy, &policy_nodes))
2003		return error;
2004
2005	spin_lock(&sbinfo->stat_lock);
2006	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2007	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2008	if (max_blocks < blocks)
2009		goto out;
2010	if (max_inodes < inodes)
2011		goto out;
2012	/*
2013	 * Those tests also disallow limited->unlimited while any are in
2014	 * use, so i_blocks will always be zero when max_blocks is zero;
2015	 * but we must separately disallow unlimited->limited, because
2016	 * in that case we have no record of how much is already in use.
2017	 */
2018	if (max_blocks && !sbinfo->max_blocks)
2019		goto out;
2020	if (max_inodes && !sbinfo->max_inodes)
2021		goto out;
2022
2023	error = 0;
2024	sbinfo->max_blocks  = max_blocks;
2025	sbinfo->free_blocks = max_blocks - blocks;
2026	sbinfo->max_inodes  = max_inodes;
2027	sbinfo->free_inodes = max_inodes - inodes;
2028	sbinfo->policy = policy;
2029	sbinfo->policy_nodes = policy_nodes;
2030out:
2031	spin_unlock(&sbinfo->stat_lock);
2032	return error;
2033}
2034#endif
2035
2036static void shmem_put_super(struct super_block *sb)
2037{
2038	kfree(sb->s_fs_info);
2039	sb->s_fs_info = NULL;
2040}
2041
2042static int shmem_fill_super(struct super_block *sb,
2043			    void *data, int silent)
2044{
2045	struct inode *inode;
2046	struct dentry *root;
2047	int mode   = S_IRWXUGO | S_ISVTX;
2048	uid_t uid = current->fsuid;
2049	gid_t gid = current->fsgid;
2050	int err = -ENOMEM;
2051	struct shmem_sb_info *sbinfo;
2052	unsigned long blocks = 0;
2053	unsigned long inodes = 0;
2054	int policy = MPOL_DEFAULT;
2055	nodemask_t policy_nodes = node_online_map;
2056
2057#ifdef CONFIG_TMPFS
2058	/*
2059	 * Per default we only allow half of the physical ram per
2060	 * tmpfs instance, limiting inodes to one per page of lowmem;
2061	 * but the internal instance is left unlimited.
2062	 */
2063	if (!(sb->s_flags & MS_NOUSER)) {
2064		blocks = totalram_pages / 2;
2065		inodes = totalram_pages - totalhigh_pages;
2066		if (inodes > blocks)
2067			inodes = blocks;
2068		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2069					&inodes, &policy, &policy_nodes))
2070			return -EINVAL;
2071	}
2072#else
2073	sb->s_flags |= MS_NOUSER;
2074#endif
2075
2076	/* Round up to L1_CACHE_BYTES to resist false sharing */
2077	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2078				L1_CACHE_BYTES), GFP_KERNEL);
2079	if (!sbinfo)
2080		return -ENOMEM;
2081
2082	spin_lock_init(&sbinfo->stat_lock);
2083	sbinfo->max_blocks = blocks;
2084	sbinfo->free_blocks = blocks;
2085	sbinfo->max_inodes = inodes;
2086	sbinfo->free_inodes = inodes;
2087	sbinfo->policy = policy;
2088	sbinfo->policy_nodes = policy_nodes;
2089
2090	sb->s_fs_info = sbinfo;
2091	sb->s_maxbytes = SHMEM_MAX_BYTES;
2092	sb->s_blocksize = PAGE_CACHE_SIZE;
2093	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2094	sb->s_magic = TMPFS_MAGIC;
2095	sb->s_op = &shmem_ops;
2096	sb->s_time_gran = 1;
2097
2098	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2099	if (!inode)
2100		goto failed;
2101	inode->i_uid = uid;
2102	inode->i_gid = gid;
2103	root = d_alloc_root(inode);
2104	if (!root)
2105		goto failed_iput;
2106	sb->s_root = root;
2107	return 0;
2108
2109failed_iput:
2110	iput(inode);
2111failed:
2112	shmem_put_super(sb);
2113	return err;
2114}
2115
2116static struct kmem_cache *shmem_inode_cachep;
2117
2118static struct inode *shmem_alloc_inode(struct super_block *sb)
2119{
2120	struct shmem_inode_info *p;
2121	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2122	if (!p)
2123		return NULL;
2124	return &p->vfs_inode;
2125}
2126
2127static void shmem_destroy_inode(struct inode *inode)
2128{
2129	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2130		/* only struct inode is valid if it's an inline symlink */
2131		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2132	}
2133	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2134}
2135
2136static void init_once(void *foo, struct kmem_cache *cachep,
2137		      unsigned long flags)
2138{
2139	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2140
2141	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2142	    SLAB_CTOR_CONSTRUCTOR) {
2143		inode_init_once(&p->vfs_inode);
2144	}
2145}
2146
2147static int init_inodecache(void)
2148{
2149	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2150				sizeof(struct shmem_inode_info),
2151				0, 0, init_once, NULL);
2152	if (shmem_inode_cachep == NULL)
2153		return -ENOMEM;
2154	return 0;
2155}
2156
2157static void destroy_inodecache(void)
2158{
2159	kmem_cache_destroy(shmem_inode_cachep);
2160}
2161
2162static const struct address_space_operations shmem_aops = {
2163	.writepage	= shmem_writepage,
2164	.set_page_dirty	= __set_page_dirty_nobuffers,
2165#ifdef CONFIG_TMPFS
2166	.prepare_write	= shmem_prepare_write,
2167	.commit_write	= simple_commit_write,
2168#endif
2169	.migratepage	= migrate_page,
2170};
2171
2172static struct file_operations shmem_file_operations = {
2173	.mmap		= shmem_mmap,
2174#ifdef CONFIG_TMPFS
2175	.llseek		= generic_file_llseek,
2176	.read		= shmem_file_read,
2177	.write		= shmem_file_write,
2178	.fsync		= simple_sync_file,
2179	.sendfile	= shmem_file_sendfile,
2180#endif
2181};
2182
2183static struct inode_operations shmem_inode_operations = {
2184	.truncate	= shmem_truncate,
2185	.setattr	= shmem_notify_change,
2186	.truncate_range	= shmem_truncate_range,
2187};
2188
2189static struct inode_operations shmem_dir_inode_operations = {
2190#ifdef CONFIG_TMPFS
2191	.create		= shmem_create,
2192	.lookup		= simple_lookup,
2193	.link		= shmem_link,
2194	.unlink		= shmem_unlink,
2195	.symlink	= shmem_symlink,
2196	.mkdir		= shmem_mkdir,
2197	.rmdir		= shmem_rmdir,
2198	.mknod		= shmem_mknod,
2199	.rename		= shmem_rename,
2200#endif
2201};
2202
2203static struct super_operations shmem_ops = {
2204	.alloc_inode	= shmem_alloc_inode,
2205	.destroy_inode	= shmem_destroy_inode,
2206#ifdef CONFIG_TMPFS
2207	.statfs		= shmem_statfs,
2208	.remount_fs	= shmem_remount_fs,
2209#endif
2210	.delete_inode	= shmem_delete_inode,
2211	.drop_inode	= generic_delete_inode,
2212	.put_super	= shmem_put_super,
2213};
2214
2215static struct vm_operations_struct shmem_vm_ops = {
2216	.nopage		= shmem_nopage,
2217	.populate	= shmem_populate,
2218#ifdef CONFIG_NUMA
2219	.set_policy     = shmem_set_policy,
2220	.get_policy     = shmem_get_policy,
2221#endif
2222};
2223
2224
2225static int shmem_get_sb(struct file_system_type *fs_type,
2226	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2227{
2228	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2229}
2230
2231static struct file_system_type tmpfs_fs_type = {
2232	.owner		= THIS_MODULE,
2233	.name		= "tmpfs",
2234	.get_sb		= shmem_get_sb,
2235	.kill_sb	= kill_litter_super,
2236};
2237static struct vfsmount *shm_mnt;
2238
2239static int __init init_tmpfs(void)
2240{
2241	int error;
2242
2243	error = init_inodecache();
2244	if (error)
2245		goto out3;
2246
2247	error = register_filesystem(&tmpfs_fs_type);
2248	if (error) {
2249		printk(KERN_ERR "Could not register tmpfs\n");
2250		goto out2;
2251	}
2252
2253	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2254				tmpfs_fs_type.name, NULL);
2255	if (IS_ERR(shm_mnt)) {
2256		error = PTR_ERR(shm_mnt);
2257		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2258		goto out1;
2259	}
2260	return 0;
2261
2262out1:
2263	unregister_filesystem(&tmpfs_fs_type);
2264out2:
2265	destroy_inodecache();
2266out3:
2267	shm_mnt = ERR_PTR(error);
2268	return error;
2269}
2270module_init(init_tmpfs)
2271
2272/*
2273 * shmem_file_setup - get an unlinked file living in tmpfs
2274 *
2275 * @name: name for dentry (to be seen in /proc/<pid>/maps
2276 * @size: size to be set for the file
2277 *
2278 */
2279struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2280{
2281	int error;
2282	struct file *file;
2283	struct inode *inode;
2284	struct dentry *dentry, *root;
2285	struct qstr this;
2286
2287	if (IS_ERR(shm_mnt))
2288		return (void *)shm_mnt;
2289
2290	if (size < 0 || size > SHMEM_MAX_BYTES)
2291		return ERR_PTR(-EINVAL);
2292
2293	if (shmem_acct_size(flags, size))
2294		return ERR_PTR(-ENOMEM);
2295
2296	error = -ENOMEM;
2297	this.name = name;
2298	this.len = strlen(name);
2299	this.hash = 0; /* will go */
2300	root = shm_mnt->mnt_root;
2301	dentry = d_alloc(root, &this);
2302	if (!dentry)
2303		goto put_memory;
2304
2305	error = -ENFILE;
2306	file = get_empty_filp();
2307	if (!file)
2308		goto put_dentry;
2309
2310	error = -ENOSPC;
2311	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2312	if (!inode)
2313		goto close_file;
2314
2315	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2316	d_instantiate(dentry, inode);
2317	inode->i_size = size;
2318	inode->i_nlink = 0;	/* It is unlinked */
2319	file->f_vfsmnt = mntget(shm_mnt);
2320	file->f_dentry = dentry;
2321	file->f_mapping = inode->i_mapping;
2322	file->f_op = &shmem_file_operations;
2323	file->f_mode = FMODE_WRITE | FMODE_READ;
2324	return file;
2325
2326close_file:
2327	put_filp(file);
2328put_dentry:
2329	dput(dentry);
2330put_memory:
2331	shmem_unacct_size(flags, size);
2332	return ERR_PTR(error);
2333}
2334
2335/*
2336 * shmem_zero_setup - setup a shared anonymous mapping
2337 *
2338 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2339 */
2340int shmem_zero_setup(struct vm_area_struct *vma)
2341{
2342	struct file *file;
2343	loff_t size = vma->vm_end - vma->vm_start;
2344
2345	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2346	if (IS_ERR(file))
2347		return PTR_ERR(file);
2348
2349	if (vma->vm_file)
2350		fput(vma->vm_file);
2351	vma->vm_file = file;
2352	vma->vm_ops = &shmem_vm_ops;
2353	return 0;
2354}
2355