shmem.c revision cc314eef0128a807e50fa03baf2d0abc0647952c
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/config.h>
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/devfs_fs_kernel.h>
30#include <linux/fs.h>
31#include <linux/mm.h>
32#include <linux/mman.h>
33#include <linux/file.h>
34#include <linux/swap.h>
35#include <linux/pagemap.h>
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/backing-dev.h>
39#include <linux/shmem_fs.h>
40#include <linux/mount.h>
41#include <linux/writeback.h>
42#include <linux/vfs.h>
43#include <linux/blkdev.h>
44#include <linux/security.h>
45#include <linux/swapops.h>
46#include <linux/mempolicy.h>
47#include <linux/namei.h>
48#include <linux/xattr.h>
49#include <asm/uaccess.h>
50#include <asm/div64.h>
51#include <asm/pgtable.h>
52
53/* This magic number is used in glibc for posix shared memory */
54#define TMPFS_MAGIC	0x01021994
55
56#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
57#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
58#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
59
60#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
61#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
62
63#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
64
65/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
66#define SHMEM_PAGEIN	 VM_READ
67#define SHMEM_TRUNCATE	 VM_WRITE
68
69/* Definition to limit shmem_truncate's steps between cond_rescheds */
70#define LATENCY_LIMIT	 64
71
72/* Pretend that each entry is of this size in directory's i_size */
73#define BOGO_DIRENT_SIZE 20
74
75/* Keep swapped page count in private field of indirect struct page */
76#define nr_swapped		private
77
78/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
79enum sgp_type {
80	SGP_QUICK,	/* don't try more than file page cache lookup */
81	SGP_READ,	/* don't exceed i_size, don't allocate page */
82	SGP_CACHE,	/* don't exceed i_size, may allocate page */
83	SGP_WRITE,	/* may exceed i_size, may allocate page */
84};
85
86static int shmem_getpage(struct inode *inode, unsigned long idx,
87			 struct page **pagep, enum sgp_type sgp, int *type);
88
89static inline struct page *shmem_dir_alloc(unsigned int gfp_mask)
90{
91	/*
92	 * The above definition of ENTRIES_PER_PAGE, and the use of
93	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
94	 * might be reconsidered if it ever diverges from PAGE_SIZE.
95	 */
96	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
97}
98
99static inline void shmem_dir_free(struct page *page)
100{
101	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
102}
103
104static struct page **shmem_dir_map(struct page *page)
105{
106	return (struct page **)kmap_atomic(page, KM_USER0);
107}
108
109static inline void shmem_dir_unmap(struct page **dir)
110{
111	kunmap_atomic(dir, KM_USER0);
112}
113
114static swp_entry_t *shmem_swp_map(struct page *page)
115{
116	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
117}
118
119static inline void shmem_swp_balance_unmap(void)
120{
121	/*
122	 * When passing a pointer to an i_direct entry, to code which
123	 * also handles indirect entries and so will shmem_swp_unmap,
124	 * we must arrange for the preempt count to remain in balance.
125	 * What kmap_atomic of a lowmem page does depends on config
126	 * and architecture, so pretend to kmap_atomic some lowmem page.
127	 */
128	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
129}
130
131static inline void shmem_swp_unmap(swp_entry_t *entry)
132{
133	kunmap_atomic(entry, KM_USER1);
134}
135
136static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137{
138	return sb->s_fs_info;
139}
140
141/*
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
146 */
147static inline int shmem_acct_size(unsigned long flags, loff_t size)
148{
149	return (flags & VM_ACCOUNT)?
150		security_vm_enough_memory(VM_ACCT(size)): 0;
151}
152
153static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154{
155	if (flags & VM_ACCOUNT)
156		vm_unacct_memory(VM_ACCT(size));
157}
158
159/*
160 * ... whereas tmpfs objects are accounted incrementally as
161 * pages are allocated, in order to allow huge sparse files.
162 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
163 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
164 */
165static inline int shmem_acct_block(unsigned long flags)
166{
167	return (flags & VM_ACCOUNT)?
168		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
169}
170
171static inline void shmem_unacct_blocks(unsigned long flags, long pages)
172{
173	if (!(flags & VM_ACCOUNT))
174		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
175}
176
177static struct super_operations shmem_ops;
178static struct address_space_operations shmem_aops;
179static struct file_operations shmem_file_operations;
180static struct inode_operations shmem_inode_operations;
181static struct inode_operations shmem_dir_inode_operations;
182static struct inode_operations shmem_special_inode_operations;
183static struct vm_operations_struct shmem_vm_ops;
184
185static struct backing_dev_info shmem_backing_dev_info = {
186	.ra_pages	= 0,	/* No readahead */
187	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
188	.unplug_io_fn	= default_unplug_io_fn,
189};
190
191static LIST_HEAD(shmem_swaplist);
192static DEFINE_SPINLOCK(shmem_swaplist_lock);
193
194static void shmem_free_blocks(struct inode *inode, long pages)
195{
196	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197	if (sbinfo->max_blocks) {
198		spin_lock(&sbinfo->stat_lock);
199		sbinfo->free_blocks += pages;
200		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
201		spin_unlock(&sbinfo->stat_lock);
202	}
203}
204
205/*
206 * shmem_recalc_inode - recalculate the size of an inode
207 *
208 * @inode: inode to recalc
209 *
210 * We have to calculate the free blocks since the mm can drop
211 * undirtied hole pages behind our back.
212 *
213 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
214 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
215 *
216 * It has to be called with the spinlock held.
217 */
218static void shmem_recalc_inode(struct inode *inode)
219{
220	struct shmem_inode_info *info = SHMEM_I(inode);
221	long freed;
222
223	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
224	if (freed > 0) {
225		info->alloced -= freed;
226		shmem_unacct_blocks(info->flags, freed);
227		shmem_free_blocks(inode, freed);
228	}
229}
230
231/*
232 * shmem_swp_entry - find the swap vector position in the info structure
233 *
234 * @info:  info structure for the inode
235 * @index: index of the page to find
236 * @page:  optional page to add to the structure. Has to be preset to
237 *         all zeros
238 *
239 * If there is no space allocated yet it will return NULL when
240 * page is NULL, else it will use the page for the needed block,
241 * setting it to NULL on return to indicate that it has been used.
242 *
243 * The swap vector is organized the following way:
244 *
245 * There are SHMEM_NR_DIRECT entries directly stored in the
246 * shmem_inode_info structure. So small files do not need an addional
247 * allocation.
248 *
249 * For pages with index > SHMEM_NR_DIRECT there is the pointer
250 * i_indirect which points to a page which holds in the first half
251 * doubly indirect blocks, in the second half triple indirect blocks:
252 *
253 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
254 * following layout (for SHMEM_NR_DIRECT == 16):
255 *
256 * i_indirect -> dir --> 16-19
257 * 	      |	     +-> 20-23
258 * 	      |
259 * 	      +-->dir2 --> 24-27
260 * 	      |	       +-> 28-31
261 * 	      |	       +-> 32-35
262 * 	      |	       +-> 36-39
263 * 	      |
264 * 	      +-->dir3 --> 40-43
265 * 	       	       +-> 44-47
266 * 	      	       +-> 48-51
267 * 	      	       +-> 52-55
268 */
269static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
270{
271	unsigned long offset;
272	struct page **dir;
273	struct page *subdir;
274
275	if (index < SHMEM_NR_DIRECT) {
276		shmem_swp_balance_unmap();
277		return info->i_direct+index;
278	}
279	if (!info->i_indirect) {
280		if (page) {
281			info->i_indirect = *page;
282			*page = NULL;
283		}
284		return NULL;			/* need another page */
285	}
286
287	index -= SHMEM_NR_DIRECT;
288	offset = index % ENTRIES_PER_PAGE;
289	index /= ENTRIES_PER_PAGE;
290	dir = shmem_dir_map(info->i_indirect);
291
292	if (index >= ENTRIES_PER_PAGE/2) {
293		index -= ENTRIES_PER_PAGE/2;
294		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
295		index %= ENTRIES_PER_PAGE;
296		subdir = *dir;
297		if (!subdir) {
298			if (page) {
299				*dir = *page;
300				*page = NULL;
301			}
302			shmem_dir_unmap(dir);
303			return NULL;		/* need another page */
304		}
305		shmem_dir_unmap(dir);
306		dir = shmem_dir_map(subdir);
307	}
308
309	dir += index;
310	subdir = *dir;
311	if (!subdir) {
312		if (!page || !(subdir = *page)) {
313			shmem_dir_unmap(dir);
314			return NULL;		/* need a page */
315		}
316		*dir = subdir;
317		*page = NULL;
318	}
319	shmem_dir_unmap(dir);
320	return shmem_swp_map(subdir) + offset;
321}
322
323static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
324{
325	long incdec = value? 1: -1;
326
327	entry->val = value;
328	info->swapped += incdec;
329	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT)
330		kmap_atomic_to_page(entry)->nr_swapped += incdec;
331}
332
333/*
334 * shmem_swp_alloc - get the position of the swap entry for the page.
335 *                   If it does not exist allocate the entry.
336 *
337 * @info:	info structure for the inode
338 * @index:	index of the page to find
339 * @sgp:	check and recheck i_size? skip allocation?
340 */
341static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
342{
343	struct inode *inode = &info->vfs_inode;
344	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
345	struct page *page = NULL;
346	swp_entry_t *entry;
347
348	if (sgp != SGP_WRITE &&
349	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
350		return ERR_PTR(-EINVAL);
351
352	while (!(entry = shmem_swp_entry(info, index, &page))) {
353		if (sgp == SGP_READ)
354			return shmem_swp_map(ZERO_PAGE(0));
355		/*
356		 * Test free_blocks against 1 not 0, since we have 1 data
357		 * page (and perhaps indirect index pages) yet to allocate:
358		 * a waste to allocate index if we cannot allocate data.
359		 */
360		if (sbinfo->max_blocks) {
361			spin_lock(&sbinfo->stat_lock);
362			if (sbinfo->free_blocks <= 1) {
363				spin_unlock(&sbinfo->stat_lock);
364				return ERR_PTR(-ENOSPC);
365			}
366			sbinfo->free_blocks--;
367			inode->i_blocks += BLOCKS_PER_PAGE;
368			spin_unlock(&sbinfo->stat_lock);
369		}
370
371		spin_unlock(&info->lock);
372		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
373		if (page) {
374			page->nr_swapped = 0;
375		}
376		spin_lock(&info->lock);
377
378		if (!page) {
379			shmem_free_blocks(inode, 1);
380			return ERR_PTR(-ENOMEM);
381		}
382		if (sgp != SGP_WRITE &&
383		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
384			entry = ERR_PTR(-EINVAL);
385			break;
386		}
387		if (info->next_index <= index)
388			info->next_index = index + 1;
389	}
390	if (page) {
391		/* another task gave its page, or truncated the file */
392		shmem_free_blocks(inode, 1);
393		shmem_dir_free(page);
394	}
395	if (info->next_index <= index && !IS_ERR(entry))
396		info->next_index = index + 1;
397	return entry;
398}
399
400/*
401 * shmem_free_swp - free some swap entries in a directory
402 *
403 * @dir:   pointer to the directory
404 * @edir:  pointer after last entry of the directory
405 */
406static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
407{
408	swp_entry_t *ptr;
409	int freed = 0;
410
411	for (ptr = dir; ptr < edir; ptr++) {
412		if (ptr->val) {
413			free_swap_and_cache(*ptr);
414			*ptr = (swp_entry_t){0};
415			freed++;
416		}
417	}
418	return freed;
419}
420
421static int shmem_map_and_free_swp(struct page *subdir,
422		int offset, int limit, struct page ***dir)
423{
424	swp_entry_t *ptr;
425	int freed = 0;
426
427	ptr = shmem_swp_map(subdir);
428	for (; offset < limit; offset += LATENCY_LIMIT) {
429		int size = limit - offset;
430		if (size > LATENCY_LIMIT)
431			size = LATENCY_LIMIT;
432		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
433		if (need_resched()) {
434			shmem_swp_unmap(ptr);
435			if (*dir) {
436				shmem_dir_unmap(*dir);
437				*dir = NULL;
438			}
439			cond_resched();
440			ptr = shmem_swp_map(subdir);
441		}
442	}
443	shmem_swp_unmap(ptr);
444	return freed;
445}
446
447static void shmem_free_pages(struct list_head *next)
448{
449	struct page *page;
450	int freed = 0;
451
452	do {
453		page = container_of(next, struct page, lru);
454		next = next->next;
455		shmem_dir_free(page);
456		freed++;
457		if (freed >= LATENCY_LIMIT) {
458			cond_resched();
459			freed = 0;
460		}
461	} while (next);
462}
463
464static void shmem_truncate(struct inode *inode)
465{
466	struct shmem_inode_info *info = SHMEM_I(inode);
467	unsigned long idx;
468	unsigned long size;
469	unsigned long limit;
470	unsigned long stage;
471	unsigned long diroff;
472	struct page **dir;
473	struct page *topdir;
474	struct page *middir;
475	struct page *subdir;
476	swp_entry_t *ptr;
477	LIST_HEAD(pages_to_free);
478	long nr_pages_to_free = 0;
479	long nr_swaps_freed = 0;
480	int offset;
481	int freed;
482
483	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
484	idx = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
485	if (idx >= info->next_index)
486		return;
487
488	spin_lock(&info->lock);
489	info->flags |= SHMEM_TRUNCATE;
490	limit = info->next_index;
491	info->next_index = idx;
492	topdir = info->i_indirect;
493	if (topdir && idx <= SHMEM_NR_DIRECT) {
494		info->i_indirect = NULL;
495		nr_pages_to_free++;
496		list_add(&topdir->lru, &pages_to_free);
497	}
498	spin_unlock(&info->lock);
499
500	if (info->swapped && idx < SHMEM_NR_DIRECT) {
501		ptr = info->i_direct;
502		size = limit;
503		if (size > SHMEM_NR_DIRECT)
504			size = SHMEM_NR_DIRECT;
505		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
506	}
507	if (!topdir)
508		goto done2;
509
510	BUG_ON(limit <= SHMEM_NR_DIRECT);
511	limit -= SHMEM_NR_DIRECT;
512	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
513	offset = idx % ENTRIES_PER_PAGE;
514	idx -= offset;
515
516	dir = shmem_dir_map(topdir);
517	stage = ENTRIES_PER_PAGEPAGE/2;
518	if (idx < ENTRIES_PER_PAGEPAGE/2) {
519		middir = topdir;
520		diroff = idx/ENTRIES_PER_PAGE;
521	} else {
522		dir += ENTRIES_PER_PAGE/2;
523		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
524		while (stage <= idx)
525			stage += ENTRIES_PER_PAGEPAGE;
526		middir = *dir;
527		if (*dir) {
528			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
529				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
530			if (!diroff && !offset) {
531				*dir = NULL;
532				nr_pages_to_free++;
533				list_add(&middir->lru, &pages_to_free);
534			}
535			shmem_dir_unmap(dir);
536			dir = shmem_dir_map(middir);
537		} else {
538			diroff = 0;
539			offset = 0;
540			idx = stage;
541		}
542	}
543
544	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
545		if (unlikely(idx == stage)) {
546			shmem_dir_unmap(dir);
547			dir = shmem_dir_map(topdir) +
548			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
549			while (!*dir) {
550				dir++;
551				idx += ENTRIES_PER_PAGEPAGE;
552				if (idx >= limit)
553					goto done1;
554			}
555			stage = idx + ENTRIES_PER_PAGEPAGE;
556			middir = *dir;
557			*dir = NULL;
558			nr_pages_to_free++;
559			list_add(&middir->lru, &pages_to_free);
560			shmem_dir_unmap(dir);
561			cond_resched();
562			dir = shmem_dir_map(middir);
563			diroff = 0;
564		}
565		subdir = dir[diroff];
566		if (subdir && subdir->nr_swapped) {
567			size = limit - idx;
568			if (size > ENTRIES_PER_PAGE)
569				size = ENTRIES_PER_PAGE;
570			freed = shmem_map_and_free_swp(subdir,
571						offset, size, &dir);
572			if (!dir)
573				dir = shmem_dir_map(middir);
574			nr_swaps_freed += freed;
575			if (offset)
576				spin_lock(&info->lock);
577			subdir->nr_swapped -= freed;
578			if (offset)
579				spin_unlock(&info->lock);
580			BUG_ON(subdir->nr_swapped > offset);
581		}
582		if (offset)
583			offset = 0;
584		else if (subdir) {
585			dir[diroff] = NULL;
586			nr_pages_to_free++;
587			list_add(&subdir->lru, &pages_to_free);
588		}
589	}
590done1:
591	shmem_dir_unmap(dir);
592done2:
593	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
594		/*
595		 * Call truncate_inode_pages again: racing shmem_unuse_inode
596		 * may have swizzled a page in from swap since vmtruncate or
597		 * generic_delete_inode did it, before we lowered next_index.
598		 * Also, though shmem_getpage checks i_size before adding to
599		 * cache, no recheck after: so fix the narrow window there too.
600		 */
601		truncate_inode_pages(inode->i_mapping, inode->i_size);
602	}
603
604	spin_lock(&info->lock);
605	info->flags &= ~SHMEM_TRUNCATE;
606	info->swapped -= nr_swaps_freed;
607	if (nr_pages_to_free)
608		shmem_free_blocks(inode, nr_pages_to_free);
609	shmem_recalc_inode(inode);
610	spin_unlock(&info->lock);
611
612	/*
613	 * Empty swap vector directory pages to be freed?
614	 */
615	if (!list_empty(&pages_to_free)) {
616		pages_to_free.prev->next = NULL;
617		shmem_free_pages(pages_to_free.next);
618	}
619}
620
621static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
622{
623	struct inode *inode = dentry->d_inode;
624	struct page *page = NULL;
625	int error;
626
627	if (attr->ia_valid & ATTR_SIZE) {
628		if (attr->ia_size < inode->i_size) {
629			/*
630			 * If truncating down to a partial page, then
631			 * if that page is already allocated, hold it
632			 * in memory until the truncation is over, so
633			 * truncate_partial_page cannnot miss it were
634			 * it assigned to swap.
635			 */
636			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
637				(void) shmem_getpage(inode,
638					attr->ia_size>>PAGE_CACHE_SHIFT,
639						&page, SGP_READ, NULL);
640			}
641			/*
642			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
643			 * detect if any pages might have been added to cache
644			 * after truncate_inode_pages.  But we needn't bother
645			 * if it's being fully truncated to zero-length: the
646			 * nrpages check is efficient enough in that case.
647			 */
648			if (attr->ia_size) {
649				struct shmem_inode_info *info = SHMEM_I(inode);
650				spin_lock(&info->lock);
651				info->flags &= ~SHMEM_PAGEIN;
652				spin_unlock(&info->lock);
653			}
654		}
655	}
656
657	error = inode_change_ok(inode, attr);
658	if (!error)
659		error = inode_setattr(inode, attr);
660	if (page)
661		page_cache_release(page);
662	return error;
663}
664
665static void shmem_delete_inode(struct inode *inode)
666{
667	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
668	struct shmem_inode_info *info = SHMEM_I(inode);
669
670	if (inode->i_op->truncate == shmem_truncate) {
671		shmem_unacct_size(info->flags, inode->i_size);
672		inode->i_size = 0;
673		shmem_truncate(inode);
674		if (!list_empty(&info->swaplist)) {
675			spin_lock(&shmem_swaplist_lock);
676			list_del_init(&info->swaplist);
677			spin_unlock(&shmem_swaplist_lock);
678		}
679	}
680	BUG_ON(inode->i_blocks);
681	if (sbinfo->max_inodes) {
682		spin_lock(&sbinfo->stat_lock);
683		sbinfo->free_inodes++;
684		spin_unlock(&sbinfo->stat_lock);
685	}
686	clear_inode(inode);
687}
688
689static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
690{
691	swp_entry_t *ptr;
692
693	for (ptr = dir; ptr < edir; ptr++) {
694		if (ptr->val == entry.val)
695			return ptr - dir;
696	}
697	return -1;
698}
699
700static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
701{
702	struct inode *inode;
703	unsigned long idx;
704	unsigned long size;
705	unsigned long limit;
706	unsigned long stage;
707	struct page **dir;
708	struct page *subdir;
709	swp_entry_t *ptr;
710	int offset;
711
712	idx = 0;
713	ptr = info->i_direct;
714	spin_lock(&info->lock);
715	limit = info->next_index;
716	size = limit;
717	if (size > SHMEM_NR_DIRECT)
718		size = SHMEM_NR_DIRECT;
719	offset = shmem_find_swp(entry, ptr, ptr+size);
720	if (offset >= 0) {
721		shmem_swp_balance_unmap();
722		goto found;
723	}
724	if (!info->i_indirect)
725		goto lost2;
726
727	dir = shmem_dir_map(info->i_indirect);
728	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
729
730	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
731		if (unlikely(idx == stage)) {
732			shmem_dir_unmap(dir-1);
733			dir = shmem_dir_map(info->i_indirect) +
734			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
735			while (!*dir) {
736				dir++;
737				idx += ENTRIES_PER_PAGEPAGE;
738				if (idx >= limit)
739					goto lost1;
740			}
741			stage = idx + ENTRIES_PER_PAGEPAGE;
742			subdir = *dir;
743			shmem_dir_unmap(dir);
744			dir = shmem_dir_map(subdir);
745		}
746		subdir = *dir;
747		if (subdir && subdir->nr_swapped) {
748			ptr = shmem_swp_map(subdir);
749			size = limit - idx;
750			if (size > ENTRIES_PER_PAGE)
751				size = ENTRIES_PER_PAGE;
752			offset = shmem_find_swp(entry, ptr, ptr+size);
753			if (offset >= 0) {
754				shmem_dir_unmap(dir);
755				goto found;
756			}
757			shmem_swp_unmap(ptr);
758		}
759	}
760lost1:
761	shmem_dir_unmap(dir-1);
762lost2:
763	spin_unlock(&info->lock);
764	return 0;
765found:
766	idx += offset;
767	inode = &info->vfs_inode;
768	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
769		info->flags |= SHMEM_PAGEIN;
770		shmem_swp_set(info, ptr + offset, 0);
771	}
772	shmem_swp_unmap(ptr);
773	spin_unlock(&info->lock);
774	/*
775	 * Decrement swap count even when the entry is left behind:
776	 * try_to_unuse will skip over mms, then reincrement count.
777	 */
778	swap_free(entry);
779	return 1;
780}
781
782/*
783 * shmem_unuse() search for an eventually swapped out shmem page.
784 */
785int shmem_unuse(swp_entry_t entry, struct page *page)
786{
787	struct list_head *p, *next;
788	struct shmem_inode_info *info;
789	int found = 0;
790
791	spin_lock(&shmem_swaplist_lock);
792	list_for_each_safe(p, next, &shmem_swaplist) {
793		info = list_entry(p, struct shmem_inode_info, swaplist);
794		if (!info->swapped)
795			list_del_init(&info->swaplist);
796		else if (shmem_unuse_inode(info, entry, page)) {
797			/* move head to start search for next from here */
798			list_move_tail(&shmem_swaplist, &info->swaplist);
799			found = 1;
800			break;
801		}
802	}
803	spin_unlock(&shmem_swaplist_lock);
804	return found;
805}
806
807/*
808 * Move the page from the page cache to the swap cache.
809 */
810static int shmem_writepage(struct page *page, struct writeback_control *wbc)
811{
812	struct shmem_inode_info *info;
813	swp_entry_t *entry, swap;
814	struct address_space *mapping;
815	unsigned long index;
816	struct inode *inode;
817
818	BUG_ON(!PageLocked(page));
819	BUG_ON(page_mapped(page));
820
821	mapping = page->mapping;
822	index = page->index;
823	inode = mapping->host;
824	info = SHMEM_I(inode);
825	if (info->flags & VM_LOCKED)
826		goto redirty;
827	swap = get_swap_page();
828	if (!swap.val)
829		goto redirty;
830
831	spin_lock(&info->lock);
832	shmem_recalc_inode(inode);
833	if (index >= info->next_index) {
834		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
835		goto unlock;
836	}
837	entry = shmem_swp_entry(info, index, NULL);
838	BUG_ON(!entry);
839	BUG_ON(entry->val);
840
841	if (move_to_swap_cache(page, swap) == 0) {
842		shmem_swp_set(info, entry, swap.val);
843		shmem_swp_unmap(entry);
844		spin_unlock(&info->lock);
845		if (list_empty(&info->swaplist)) {
846			spin_lock(&shmem_swaplist_lock);
847			/* move instead of add in case we're racing */
848			list_move_tail(&info->swaplist, &shmem_swaplist);
849			spin_unlock(&shmem_swaplist_lock);
850		}
851		unlock_page(page);
852		return 0;
853	}
854
855	shmem_swp_unmap(entry);
856unlock:
857	spin_unlock(&info->lock);
858	swap_free(swap);
859redirty:
860	set_page_dirty(page);
861	return WRITEPAGE_ACTIVATE;	/* Return with the page locked */
862}
863
864#ifdef CONFIG_NUMA
865static struct page *shmem_swapin_async(struct shared_policy *p,
866				       swp_entry_t entry, unsigned long idx)
867{
868	struct page *page;
869	struct vm_area_struct pvma;
870
871	/* Create a pseudo vma that just contains the policy */
872	memset(&pvma, 0, sizeof(struct vm_area_struct));
873	pvma.vm_end = PAGE_SIZE;
874	pvma.vm_pgoff = idx;
875	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
876	page = read_swap_cache_async(entry, &pvma, 0);
877	mpol_free(pvma.vm_policy);
878	return page;
879}
880
881struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
882			  unsigned long idx)
883{
884	struct shared_policy *p = &info->policy;
885	int i, num;
886	struct page *page;
887	unsigned long offset;
888
889	num = valid_swaphandles(entry, &offset);
890	for (i = 0; i < num; offset++, i++) {
891		page = shmem_swapin_async(p,
892				swp_entry(swp_type(entry), offset), idx);
893		if (!page)
894			break;
895		page_cache_release(page);
896	}
897	lru_add_drain();	/* Push any new pages onto the LRU now */
898	return shmem_swapin_async(p, entry, idx);
899}
900
901static struct page *
902shmem_alloc_page(unsigned long gfp, struct shmem_inode_info *info,
903		 unsigned long idx)
904{
905	struct vm_area_struct pvma;
906	struct page *page;
907
908	memset(&pvma, 0, sizeof(struct vm_area_struct));
909	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
910	pvma.vm_pgoff = idx;
911	pvma.vm_end = PAGE_SIZE;
912	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
913	mpol_free(pvma.vm_policy);
914	return page;
915}
916#else
917static inline struct page *
918shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
919{
920	swapin_readahead(entry, 0, NULL);
921	return read_swap_cache_async(entry, NULL, 0);
922}
923
924static inline struct page *
925shmem_alloc_page(unsigned int __nocast gfp,struct shmem_inode_info *info,
926				 unsigned long idx)
927{
928	return alloc_page(gfp | __GFP_ZERO);
929}
930#endif
931
932/*
933 * shmem_getpage - either get the page from swap or allocate a new one
934 *
935 * If we allocate a new one we do not mark it dirty. That's up to the
936 * vm. If we swap it in we mark it dirty since we also free the swap
937 * entry since a page cannot live in both the swap and page cache
938 */
939static int shmem_getpage(struct inode *inode, unsigned long idx,
940			struct page **pagep, enum sgp_type sgp, int *type)
941{
942	struct address_space *mapping = inode->i_mapping;
943	struct shmem_inode_info *info = SHMEM_I(inode);
944	struct shmem_sb_info *sbinfo;
945	struct page *filepage = *pagep;
946	struct page *swappage;
947	swp_entry_t *entry;
948	swp_entry_t swap;
949	int error;
950
951	if (idx >= SHMEM_MAX_INDEX)
952		return -EFBIG;
953	/*
954	 * Normally, filepage is NULL on entry, and either found
955	 * uptodate immediately, or allocated and zeroed, or read
956	 * in under swappage, which is then assigned to filepage.
957	 * But shmem_prepare_write passes in a locked filepage,
958	 * which may be found not uptodate by other callers too,
959	 * and may need to be copied from the swappage read in.
960	 */
961repeat:
962	if (!filepage)
963		filepage = find_lock_page(mapping, idx);
964	if (filepage && PageUptodate(filepage))
965		goto done;
966	error = 0;
967	if (sgp == SGP_QUICK)
968		goto failed;
969
970	spin_lock(&info->lock);
971	shmem_recalc_inode(inode);
972	entry = shmem_swp_alloc(info, idx, sgp);
973	if (IS_ERR(entry)) {
974		spin_unlock(&info->lock);
975		error = PTR_ERR(entry);
976		goto failed;
977	}
978	swap = *entry;
979
980	if (swap.val) {
981		/* Look it up and read it in.. */
982		swappage = lookup_swap_cache(swap);
983		if (!swappage) {
984			shmem_swp_unmap(entry);
985			spin_unlock(&info->lock);
986			/* here we actually do the io */
987			if (type && *type == VM_FAULT_MINOR) {
988				inc_page_state(pgmajfault);
989				*type = VM_FAULT_MAJOR;
990			}
991			swappage = shmem_swapin(info, swap, idx);
992			if (!swappage) {
993				spin_lock(&info->lock);
994				entry = shmem_swp_alloc(info, idx, sgp);
995				if (IS_ERR(entry))
996					error = PTR_ERR(entry);
997				else {
998					if (entry->val == swap.val)
999						error = -ENOMEM;
1000					shmem_swp_unmap(entry);
1001				}
1002				spin_unlock(&info->lock);
1003				if (error)
1004					goto failed;
1005				goto repeat;
1006			}
1007			wait_on_page_locked(swappage);
1008			page_cache_release(swappage);
1009			goto repeat;
1010		}
1011
1012		/* We have to do this with page locked to prevent races */
1013		if (TestSetPageLocked(swappage)) {
1014			shmem_swp_unmap(entry);
1015			spin_unlock(&info->lock);
1016			wait_on_page_locked(swappage);
1017			page_cache_release(swappage);
1018			goto repeat;
1019		}
1020		if (PageWriteback(swappage)) {
1021			shmem_swp_unmap(entry);
1022			spin_unlock(&info->lock);
1023			wait_on_page_writeback(swappage);
1024			unlock_page(swappage);
1025			page_cache_release(swappage);
1026			goto repeat;
1027		}
1028		if (!PageUptodate(swappage)) {
1029			shmem_swp_unmap(entry);
1030			spin_unlock(&info->lock);
1031			unlock_page(swappage);
1032			page_cache_release(swappage);
1033			error = -EIO;
1034			goto failed;
1035		}
1036
1037		if (filepage) {
1038			shmem_swp_set(info, entry, 0);
1039			shmem_swp_unmap(entry);
1040			delete_from_swap_cache(swappage);
1041			spin_unlock(&info->lock);
1042			copy_highpage(filepage, swappage);
1043			unlock_page(swappage);
1044			page_cache_release(swappage);
1045			flush_dcache_page(filepage);
1046			SetPageUptodate(filepage);
1047			set_page_dirty(filepage);
1048			swap_free(swap);
1049		} else if (!(error = move_from_swap_cache(
1050				swappage, idx, mapping))) {
1051			info->flags |= SHMEM_PAGEIN;
1052			shmem_swp_set(info, entry, 0);
1053			shmem_swp_unmap(entry);
1054			spin_unlock(&info->lock);
1055			filepage = swappage;
1056			swap_free(swap);
1057		} else {
1058			shmem_swp_unmap(entry);
1059			spin_unlock(&info->lock);
1060			unlock_page(swappage);
1061			page_cache_release(swappage);
1062			if (error == -ENOMEM) {
1063				/* let kswapd refresh zone for GFP_ATOMICs */
1064				blk_congestion_wait(WRITE, HZ/50);
1065			}
1066			goto repeat;
1067		}
1068	} else if (sgp == SGP_READ && !filepage) {
1069		shmem_swp_unmap(entry);
1070		filepage = find_get_page(mapping, idx);
1071		if (filepage &&
1072		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1073			spin_unlock(&info->lock);
1074			wait_on_page_locked(filepage);
1075			page_cache_release(filepage);
1076			filepage = NULL;
1077			goto repeat;
1078		}
1079		spin_unlock(&info->lock);
1080	} else {
1081		shmem_swp_unmap(entry);
1082		sbinfo = SHMEM_SB(inode->i_sb);
1083		if (sbinfo->max_blocks) {
1084			spin_lock(&sbinfo->stat_lock);
1085			if (sbinfo->free_blocks == 0 ||
1086			    shmem_acct_block(info->flags)) {
1087				spin_unlock(&sbinfo->stat_lock);
1088				spin_unlock(&info->lock);
1089				error = -ENOSPC;
1090				goto failed;
1091			}
1092			sbinfo->free_blocks--;
1093			inode->i_blocks += BLOCKS_PER_PAGE;
1094			spin_unlock(&sbinfo->stat_lock);
1095		} else if (shmem_acct_block(info->flags)) {
1096			spin_unlock(&info->lock);
1097			error = -ENOSPC;
1098			goto failed;
1099		}
1100
1101		if (!filepage) {
1102			spin_unlock(&info->lock);
1103			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1104						    info,
1105						    idx);
1106			if (!filepage) {
1107				shmem_unacct_blocks(info->flags, 1);
1108				shmem_free_blocks(inode, 1);
1109				error = -ENOMEM;
1110				goto failed;
1111			}
1112
1113			spin_lock(&info->lock);
1114			entry = shmem_swp_alloc(info, idx, sgp);
1115			if (IS_ERR(entry))
1116				error = PTR_ERR(entry);
1117			else {
1118				swap = *entry;
1119				shmem_swp_unmap(entry);
1120			}
1121			if (error || swap.val || 0 != add_to_page_cache_lru(
1122					filepage, mapping, idx, GFP_ATOMIC)) {
1123				spin_unlock(&info->lock);
1124				page_cache_release(filepage);
1125				shmem_unacct_blocks(info->flags, 1);
1126				shmem_free_blocks(inode, 1);
1127				filepage = NULL;
1128				if (error)
1129					goto failed;
1130				goto repeat;
1131			}
1132			info->flags |= SHMEM_PAGEIN;
1133		}
1134
1135		info->alloced++;
1136		spin_unlock(&info->lock);
1137		flush_dcache_page(filepage);
1138		SetPageUptodate(filepage);
1139	}
1140done:
1141	if (*pagep != filepage) {
1142		unlock_page(filepage);
1143		*pagep = filepage;
1144	}
1145	return 0;
1146
1147failed:
1148	if (*pagep != filepage) {
1149		unlock_page(filepage);
1150		page_cache_release(filepage);
1151	}
1152	return error;
1153}
1154
1155struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1156{
1157	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1158	struct page *page = NULL;
1159	unsigned long idx;
1160	int error;
1161
1162	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1163	idx += vma->vm_pgoff;
1164	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1165	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1166		return NOPAGE_SIGBUS;
1167
1168	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1169	if (error)
1170		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1171
1172	mark_page_accessed(page);
1173	return page;
1174}
1175
1176static int shmem_populate(struct vm_area_struct *vma,
1177	unsigned long addr, unsigned long len,
1178	pgprot_t prot, unsigned long pgoff, int nonblock)
1179{
1180	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1181	struct mm_struct *mm = vma->vm_mm;
1182	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1183	unsigned long size;
1184
1185	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1186	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1187		return -EINVAL;
1188
1189	while ((long) len > 0) {
1190		struct page *page = NULL;
1191		int err;
1192		/*
1193		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1194		 */
1195		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1196		if (err)
1197			return err;
1198		if (page) {
1199			mark_page_accessed(page);
1200			err = install_page(mm, vma, addr, page, prot);
1201			if (err) {
1202				page_cache_release(page);
1203				return err;
1204			}
1205		} else if (nonblock) {
1206    			err = install_file_pte(mm, vma, addr, pgoff, prot);
1207			if (err)
1208	    			return err;
1209		}
1210
1211		len -= PAGE_SIZE;
1212		addr += PAGE_SIZE;
1213		pgoff++;
1214	}
1215	return 0;
1216}
1217
1218#ifdef CONFIG_NUMA
1219int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1220{
1221	struct inode *i = vma->vm_file->f_dentry->d_inode;
1222	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1223}
1224
1225struct mempolicy *
1226shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1227{
1228	struct inode *i = vma->vm_file->f_dentry->d_inode;
1229	unsigned long idx;
1230
1231	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1232	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1233}
1234#endif
1235
1236int shmem_lock(struct file *file, int lock, struct user_struct *user)
1237{
1238	struct inode *inode = file->f_dentry->d_inode;
1239	struct shmem_inode_info *info = SHMEM_I(inode);
1240	int retval = -ENOMEM;
1241
1242	spin_lock(&info->lock);
1243	if (lock && !(info->flags & VM_LOCKED)) {
1244		if (!user_shm_lock(inode->i_size, user))
1245			goto out_nomem;
1246		info->flags |= VM_LOCKED;
1247	}
1248	if (!lock && (info->flags & VM_LOCKED) && user) {
1249		user_shm_unlock(inode->i_size, user);
1250		info->flags &= ~VM_LOCKED;
1251	}
1252	retval = 0;
1253out_nomem:
1254	spin_unlock(&info->lock);
1255	return retval;
1256}
1257
1258static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1259{
1260	file_accessed(file);
1261	vma->vm_ops = &shmem_vm_ops;
1262	return 0;
1263}
1264
1265static struct inode *
1266shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1267{
1268	struct inode *inode;
1269	struct shmem_inode_info *info;
1270	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1271
1272	if (sbinfo->max_inodes) {
1273		spin_lock(&sbinfo->stat_lock);
1274		if (!sbinfo->free_inodes) {
1275			spin_unlock(&sbinfo->stat_lock);
1276			return NULL;
1277		}
1278		sbinfo->free_inodes--;
1279		spin_unlock(&sbinfo->stat_lock);
1280	}
1281
1282	inode = new_inode(sb);
1283	if (inode) {
1284		inode->i_mode = mode;
1285		inode->i_uid = current->fsuid;
1286		inode->i_gid = current->fsgid;
1287		inode->i_blksize = PAGE_CACHE_SIZE;
1288		inode->i_blocks = 0;
1289		inode->i_mapping->a_ops = &shmem_aops;
1290		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1291		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1292		info = SHMEM_I(inode);
1293		memset(info, 0, (char *)inode - (char *)info);
1294		spin_lock_init(&info->lock);
1295		INIT_LIST_HEAD(&info->swaplist);
1296
1297		switch (mode & S_IFMT) {
1298		default:
1299			inode->i_op = &shmem_special_inode_operations;
1300			init_special_inode(inode, mode, dev);
1301			break;
1302		case S_IFREG:
1303			inode->i_op = &shmem_inode_operations;
1304			inode->i_fop = &shmem_file_operations;
1305			mpol_shared_policy_init(&info->policy);
1306			break;
1307		case S_IFDIR:
1308			inode->i_nlink++;
1309			/* Some things misbehave if size == 0 on a directory */
1310			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1311			inode->i_op = &shmem_dir_inode_operations;
1312			inode->i_fop = &simple_dir_operations;
1313			break;
1314		case S_IFLNK:
1315			/*
1316			 * Must not load anything in the rbtree,
1317			 * mpol_free_shared_policy will not be called.
1318			 */
1319			mpol_shared_policy_init(&info->policy);
1320			break;
1321		}
1322	} else if (sbinfo->max_inodes) {
1323		spin_lock(&sbinfo->stat_lock);
1324		sbinfo->free_inodes++;
1325		spin_unlock(&sbinfo->stat_lock);
1326	}
1327	return inode;
1328}
1329
1330#ifdef CONFIG_TMPFS
1331static struct inode_operations shmem_symlink_inode_operations;
1332static struct inode_operations shmem_symlink_inline_operations;
1333
1334/*
1335 * Normally tmpfs makes no use of shmem_prepare_write, but it
1336 * lets a tmpfs file be used read-write below the loop driver.
1337 */
1338static int
1339shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1340{
1341	struct inode *inode = page->mapping->host;
1342	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1343}
1344
1345static ssize_t
1346shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1347{
1348	struct inode	*inode = file->f_dentry->d_inode;
1349	loff_t		pos;
1350	unsigned long	written;
1351	ssize_t		err;
1352
1353	if ((ssize_t) count < 0)
1354		return -EINVAL;
1355
1356	if (!access_ok(VERIFY_READ, buf, count))
1357		return -EFAULT;
1358
1359	down(&inode->i_sem);
1360
1361	pos = *ppos;
1362	written = 0;
1363
1364	err = generic_write_checks(file, &pos, &count, 0);
1365	if (err || !count)
1366		goto out;
1367
1368	err = remove_suid(file->f_dentry);
1369	if (err)
1370		goto out;
1371
1372	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1373
1374	do {
1375		struct page *page = NULL;
1376		unsigned long bytes, index, offset;
1377		char *kaddr;
1378		int left;
1379
1380		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1381		index = pos >> PAGE_CACHE_SHIFT;
1382		bytes = PAGE_CACHE_SIZE - offset;
1383		if (bytes > count)
1384			bytes = count;
1385
1386		/*
1387		 * We don't hold page lock across copy from user -
1388		 * what would it guard against? - so no deadlock here.
1389		 * But it still may be a good idea to prefault below.
1390		 */
1391
1392		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1393		if (err)
1394			break;
1395
1396		left = bytes;
1397		if (PageHighMem(page)) {
1398			volatile unsigned char dummy;
1399			__get_user(dummy, buf);
1400			__get_user(dummy, buf + bytes - 1);
1401
1402			kaddr = kmap_atomic(page, KM_USER0);
1403			left = __copy_from_user_inatomic(kaddr + offset,
1404							buf, bytes);
1405			kunmap_atomic(kaddr, KM_USER0);
1406		}
1407		if (left) {
1408			kaddr = kmap(page);
1409			left = __copy_from_user(kaddr + offset, buf, bytes);
1410			kunmap(page);
1411		}
1412
1413		written += bytes;
1414		count -= bytes;
1415		pos += bytes;
1416		buf += bytes;
1417		if (pos > inode->i_size)
1418			i_size_write(inode, pos);
1419
1420		flush_dcache_page(page);
1421		set_page_dirty(page);
1422		mark_page_accessed(page);
1423		page_cache_release(page);
1424
1425		if (left) {
1426			pos -= left;
1427			written -= left;
1428			err = -EFAULT;
1429			break;
1430		}
1431
1432		/*
1433		 * Our dirty pages are not counted in nr_dirty,
1434		 * and we do not attempt to balance dirty pages.
1435		 */
1436
1437		cond_resched();
1438	} while (count);
1439
1440	*ppos = pos;
1441	if (written)
1442		err = written;
1443out:
1444	up(&inode->i_sem);
1445	return err;
1446}
1447
1448static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1449{
1450	struct inode *inode = filp->f_dentry->d_inode;
1451	struct address_space *mapping = inode->i_mapping;
1452	unsigned long index, offset;
1453
1454	index = *ppos >> PAGE_CACHE_SHIFT;
1455	offset = *ppos & ~PAGE_CACHE_MASK;
1456
1457	for (;;) {
1458		struct page *page = NULL;
1459		unsigned long end_index, nr, ret;
1460		loff_t i_size = i_size_read(inode);
1461
1462		end_index = i_size >> PAGE_CACHE_SHIFT;
1463		if (index > end_index)
1464			break;
1465		if (index == end_index) {
1466			nr = i_size & ~PAGE_CACHE_MASK;
1467			if (nr <= offset)
1468				break;
1469		}
1470
1471		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1472		if (desc->error) {
1473			if (desc->error == -EINVAL)
1474				desc->error = 0;
1475			break;
1476		}
1477
1478		/*
1479		 * We must evaluate after, since reads (unlike writes)
1480		 * are called without i_sem protection against truncate
1481		 */
1482		nr = PAGE_CACHE_SIZE;
1483		i_size = i_size_read(inode);
1484		end_index = i_size >> PAGE_CACHE_SHIFT;
1485		if (index == end_index) {
1486			nr = i_size & ~PAGE_CACHE_MASK;
1487			if (nr <= offset) {
1488				if (page)
1489					page_cache_release(page);
1490				break;
1491			}
1492		}
1493		nr -= offset;
1494
1495		if (page) {
1496			/*
1497			 * If users can be writing to this page using arbitrary
1498			 * virtual addresses, take care about potential aliasing
1499			 * before reading the page on the kernel side.
1500			 */
1501			if (mapping_writably_mapped(mapping))
1502				flush_dcache_page(page);
1503			/*
1504			 * Mark the page accessed if we read the beginning.
1505			 */
1506			if (!offset)
1507				mark_page_accessed(page);
1508		} else
1509			page = ZERO_PAGE(0);
1510
1511		/*
1512		 * Ok, we have the page, and it's up-to-date, so
1513		 * now we can copy it to user space...
1514		 *
1515		 * The actor routine returns how many bytes were actually used..
1516		 * NOTE! This may not be the same as how much of a user buffer
1517		 * we filled up (we may be padding etc), so we can only update
1518		 * "pos" here (the actor routine has to update the user buffer
1519		 * pointers and the remaining count).
1520		 */
1521		ret = actor(desc, page, offset, nr);
1522		offset += ret;
1523		index += offset >> PAGE_CACHE_SHIFT;
1524		offset &= ~PAGE_CACHE_MASK;
1525
1526		page_cache_release(page);
1527		if (ret != nr || !desc->count)
1528			break;
1529
1530		cond_resched();
1531	}
1532
1533	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1534	file_accessed(filp);
1535}
1536
1537static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1538{
1539	read_descriptor_t desc;
1540
1541	if ((ssize_t) count < 0)
1542		return -EINVAL;
1543	if (!access_ok(VERIFY_WRITE, buf, count))
1544		return -EFAULT;
1545	if (!count)
1546		return 0;
1547
1548	desc.written = 0;
1549	desc.count = count;
1550	desc.arg.buf = buf;
1551	desc.error = 0;
1552
1553	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1554	if (desc.written)
1555		return desc.written;
1556	return desc.error;
1557}
1558
1559static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1560			 size_t count, read_actor_t actor, void *target)
1561{
1562	read_descriptor_t desc;
1563
1564	if (!count)
1565		return 0;
1566
1567	desc.written = 0;
1568	desc.count = count;
1569	desc.arg.data = target;
1570	desc.error = 0;
1571
1572	do_shmem_file_read(in_file, ppos, &desc, actor);
1573	if (desc.written)
1574		return desc.written;
1575	return desc.error;
1576}
1577
1578static int shmem_statfs(struct super_block *sb, struct kstatfs *buf)
1579{
1580	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1581
1582	buf->f_type = TMPFS_MAGIC;
1583	buf->f_bsize = PAGE_CACHE_SIZE;
1584	buf->f_namelen = NAME_MAX;
1585	spin_lock(&sbinfo->stat_lock);
1586	if (sbinfo->max_blocks) {
1587		buf->f_blocks = sbinfo->max_blocks;
1588		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1589	}
1590	if (sbinfo->max_inodes) {
1591		buf->f_files = sbinfo->max_inodes;
1592		buf->f_ffree = sbinfo->free_inodes;
1593	}
1594	/* else leave those fields 0 like simple_statfs */
1595	spin_unlock(&sbinfo->stat_lock);
1596	return 0;
1597}
1598
1599/*
1600 * File creation. Allocate an inode, and we're done..
1601 */
1602static int
1603shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1604{
1605	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1606	int error = -ENOSPC;
1607
1608	if (inode) {
1609		if (dir->i_mode & S_ISGID) {
1610			inode->i_gid = dir->i_gid;
1611			if (S_ISDIR(mode))
1612				inode->i_mode |= S_ISGID;
1613		}
1614		dir->i_size += BOGO_DIRENT_SIZE;
1615		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1616		d_instantiate(dentry, inode);
1617		dget(dentry); /* Extra count - pin the dentry in core */
1618		error = 0;
1619	}
1620	return error;
1621}
1622
1623static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1624{
1625	int error;
1626
1627	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1628		return error;
1629	dir->i_nlink++;
1630	return 0;
1631}
1632
1633static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1634		struct nameidata *nd)
1635{
1636	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1637}
1638
1639/*
1640 * Link a file..
1641 */
1642static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1643{
1644	struct inode *inode = old_dentry->d_inode;
1645	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1646
1647	/*
1648	 * No ordinary (disk based) filesystem counts links as inodes;
1649	 * but each new link needs a new dentry, pinning lowmem, and
1650	 * tmpfs dentries cannot be pruned until they are unlinked.
1651	 */
1652	if (sbinfo->max_inodes) {
1653		spin_lock(&sbinfo->stat_lock);
1654		if (!sbinfo->free_inodes) {
1655			spin_unlock(&sbinfo->stat_lock);
1656			return -ENOSPC;
1657		}
1658		sbinfo->free_inodes--;
1659		spin_unlock(&sbinfo->stat_lock);
1660	}
1661
1662	dir->i_size += BOGO_DIRENT_SIZE;
1663	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1664	inode->i_nlink++;
1665	atomic_inc(&inode->i_count);	/* New dentry reference */
1666	dget(dentry);		/* Extra pinning count for the created dentry */
1667	d_instantiate(dentry, inode);
1668	return 0;
1669}
1670
1671static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1672{
1673	struct inode *inode = dentry->d_inode;
1674
1675	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1676		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1677		if (sbinfo->max_inodes) {
1678			spin_lock(&sbinfo->stat_lock);
1679			sbinfo->free_inodes++;
1680			spin_unlock(&sbinfo->stat_lock);
1681		}
1682	}
1683
1684	dir->i_size -= BOGO_DIRENT_SIZE;
1685	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1686	inode->i_nlink--;
1687	dput(dentry);	/* Undo the count from "create" - this does all the work */
1688	return 0;
1689}
1690
1691static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1692{
1693	if (!simple_empty(dentry))
1694		return -ENOTEMPTY;
1695
1696	dir->i_nlink--;
1697	return shmem_unlink(dir, dentry);
1698}
1699
1700/*
1701 * The VFS layer already does all the dentry stuff for rename,
1702 * we just have to decrement the usage count for the target if
1703 * it exists so that the VFS layer correctly free's it when it
1704 * gets overwritten.
1705 */
1706static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1707{
1708	struct inode *inode = old_dentry->d_inode;
1709	int they_are_dirs = S_ISDIR(inode->i_mode);
1710
1711	if (!simple_empty(new_dentry))
1712		return -ENOTEMPTY;
1713
1714	if (new_dentry->d_inode) {
1715		(void) shmem_unlink(new_dir, new_dentry);
1716		if (they_are_dirs)
1717			old_dir->i_nlink--;
1718	} else if (they_are_dirs) {
1719		old_dir->i_nlink--;
1720		new_dir->i_nlink++;
1721	}
1722
1723	old_dir->i_size -= BOGO_DIRENT_SIZE;
1724	new_dir->i_size += BOGO_DIRENT_SIZE;
1725	old_dir->i_ctime = old_dir->i_mtime =
1726	new_dir->i_ctime = new_dir->i_mtime =
1727	inode->i_ctime = CURRENT_TIME;
1728	return 0;
1729}
1730
1731static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1732{
1733	int error;
1734	int len;
1735	struct inode *inode;
1736	struct page *page = NULL;
1737	char *kaddr;
1738	struct shmem_inode_info *info;
1739
1740	len = strlen(symname) + 1;
1741	if (len > PAGE_CACHE_SIZE)
1742		return -ENAMETOOLONG;
1743
1744	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1745	if (!inode)
1746		return -ENOSPC;
1747
1748	info = SHMEM_I(inode);
1749	inode->i_size = len-1;
1750	if (len <= (char *)inode - (char *)info) {
1751		/* do it inline */
1752		memcpy(info, symname, len);
1753		inode->i_op = &shmem_symlink_inline_operations;
1754	} else {
1755		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1756		if (error) {
1757			iput(inode);
1758			return error;
1759		}
1760		inode->i_op = &shmem_symlink_inode_operations;
1761		kaddr = kmap_atomic(page, KM_USER0);
1762		memcpy(kaddr, symname, len);
1763		kunmap_atomic(kaddr, KM_USER0);
1764		set_page_dirty(page);
1765		page_cache_release(page);
1766	}
1767	if (dir->i_mode & S_ISGID)
1768		inode->i_gid = dir->i_gid;
1769	dir->i_size += BOGO_DIRENT_SIZE;
1770	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1771	d_instantiate(dentry, inode);
1772	dget(dentry);
1773	return 0;
1774}
1775
1776static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1777{
1778	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1779	return NULL;
1780}
1781
1782static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1783{
1784	struct page *page = NULL;
1785	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1786	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1787	return page;
1788}
1789
1790static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1791{
1792	if (!IS_ERR(nd_get_link(nd))) {
1793		struct page *page = cookie;
1794		kunmap(page);
1795		mark_page_accessed(page);
1796		page_cache_release(page);
1797	}
1798}
1799
1800static struct inode_operations shmem_symlink_inline_operations = {
1801	.readlink	= generic_readlink,
1802	.follow_link	= shmem_follow_link_inline,
1803#ifdef CONFIG_TMPFS_XATTR
1804	.setxattr       = generic_setxattr,
1805	.getxattr       = generic_getxattr,
1806	.listxattr      = generic_listxattr,
1807	.removexattr    = generic_removexattr,
1808#endif
1809};
1810
1811static struct inode_operations shmem_symlink_inode_operations = {
1812	.truncate	= shmem_truncate,
1813	.readlink	= generic_readlink,
1814	.follow_link	= shmem_follow_link,
1815	.put_link	= shmem_put_link,
1816#ifdef CONFIG_TMPFS_XATTR
1817	.setxattr       = generic_setxattr,
1818	.getxattr       = generic_getxattr,
1819	.listxattr      = generic_listxattr,
1820	.removexattr    = generic_removexattr,
1821#endif
1822};
1823
1824static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, unsigned long *blocks, unsigned long *inodes)
1825{
1826	char *this_char, *value, *rest;
1827
1828	while ((this_char = strsep(&options, ",")) != NULL) {
1829		if (!*this_char)
1830			continue;
1831		if ((value = strchr(this_char,'=')) != NULL) {
1832			*value++ = 0;
1833		} else {
1834			printk(KERN_ERR
1835			    "tmpfs: No value for mount option '%s'\n",
1836			    this_char);
1837			return 1;
1838		}
1839
1840		if (!strcmp(this_char,"size")) {
1841			unsigned long long size;
1842			size = memparse(value,&rest);
1843			if (*rest == '%') {
1844				size <<= PAGE_SHIFT;
1845				size *= totalram_pages;
1846				do_div(size, 100);
1847				rest++;
1848			}
1849			if (*rest)
1850				goto bad_val;
1851			*blocks = size >> PAGE_CACHE_SHIFT;
1852		} else if (!strcmp(this_char,"nr_blocks")) {
1853			*blocks = memparse(value,&rest);
1854			if (*rest)
1855				goto bad_val;
1856		} else if (!strcmp(this_char,"nr_inodes")) {
1857			*inodes = memparse(value,&rest);
1858			if (*rest)
1859				goto bad_val;
1860		} else if (!strcmp(this_char,"mode")) {
1861			if (!mode)
1862				continue;
1863			*mode = simple_strtoul(value,&rest,8);
1864			if (*rest)
1865				goto bad_val;
1866		} else if (!strcmp(this_char,"uid")) {
1867			if (!uid)
1868				continue;
1869			*uid = simple_strtoul(value,&rest,0);
1870			if (*rest)
1871				goto bad_val;
1872		} else if (!strcmp(this_char,"gid")) {
1873			if (!gid)
1874				continue;
1875			*gid = simple_strtoul(value,&rest,0);
1876			if (*rest)
1877				goto bad_val;
1878		} else {
1879			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1880			       this_char);
1881			return 1;
1882		}
1883	}
1884	return 0;
1885
1886bad_val:
1887	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1888	       value, this_char);
1889	return 1;
1890
1891}
1892
1893static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1894{
1895	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1896	unsigned long max_blocks = sbinfo->max_blocks;
1897	unsigned long max_inodes = sbinfo->max_inodes;
1898	unsigned long blocks;
1899	unsigned long inodes;
1900	int error = -EINVAL;
1901
1902	if (shmem_parse_options(data, NULL, NULL, NULL,
1903				&max_blocks, &max_inodes))
1904		return error;
1905
1906	spin_lock(&sbinfo->stat_lock);
1907	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
1908	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
1909	if (max_blocks < blocks)
1910		goto out;
1911	if (max_inodes < inodes)
1912		goto out;
1913	/*
1914	 * Those tests also disallow limited->unlimited while any are in
1915	 * use, so i_blocks will always be zero when max_blocks is zero;
1916	 * but we must separately disallow unlimited->limited, because
1917	 * in that case we have no record of how much is already in use.
1918	 */
1919	if (max_blocks && !sbinfo->max_blocks)
1920		goto out;
1921	if (max_inodes && !sbinfo->max_inodes)
1922		goto out;
1923
1924	error = 0;
1925	sbinfo->max_blocks  = max_blocks;
1926	sbinfo->free_blocks = max_blocks - blocks;
1927	sbinfo->max_inodes  = max_inodes;
1928	sbinfo->free_inodes = max_inodes - inodes;
1929out:
1930	spin_unlock(&sbinfo->stat_lock);
1931	return error;
1932}
1933#endif
1934
1935static void shmem_put_super(struct super_block *sb)
1936{
1937	kfree(sb->s_fs_info);
1938	sb->s_fs_info = NULL;
1939}
1940
1941#ifdef CONFIG_TMPFS_XATTR
1942static struct xattr_handler *shmem_xattr_handlers[];
1943#else
1944#define shmem_xattr_handlers NULL
1945#endif
1946
1947static int shmem_fill_super(struct super_block *sb,
1948			    void *data, int silent)
1949{
1950	struct inode *inode;
1951	struct dentry *root;
1952	int mode   = S_IRWXUGO | S_ISVTX;
1953	uid_t uid = current->fsuid;
1954	gid_t gid = current->fsgid;
1955	int err = -ENOMEM;
1956	struct shmem_sb_info *sbinfo;
1957	unsigned long blocks = 0;
1958	unsigned long inodes = 0;
1959
1960#ifdef CONFIG_TMPFS
1961	/*
1962	 * Per default we only allow half of the physical ram per
1963	 * tmpfs instance, limiting inodes to one per page of lowmem;
1964	 * but the internal instance is left unlimited.
1965	 */
1966	if (!(sb->s_flags & MS_NOUSER)) {
1967		blocks = totalram_pages / 2;
1968		inodes = totalram_pages - totalhigh_pages;
1969		if (inodes > blocks)
1970			inodes = blocks;
1971		if (shmem_parse_options(data, &mode, &uid, &gid,
1972					&blocks, &inodes))
1973			return -EINVAL;
1974	}
1975#else
1976	sb->s_flags |= MS_NOUSER;
1977#endif
1978
1979	/* Round up to L1_CACHE_BYTES to resist false sharing */
1980	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
1981				L1_CACHE_BYTES), GFP_KERNEL);
1982	if (!sbinfo)
1983		return -ENOMEM;
1984
1985	spin_lock_init(&sbinfo->stat_lock);
1986	sbinfo->max_blocks = blocks;
1987	sbinfo->free_blocks = blocks;
1988	sbinfo->max_inodes = inodes;
1989	sbinfo->free_inodes = inodes;
1990
1991	sb->s_fs_info = sbinfo;
1992	sb->s_maxbytes = SHMEM_MAX_BYTES;
1993	sb->s_blocksize = PAGE_CACHE_SIZE;
1994	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1995	sb->s_magic = TMPFS_MAGIC;
1996	sb->s_op = &shmem_ops;
1997	sb->s_xattr = shmem_xattr_handlers;
1998
1999	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2000	if (!inode)
2001		goto failed;
2002	inode->i_uid = uid;
2003	inode->i_gid = gid;
2004	root = d_alloc_root(inode);
2005	if (!root)
2006		goto failed_iput;
2007	sb->s_root = root;
2008	return 0;
2009
2010failed_iput:
2011	iput(inode);
2012failed:
2013	shmem_put_super(sb);
2014	return err;
2015}
2016
2017static kmem_cache_t *shmem_inode_cachep;
2018
2019static struct inode *shmem_alloc_inode(struct super_block *sb)
2020{
2021	struct shmem_inode_info *p;
2022	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2023	if (!p)
2024		return NULL;
2025	return &p->vfs_inode;
2026}
2027
2028static void shmem_destroy_inode(struct inode *inode)
2029{
2030	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2031		/* only struct inode is valid if it's an inline symlink */
2032		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2033	}
2034	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2035}
2036
2037static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
2038{
2039	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2040
2041	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2042	    SLAB_CTOR_CONSTRUCTOR) {
2043		inode_init_once(&p->vfs_inode);
2044	}
2045}
2046
2047static int init_inodecache(void)
2048{
2049	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2050				sizeof(struct shmem_inode_info),
2051				0, 0, init_once, NULL);
2052	if (shmem_inode_cachep == NULL)
2053		return -ENOMEM;
2054	return 0;
2055}
2056
2057static void destroy_inodecache(void)
2058{
2059	if (kmem_cache_destroy(shmem_inode_cachep))
2060		printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2061}
2062
2063static struct address_space_operations shmem_aops = {
2064	.writepage	= shmem_writepage,
2065	.set_page_dirty	= __set_page_dirty_nobuffers,
2066#ifdef CONFIG_TMPFS
2067	.prepare_write	= shmem_prepare_write,
2068	.commit_write	= simple_commit_write,
2069#endif
2070};
2071
2072static struct file_operations shmem_file_operations = {
2073	.mmap		= shmem_mmap,
2074#ifdef CONFIG_TMPFS
2075	.llseek		= generic_file_llseek,
2076	.read		= shmem_file_read,
2077	.write		= shmem_file_write,
2078	.fsync		= simple_sync_file,
2079	.sendfile	= shmem_file_sendfile,
2080#endif
2081};
2082
2083static struct inode_operations shmem_inode_operations = {
2084	.truncate	= shmem_truncate,
2085	.setattr	= shmem_notify_change,
2086#ifdef CONFIG_TMPFS_XATTR
2087	.setxattr       = generic_setxattr,
2088	.getxattr       = generic_getxattr,
2089	.listxattr      = generic_listxattr,
2090	.removexattr    = generic_removexattr,
2091#endif
2092};
2093
2094static struct inode_operations shmem_dir_inode_operations = {
2095#ifdef CONFIG_TMPFS
2096	.create		= shmem_create,
2097	.lookup		= simple_lookup,
2098	.link		= shmem_link,
2099	.unlink		= shmem_unlink,
2100	.symlink	= shmem_symlink,
2101	.mkdir		= shmem_mkdir,
2102	.rmdir		= shmem_rmdir,
2103	.mknod		= shmem_mknod,
2104	.rename		= shmem_rename,
2105#ifdef CONFIG_TMPFS_XATTR
2106	.setxattr       = generic_setxattr,
2107	.getxattr       = generic_getxattr,
2108	.listxattr      = generic_listxattr,
2109	.removexattr    = generic_removexattr,
2110#endif
2111#endif
2112};
2113
2114static struct inode_operations shmem_special_inode_operations = {
2115#ifdef CONFIG_TMPFS_XATTR
2116	.setxattr	= generic_setxattr,
2117	.getxattr	= generic_getxattr,
2118	.listxattr	= generic_listxattr,
2119	.removexattr	= generic_removexattr,
2120#endif
2121};
2122
2123static struct super_operations shmem_ops = {
2124	.alloc_inode	= shmem_alloc_inode,
2125	.destroy_inode	= shmem_destroy_inode,
2126#ifdef CONFIG_TMPFS
2127	.statfs		= shmem_statfs,
2128	.remount_fs	= shmem_remount_fs,
2129#endif
2130	.delete_inode	= shmem_delete_inode,
2131	.drop_inode	= generic_delete_inode,
2132	.put_super	= shmem_put_super,
2133};
2134
2135static struct vm_operations_struct shmem_vm_ops = {
2136	.nopage		= shmem_nopage,
2137	.populate	= shmem_populate,
2138#ifdef CONFIG_NUMA
2139	.set_policy     = shmem_set_policy,
2140	.get_policy     = shmem_get_policy,
2141#endif
2142};
2143
2144
2145#ifdef CONFIG_TMPFS_SECURITY
2146
2147static size_t shmem_xattr_security_list(struct inode *inode, char *list, size_t list_len,
2148					const char *name, size_t name_len)
2149{
2150	return security_inode_listsecurity(inode, list, list_len);
2151}
2152
2153static int shmem_xattr_security_get(struct inode *inode, const char *name, void *buffer, size_t size)
2154{
2155	if (strcmp(name, "") == 0)
2156		return -EINVAL;
2157	return security_inode_getsecurity(inode, name, buffer, size);
2158}
2159
2160static int shmem_xattr_security_set(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2161{
2162	if (strcmp(name, "") == 0)
2163		return -EINVAL;
2164	return security_inode_setsecurity(inode, name, value, size, flags);
2165}
2166
2167static struct xattr_handler shmem_xattr_security_handler = {
2168	.prefix	= XATTR_SECURITY_PREFIX,
2169	.list	= shmem_xattr_security_list,
2170	.get	= shmem_xattr_security_get,
2171	.set	= shmem_xattr_security_set,
2172};
2173
2174#endif	/* CONFIG_TMPFS_SECURITY */
2175
2176#ifdef CONFIG_TMPFS_XATTR
2177
2178static struct xattr_handler *shmem_xattr_handlers[] = {
2179#ifdef CONFIG_TMPFS_SECURITY
2180	&shmem_xattr_security_handler,
2181#endif
2182	NULL
2183};
2184
2185#endif	/* CONFIG_TMPFS_XATTR */
2186
2187static struct super_block *shmem_get_sb(struct file_system_type *fs_type,
2188	int flags, const char *dev_name, void *data)
2189{
2190	return get_sb_nodev(fs_type, flags, data, shmem_fill_super);
2191}
2192
2193static struct file_system_type tmpfs_fs_type = {
2194	.owner		= THIS_MODULE,
2195	.name		= "tmpfs",
2196	.get_sb		= shmem_get_sb,
2197	.kill_sb	= kill_litter_super,
2198};
2199static struct vfsmount *shm_mnt;
2200
2201static int __init init_tmpfs(void)
2202{
2203	int error;
2204
2205	error = init_inodecache();
2206	if (error)
2207		goto out3;
2208
2209	error = register_filesystem(&tmpfs_fs_type);
2210	if (error) {
2211		printk(KERN_ERR "Could not register tmpfs\n");
2212		goto out2;
2213	}
2214#ifdef CONFIG_TMPFS
2215	devfs_mk_dir("shm");
2216#endif
2217	shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER,
2218				tmpfs_fs_type.name, NULL);
2219	if (IS_ERR(shm_mnt)) {
2220		error = PTR_ERR(shm_mnt);
2221		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2222		goto out1;
2223	}
2224	return 0;
2225
2226out1:
2227	unregister_filesystem(&tmpfs_fs_type);
2228out2:
2229	destroy_inodecache();
2230out3:
2231	shm_mnt = ERR_PTR(error);
2232	return error;
2233}
2234module_init(init_tmpfs)
2235
2236/*
2237 * shmem_file_setup - get an unlinked file living in tmpfs
2238 *
2239 * @name: name for dentry (to be seen in /proc/<pid>/maps
2240 * @size: size to be set for the file
2241 *
2242 */
2243struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2244{
2245	int error;
2246	struct file *file;
2247	struct inode *inode;
2248	struct dentry *dentry, *root;
2249	struct qstr this;
2250
2251	if (IS_ERR(shm_mnt))
2252		return (void *)shm_mnt;
2253
2254	if (size < 0 || size > SHMEM_MAX_BYTES)
2255		return ERR_PTR(-EINVAL);
2256
2257	if (shmem_acct_size(flags, size))
2258		return ERR_PTR(-ENOMEM);
2259
2260	error = -ENOMEM;
2261	this.name = name;
2262	this.len = strlen(name);
2263	this.hash = 0; /* will go */
2264	root = shm_mnt->mnt_root;
2265	dentry = d_alloc(root, &this);
2266	if (!dentry)
2267		goto put_memory;
2268
2269	error = -ENFILE;
2270	file = get_empty_filp();
2271	if (!file)
2272		goto put_dentry;
2273
2274	error = -ENOSPC;
2275	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2276	if (!inode)
2277		goto close_file;
2278
2279	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2280	d_instantiate(dentry, inode);
2281	inode->i_size = size;
2282	inode->i_nlink = 0;	/* It is unlinked */
2283	file->f_vfsmnt = mntget(shm_mnt);
2284	file->f_dentry = dentry;
2285	file->f_mapping = inode->i_mapping;
2286	file->f_op = &shmem_file_operations;
2287	file->f_mode = FMODE_WRITE | FMODE_READ;
2288	return file;
2289
2290close_file:
2291	put_filp(file);
2292put_dentry:
2293	dput(dentry);
2294put_memory:
2295	shmem_unacct_size(flags, size);
2296	return ERR_PTR(error);
2297}
2298
2299/*
2300 * shmem_zero_setup - setup a shared anonymous mapping
2301 *
2302 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2303 */
2304int shmem_zero_setup(struct vm_area_struct *vma)
2305{
2306	struct file *file;
2307	loff_t size = vma->vm_end - vma->vm_start;
2308
2309	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2310	if (IS_ERR(file))
2311		return PTR_ERR(file);
2312
2313	if (vma->vm_file)
2314		fput(vma->vm_file);
2315	vma->vm_file = file;
2316	vma->vm_ops = &shmem_vm_ops;
2317	return 0;
2318}
2319