shmem.c revision d515afe88a32e567c550e3db914f3e378f86453a
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/percpu_counter.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/security.h>
55#include <linux/swapops.h>
56#include <linux/mempolicy.h>
57#include <linux/namei.h>
58#include <linux/ctype.h>
59#include <linux/migrate.h>
60#include <linux/highmem.h>
61#include <linux/seq_file.h>
62#include <linux/magic.h>
63
64#include <asm/uaccess.h>
65#include <asm/div64.h>
66#include <asm/pgtable.h>
67
68/*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
80#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93#define SHMEM_PAGEIN	 VM_READ
94#define SHMEM_TRUNCATE	 VM_WRITE
95
96/* Definition to limit shmem_truncate's steps between cond_rescheds */
97#define LATENCY_LIMIT	 64
98
99/* Pretend that each entry is of this size in directory's i_size */
100#define BOGO_DIRENT_SIZE 20
101
102struct shmem_xattr {
103	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
104	char *name;		/* xattr name */
105	size_t size;
106	char value[0];
107};
108
109/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
110enum sgp_type {
111	SGP_READ,	/* don't exceed i_size, don't allocate page */
112	SGP_CACHE,	/* don't exceed i_size, may allocate page */
113	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
114	SGP_WRITE,	/* may exceed i_size, may allocate page */
115};
116
117#ifdef CONFIG_TMPFS
118static unsigned long shmem_default_max_blocks(void)
119{
120	return totalram_pages / 2;
121}
122
123static unsigned long shmem_default_max_inodes(void)
124{
125	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
126}
127#endif
128
129static int shmem_getpage(struct inode *inode, unsigned long idx,
130			 struct page **pagep, enum sgp_type sgp, int *type);
131
132static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
133{
134	/*
135	 * The above definition of ENTRIES_PER_PAGE, and the use of
136	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137	 * might be reconsidered if it ever diverges from PAGE_SIZE.
138	 *
139	 * Mobility flags are masked out as swap vectors cannot move
140	 */
141	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
142				PAGE_CACHE_SHIFT-PAGE_SHIFT);
143}
144
145static inline void shmem_dir_free(struct page *page)
146{
147	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
148}
149
150static struct page **shmem_dir_map(struct page *page)
151{
152	return (struct page **)kmap_atomic(page, KM_USER0);
153}
154
155static inline void shmem_dir_unmap(struct page **dir)
156{
157	kunmap_atomic(dir, KM_USER0);
158}
159
160static swp_entry_t *shmem_swp_map(struct page *page)
161{
162	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
163}
164
165static inline void shmem_swp_balance_unmap(void)
166{
167	/*
168	 * When passing a pointer to an i_direct entry, to code which
169	 * also handles indirect entries and so will shmem_swp_unmap,
170	 * we must arrange for the preempt count to remain in balance.
171	 * What kmap_atomic of a lowmem page does depends on config
172	 * and architecture, so pretend to kmap_atomic some lowmem page.
173	 */
174	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
175}
176
177static inline void shmem_swp_unmap(swp_entry_t *entry)
178{
179	kunmap_atomic(entry, KM_USER1);
180}
181
182static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
183{
184	return sb->s_fs_info;
185}
186
187/*
188 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189 * for shared memory and for shared anonymous (/dev/zero) mappings
190 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191 * consistent with the pre-accounting of private mappings ...
192 */
193static inline int shmem_acct_size(unsigned long flags, loff_t size)
194{
195	return (flags & VM_NORESERVE) ?
196		0 : security_vm_enough_memory_kern(VM_ACCT(size));
197}
198
199static inline void shmem_unacct_size(unsigned long flags, loff_t size)
200{
201	if (!(flags & VM_NORESERVE))
202		vm_unacct_memory(VM_ACCT(size));
203}
204
205/*
206 * ... whereas tmpfs objects are accounted incrementally as
207 * pages are allocated, in order to allow huge sparse files.
208 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
210 */
211static inline int shmem_acct_block(unsigned long flags)
212{
213	return (flags & VM_NORESERVE) ?
214		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
215}
216
217static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218{
219	if (flags & VM_NORESERVE)
220		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
221}
222
223static const struct super_operations shmem_ops;
224static const struct address_space_operations shmem_aops;
225static const struct file_operations shmem_file_operations;
226static const struct inode_operations shmem_inode_operations;
227static const struct inode_operations shmem_dir_inode_operations;
228static const struct inode_operations shmem_special_inode_operations;
229static const struct vm_operations_struct shmem_vm_ops;
230
231static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
232	.ra_pages	= 0,	/* No readahead */
233	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
234};
235
236static LIST_HEAD(shmem_swaplist);
237static DEFINE_MUTEX(shmem_swaplist_mutex);
238
239static void shmem_free_blocks(struct inode *inode, long pages)
240{
241	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242	if (sbinfo->max_blocks) {
243		percpu_counter_add(&sbinfo->used_blocks, -pages);
244		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
245	}
246}
247
248static int shmem_reserve_inode(struct super_block *sb)
249{
250	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
251	if (sbinfo->max_inodes) {
252		spin_lock(&sbinfo->stat_lock);
253		if (!sbinfo->free_inodes) {
254			spin_unlock(&sbinfo->stat_lock);
255			return -ENOSPC;
256		}
257		sbinfo->free_inodes--;
258		spin_unlock(&sbinfo->stat_lock);
259	}
260	return 0;
261}
262
263static void shmem_free_inode(struct super_block *sb)
264{
265	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
266	if (sbinfo->max_inodes) {
267		spin_lock(&sbinfo->stat_lock);
268		sbinfo->free_inodes++;
269		spin_unlock(&sbinfo->stat_lock);
270	}
271}
272
273/**
274 * shmem_recalc_inode - recalculate the size of an inode
275 * @inode: inode to recalc
276 *
277 * We have to calculate the free blocks since the mm can drop
278 * undirtied hole pages behind our back.
279 *
280 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
281 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
282 *
283 * It has to be called with the spinlock held.
284 */
285static void shmem_recalc_inode(struct inode *inode)
286{
287	struct shmem_inode_info *info = SHMEM_I(inode);
288	long freed;
289
290	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
291	if (freed > 0) {
292		info->alloced -= freed;
293		shmem_unacct_blocks(info->flags, freed);
294		shmem_free_blocks(inode, freed);
295	}
296}
297
298/**
299 * shmem_swp_entry - find the swap vector position in the info structure
300 * @info:  info structure for the inode
301 * @index: index of the page to find
302 * @page:  optional page to add to the structure. Has to be preset to
303 *         all zeros
304 *
305 * If there is no space allocated yet it will return NULL when
306 * page is NULL, else it will use the page for the needed block,
307 * setting it to NULL on return to indicate that it has been used.
308 *
309 * The swap vector is organized the following way:
310 *
311 * There are SHMEM_NR_DIRECT entries directly stored in the
312 * shmem_inode_info structure. So small files do not need an addional
313 * allocation.
314 *
315 * For pages with index > SHMEM_NR_DIRECT there is the pointer
316 * i_indirect which points to a page which holds in the first half
317 * doubly indirect blocks, in the second half triple indirect blocks:
318 *
319 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
320 * following layout (for SHMEM_NR_DIRECT == 16):
321 *
322 * i_indirect -> dir --> 16-19
323 * 	      |	     +-> 20-23
324 * 	      |
325 * 	      +-->dir2 --> 24-27
326 * 	      |	       +-> 28-31
327 * 	      |	       +-> 32-35
328 * 	      |	       +-> 36-39
329 * 	      |
330 * 	      +-->dir3 --> 40-43
331 * 	       	       +-> 44-47
332 * 	      	       +-> 48-51
333 * 	      	       +-> 52-55
334 */
335static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
336{
337	unsigned long offset;
338	struct page **dir;
339	struct page *subdir;
340
341	if (index < SHMEM_NR_DIRECT) {
342		shmem_swp_balance_unmap();
343		return info->i_direct+index;
344	}
345	if (!info->i_indirect) {
346		if (page) {
347			info->i_indirect = *page;
348			*page = NULL;
349		}
350		return NULL;			/* need another page */
351	}
352
353	index -= SHMEM_NR_DIRECT;
354	offset = index % ENTRIES_PER_PAGE;
355	index /= ENTRIES_PER_PAGE;
356	dir = shmem_dir_map(info->i_indirect);
357
358	if (index >= ENTRIES_PER_PAGE/2) {
359		index -= ENTRIES_PER_PAGE/2;
360		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
361		index %= ENTRIES_PER_PAGE;
362		subdir = *dir;
363		if (!subdir) {
364			if (page) {
365				*dir = *page;
366				*page = NULL;
367			}
368			shmem_dir_unmap(dir);
369			return NULL;		/* need another page */
370		}
371		shmem_dir_unmap(dir);
372		dir = shmem_dir_map(subdir);
373	}
374
375	dir += index;
376	subdir = *dir;
377	if (!subdir) {
378		if (!page || !(subdir = *page)) {
379			shmem_dir_unmap(dir);
380			return NULL;		/* need a page */
381		}
382		*dir = subdir;
383		*page = NULL;
384	}
385	shmem_dir_unmap(dir);
386	return shmem_swp_map(subdir) + offset;
387}
388
389static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
390{
391	long incdec = value? 1: -1;
392
393	entry->val = value;
394	info->swapped += incdec;
395	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
396		struct page *page = kmap_atomic_to_page(entry);
397		set_page_private(page, page_private(page) + incdec);
398	}
399}
400
401/**
402 * shmem_swp_alloc - get the position of the swap entry for the page.
403 * @info:	info structure for the inode
404 * @index:	index of the page to find
405 * @sgp:	check and recheck i_size? skip allocation?
406 *
407 * If the entry does not exist, allocate it.
408 */
409static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
410{
411	struct inode *inode = &info->vfs_inode;
412	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
413	struct page *page = NULL;
414	swp_entry_t *entry;
415
416	if (sgp != SGP_WRITE &&
417	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
418		return ERR_PTR(-EINVAL);
419
420	while (!(entry = shmem_swp_entry(info, index, &page))) {
421		if (sgp == SGP_READ)
422			return shmem_swp_map(ZERO_PAGE(0));
423		/*
424		 * Test used_blocks against 1 less max_blocks, since we have 1 data
425		 * page (and perhaps indirect index pages) yet to allocate:
426		 * a waste to allocate index if we cannot allocate data.
427		 */
428		if (sbinfo->max_blocks) {
429			if (percpu_counter_compare(&sbinfo->used_blocks,
430						sbinfo->max_blocks - 1) >= 0)
431				return ERR_PTR(-ENOSPC);
432			percpu_counter_inc(&sbinfo->used_blocks);
433			inode->i_blocks += BLOCKS_PER_PAGE;
434		}
435
436		spin_unlock(&info->lock);
437		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
438		spin_lock(&info->lock);
439
440		if (!page) {
441			shmem_free_blocks(inode, 1);
442			return ERR_PTR(-ENOMEM);
443		}
444		if (sgp != SGP_WRITE &&
445		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
446			entry = ERR_PTR(-EINVAL);
447			break;
448		}
449		if (info->next_index <= index)
450			info->next_index = index + 1;
451	}
452	if (page) {
453		/* another task gave its page, or truncated the file */
454		shmem_free_blocks(inode, 1);
455		shmem_dir_free(page);
456	}
457	if (info->next_index <= index && !IS_ERR(entry))
458		info->next_index = index + 1;
459	return entry;
460}
461
462/**
463 * shmem_free_swp - free some swap entries in a directory
464 * @dir:        pointer to the directory
465 * @edir:       pointer after last entry of the directory
466 * @punch_lock: pointer to spinlock when needed for the holepunch case
467 */
468static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
469						spinlock_t *punch_lock)
470{
471	spinlock_t *punch_unlock = NULL;
472	swp_entry_t *ptr;
473	int freed = 0;
474
475	for (ptr = dir; ptr < edir; ptr++) {
476		if (ptr->val) {
477			if (unlikely(punch_lock)) {
478				punch_unlock = punch_lock;
479				punch_lock = NULL;
480				spin_lock(punch_unlock);
481				if (!ptr->val)
482					continue;
483			}
484			free_swap_and_cache(*ptr);
485			*ptr = (swp_entry_t){0};
486			freed++;
487		}
488	}
489	if (punch_unlock)
490		spin_unlock(punch_unlock);
491	return freed;
492}
493
494static int shmem_map_and_free_swp(struct page *subdir, int offset,
495		int limit, struct page ***dir, spinlock_t *punch_lock)
496{
497	swp_entry_t *ptr;
498	int freed = 0;
499
500	ptr = shmem_swp_map(subdir);
501	for (; offset < limit; offset += LATENCY_LIMIT) {
502		int size = limit - offset;
503		if (size > LATENCY_LIMIT)
504			size = LATENCY_LIMIT;
505		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
506							punch_lock);
507		if (need_resched()) {
508			shmem_swp_unmap(ptr);
509			if (*dir) {
510				shmem_dir_unmap(*dir);
511				*dir = NULL;
512			}
513			cond_resched();
514			ptr = shmem_swp_map(subdir);
515		}
516	}
517	shmem_swp_unmap(ptr);
518	return freed;
519}
520
521static void shmem_free_pages(struct list_head *next)
522{
523	struct page *page;
524	int freed = 0;
525
526	do {
527		page = container_of(next, struct page, lru);
528		next = next->next;
529		shmem_dir_free(page);
530		freed++;
531		if (freed >= LATENCY_LIMIT) {
532			cond_resched();
533			freed = 0;
534		}
535	} while (next);
536}
537
538void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
539{
540	struct shmem_inode_info *info = SHMEM_I(inode);
541	unsigned long idx;
542	unsigned long size;
543	unsigned long limit;
544	unsigned long stage;
545	unsigned long diroff;
546	struct page **dir;
547	struct page *topdir;
548	struct page *middir;
549	struct page *subdir;
550	swp_entry_t *ptr;
551	LIST_HEAD(pages_to_free);
552	long nr_pages_to_free = 0;
553	long nr_swaps_freed = 0;
554	int offset;
555	int freed;
556	int punch_hole;
557	spinlock_t *needs_lock;
558	spinlock_t *punch_lock;
559	unsigned long upper_limit;
560
561	truncate_inode_pages_range(inode->i_mapping, start, end);
562
563	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
564	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
565	if (idx >= info->next_index)
566		return;
567
568	spin_lock(&info->lock);
569	info->flags |= SHMEM_TRUNCATE;
570	if (likely(end == (loff_t) -1)) {
571		limit = info->next_index;
572		upper_limit = SHMEM_MAX_INDEX;
573		info->next_index = idx;
574		needs_lock = NULL;
575		punch_hole = 0;
576	} else {
577		if (end + 1 >= inode->i_size) {	/* we may free a little more */
578			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
579							PAGE_CACHE_SHIFT;
580			upper_limit = SHMEM_MAX_INDEX;
581		} else {
582			limit = (end + 1) >> PAGE_CACHE_SHIFT;
583			upper_limit = limit;
584		}
585		needs_lock = &info->lock;
586		punch_hole = 1;
587	}
588
589	topdir = info->i_indirect;
590	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
591		info->i_indirect = NULL;
592		nr_pages_to_free++;
593		list_add(&topdir->lru, &pages_to_free);
594	}
595	spin_unlock(&info->lock);
596
597	if (info->swapped && idx < SHMEM_NR_DIRECT) {
598		ptr = info->i_direct;
599		size = limit;
600		if (size > SHMEM_NR_DIRECT)
601			size = SHMEM_NR_DIRECT;
602		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
603	}
604
605	/*
606	 * If there are no indirect blocks or we are punching a hole
607	 * below indirect blocks, nothing to be done.
608	 */
609	if (!topdir || limit <= SHMEM_NR_DIRECT)
610		goto done2;
611
612	/*
613	 * The truncation case has already dropped info->lock, and we're safe
614	 * because i_size and next_index have already been lowered, preventing
615	 * access beyond.  But in the punch_hole case, we still need to take
616	 * the lock when updating the swap directory, because there might be
617	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
618	 * shmem_writepage.  However, whenever we find we can remove a whole
619	 * directory page (not at the misaligned start or end of the range),
620	 * we first NULLify its pointer in the level above, and then have no
621	 * need to take the lock when updating its contents: needs_lock and
622	 * punch_lock (either pointing to info->lock or NULL) manage this.
623	 */
624
625	upper_limit -= SHMEM_NR_DIRECT;
626	limit -= SHMEM_NR_DIRECT;
627	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
628	offset = idx % ENTRIES_PER_PAGE;
629	idx -= offset;
630
631	dir = shmem_dir_map(topdir);
632	stage = ENTRIES_PER_PAGEPAGE/2;
633	if (idx < ENTRIES_PER_PAGEPAGE/2) {
634		middir = topdir;
635		diroff = idx/ENTRIES_PER_PAGE;
636	} else {
637		dir += ENTRIES_PER_PAGE/2;
638		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
639		while (stage <= idx)
640			stage += ENTRIES_PER_PAGEPAGE;
641		middir = *dir;
642		if (*dir) {
643			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
644				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
645			if (!diroff && !offset && upper_limit >= stage) {
646				if (needs_lock) {
647					spin_lock(needs_lock);
648					*dir = NULL;
649					spin_unlock(needs_lock);
650					needs_lock = NULL;
651				} else
652					*dir = NULL;
653				nr_pages_to_free++;
654				list_add(&middir->lru, &pages_to_free);
655			}
656			shmem_dir_unmap(dir);
657			dir = shmem_dir_map(middir);
658		} else {
659			diroff = 0;
660			offset = 0;
661			idx = stage;
662		}
663	}
664
665	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
666		if (unlikely(idx == stage)) {
667			shmem_dir_unmap(dir);
668			dir = shmem_dir_map(topdir) +
669			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
670			while (!*dir) {
671				dir++;
672				idx += ENTRIES_PER_PAGEPAGE;
673				if (idx >= limit)
674					goto done1;
675			}
676			stage = idx + ENTRIES_PER_PAGEPAGE;
677			middir = *dir;
678			if (punch_hole)
679				needs_lock = &info->lock;
680			if (upper_limit >= stage) {
681				if (needs_lock) {
682					spin_lock(needs_lock);
683					*dir = NULL;
684					spin_unlock(needs_lock);
685					needs_lock = NULL;
686				} else
687					*dir = NULL;
688				nr_pages_to_free++;
689				list_add(&middir->lru, &pages_to_free);
690			}
691			shmem_dir_unmap(dir);
692			cond_resched();
693			dir = shmem_dir_map(middir);
694			diroff = 0;
695		}
696		punch_lock = needs_lock;
697		subdir = dir[diroff];
698		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
699			if (needs_lock) {
700				spin_lock(needs_lock);
701				dir[diroff] = NULL;
702				spin_unlock(needs_lock);
703				punch_lock = NULL;
704			} else
705				dir[diroff] = NULL;
706			nr_pages_to_free++;
707			list_add(&subdir->lru, &pages_to_free);
708		}
709		if (subdir && page_private(subdir) /* has swap entries */) {
710			size = limit - idx;
711			if (size > ENTRIES_PER_PAGE)
712				size = ENTRIES_PER_PAGE;
713			freed = shmem_map_and_free_swp(subdir,
714					offset, size, &dir, punch_lock);
715			if (!dir)
716				dir = shmem_dir_map(middir);
717			nr_swaps_freed += freed;
718			if (offset || punch_lock) {
719				spin_lock(&info->lock);
720				set_page_private(subdir,
721					page_private(subdir) - freed);
722				spin_unlock(&info->lock);
723			} else
724				BUG_ON(page_private(subdir) != freed);
725		}
726		offset = 0;
727	}
728done1:
729	shmem_dir_unmap(dir);
730done2:
731	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
732		/*
733		 * Call truncate_inode_pages again: racing shmem_unuse_inode
734		 * may have swizzled a page in from swap since
735		 * truncate_pagecache or generic_delete_inode did it, before we
736		 * lowered next_index.  Also, though shmem_getpage checks
737		 * i_size before adding to cache, no recheck after: so fix the
738		 * narrow window there too.
739		 */
740		truncate_inode_pages_range(inode->i_mapping, start, end);
741	}
742
743	spin_lock(&info->lock);
744	info->flags &= ~SHMEM_TRUNCATE;
745	info->swapped -= nr_swaps_freed;
746	if (nr_pages_to_free)
747		shmem_free_blocks(inode, nr_pages_to_free);
748	shmem_recalc_inode(inode);
749	spin_unlock(&info->lock);
750
751	/*
752	 * Empty swap vector directory pages to be freed?
753	 */
754	if (!list_empty(&pages_to_free)) {
755		pages_to_free.prev->next = NULL;
756		shmem_free_pages(pages_to_free.next);
757	}
758}
759EXPORT_SYMBOL_GPL(shmem_truncate_range);
760
761static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
762{
763	struct inode *inode = dentry->d_inode;
764	int error;
765
766	error = inode_change_ok(inode, attr);
767	if (error)
768		return error;
769
770	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
771		loff_t oldsize = inode->i_size;
772		loff_t newsize = attr->ia_size;
773		struct page *page = NULL;
774
775		if (newsize < oldsize) {
776			/*
777			 * If truncating down to a partial page, then
778			 * if that page is already allocated, hold it
779			 * in memory until the truncation is over, so
780			 * truncate_partial_page cannot miss it were
781			 * it assigned to swap.
782			 */
783			if (newsize & (PAGE_CACHE_SIZE-1)) {
784				(void) shmem_getpage(inode,
785					newsize >> PAGE_CACHE_SHIFT,
786						&page, SGP_READ, NULL);
787				if (page)
788					unlock_page(page);
789			}
790			/*
791			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
792			 * detect if any pages might have been added to cache
793			 * after truncate_inode_pages.  But we needn't bother
794			 * if it's being fully truncated to zero-length: the
795			 * nrpages check is efficient enough in that case.
796			 */
797			if (newsize) {
798				struct shmem_inode_info *info = SHMEM_I(inode);
799				spin_lock(&info->lock);
800				info->flags &= ~SHMEM_PAGEIN;
801				spin_unlock(&info->lock);
802			}
803		}
804		if (newsize != oldsize) {
805			i_size_write(inode, newsize);
806			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
807		}
808		if (newsize < oldsize) {
809			loff_t holebegin = round_up(newsize, PAGE_SIZE);
810			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
811			shmem_truncate_range(inode, newsize, (loff_t)-1);
812			/* unmap again to remove racily COWed private pages */
813			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
814		}
815		if (page)
816			page_cache_release(page);
817	}
818
819	setattr_copy(inode, attr);
820#ifdef CONFIG_TMPFS_POSIX_ACL
821	if (attr->ia_valid & ATTR_MODE)
822		error = generic_acl_chmod(inode);
823#endif
824	return error;
825}
826
827static void shmem_evict_inode(struct inode *inode)
828{
829	struct shmem_inode_info *info = SHMEM_I(inode);
830	struct shmem_xattr *xattr, *nxattr;
831
832	if (inode->i_mapping->a_ops == &shmem_aops) {
833		shmem_unacct_size(info->flags, inode->i_size);
834		inode->i_size = 0;
835		shmem_truncate_range(inode, 0, (loff_t)-1);
836		if (!list_empty(&info->swaplist)) {
837			mutex_lock(&shmem_swaplist_mutex);
838			list_del_init(&info->swaplist);
839			mutex_unlock(&shmem_swaplist_mutex);
840		}
841	}
842
843	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
844		kfree(xattr->name);
845		kfree(xattr);
846	}
847	BUG_ON(inode->i_blocks);
848	shmem_free_inode(inode->i_sb);
849	end_writeback(inode);
850}
851
852static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
853{
854	swp_entry_t *ptr;
855
856	for (ptr = dir; ptr < edir; ptr++) {
857		if (ptr->val == entry.val)
858			return ptr - dir;
859	}
860	return -1;
861}
862
863static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
864{
865	struct address_space *mapping;
866	unsigned long idx;
867	unsigned long size;
868	unsigned long limit;
869	unsigned long stage;
870	struct page **dir;
871	struct page *subdir;
872	swp_entry_t *ptr;
873	int offset;
874	int error;
875
876	idx = 0;
877	ptr = info->i_direct;
878	spin_lock(&info->lock);
879	if (!info->swapped) {
880		list_del_init(&info->swaplist);
881		goto lost2;
882	}
883	limit = info->next_index;
884	size = limit;
885	if (size > SHMEM_NR_DIRECT)
886		size = SHMEM_NR_DIRECT;
887	offset = shmem_find_swp(entry, ptr, ptr+size);
888	if (offset >= 0) {
889		shmem_swp_balance_unmap();
890		goto found;
891	}
892	if (!info->i_indirect)
893		goto lost2;
894
895	dir = shmem_dir_map(info->i_indirect);
896	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
897
898	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
899		if (unlikely(idx == stage)) {
900			shmem_dir_unmap(dir-1);
901			if (cond_resched_lock(&info->lock)) {
902				/* check it has not been truncated */
903				if (limit > info->next_index) {
904					limit = info->next_index;
905					if (idx >= limit)
906						goto lost2;
907				}
908			}
909			dir = shmem_dir_map(info->i_indirect) +
910			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
911			while (!*dir) {
912				dir++;
913				idx += ENTRIES_PER_PAGEPAGE;
914				if (idx >= limit)
915					goto lost1;
916			}
917			stage = idx + ENTRIES_PER_PAGEPAGE;
918			subdir = *dir;
919			shmem_dir_unmap(dir);
920			dir = shmem_dir_map(subdir);
921		}
922		subdir = *dir;
923		if (subdir && page_private(subdir)) {
924			ptr = shmem_swp_map(subdir);
925			size = limit - idx;
926			if (size > ENTRIES_PER_PAGE)
927				size = ENTRIES_PER_PAGE;
928			offset = shmem_find_swp(entry, ptr, ptr+size);
929			shmem_swp_unmap(ptr);
930			if (offset >= 0) {
931				shmem_dir_unmap(dir);
932				ptr = shmem_swp_map(subdir);
933				goto found;
934			}
935		}
936	}
937lost1:
938	shmem_dir_unmap(dir-1);
939lost2:
940	spin_unlock(&info->lock);
941	return 0;
942found:
943	idx += offset;
944	ptr += offset;
945
946	/*
947	 * Move _head_ to start search for next from here.
948	 * But be careful: shmem_evict_inode checks list_empty without taking
949	 * mutex, and there's an instant in list_move_tail when info->swaplist
950	 * would appear empty, if it were the only one on shmem_swaplist.  We
951	 * could avoid doing it if inode NULL; or use this minor optimization.
952	 */
953	if (shmem_swaplist.next != &info->swaplist)
954		list_move_tail(&shmem_swaplist, &info->swaplist);
955
956	/*
957	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
958	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
959	 * beneath us (pagelock doesn't help until the page is in pagecache).
960	 */
961	mapping = info->vfs_inode.i_mapping;
962	error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
963	/* which does mem_cgroup_uncharge_cache_page on error */
964
965	if (error == -EEXIST) {
966		struct page *filepage = find_get_page(mapping, idx);
967		error = 1;
968		if (filepage) {
969			/*
970			 * There might be a more uptodate page coming down
971			 * from a stacked writepage: forget our swappage if so.
972			 */
973			if (PageUptodate(filepage))
974				error = 0;
975			page_cache_release(filepage);
976		}
977	}
978	if (!error) {
979		delete_from_swap_cache(page);
980		set_page_dirty(page);
981		info->flags |= SHMEM_PAGEIN;
982		shmem_swp_set(info, ptr, 0);
983		swap_free(entry);
984		error = 1;	/* not an error, but entry was found */
985	}
986	shmem_swp_unmap(ptr);
987	spin_unlock(&info->lock);
988	return error;
989}
990
991/*
992 * shmem_unuse() search for an eventually swapped out shmem page.
993 */
994int shmem_unuse(swp_entry_t entry, struct page *page)
995{
996	struct list_head *p, *next;
997	struct shmem_inode_info *info;
998	int found = 0;
999	int error;
1000
1001	/*
1002	 * Charge page using GFP_KERNEL while we can wait, before taking
1003	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1004	 * Charged back to the user (not to caller) when swap account is used.
1005	 * add_to_page_cache() will be called with GFP_NOWAIT.
1006	 */
1007	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1008	if (error)
1009		goto out;
1010	/*
1011	 * Try to preload while we can wait, to not make a habit of
1012	 * draining atomic reserves; but don't latch on to this cpu,
1013	 * it's okay if sometimes we get rescheduled after this.
1014	 */
1015	error = radix_tree_preload(GFP_KERNEL);
1016	if (error)
1017		goto uncharge;
1018	radix_tree_preload_end();
1019
1020	mutex_lock(&shmem_swaplist_mutex);
1021	list_for_each_safe(p, next, &shmem_swaplist) {
1022		info = list_entry(p, struct shmem_inode_info, swaplist);
1023		found = shmem_unuse_inode(info, entry, page);
1024		cond_resched();
1025		if (found)
1026			break;
1027	}
1028	mutex_unlock(&shmem_swaplist_mutex);
1029
1030uncharge:
1031	if (!found)
1032		mem_cgroup_uncharge_cache_page(page);
1033	if (found < 0)
1034		error = found;
1035out:
1036	unlock_page(page);
1037	page_cache_release(page);
1038	return error;
1039}
1040
1041/*
1042 * Move the page from the page cache to the swap cache.
1043 */
1044static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1045{
1046	struct shmem_inode_info *info;
1047	swp_entry_t *entry, swap;
1048	struct address_space *mapping;
1049	unsigned long index;
1050	struct inode *inode;
1051
1052	BUG_ON(!PageLocked(page));
1053	mapping = page->mapping;
1054	index = page->index;
1055	inode = mapping->host;
1056	info = SHMEM_I(inode);
1057	if (info->flags & VM_LOCKED)
1058		goto redirty;
1059	if (!total_swap_pages)
1060		goto redirty;
1061
1062	/*
1063	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1064	 * sync from ever calling shmem_writepage; but a stacking filesystem
1065	 * may use the ->writepage of its underlying filesystem, in which case
1066	 * tmpfs should write out to swap only in response to memory pressure,
1067	 * and not for the writeback threads or sync.  However, in those cases,
1068	 * we do still want to check if there's a redundant swappage to be
1069	 * discarded.
1070	 */
1071	if (wbc->for_reclaim)
1072		swap = get_swap_page();
1073	else
1074		swap.val = 0;
1075
1076	/*
1077	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1078	 * if it's not already there.  Do it now because we cannot take
1079	 * mutex while holding spinlock, and must do so before the page
1080	 * is moved to swap cache, when its pagelock no longer protects
1081	 * the inode from eviction.  But don't unlock the mutex until
1082	 * we've taken the spinlock, because shmem_unuse_inode() will
1083	 * prune a !swapped inode from the swaplist under both locks.
1084	 */
1085	if (swap.val) {
1086		mutex_lock(&shmem_swaplist_mutex);
1087		if (list_empty(&info->swaplist))
1088			list_add_tail(&info->swaplist, &shmem_swaplist);
1089	}
1090
1091	spin_lock(&info->lock);
1092	if (swap.val)
1093		mutex_unlock(&shmem_swaplist_mutex);
1094
1095	if (index >= info->next_index) {
1096		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1097		goto unlock;
1098	}
1099	entry = shmem_swp_entry(info, index, NULL);
1100	if (entry->val) {
1101		/*
1102		 * The more uptodate page coming down from a stacked
1103		 * writepage should replace our old swappage.
1104		 */
1105		free_swap_and_cache(*entry);
1106		shmem_swp_set(info, entry, 0);
1107	}
1108	shmem_recalc_inode(inode);
1109
1110	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1111		delete_from_page_cache(page);
1112		shmem_swp_set(info, entry, swap.val);
1113		shmem_swp_unmap(entry);
1114		swap_shmem_alloc(swap);
1115		spin_unlock(&info->lock);
1116		BUG_ON(page_mapped(page));
1117		swap_writepage(page, wbc);
1118		return 0;
1119	}
1120
1121	shmem_swp_unmap(entry);
1122unlock:
1123	spin_unlock(&info->lock);
1124	/*
1125	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1126	 * clear SWAP_HAS_CACHE flag.
1127	 */
1128	swapcache_free(swap, NULL);
1129redirty:
1130	set_page_dirty(page);
1131	if (wbc->for_reclaim)
1132		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1133	unlock_page(page);
1134	return 0;
1135}
1136
1137#ifdef CONFIG_NUMA
1138#ifdef CONFIG_TMPFS
1139static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1140{
1141	char buffer[64];
1142
1143	if (!mpol || mpol->mode == MPOL_DEFAULT)
1144		return;		/* show nothing */
1145
1146	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1147
1148	seq_printf(seq, ",mpol=%s", buffer);
1149}
1150
1151static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1152{
1153	struct mempolicy *mpol = NULL;
1154	if (sbinfo->mpol) {
1155		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1156		mpol = sbinfo->mpol;
1157		mpol_get(mpol);
1158		spin_unlock(&sbinfo->stat_lock);
1159	}
1160	return mpol;
1161}
1162#endif /* CONFIG_TMPFS */
1163
1164static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1165			struct shmem_inode_info *info, unsigned long idx)
1166{
1167	struct mempolicy mpol, *spol;
1168	struct vm_area_struct pvma;
1169	struct page *page;
1170
1171	spol = mpol_cond_copy(&mpol,
1172				mpol_shared_policy_lookup(&info->policy, idx));
1173
1174	/* Create a pseudo vma that just contains the policy */
1175	pvma.vm_start = 0;
1176	pvma.vm_pgoff = idx;
1177	pvma.vm_ops = NULL;
1178	pvma.vm_policy = spol;
1179	page = swapin_readahead(entry, gfp, &pvma, 0);
1180	return page;
1181}
1182
1183static struct page *shmem_alloc_page(gfp_t gfp,
1184			struct shmem_inode_info *info, unsigned long idx)
1185{
1186	struct vm_area_struct pvma;
1187
1188	/* Create a pseudo vma that just contains the policy */
1189	pvma.vm_start = 0;
1190	pvma.vm_pgoff = idx;
1191	pvma.vm_ops = NULL;
1192	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1193
1194	/*
1195	 * alloc_page_vma() will drop the shared policy reference
1196	 */
1197	return alloc_page_vma(gfp, &pvma, 0);
1198}
1199#else /* !CONFIG_NUMA */
1200#ifdef CONFIG_TMPFS
1201static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1202{
1203}
1204#endif /* CONFIG_TMPFS */
1205
1206static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1207			struct shmem_inode_info *info, unsigned long idx)
1208{
1209	return swapin_readahead(entry, gfp, NULL, 0);
1210}
1211
1212static inline struct page *shmem_alloc_page(gfp_t gfp,
1213			struct shmem_inode_info *info, unsigned long idx)
1214{
1215	return alloc_page(gfp);
1216}
1217#endif /* CONFIG_NUMA */
1218
1219#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1220static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1221{
1222	return NULL;
1223}
1224#endif
1225
1226/*
1227 * shmem_getpage - either get the page from swap or allocate a new one
1228 *
1229 * If we allocate a new one we do not mark it dirty. That's up to the
1230 * vm. If we swap it in we mark it dirty since we also free the swap
1231 * entry since a page cannot live in both the swap and page cache
1232 */
1233static int shmem_getpage(struct inode *inode, unsigned long idx,
1234			struct page **pagep, enum sgp_type sgp, int *type)
1235{
1236	struct address_space *mapping = inode->i_mapping;
1237	struct shmem_inode_info *info = SHMEM_I(inode);
1238	struct shmem_sb_info *sbinfo;
1239	struct page *filepage = *pagep;
1240	struct page *swappage;
1241	struct page *prealloc_page = NULL;
1242	swp_entry_t *entry;
1243	swp_entry_t swap;
1244	gfp_t gfp;
1245	int error;
1246
1247	if (idx >= SHMEM_MAX_INDEX)
1248		return -EFBIG;
1249
1250	if (type)
1251		*type = 0;
1252
1253	/*
1254	 * Normally, filepage is NULL on entry, and either found
1255	 * uptodate immediately, or allocated and zeroed, or read
1256	 * in under swappage, which is then assigned to filepage.
1257	 * But shmem_readpage (required for splice) passes in a locked
1258	 * filepage, which may be found not uptodate by other callers
1259	 * too, and may need to be copied from the swappage read in.
1260	 */
1261repeat:
1262	if (!filepage)
1263		filepage = find_lock_page(mapping, idx);
1264	if (filepage && PageUptodate(filepage))
1265		goto done;
1266	gfp = mapping_gfp_mask(mapping);
1267	if (!filepage) {
1268		/*
1269		 * Try to preload while we can wait, to not make a habit of
1270		 * draining atomic reserves; but don't latch on to this cpu.
1271		 */
1272		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1273		if (error)
1274			goto failed;
1275		radix_tree_preload_end();
1276		if (sgp != SGP_READ && !prealloc_page) {
1277			/* We don't care if this fails */
1278			prealloc_page = shmem_alloc_page(gfp, info, idx);
1279			if (prealloc_page) {
1280				if (mem_cgroup_cache_charge(prealloc_page,
1281						current->mm, GFP_KERNEL)) {
1282					page_cache_release(prealloc_page);
1283					prealloc_page = NULL;
1284				}
1285			}
1286		}
1287	}
1288	error = 0;
1289
1290	spin_lock(&info->lock);
1291	shmem_recalc_inode(inode);
1292	entry = shmem_swp_alloc(info, idx, sgp);
1293	if (IS_ERR(entry)) {
1294		spin_unlock(&info->lock);
1295		error = PTR_ERR(entry);
1296		goto failed;
1297	}
1298	swap = *entry;
1299
1300	if (swap.val) {
1301		/* Look it up and read it in.. */
1302		swappage = lookup_swap_cache(swap);
1303		if (!swappage) {
1304			shmem_swp_unmap(entry);
1305			spin_unlock(&info->lock);
1306			/* here we actually do the io */
1307			if (type)
1308				*type |= VM_FAULT_MAJOR;
1309			swappage = shmem_swapin(swap, gfp, info, idx);
1310			if (!swappage) {
1311				spin_lock(&info->lock);
1312				entry = shmem_swp_alloc(info, idx, sgp);
1313				if (IS_ERR(entry))
1314					error = PTR_ERR(entry);
1315				else {
1316					if (entry->val == swap.val)
1317						error = -ENOMEM;
1318					shmem_swp_unmap(entry);
1319				}
1320				spin_unlock(&info->lock);
1321				if (error)
1322					goto failed;
1323				goto repeat;
1324			}
1325			wait_on_page_locked(swappage);
1326			page_cache_release(swappage);
1327			goto repeat;
1328		}
1329
1330		/* We have to do this with page locked to prevent races */
1331		if (!trylock_page(swappage)) {
1332			shmem_swp_unmap(entry);
1333			spin_unlock(&info->lock);
1334			wait_on_page_locked(swappage);
1335			page_cache_release(swappage);
1336			goto repeat;
1337		}
1338		if (PageWriteback(swappage)) {
1339			shmem_swp_unmap(entry);
1340			spin_unlock(&info->lock);
1341			wait_on_page_writeback(swappage);
1342			unlock_page(swappage);
1343			page_cache_release(swappage);
1344			goto repeat;
1345		}
1346		if (!PageUptodate(swappage)) {
1347			shmem_swp_unmap(entry);
1348			spin_unlock(&info->lock);
1349			unlock_page(swappage);
1350			page_cache_release(swappage);
1351			error = -EIO;
1352			goto failed;
1353		}
1354
1355		if (filepage) {
1356			shmem_swp_set(info, entry, 0);
1357			shmem_swp_unmap(entry);
1358			delete_from_swap_cache(swappage);
1359			spin_unlock(&info->lock);
1360			copy_highpage(filepage, swappage);
1361			unlock_page(swappage);
1362			page_cache_release(swappage);
1363			flush_dcache_page(filepage);
1364			SetPageUptodate(filepage);
1365			set_page_dirty(filepage);
1366			swap_free(swap);
1367		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1368					idx, GFP_NOWAIT))) {
1369			info->flags |= SHMEM_PAGEIN;
1370			shmem_swp_set(info, entry, 0);
1371			shmem_swp_unmap(entry);
1372			delete_from_swap_cache(swappage);
1373			spin_unlock(&info->lock);
1374			filepage = swappage;
1375			set_page_dirty(filepage);
1376			swap_free(swap);
1377		} else {
1378			shmem_swp_unmap(entry);
1379			spin_unlock(&info->lock);
1380			if (error == -ENOMEM) {
1381				/*
1382				 * reclaim from proper memory cgroup and
1383				 * call memcg's OOM if needed.
1384				 */
1385				error = mem_cgroup_shmem_charge_fallback(
1386								swappage,
1387								current->mm,
1388								gfp);
1389				if (error) {
1390					unlock_page(swappage);
1391					page_cache_release(swappage);
1392					goto failed;
1393				}
1394			}
1395			unlock_page(swappage);
1396			page_cache_release(swappage);
1397			goto repeat;
1398		}
1399	} else if (sgp == SGP_READ && !filepage) {
1400		shmem_swp_unmap(entry);
1401		filepage = find_get_page(mapping, idx);
1402		if (filepage &&
1403		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1404			spin_unlock(&info->lock);
1405			wait_on_page_locked(filepage);
1406			page_cache_release(filepage);
1407			filepage = NULL;
1408			goto repeat;
1409		}
1410		spin_unlock(&info->lock);
1411	} else {
1412		shmem_swp_unmap(entry);
1413		sbinfo = SHMEM_SB(inode->i_sb);
1414		if (sbinfo->max_blocks) {
1415			if (percpu_counter_compare(&sbinfo->used_blocks,
1416						sbinfo->max_blocks) >= 0 ||
1417			    shmem_acct_block(info->flags))
1418				goto nospace;
1419			percpu_counter_inc(&sbinfo->used_blocks);
1420			inode->i_blocks += BLOCKS_PER_PAGE;
1421		} else if (shmem_acct_block(info->flags))
1422			goto nospace;
1423
1424		if (!filepage) {
1425			int ret;
1426
1427			if (!prealloc_page) {
1428				spin_unlock(&info->lock);
1429				filepage = shmem_alloc_page(gfp, info, idx);
1430				if (!filepage) {
1431					spin_lock(&info->lock);
1432					shmem_unacct_blocks(info->flags, 1);
1433					shmem_free_blocks(inode, 1);
1434					spin_unlock(&info->lock);
1435					error = -ENOMEM;
1436					goto failed;
1437				}
1438				SetPageSwapBacked(filepage);
1439
1440				/*
1441				 * Precharge page while we can wait, compensate
1442				 * after
1443				 */
1444				error = mem_cgroup_cache_charge(filepage,
1445					current->mm, GFP_KERNEL);
1446				if (error) {
1447					page_cache_release(filepage);
1448					spin_lock(&info->lock);
1449					shmem_unacct_blocks(info->flags, 1);
1450					shmem_free_blocks(inode, 1);
1451					spin_unlock(&info->lock);
1452					filepage = NULL;
1453					goto failed;
1454				}
1455
1456				spin_lock(&info->lock);
1457			} else {
1458				filepage = prealloc_page;
1459				prealloc_page = NULL;
1460				SetPageSwapBacked(filepage);
1461			}
1462
1463			entry = shmem_swp_alloc(info, idx, sgp);
1464			if (IS_ERR(entry))
1465				error = PTR_ERR(entry);
1466			else {
1467				swap = *entry;
1468				shmem_swp_unmap(entry);
1469			}
1470			ret = error || swap.val;
1471			if (ret)
1472				mem_cgroup_uncharge_cache_page(filepage);
1473			else
1474				ret = add_to_page_cache_lru(filepage, mapping,
1475						idx, GFP_NOWAIT);
1476			/*
1477			 * At add_to_page_cache_lru() failure, uncharge will
1478			 * be done automatically.
1479			 */
1480			if (ret) {
1481				shmem_unacct_blocks(info->flags, 1);
1482				shmem_free_blocks(inode, 1);
1483				spin_unlock(&info->lock);
1484				page_cache_release(filepage);
1485				filepage = NULL;
1486				if (error)
1487					goto failed;
1488				goto repeat;
1489			}
1490			info->flags |= SHMEM_PAGEIN;
1491		}
1492
1493		info->alloced++;
1494		spin_unlock(&info->lock);
1495		clear_highpage(filepage);
1496		flush_dcache_page(filepage);
1497		SetPageUptodate(filepage);
1498		if (sgp == SGP_DIRTY)
1499			set_page_dirty(filepage);
1500	}
1501done:
1502	*pagep = filepage;
1503	error = 0;
1504	goto out;
1505
1506nospace:
1507	/*
1508	 * Perhaps the page was brought in from swap between find_lock_page
1509	 * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1510	 * but must also avoid reporting a spurious ENOSPC while working on a
1511	 * full tmpfs.  (When filepage has been passed in to shmem_getpage, it
1512	 * is already in page cache, which prevents this race from occurring.)
1513	 */
1514	if (!filepage) {
1515		struct page *page = find_get_page(mapping, idx);
1516		if (page) {
1517			spin_unlock(&info->lock);
1518			page_cache_release(page);
1519			goto repeat;
1520		}
1521	}
1522	spin_unlock(&info->lock);
1523	error = -ENOSPC;
1524failed:
1525	if (*pagep != filepage) {
1526		unlock_page(filepage);
1527		page_cache_release(filepage);
1528	}
1529out:
1530	if (prealloc_page) {
1531		mem_cgroup_uncharge_cache_page(prealloc_page);
1532		page_cache_release(prealloc_page);
1533	}
1534	return error;
1535}
1536
1537static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1538{
1539	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1540	int error;
1541	int ret;
1542
1543	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1544		return VM_FAULT_SIGBUS;
1545
1546	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1547	if (error)
1548		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1549	if (ret & VM_FAULT_MAJOR) {
1550		count_vm_event(PGMAJFAULT);
1551		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1552	}
1553	return ret | VM_FAULT_LOCKED;
1554}
1555
1556#ifdef CONFIG_NUMA
1557static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1558{
1559	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1560	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1561}
1562
1563static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1564					  unsigned long addr)
1565{
1566	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1567	unsigned long idx;
1568
1569	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1570	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1571}
1572#endif
1573
1574int shmem_lock(struct file *file, int lock, struct user_struct *user)
1575{
1576	struct inode *inode = file->f_path.dentry->d_inode;
1577	struct shmem_inode_info *info = SHMEM_I(inode);
1578	int retval = -ENOMEM;
1579
1580	spin_lock(&info->lock);
1581	if (lock && !(info->flags & VM_LOCKED)) {
1582		if (!user_shm_lock(inode->i_size, user))
1583			goto out_nomem;
1584		info->flags |= VM_LOCKED;
1585		mapping_set_unevictable(file->f_mapping);
1586	}
1587	if (!lock && (info->flags & VM_LOCKED) && user) {
1588		user_shm_unlock(inode->i_size, user);
1589		info->flags &= ~VM_LOCKED;
1590		mapping_clear_unevictable(file->f_mapping);
1591		scan_mapping_unevictable_pages(file->f_mapping);
1592	}
1593	retval = 0;
1594
1595out_nomem:
1596	spin_unlock(&info->lock);
1597	return retval;
1598}
1599
1600static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1601{
1602	file_accessed(file);
1603	vma->vm_ops = &shmem_vm_ops;
1604	vma->vm_flags |= VM_CAN_NONLINEAR;
1605	return 0;
1606}
1607
1608static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1609				     int mode, dev_t dev, unsigned long flags)
1610{
1611	struct inode *inode;
1612	struct shmem_inode_info *info;
1613	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1614
1615	if (shmem_reserve_inode(sb))
1616		return NULL;
1617
1618	inode = new_inode(sb);
1619	if (inode) {
1620		inode->i_ino = get_next_ino();
1621		inode_init_owner(inode, dir, mode);
1622		inode->i_blocks = 0;
1623		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1624		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1625		inode->i_generation = get_seconds();
1626		info = SHMEM_I(inode);
1627		memset(info, 0, (char *)inode - (char *)info);
1628		spin_lock_init(&info->lock);
1629		info->flags = flags & VM_NORESERVE;
1630		INIT_LIST_HEAD(&info->swaplist);
1631		INIT_LIST_HEAD(&info->xattr_list);
1632		cache_no_acl(inode);
1633
1634		switch (mode & S_IFMT) {
1635		default:
1636			inode->i_op = &shmem_special_inode_operations;
1637			init_special_inode(inode, mode, dev);
1638			break;
1639		case S_IFREG:
1640			inode->i_mapping->a_ops = &shmem_aops;
1641			inode->i_op = &shmem_inode_operations;
1642			inode->i_fop = &shmem_file_operations;
1643			mpol_shared_policy_init(&info->policy,
1644						 shmem_get_sbmpol(sbinfo));
1645			break;
1646		case S_IFDIR:
1647			inc_nlink(inode);
1648			/* Some things misbehave if size == 0 on a directory */
1649			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1650			inode->i_op = &shmem_dir_inode_operations;
1651			inode->i_fop = &simple_dir_operations;
1652			break;
1653		case S_IFLNK:
1654			/*
1655			 * Must not load anything in the rbtree,
1656			 * mpol_free_shared_policy will not be called.
1657			 */
1658			mpol_shared_policy_init(&info->policy, NULL);
1659			break;
1660		}
1661	} else
1662		shmem_free_inode(sb);
1663	return inode;
1664}
1665
1666#ifdef CONFIG_TMPFS
1667static const struct inode_operations shmem_symlink_inode_operations;
1668static const struct inode_operations shmem_symlink_inline_operations;
1669
1670/*
1671 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1672 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1673 * below the loop driver, in the generic fashion that many filesystems support.
1674 */
1675static int shmem_readpage(struct file *file, struct page *page)
1676{
1677	struct inode *inode = page->mapping->host;
1678	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1679	unlock_page(page);
1680	return error;
1681}
1682
1683static int
1684shmem_write_begin(struct file *file, struct address_space *mapping,
1685			loff_t pos, unsigned len, unsigned flags,
1686			struct page **pagep, void **fsdata)
1687{
1688	struct inode *inode = mapping->host;
1689	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1690	*pagep = NULL;
1691	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1692}
1693
1694static int
1695shmem_write_end(struct file *file, struct address_space *mapping,
1696			loff_t pos, unsigned len, unsigned copied,
1697			struct page *page, void *fsdata)
1698{
1699	struct inode *inode = mapping->host;
1700
1701	if (pos + copied > inode->i_size)
1702		i_size_write(inode, pos + copied);
1703
1704	set_page_dirty(page);
1705	unlock_page(page);
1706	page_cache_release(page);
1707
1708	return copied;
1709}
1710
1711static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1712{
1713	struct inode *inode = filp->f_path.dentry->d_inode;
1714	struct address_space *mapping = inode->i_mapping;
1715	unsigned long index, offset;
1716	enum sgp_type sgp = SGP_READ;
1717
1718	/*
1719	 * Might this read be for a stacking filesystem?  Then when reading
1720	 * holes of a sparse file, we actually need to allocate those pages,
1721	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1722	 */
1723	if (segment_eq(get_fs(), KERNEL_DS))
1724		sgp = SGP_DIRTY;
1725
1726	index = *ppos >> PAGE_CACHE_SHIFT;
1727	offset = *ppos & ~PAGE_CACHE_MASK;
1728
1729	for (;;) {
1730		struct page *page = NULL;
1731		unsigned long end_index, nr, ret;
1732		loff_t i_size = i_size_read(inode);
1733
1734		end_index = i_size >> PAGE_CACHE_SHIFT;
1735		if (index > end_index)
1736			break;
1737		if (index == end_index) {
1738			nr = i_size & ~PAGE_CACHE_MASK;
1739			if (nr <= offset)
1740				break;
1741		}
1742
1743		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1744		if (desc->error) {
1745			if (desc->error == -EINVAL)
1746				desc->error = 0;
1747			break;
1748		}
1749		if (page)
1750			unlock_page(page);
1751
1752		/*
1753		 * We must evaluate after, since reads (unlike writes)
1754		 * are called without i_mutex protection against truncate
1755		 */
1756		nr = PAGE_CACHE_SIZE;
1757		i_size = i_size_read(inode);
1758		end_index = i_size >> PAGE_CACHE_SHIFT;
1759		if (index == end_index) {
1760			nr = i_size & ~PAGE_CACHE_MASK;
1761			if (nr <= offset) {
1762				if (page)
1763					page_cache_release(page);
1764				break;
1765			}
1766		}
1767		nr -= offset;
1768
1769		if (page) {
1770			/*
1771			 * If users can be writing to this page using arbitrary
1772			 * virtual addresses, take care about potential aliasing
1773			 * before reading the page on the kernel side.
1774			 */
1775			if (mapping_writably_mapped(mapping))
1776				flush_dcache_page(page);
1777			/*
1778			 * Mark the page accessed if we read the beginning.
1779			 */
1780			if (!offset)
1781				mark_page_accessed(page);
1782		} else {
1783			page = ZERO_PAGE(0);
1784			page_cache_get(page);
1785		}
1786
1787		/*
1788		 * Ok, we have the page, and it's up-to-date, so
1789		 * now we can copy it to user space...
1790		 *
1791		 * The actor routine returns how many bytes were actually used..
1792		 * NOTE! This may not be the same as how much of a user buffer
1793		 * we filled up (we may be padding etc), so we can only update
1794		 * "pos" here (the actor routine has to update the user buffer
1795		 * pointers and the remaining count).
1796		 */
1797		ret = actor(desc, page, offset, nr);
1798		offset += ret;
1799		index += offset >> PAGE_CACHE_SHIFT;
1800		offset &= ~PAGE_CACHE_MASK;
1801
1802		page_cache_release(page);
1803		if (ret != nr || !desc->count)
1804			break;
1805
1806		cond_resched();
1807	}
1808
1809	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1810	file_accessed(filp);
1811}
1812
1813static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1814		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1815{
1816	struct file *filp = iocb->ki_filp;
1817	ssize_t retval;
1818	unsigned long seg;
1819	size_t count;
1820	loff_t *ppos = &iocb->ki_pos;
1821
1822	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1823	if (retval)
1824		return retval;
1825
1826	for (seg = 0; seg < nr_segs; seg++) {
1827		read_descriptor_t desc;
1828
1829		desc.written = 0;
1830		desc.arg.buf = iov[seg].iov_base;
1831		desc.count = iov[seg].iov_len;
1832		if (desc.count == 0)
1833			continue;
1834		desc.error = 0;
1835		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1836		retval += desc.written;
1837		if (desc.error) {
1838			retval = retval ?: desc.error;
1839			break;
1840		}
1841		if (desc.count > 0)
1842			break;
1843	}
1844	return retval;
1845}
1846
1847static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1848{
1849	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1850
1851	buf->f_type = TMPFS_MAGIC;
1852	buf->f_bsize = PAGE_CACHE_SIZE;
1853	buf->f_namelen = NAME_MAX;
1854	if (sbinfo->max_blocks) {
1855		buf->f_blocks = sbinfo->max_blocks;
1856		buf->f_bavail = buf->f_bfree =
1857				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1858	}
1859	if (sbinfo->max_inodes) {
1860		buf->f_files = sbinfo->max_inodes;
1861		buf->f_ffree = sbinfo->free_inodes;
1862	}
1863	/* else leave those fields 0 like simple_statfs */
1864	return 0;
1865}
1866
1867/*
1868 * File creation. Allocate an inode, and we're done..
1869 */
1870static int
1871shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1872{
1873	struct inode *inode;
1874	int error = -ENOSPC;
1875
1876	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1877	if (inode) {
1878		error = security_inode_init_security(inode, dir,
1879						     &dentry->d_name, NULL,
1880						     NULL, NULL);
1881		if (error) {
1882			if (error != -EOPNOTSUPP) {
1883				iput(inode);
1884				return error;
1885			}
1886		}
1887#ifdef CONFIG_TMPFS_POSIX_ACL
1888		error = generic_acl_init(inode, dir);
1889		if (error) {
1890			iput(inode);
1891			return error;
1892		}
1893#else
1894		error = 0;
1895#endif
1896		dir->i_size += BOGO_DIRENT_SIZE;
1897		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1898		d_instantiate(dentry, inode);
1899		dget(dentry); /* Extra count - pin the dentry in core */
1900	}
1901	return error;
1902}
1903
1904static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1905{
1906	int error;
1907
1908	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1909		return error;
1910	inc_nlink(dir);
1911	return 0;
1912}
1913
1914static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1915		struct nameidata *nd)
1916{
1917	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1918}
1919
1920/*
1921 * Link a file..
1922 */
1923static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1924{
1925	struct inode *inode = old_dentry->d_inode;
1926	int ret;
1927
1928	/*
1929	 * No ordinary (disk based) filesystem counts links as inodes;
1930	 * but each new link needs a new dentry, pinning lowmem, and
1931	 * tmpfs dentries cannot be pruned until they are unlinked.
1932	 */
1933	ret = shmem_reserve_inode(inode->i_sb);
1934	if (ret)
1935		goto out;
1936
1937	dir->i_size += BOGO_DIRENT_SIZE;
1938	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1939	inc_nlink(inode);
1940	ihold(inode);	/* New dentry reference */
1941	dget(dentry);		/* Extra pinning count for the created dentry */
1942	d_instantiate(dentry, inode);
1943out:
1944	return ret;
1945}
1946
1947static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1948{
1949	struct inode *inode = dentry->d_inode;
1950
1951	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1952		shmem_free_inode(inode->i_sb);
1953
1954	dir->i_size -= BOGO_DIRENT_SIZE;
1955	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1956	drop_nlink(inode);
1957	dput(dentry);	/* Undo the count from "create" - this does all the work */
1958	return 0;
1959}
1960
1961static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1962{
1963	if (!simple_empty(dentry))
1964		return -ENOTEMPTY;
1965
1966	drop_nlink(dentry->d_inode);
1967	drop_nlink(dir);
1968	return shmem_unlink(dir, dentry);
1969}
1970
1971/*
1972 * The VFS layer already does all the dentry stuff for rename,
1973 * we just have to decrement the usage count for the target if
1974 * it exists so that the VFS layer correctly free's it when it
1975 * gets overwritten.
1976 */
1977static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1978{
1979	struct inode *inode = old_dentry->d_inode;
1980	int they_are_dirs = S_ISDIR(inode->i_mode);
1981
1982	if (!simple_empty(new_dentry))
1983		return -ENOTEMPTY;
1984
1985	if (new_dentry->d_inode) {
1986		(void) shmem_unlink(new_dir, new_dentry);
1987		if (they_are_dirs)
1988			drop_nlink(old_dir);
1989	} else if (they_are_dirs) {
1990		drop_nlink(old_dir);
1991		inc_nlink(new_dir);
1992	}
1993
1994	old_dir->i_size -= BOGO_DIRENT_SIZE;
1995	new_dir->i_size += BOGO_DIRENT_SIZE;
1996	old_dir->i_ctime = old_dir->i_mtime =
1997	new_dir->i_ctime = new_dir->i_mtime =
1998	inode->i_ctime = CURRENT_TIME;
1999	return 0;
2000}
2001
2002static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2003{
2004	int error;
2005	int len;
2006	struct inode *inode;
2007	struct page *page = NULL;
2008	char *kaddr;
2009	struct shmem_inode_info *info;
2010
2011	len = strlen(symname) + 1;
2012	if (len > PAGE_CACHE_SIZE)
2013		return -ENAMETOOLONG;
2014
2015	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2016	if (!inode)
2017		return -ENOSPC;
2018
2019	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2020					     NULL, NULL);
2021	if (error) {
2022		if (error != -EOPNOTSUPP) {
2023			iput(inode);
2024			return error;
2025		}
2026		error = 0;
2027	}
2028
2029	info = SHMEM_I(inode);
2030	inode->i_size = len-1;
2031	if (len <= SHMEM_SYMLINK_INLINE_LEN) {
2032		/* do it inline */
2033		memcpy(info->inline_symlink, symname, len);
2034		inode->i_op = &shmem_symlink_inline_operations;
2035	} else {
2036		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2037		if (error) {
2038			iput(inode);
2039			return error;
2040		}
2041		inode->i_mapping->a_ops = &shmem_aops;
2042		inode->i_op = &shmem_symlink_inode_operations;
2043		kaddr = kmap_atomic(page, KM_USER0);
2044		memcpy(kaddr, symname, len);
2045		kunmap_atomic(kaddr, KM_USER0);
2046		set_page_dirty(page);
2047		unlock_page(page);
2048		page_cache_release(page);
2049	}
2050	dir->i_size += BOGO_DIRENT_SIZE;
2051	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2052	d_instantiate(dentry, inode);
2053	dget(dentry);
2054	return 0;
2055}
2056
2057static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2058{
2059	nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
2060	return NULL;
2061}
2062
2063static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2064{
2065	struct page *page = NULL;
2066	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2067	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2068	if (page)
2069		unlock_page(page);
2070	return page;
2071}
2072
2073static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2074{
2075	if (!IS_ERR(nd_get_link(nd))) {
2076		struct page *page = cookie;
2077		kunmap(page);
2078		mark_page_accessed(page);
2079		page_cache_release(page);
2080	}
2081}
2082
2083#ifdef CONFIG_TMPFS_XATTR
2084/*
2085 * Superblocks without xattr inode operations may get some security.* xattr
2086 * support from the LSM "for free". As soon as we have any other xattrs
2087 * like ACLs, we also need to implement the security.* handlers at
2088 * filesystem level, though.
2089 */
2090
2091static int shmem_xattr_get(struct dentry *dentry, const char *name,
2092			   void *buffer, size_t size)
2093{
2094	struct shmem_inode_info *info;
2095	struct shmem_xattr *xattr;
2096	int ret = -ENODATA;
2097
2098	info = SHMEM_I(dentry->d_inode);
2099
2100	spin_lock(&info->lock);
2101	list_for_each_entry(xattr, &info->xattr_list, list) {
2102		if (strcmp(name, xattr->name))
2103			continue;
2104
2105		ret = xattr->size;
2106		if (buffer) {
2107			if (size < xattr->size)
2108				ret = -ERANGE;
2109			else
2110				memcpy(buffer, xattr->value, xattr->size);
2111		}
2112		break;
2113	}
2114	spin_unlock(&info->lock);
2115	return ret;
2116}
2117
2118static int shmem_xattr_set(struct dentry *dentry, const char *name,
2119			   const void *value, size_t size, int flags)
2120{
2121	struct inode *inode = dentry->d_inode;
2122	struct shmem_inode_info *info = SHMEM_I(inode);
2123	struct shmem_xattr *xattr;
2124	struct shmem_xattr *new_xattr = NULL;
2125	size_t len;
2126	int err = 0;
2127
2128	/* value == NULL means remove */
2129	if (value) {
2130		/* wrap around? */
2131		len = sizeof(*new_xattr) + size;
2132		if (len <= sizeof(*new_xattr))
2133			return -ENOMEM;
2134
2135		new_xattr = kmalloc(len, GFP_KERNEL);
2136		if (!new_xattr)
2137			return -ENOMEM;
2138
2139		new_xattr->name = kstrdup(name, GFP_KERNEL);
2140		if (!new_xattr->name) {
2141			kfree(new_xattr);
2142			return -ENOMEM;
2143		}
2144
2145		new_xattr->size = size;
2146		memcpy(new_xattr->value, value, size);
2147	}
2148
2149	spin_lock(&info->lock);
2150	list_for_each_entry(xattr, &info->xattr_list, list) {
2151		if (!strcmp(name, xattr->name)) {
2152			if (flags & XATTR_CREATE) {
2153				xattr = new_xattr;
2154				err = -EEXIST;
2155			} else if (new_xattr) {
2156				list_replace(&xattr->list, &new_xattr->list);
2157			} else {
2158				list_del(&xattr->list);
2159			}
2160			goto out;
2161		}
2162	}
2163	if (flags & XATTR_REPLACE) {
2164		xattr = new_xattr;
2165		err = -ENODATA;
2166	} else {
2167		list_add(&new_xattr->list, &info->xattr_list);
2168		xattr = NULL;
2169	}
2170out:
2171	spin_unlock(&info->lock);
2172	if (xattr)
2173		kfree(xattr->name);
2174	kfree(xattr);
2175	return err;
2176}
2177
2178
2179static const struct xattr_handler *shmem_xattr_handlers[] = {
2180#ifdef CONFIG_TMPFS_POSIX_ACL
2181	&generic_acl_access_handler,
2182	&generic_acl_default_handler,
2183#endif
2184	NULL
2185};
2186
2187static int shmem_xattr_validate(const char *name)
2188{
2189	struct { const char *prefix; size_t len; } arr[] = {
2190		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2191		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2192	};
2193	int i;
2194
2195	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2196		size_t preflen = arr[i].len;
2197		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2198			if (!name[preflen])
2199				return -EINVAL;
2200			return 0;
2201		}
2202	}
2203	return -EOPNOTSUPP;
2204}
2205
2206static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2207			      void *buffer, size_t size)
2208{
2209	int err;
2210
2211	/*
2212	 * If this is a request for a synthetic attribute in the system.*
2213	 * namespace use the generic infrastructure to resolve a handler
2214	 * for it via sb->s_xattr.
2215	 */
2216	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2217		return generic_getxattr(dentry, name, buffer, size);
2218
2219	err = shmem_xattr_validate(name);
2220	if (err)
2221		return err;
2222
2223	return shmem_xattr_get(dentry, name, buffer, size);
2224}
2225
2226static int shmem_setxattr(struct dentry *dentry, const char *name,
2227			  const void *value, size_t size, int flags)
2228{
2229	int err;
2230
2231	/*
2232	 * If this is a request for a synthetic attribute in the system.*
2233	 * namespace use the generic infrastructure to resolve a handler
2234	 * for it via sb->s_xattr.
2235	 */
2236	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2237		return generic_setxattr(dentry, name, value, size, flags);
2238
2239	err = shmem_xattr_validate(name);
2240	if (err)
2241		return err;
2242
2243	if (size == 0)
2244		value = "";  /* empty EA, do not remove */
2245
2246	return shmem_xattr_set(dentry, name, value, size, flags);
2247
2248}
2249
2250static int shmem_removexattr(struct dentry *dentry, const char *name)
2251{
2252	int err;
2253
2254	/*
2255	 * If this is a request for a synthetic attribute in the system.*
2256	 * namespace use the generic infrastructure to resolve a handler
2257	 * for it via sb->s_xattr.
2258	 */
2259	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2260		return generic_removexattr(dentry, name);
2261
2262	err = shmem_xattr_validate(name);
2263	if (err)
2264		return err;
2265
2266	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2267}
2268
2269static bool xattr_is_trusted(const char *name)
2270{
2271	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2272}
2273
2274static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2275{
2276	bool trusted = capable(CAP_SYS_ADMIN);
2277	struct shmem_xattr *xattr;
2278	struct shmem_inode_info *info;
2279	size_t used = 0;
2280
2281	info = SHMEM_I(dentry->d_inode);
2282
2283	spin_lock(&info->lock);
2284	list_for_each_entry(xattr, &info->xattr_list, list) {
2285		size_t len;
2286
2287		/* skip "trusted." attributes for unprivileged callers */
2288		if (!trusted && xattr_is_trusted(xattr->name))
2289			continue;
2290
2291		len = strlen(xattr->name) + 1;
2292		used += len;
2293		if (buffer) {
2294			if (size < used) {
2295				used = -ERANGE;
2296				break;
2297			}
2298			memcpy(buffer, xattr->name, len);
2299			buffer += len;
2300		}
2301	}
2302	spin_unlock(&info->lock);
2303
2304	return used;
2305}
2306#endif /* CONFIG_TMPFS_XATTR */
2307
2308static const struct inode_operations shmem_symlink_inline_operations = {
2309	.readlink	= generic_readlink,
2310	.follow_link	= shmem_follow_link_inline,
2311#ifdef CONFIG_TMPFS_XATTR
2312	.setxattr	= shmem_setxattr,
2313	.getxattr	= shmem_getxattr,
2314	.listxattr	= shmem_listxattr,
2315	.removexattr	= shmem_removexattr,
2316#endif
2317};
2318
2319static const struct inode_operations shmem_symlink_inode_operations = {
2320	.readlink	= generic_readlink,
2321	.follow_link	= shmem_follow_link,
2322	.put_link	= shmem_put_link,
2323#ifdef CONFIG_TMPFS_XATTR
2324	.setxattr	= shmem_setxattr,
2325	.getxattr	= shmem_getxattr,
2326	.listxattr	= shmem_listxattr,
2327	.removexattr	= shmem_removexattr,
2328#endif
2329};
2330
2331static struct dentry *shmem_get_parent(struct dentry *child)
2332{
2333	return ERR_PTR(-ESTALE);
2334}
2335
2336static int shmem_match(struct inode *ino, void *vfh)
2337{
2338	__u32 *fh = vfh;
2339	__u64 inum = fh[2];
2340	inum = (inum << 32) | fh[1];
2341	return ino->i_ino == inum && fh[0] == ino->i_generation;
2342}
2343
2344static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2345		struct fid *fid, int fh_len, int fh_type)
2346{
2347	struct inode *inode;
2348	struct dentry *dentry = NULL;
2349	u64 inum = fid->raw[2];
2350	inum = (inum << 32) | fid->raw[1];
2351
2352	if (fh_len < 3)
2353		return NULL;
2354
2355	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2356			shmem_match, fid->raw);
2357	if (inode) {
2358		dentry = d_find_alias(inode);
2359		iput(inode);
2360	}
2361
2362	return dentry;
2363}
2364
2365static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2366				int connectable)
2367{
2368	struct inode *inode = dentry->d_inode;
2369
2370	if (*len < 3) {
2371		*len = 3;
2372		return 255;
2373	}
2374
2375	if (inode_unhashed(inode)) {
2376		/* Unfortunately insert_inode_hash is not idempotent,
2377		 * so as we hash inodes here rather than at creation
2378		 * time, we need a lock to ensure we only try
2379		 * to do it once
2380		 */
2381		static DEFINE_SPINLOCK(lock);
2382		spin_lock(&lock);
2383		if (inode_unhashed(inode))
2384			__insert_inode_hash(inode,
2385					    inode->i_ino + inode->i_generation);
2386		spin_unlock(&lock);
2387	}
2388
2389	fh[0] = inode->i_generation;
2390	fh[1] = inode->i_ino;
2391	fh[2] = ((__u64)inode->i_ino) >> 32;
2392
2393	*len = 3;
2394	return 1;
2395}
2396
2397static const struct export_operations shmem_export_ops = {
2398	.get_parent     = shmem_get_parent,
2399	.encode_fh      = shmem_encode_fh,
2400	.fh_to_dentry	= shmem_fh_to_dentry,
2401};
2402
2403static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2404			       bool remount)
2405{
2406	char *this_char, *value, *rest;
2407
2408	while (options != NULL) {
2409		this_char = options;
2410		for (;;) {
2411			/*
2412			 * NUL-terminate this option: unfortunately,
2413			 * mount options form a comma-separated list,
2414			 * but mpol's nodelist may also contain commas.
2415			 */
2416			options = strchr(options, ',');
2417			if (options == NULL)
2418				break;
2419			options++;
2420			if (!isdigit(*options)) {
2421				options[-1] = '\0';
2422				break;
2423			}
2424		}
2425		if (!*this_char)
2426			continue;
2427		if ((value = strchr(this_char,'=')) != NULL) {
2428			*value++ = 0;
2429		} else {
2430			printk(KERN_ERR
2431			    "tmpfs: No value for mount option '%s'\n",
2432			    this_char);
2433			return 1;
2434		}
2435
2436		if (!strcmp(this_char,"size")) {
2437			unsigned long long size;
2438			size = memparse(value,&rest);
2439			if (*rest == '%') {
2440				size <<= PAGE_SHIFT;
2441				size *= totalram_pages;
2442				do_div(size, 100);
2443				rest++;
2444			}
2445			if (*rest)
2446				goto bad_val;
2447			sbinfo->max_blocks =
2448				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2449		} else if (!strcmp(this_char,"nr_blocks")) {
2450			sbinfo->max_blocks = memparse(value, &rest);
2451			if (*rest)
2452				goto bad_val;
2453		} else if (!strcmp(this_char,"nr_inodes")) {
2454			sbinfo->max_inodes = memparse(value, &rest);
2455			if (*rest)
2456				goto bad_val;
2457		} else if (!strcmp(this_char,"mode")) {
2458			if (remount)
2459				continue;
2460			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2461			if (*rest)
2462				goto bad_val;
2463		} else if (!strcmp(this_char,"uid")) {
2464			if (remount)
2465				continue;
2466			sbinfo->uid = simple_strtoul(value, &rest, 0);
2467			if (*rest)
2468				goto bad_val;
2469		} else if (!strcmp(this_char,"gid")) {
2470			if (remount)
2471				continue;
2472			sbinfo->gid = simple_strtoul(value, &rest, 0);
2473			if (*rest)
2474				goto bad_val;
2475		} else if (!strcmp(this_char,"mpol")) {
2476			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2477				goto bad_val;
2478		} else {
2479			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2480			       this_char);
2481			return 1;
2482		}
2483	}
2484	return 0;
2485
2486bad_val:
2487	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2488	       value, this_char);
2489	return 1;
2490
2491}
2492
2493static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2494{
2495	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2496	struct shmem_sb_info config = *sbinfo;
2497	unsigned long inodes;
2498	int error = -EINVAL;
2499
2500	if (shmem_parse_options(data, &config, true))
2501		return error;
2502
2503	spin_lock(&sbinfo->stat_lock);
2504	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2505	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2506		goto out;
2507	if (config.max_inodes < inodes)
2508		goto out;
2509	/*
2510	 * Those tests also disallow limited->unlimited while any are in
2511	 * use, so i_blocks will always be zero when max_blocks is zero;
2512	 * but we must separately disallow unlimited->limited, because
2513	 * in that case we have no record of how much is already in use.
2514	 */
2515	if (config.max_blocks && !sbinfo->max_blocks)
2516		goto out;
2517	if (config.max_inodes && !sbinfo->max_inodes)
2518		goto out;
2519
2520	error = 0;
2521	sbinfo->max_blocks  = config.max_blocks;
2522	sbinfo->max_inodes  = config.max_inodes;
2523	sbinfo->free_inodes = config.max_inodes - inodes;
2524
2525	mpol_put(sbinfo->mpol);
2526	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2527out:
2528	spin_unlock(&sbinfo->stat_lock);
2529	return error;
2530}
2531
2532static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2533{
2534	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2535
2536	if (sbinfo->max_blocks != shmem_default_max_blocks())
2537		seq_printf(seq, ",size=%luk",
2538			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2539	if (sbinfo->max_inodes != shmem_default_max_inodes())
2540		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2541	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2542		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2543	if (sbinfo->uid != 0)
2544		seq_printf(seq, ",uid=%u", sbinfo->uid);
2545	if (sbinfo->gid != 0)
2546		seq_printf(seq, ",gid=%u", sbinfo->gid);
2547	shmem_show_mpol(seq, sbinfo->mpol);
2548	return 0;
2549}
2550#endif /* CONFIG_TMPFS */
2551
2552static void shmem_put_super(struct super_block *sb)
2553{
2554	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2555
2556	percpu_counter_destroy(&sbinfo->used_blocks);
2557	kfree(sbinfo);
2558	sb->s_fs_info = NULL;
2559}
2560
2561int shmem_fill_super(struct super_block *sb, void *data, int silent)
2562{
2563	struct inode *inode;
2564	struct dentry *root;
2565	struct shmem_sb_info *sbinfo;
2566	int err = -ENOMEM;
2567
2568	/* Round up to L1_CACHE_BYTES to resist false sharing */
2569	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2570				L1_CACHE_BYTES), GFP_KERNEL);
2571	if (!sbinfo)
2572		return -ENOMEM;
2573
2574	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2575	sbinfo->uid = current_fsuid();
2576	sbinfo->gid = current_fsgid();
2577	sb->s_fs_info = sbinfo;
2578
2579#ifdef CONFIG_TMPFS
2580	/*
2581	 * Per default we only allow half of the physical ram per
2582	 * tmpfs instance, limiting inodes to one per page of lowmem;
2583	 * but the internal instance is left unlimited.
2584	 */
2585	if (!(sb->s_flags & MS_NOUSER)) {
2586		sbinfo->max_blocks = shmem_default_max_blocks();
2587		sbinfo->max_inodes = shmem_default_max_inodes();
2588		if (shmem_parse_options(data, sbinfo, false)) {
2589			err = -EINVAL;
2590			goto failed;
2591		}
2592	}
2593	sb->s_export_op = &shmem_export_ops;
2594#else
2595	sb->s_flags |= MS_NOUSER;
2596#endif
2597
2598	spin_lock_init(&sbinfo->stat_lock);
2599	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2600		goto failed;
2601	sbinfo->free_inodes = sbinfo->max_inodes;
2602
2603	sb->s_maxbytes = SHMEM_MAX_BYTES;
2604	sb->s_blocksize = PAGE_CACHE_SIZE;
2605	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2606	sb->s_magic = TMPFS_MAGIC;
2607	sb->s_op = &shmem_ops;
2608	sb->s_time_gran = 1;
2609#ifdef CONFIG_TMPFS_XATTR
2610	sb->s_xattr = shmem_xattr_handlers;
2611#endif
2612#ifdef CONFIG_TMPFS_POSIX_ACL
2613	sb->s_flags |= MS_POSIXACL;
2614#endif
2615
2616	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2617	if (!inode)
2618		goto failed;
2619	inode->i_uid = sbinfo->uid;
2620	inode->i_gid = sbinfo->gid;
2621	root = d_alloc_root(inode);
2622	if (!root)
2623		goto failed_iput;
2624	sb->s_root = root;
2625	return 0;
2626
2627failed_iput:
2628	iput(inode);
2629failed:
2630	shmem_put_super(sb);
2631	return err;
2632}
2633
2634static struct kmem_cache *shmem_inode_cachep;
2635
2636static struct inode *shmem_alloc_inode(struct super_block *sb)
2637{
2638	struct shmem_inode_info *p;
2639	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2640	if (!p)
2641		return NULL;
2642	return &p->vfs_inode;
2643}
2644
2645static void shmem_i_callback(struct rcu_head *head)
2646{
2647	struct inode *inode = container_of(head, struct inode, i_rcu);
2648	INIT_LIST_HEAD(&inode->i_dentry);
2649	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2650}
2651
2652static void shmem_destroy_inode(struct inode *inode)
2653{
2654	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2655		/* only struct inode is valid if it's an inline symlink */
2656		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2657	}
2658	call_rcu(&inode->i_rcu, shmem_i_callback);
2659}
2660
2661static void init_once(void *foo)
2662{
2663	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2664
2665	inode_init_once(&p->vfs_inode);
2666}
2667
2668static int init_inodecache(void)
2669{
2670	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2671				sizeof(struct shmem_inode_info),
2672				0, SLAB_PANIC, init_once);
2673	return 0;
2674}
2675
2676static void destroy_inodecache(void)
2677{
2678	kmem_cache_destroy(shmem_inode_cachep);
2679}
2680
2681static const struct address_space_operations shmem_aops = {
2682	.writepage	= shmem_writepage,
2683	.set_page_dirty	= __set_page_dirty_no_writeback,
2684#ifdef CONFIG_TMPFS
2685	.readpage	= shmem_readpage,
2686	.write_begin	= shmem_write_begin,
2687	.write_end	= shmem_write_end,
2688#endif
2689	.migratepage	= migrate_page,
2690	.error_remove_page = generic_error_remove_page,
2691};
2692
2693static const struct file_operations shmem_file_operations = {
2694	.mmap		= shmem_mmap,
2695#ifdef CONFIG_TMPFS
2696	.llseek		= generic_file_llseek,
2697	.read		= do_sync_read,
2698	.write		= do_sync_write,
2699	.aio_read	= shmem_file_aio_read,
2700	.aio_write	= generic_file_aio_write,
2701	.fsync		= noop_fsync,
2702	.splice_read	= generic_file_splice_read,
2703	.splice_write	= generic_file_splice_write,
2704#endif
2705};
2706
2707static const struct inode_operations shmem_inode_operations = {
2708	.setattr	= shmem_setattr,
2709	.truncate_range	= shmem_truncate_range,
2710#ifdef CONFIG_TMPFS_XATTR
2711	.setxattr	= shmem_setxattr,
2712	.getxattr	= shmem_getxattr,
2713	.listxattr	= shmem_listxattr,
2714	.removexattr	= shmem_removexattr,
2715#endif
2716#ifdef CONFIG_TMPFS_POSIX_ACL
2717	.check_acl	= generic_check_acl,
2718#endif
2719
2720};
2721
2722static const struct inode_operations shmem_dir_inode_operations = {
2723#ifdef CONFIG_TMPFS
2724	.create		= shmem_create,
2725	.lookup		= simple_lookup,
2726	.link		= shmem_link,
2727	.unlink		= shmem_unlink,
2728	.symlink	= shmem_symlink,
2729	.mkdir		= shmem_mkdir,
2730	.rmdir		= shmem_rmdir,
2731	.mknod		= shmem_mknod,
2732	.rename		= shmem_rename,
2733#endif
2734#ifdef CONFIG_TMPFS_XATTR
2735	.setxattr	= shmem_setxattr,
2736	.getxattr	= shmem_getxattr,
2737	.listxattr	= shmem_listxattr,
2738	.removexattr	= shmem_removexattr,
2739#endif
2740#ifdef CONFIG_TMPFS_POSIX_ACL
2741	.setattr	= shmem_setattr,
2742	.check_acl	= generic_check_acl,
2743#endif
2744};
2745
2746static const struct inode_operations shmem_special_inode_operations = {
2747#ifdef CONFIG_TMPFS_XATTR
2748	.setxattr	= shmem_setxattr,
2749	.getxattr	= shmem_getxattr,
2750	.listxattr	= shmem_listxattr,
2751	.removexattr	= shmem_removexattr,
2752#endif
2753#ifdef CONFIG_TMPFS_POSIX_ACL
2754	.setattr	= shmem_setattr,
2755	.check_acl	= generic_check_acl,
2756#endif
2757};
2758
2759static const struct super_operations shmem_ops = {
2760	.alloc_inode	= shmem_alloc_inode,
2761	.destroy_inode	= shmem_destroy_inode,
2762#ifdef CONFIG_TMPFS
2763	.statfs		= shmem_statfs,
2764	.remount_fs	= shmem_remount_fs,
2765	.show_options	= shmem_show_options,
2766#endif
2767	.evict_inode	= shmem_evict_inode,
2768	.drop_inode	= generic_delete_inode,
2769	.put_super	= shmem_put_super,
2770};
2771
2772static const struct vm_operations_struct shmem_vm_ops = {
2773	.fault		= shmem_fault,
2774#ifdef CONFIG_NUMA
2775	.set_policy     = shmem_set_policy,
2776	.get_policy     = shmem_get_policy,
2777#endif
2778};
2779
2780
2781static struct dentry *shmem_mount(struct file_system_type *fs_type,
2782	int flags, const char *dev_name, void *data)
2783{
2784	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2785}
2786
2787static struct file_system_type tmpfs_fs_type = {
2788	.owner		= THIS_MODULE,
2789	.name		= "tmpfs",
2790	.mount		= shmem_mount,
2791	.kill_sb	= kill_litter_super,
2792};
2793
2794int __init init_tmpfs(void)
2795{
2796	int error;
2797
2798	error = bdi_init(&shmem_backing_dev_info);
2799	if (error)
2800		goto out4;
2801
2802	error = init_inodecache();
2803	if (error)
2804		goto out3;
2805
2806	error = register_filesystem(&tmpfs_fs_type);
2807	if (error) {
2808		printk(KERN_ERR "Could not register tmpfs\n");
2809		goto out2;
2810	}
2811
2812	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2813				tmpfs_fs_type.name, NULL);
2814	if (IS_ERR(shm_mnt)) {
2815		error = PTR_ERR(shm_mnt);
2816		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2817		goto out1;
2818	}
2819	return 0;
2820
2821out1:
2822	unregister_filesystem(&tmpfs_fs_type);
2823out2:
2824	destroy_inodecache();
2825out3:
2826	bdi_destroy(&shmem_backing_dev_info);
2827out4:
2828	shm_mnt = ERR_PTR(error);
2829	return error;
2830}
2831
2832#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2833/**
2834 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2835 * @inode: the inode to be searched
2836 * @pgoff: the offset to be searched
2837 * @pagep: the pointer for the found page to be stored
2838 * @ent: the pointer for the found swap entry to be stored
2839 *
2840 * If a page is found, refcount of it is incremented. Callers should handle
2841 * these refcount.
2842 */
2843void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2844					struct page **pagep, swp_entry_t *ent)
2845{
2846	swp_entry_t entry = { .val = 0 }, *ptr;
2847	struct page *page = NULL;
2848	struct shmem_inode_info *info = SHMEM_I(inode);
2849
2850	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2851		goto out;
2852
2853	spin_lock(&info->lock);
2854	ptr = shmem_swp_entry(info, pgoff, NULL);
2855#ifdef CONFIG_SWAP
2856	if (ptr && ptr->val) {
2857		entry.val = ptr->val;
2858		page = find_get_page(&swapper_space, entry.val);
2859	} else
2860#endif
2861		page = find_get_page(inode->i_mapping, pgoff);
2862	if (ptr)
2863		shmem_swp_unmap(ptr);
2864	spin_unlock(&info->lock);
2865out:
2866	*pagep = page;
2867	*ent = entry;
2868}
2869#endif
2870
2871#else /* !CONFIG_SHMEM */
2872
2873/*
2874 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2875 *
2876 * This is intended for small system where the benefits of the full
2877 * shmem code (swap-backed and resource-limited) are outweighed by
2878 * their complexity. On systems without swap this code should be
2879 * effectively equivalent, but much lighter weight.
2880 */
2881
2882#include <linux/ramfs.h>
2883
2884static struct file_system_type tmpfs_fs_type = {
2885	.name		= "tmpfs",
2886	.mount		= ramfs_mount,
2887	.kill_sb	= kill_litter_super,
2888};
2889
2890int __init init_tmpfs(void)
2891{
2892	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2893
2894	shm_mnt = kern_mount(&tmpfs_fs_type);
2895	BUG_ON(IS_ERR(shm_mnt));
2896
2897	return 0;
2898}
2899
2900int shmem_unuse(swp_entry_t entry, struct page *page)
2901{
2902	return 0;
2903}
2904
2905int shmem_lock(struct file *file, int lock, struct user_struct *user)
2906{
2907	return 0;
2908}
2909
2910void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
2911{
2912	truncate_inode_pages_range(inode->i_mapping, start, end);
2913}
2914EXPORT_SYMBOL_GPL(shmem_truncate_range);
2915
2916#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2917/**
2918 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2919 * @inode: the inode to be searched
2920 * @pgoff: the offset to be searched
2921 * @pagep: the pointer for the found page to be stored
2922 * @ent: the pointer for the found swap entry to be stored
2923 *
2924 * If a page is found, refcount of it is incremented. Callers should handle
2925 * these refcount.
2926 */
2927void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2928					struct page **pagep, swp_entry_t *ent)
2929{
2930	struct page *page = NULL;
2931
2932	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2933		goto out;
2934	page = find_get_page(inode->i_mapping, pgoff);
2935out:
2936	*pagep = page;
2937	*ent = (swp_entry_t){ .val = 0 };
2938}
2939#endif
2940
2941#define shmem_vm_ops				generic_file_vm_ops
2942#define shmem_file_operations			ramfs_file_operations
2943#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2944#define shmem_acct_size(flags, size)		0
2945#define shmem_unacct_size(flags, size)		do {} while (0)
2946#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2947
2948#endif /* CONFIG_SHMEM */
2949
2950/* common code */
2951
2952/**
2953 * shmem_file_setup - get an unlinked file living in tmpfs
2954 * @name: name for dentry (to be seen in /proc/<pid>/maps
2955 * @size: size to be set for the file
2956 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2957 */
2958struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2959{
2960	int error;
2961	struct file *file;
2962	struct inode *inode;
2963	struct path path;
2964	struct dentry *root;
2965	struct qstr this;
2966
2967	if (IS_ERR(shm_mnt))
2968		return (void *)shm_mnt;
2969
2970	if (size < 0 || size > SHMEM_MAX_BYTES)
2971		return ERR_PTR(-EINVAL);
2972
2973	if (shmem_acct_size(flags, size))
2974		return ERR_PTR(-ENOMEM);
2975
2976	error = -ENOMEM;
2977	this.name = name;
2978	this.len = strlen(name);
2979	this.hash = 0; /* will go */
2980	root = shm_mnt->mnt_root;
2981	path.dentry = d_alloc(root, &this);
2982	if (!path.dentry)
2983		goto put_memory;
2984	path.mnt = mntget(shm_mnt);
2985
2986	error = -ENOSPC;
2987	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2988	if (!inode)
2989		goto put_dentry;
2990
2991	d_instantiate(path.dentry, inode);
2992	inode->i_size = size;
2993	inode->i_nlink = 0;	/* It is unlinked */
2994#ifndef CONFIG_MMU
2995	error = ramfs_nommu_expand_for_mapping(inode, size);
2996	if (error)
2997		goto put_dentry;
2998#endif
2999
3000	error = -ENFILE;
3001	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3002		  &shmem_file_operations);
3003	if (!file)
3004		goto put_dentry;
3005
3006	return file;
3007
3008put_dentry:
3009	path_put(&path);
3010put_memory:
3011	shmem_unacct_size(flags, size);
3012	return ERR_PTR(error);
3013}
3014EXPORT_SYMBOL_GPL(shmem_file_setup);
3015
3016/**
3017 * shmem_zero_setup - setup a shared anonymous mapping
3018 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3019 */
3020int shmem_zero_setup(struct vm_area_struct *vma)
3021{
3022	struct file *file;
3023	loff_t size = vma->vm_end - vma->vm_start;
3024
3025	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3026	if (IS_ERR(file))
3027		return PTR_ERR(file);
3028
3029	if (vma->vm_file)
3030		fput(vma->vm_file);
3031	vma->vm_file = file;
3032	vma->vm_ops = &shmem_vm_ops;
3033	vma->vm_flags |= VM_CAN_NONLINEAR;
3034	return 0;
3035}
3036
3037/**
3038 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3039 * @mapping:	the page's address_space
3040 * @index:	the page index
3041 * @gfp:	the page allocator flags to use if allocating
3042 *
3043 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3044 * with any new page allocations done using the specified allocation flags.
3045 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3046 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3047 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3048 *
3049 * Provide a stub for those callers to start using now, then later
3050 * flesh it out to call shmem_getpage() with additional gfp mask, when
3051 * shmem_file_splice_read() is added and shmem_readpage() is removed.
3052 */
3053struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3054					 pgoff_t index, gfp_t gfp)
3055{
3056	return read_cache_page_gfp(mapping, index, gfp);
3057}
3058EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3059