shmem.c revision e286781d5f2e9c846e012a39653a166e9d31777d
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52#include <linux/seq_file.h>
53
54#include <asm/uaccess.h>
55#include <asm/div64.h>
56#include <asm/pgtable.h>
57
58/* This magic number is used in glibc for posix shared memory */
59#define TMPFS_MAGIC	0x01021994
60
61#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
64
65#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67
68#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69
70/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71#define SHMEM_PAGEIN	 VM_READ
72#define SHMEM_TRUNCATE	 VM_WRITE
73
74/* Definition to limit shmem_truncate's steps between cond_rescheds */
75#define LATENCY_LIMIT	 64
76
77/* Pretend that each entry is of this size in directory's i_size */
78#define BOGO_DIRENT_SIZE 20
79
80/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81enum sgp_type {
82	SGP_READ,	/* don't exceed i_size, don't allocate page */
83	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
85	SGP_WRITE,	/* may exceed i_size, may allocate page */
86};
87
88#ifdef CONFIG_TMPFS
89static unsigned long shmem_default_max_blocks(void)
90{
91	return totalram_pages / 2;
92}
93
94static unsigned long shmem_default_max_inodes(void)
95{
96	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
97}
98#endif
99
100static int shmem_getpage(struct inode *inode, unsigned long idx,
101			 struct page **pagep, enum sgp_type sgp, int *type);
102
103static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
104{
105	/*
106	 * The above definition of ENTRIES_PER_PAGE, and the use of
107	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108	 * might be reconsidered if it ever diverges from PAGE_SIZE.
109	 *
110	 * Mobility flags are masked out as swap vectors cannot move
111	 */
112	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113				PAGE_CACHE_SHIFT-PAGE_SHIFT);
114}
115
116static inline void shmem_dir_free(struct page *page)
117{
118	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
119}
120
121static struct page **shmem_dir_map(struct page *page)
122{
123	return (struct page **)kmap_atomic(page, KM_USER0);
124}
125
126static inline void shmem_dir_unmap(struct page **dir)
127{
128	kunmap_atomic(dir, KM_USER0);
129}
130
131static swp_entry_t *shmem_swp_map(struct page *page)
132{
133	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
134}
135
136static inline void shmem_swp_balance_unmap(void)
137{
138	/*
139	 * When passing a pointer to an i_direct entry, to code which
140	 * also handles indirect entries and so will shmem_swp_unmap,
141	 * we must arrange for the preempt count to remain in balance.
142	 * What kmap_atomic of a lowmem page does depends on config
143	 * and architecture, so pretend to kmap_atomic some lowmem page.
144	 */
145	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
146}
147
148static inline void shmem_swp_unmap(swp_entry_t *entry)
149{
150	kunmap_atomic(entry, KM_USER1);
151}
152
153static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154{
155	return sb->s_fs_info;
156}
157
158/*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164static inline int shmem_acct_size(unsigned long flags, loff_t size)
165{
166	return (flags & VM_ACCOUNT)?
167		security_vm_enough_memory(VM_ACCT(size)): 0;
168}
169
170static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171{
172	if (flags & VM_ACCOUNT)
173		vm_unacct_memory(VM_ACCT(size));
174}
175
176/*
177 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
181 */
182static inline int shmem_acct_block(unsigned long flags)
183{
184	return (flags & VM_ACCOUNT)?
185		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
186}
187
188static inline void shmem_unacct_blocks(unsigned long flags, long pages)
189{
190	if (!(flags & VM_ACCOUNT))
191		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
192}
193
194static const struct super_operations shmem_ops;
195static const struct address_space_operations shmem_aops;
196static const struct file_operations shmem_file_operations;
197static const struct inode_operations shmem_inode_operations;
198static const struct inode_operations shmem_dir_inode_operations;
199static const struct inode_operations shmem_special_inode_operations;
200static struct vm_operations_struct shmem_vm_ops;
201
202static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
203	.ra_pages	= 0,	/* No readahead */
204	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
205	.unplug_io_fn	= default_unplug_io_fn,
206};
207
208static LIST_HEAD(shmem_swaplist);
209static DEFINE_MUTEX(shmem_swaplist_mutex);
210
211static void shmem_free_blocks(struct inode *inode, long pages)
212{
213	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214	if (sbinfo->max_blocks) {
215		spin_lock(&sbinfo->stat_lock);
216		sbinfo->free_blocks += pages;
217		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218		spin_unlock(&sbinfo->stat_lock);
219	}
220}
221
222static int shmem_reserve_inode(struct super_block *sb)
223{
224	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225	if (sbinfo->max_inodes) {
226		spin_lock(&sbinfo->stat_lock);
227		if (!sbinfo->free_inodes) {
228			spin_unlock(&sbinfo->stat_lock);
229			return -ENOSPC;
230		}
231		sbinfo->free_inodes--;
232		spin_unlock(&sbinfo->stat_lock);
233	}
234	return 0;
235}
236
237static void shmem_free_inode(struct super_block *sb)
238{
239	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240	if (sbinfo->max_inodes) {
241		spin_lock(&sbinfo->stat_lock);
242		sbinfo->free_inodes++;
243		spin_unlock(&sbinfo->stat_lock);
244	}
245}
246
247/**
248 * shmem_recalc_inode - recalculate the size of an inode
249 * @inode: inode to recalc
250 *
251 * We have to calculate the free blocks since the mm can drop
252 * undirtied hole pages behind our back.
253 *
254 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
255 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
256 *
257 * It has to be called with the spinlock held.
258 */
259static void shmem_recalc_inode(struct inode *inode)
260{
261	struct shmem_inode_info *info = SHMEM_I(inode);
262	long freed;
263
264	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
265	if (freed > 0) {
266		info->alloced -= freed;
267		shmem_unacct_blocks(info->flags, freed);
268		shmem_free_blocks(inode, freed);
269	}
270}
271
272/**
273 * shmem_swp_entry - find the swap vector position in the info structure
274 * @info:  info structure for the inode
275 * @index: index of the page to find
276 * @page:  optional page to add to the structure. Has to be preset to
277 *         all zeros
278 *
279 * If there is no space allocated yet it will return NULL when
280 * page is NULL, else it will use the page for the needed block,
281 * setting it to NULL on return to indicate that it has been used.
282 *
283 * The swap vector is organized the following way:
284 *
285 * There are SHMEM_NR_DIRECT entries directly stored in the
286 * shmem_inode_info structure. So small files do not need an addional
287 * allocation.
288 *
289 * For pages with index > SHMEM_NR_DIRECT there is the pointer
290 * i_indirect which points to a page which holds in the first half
291 * doubly indirect blocks, in the second half triple indirect blocks:
292 *
293 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
294 * following layout (for SHMEM_NR_DIRECT == 16):
295 *
296 * i_indirect -> dir --> 16-19
297 * 	      |	     +-> 20-23
298 * 	      |
299 * 	      +-->dir2 --> 24-27
300 * 	      |	       +-> 28-31
301 * 	      |	       +-> 32-35
302 * 	      |	       +-> 36-39
303 * 	      |
304 * 	      +-->dir3 --> 40-43
305 * 	       	       +-> 44-47
306 * 	      	       +-> 48-51
307 * 	      	       +-> 52-55
308 */
309static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
310{
311	unsigned long offset;
312	struct page **dir;
313	struct page *subdir;
314
315	if (index < SHMEM_NR_DIRECT) {
316		shmem_swp_balance_unmap();
317		return info->i_direct+index;
318	}
319	if (!info->i_indirect) {
320		if (page) {
321			info->i_indirect = *page;
322			*page = NULL;
323		}
324		return NULL;			/* need another page */
325	}
326
327	index -= SHMEM_NR_DIRECT;
328	offset = index % ENTRIES_PER_PAGE;
329	index /= ENTRIES_PER_PAGE;
330	dir = shmem_dir_map(info->i_indirect);
331
332	if (index >= ENTRIES_PER_PAGE/2) {
333		index -= ENTRIES_PER_PAGE/2;
334		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
335		index %= ENTRIES_PER_PAGE;
336		subdir = *dir;
337		if (!subdir) {
338			if (page) {
339				*dir = *page;
340				*page = NULL;
341			}
342			shmem_dir_unmap(dir);
343			return NULL;		/* need another page */
344		}
345		shmem_dir_unmap(dir);
346		dir = shmem_dir_map(subdir);
347	}
348
349	dir += index;
350	subdir = *dir;
351	if (!subdir) {
352		if (!page || !(subdir = *page)) {
353			shmem_dir_unmap(dir);
354			return NULL;		/* need a page */
355		}
356		*dir = subdir;
357		*page = NULL;
358	}
359	shmem_dir_unmap(dir);
360	return shmem_swp_map(subdir) + offset;
361}
362
363static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
364{
365	long incdec = value? 1: -1;
366
367	entry->val = value;
368	info->swapped += incdec;
369	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
370		struct page *page = kmap_atomic_to_page(entry);
371		set_page_private(page, page_private(page) + incdec);
372	}
373}
374
375/**
376 * shmem_swp_alloc - get the position of the swap entry for the page.
377 * @info:	info structure for the inode
378 * @index:	index of the page to find
379 * @sgp:	check and recheck i_size? skip allocation?
380 *
381 * If the entry does not exist, allocate it.
382 */
383static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
384{
385	struct inode *inode = &info->vfs_inode;
386	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
387	struct page *page = NULL;
388	swp_entry_t *entry;
389
390	if (sgp != SGP_WRITE &&
391	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
392		return ERR_PTR(-EINVAL);
393
394	while (!(entry = shmem_swp_entry(info, index, &page))) {
395		if (sgp == SGP_READ)
396			return shmem_swp_map(ZERO_PAGE(0));
397		/*
398		 * Test free_blocks against 1 not 0, since we have 1 data
399		 * page (and perhaps indirect index pages) yet to allocate:
400		 * a waste to allocate index if we cannot allocate data.
401		 */
402		if (sbinfo->max_blocks) {
403			spin_lock(&sbinfo->stat_lock);
404			if (sbinfo->free_blocks <= 1) {
405				spin_unlock(&sbinfo->stat_lock);
406				return ERR_PTR(-ENOSPC);
407			}
408			sbinfo->free_blocks--;
409			inode->i_blocks += BLOCKS_PER_PAGE;
410			spin_unlock(&sbinfo->stat_lock);
411		}
412
413		spin_unlock(&info->lock);
414		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
415		if (page)
416			set_page_private(page, 0);
417		spin_lock(&info->lock);
418
419		if (!page) {
420			shmem_free_blocks(inode, 1);
421			return ERR_PTR(-ENOMEM);
422		}
423		if (sgp != SGP_WRITE &&
424		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
425			entry = ERR_PTR(-EINVAL);
426			break;
427		}
428		if (info->next_index <= index)
429			info->next_index = index + 1;
430	}
431	if (page) {
432		/* another task gave its page, or truncated the file */
433		shmem_free_blocks(inode, 1);
434		shmem_dir_free(page);
435	}
436	if (info->next_index <= index && !IS_ERR(entry))
437		info->next_index = index + 1;
438	return entry;
439}
440
441/**
442 * shmem_free_swp - free some swap entries in a directory
443 * @dir:        pointer to the directory
444 * @edir:       pointer after last entry of the directory
445 * @punch_lock: pointer to spinlock when needed for the holepunch case
446 */
447static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
448						spinlock_t *punch_lock)
449{
450	spinlock_t *punch_unlock = NULL;
451	swp_entry_t *ptr;
452	int freed = 0;
453
454	for (ptr = dir; ptr < edir; ptr++) {
455		if (ptr->val) {
456			if (unlikely(punch_lock)) {
457				punch_unlock = punch_lock;
458				punch_lock = NULL;
459				spin_lock(punch_unlock);
460				if (!ptr->val)
461					continue;
462			}
463			free_swap_and_cache(*ptr);
464			*ptr = (swp_entry_t){0};
465			freed++;
466		}
467	}
468	if (punch_unlock)
469		spin_unlock(punch_unlock);
470	return freed;
471}
472
473static int shmem_map_and_free_swp(struct page *subdir, int offset,
474		int limit, struct page ***dir, spinlock_t *punch_lock)
475{
476	swp_entry_t *ptr;
477	int freed = 0;
478
479	ptr = shmem_swp_map(subdir);
480	for (; offset < limit; offset += LATENCY_LIMIT) {
481		int size = limit - offset;
482		if (size > LATENCY_LIMIT)
483			size = LATENCY_LIMIT;
484		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
485							punch_lock);
486		if (need_resched()) {
487			shmem_swp_unmap(ptr);
488			if (*dir) {
489				shmem_dir_unmap(*dir);
490				*dir = NULL;
491			}
492			cond_resched();
493			ptr = shmem_swp_map(subdir);
494		}
495	}
496	shmem_swp_unmap(ptr);
497	return freed;
498}
499
500static void shmem_free_pages(struct list_head *next)
501{
502	struct page *page;
503	int freed = 0;
504
505	do {
506		page = container_of(next, struct page, lru);
507		next = next->next;
508		shmem_dir_free(page);
509		freed++;
510		if (freed >= LATENCY_LIMIT) {
511			cond_resched();
512			freed = 0;
513		}
514	} while (next);
515}
516
517static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
518{
519	struct shmem_inode_info *info = SHMEM_I(inode);
520	unsigned long idx;
521	unsigned long size;
522	unsigned long limit;
523	unsigned long stage;
524	unsigned long diroff;
525	struct page **dir;
526	struct page *topdir;
527	struct page *middir;
528	struct page *subdir;
529	swp_entry_t *ptr;
530	LIST_HEAD(pages_to_free);
531	long nr_pages_to_free = 0;
532	long nr_swaps_freed = 0;
533	int offset;
534	int freed;
535	int punch_hole;
536	spinlock_t *needs_lock;
537	spinlock_t *punch_lock;
538	unsigned long upper_limit;
539
540	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
541	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
542	if (idx >= info->next_index)
543		return;
544
545	spin_lock(&info->lock);
546	info->flags |= SHMEM_TRUNCATE;
547	if (likely(end == (loff_t) -1)) {
548		limit = info->next_index;
549		upper_limit = SHMEM_MAX_INDEX;
550		info->next_index = idx;
551		needs_lock = NULL;
552		punch_hole = 0;
553	} else {
554		if (end + 1 >= inode->i_size) {	/* we may free a little more */
555			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
556							PAGE_CACHE_SHIFT;
557			upper_limit = SHMEM_MAX_INDEX;
558		} else {
559			limit = (end + 1) >> PAGE_CACHE_SHIFT;
560			upper_limit = limit;
561		}
562		needs_lock = &info->lock;
563		punch_hole = 1;
564	}
565
566	topdir = info->i_indirect;
567	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
568		info->i_indirect = NULL;
569		nr_pages_to_free++;
570		list_add(&topdir->lru, &pages_to_free);
571	}
572	spin_unlock(&info->lock);
573
574	if (info->swapped && idx < SHMEM_NR_DIRECT) {
575		ptr = info->i_direct;
576		size = limit;
577		if (size > SHMEM_NR_DIRECT)
578			size = SHMEM_NR_DIRECT;
579		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
580	}
581
582	/*
583	 * If there are no indirect blocks or we are punching a hole
584	 * below indirect blocks, nothing to be done.
585	 */
586	if (!topdir || limit <= SHMEM_NR_DIRECT)
587		goto done2;
588
589	/*
590	 * The truncation case has already dropped info->lock, and we're safe
591	 * because i_size and next_index have already been lowered, preventing
592	 * access beyond.  But in the punch_hole case, we still need to take
593	 * the lock when updating the swap directory, because there might be
594	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
595	 * shmem_writepage.  However, whenever we find we can remove a whole
596	 * directory page (not at the misaligned start or end of the range),
597	 * we first NULLify its pointer in the level above, and then have no
598	 * need to take the lock when updating its contents: needs_lock and
599	 * punch_lock (either pointing to info->lock or NULL) manage this.
600	 */
601
602	upper_limit -= SHMEM_NR_DIRECT;
603	limit -= SHMEM_NR_DIRECT;
604	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
605	offset = idx % ENTRIES_PER_PAGE;
606	idx -= offset;
607
608	dir = shmem_dir_map(topdir);
609	stage = ENTRIES_PER_PAGEPAGE/2;
610	if (idx < ENTRIES_PER_PAGEPAGE/2) {
611		middir = topdir;
612		diroff = idx/ENTRIES_PER_PAGE;
613	} else {
614		dir += ENTRIES_PER_PAGE/2;
615		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
616		while (stage <= idx)
617			stage += ENTRIES_PER_PAGEPAGE;
618		middir = *dir;
619		if (*dir) {
620			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
621				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
622			if (!diroff && !offset && upper_limit >= stage) {
623				if (needs_lock) {
624					spin_lock(needs_lock);
625					*dir = NULL;
626					spin_unlock(needs_lock);
627					needs_lock = NULL;
628				} else
629					*dir = NULL;
630				nr_pages_to_free++;
631				list_add(&middir->lru, &pages_to_free);
632			}
633			shmem_dir_unmap(dir);
634			dir = shmem_dir_map(middir);
635		} else {
636			diroff = 0;
637			offset = 0;
638			idx = stage;
639		}
640	}
641
642	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
643		if (unlikely(idx == stage)) {
644			shmem_dir_unmap(dir);
645			dir = shmem_dir_map(topdir) +
646			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
647			while (!*dir) {
648				dir++;
649				idx += ENTRIES_PER_PAGEPAGE;
650				if (idx >= limit)
651					goto done1;
652			}
653			stage = idx + ENTRIES_PER_PAGEPAGE;
654			middir = *dir;
655			if (punch_hole)
656				needs_lock = &info->lock;
657			if (upper_limit >= stage) {
658				if (needs_lock) {
659					spin_lock(needs_lock);
660					*dir = NULL;
661					spin_unlock(needs_lock);
662					needs_lock = NULL;
663				} else
664					*dir = NULL;
665				nr_pages_to_free++;
666				list_add(&middir->lru, &pages_to_free);
667			}
668			shmem_dir_unmap(dir);
669			cond_resched();
670			dir = shmem_dir_map(middir);
671			diroff = 0;
672		}
673		punch_lock = needs_lock;
674		subdir = dir[diroff];
675		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
676			if (needs_lock) {
677				spin_lock(needs_lock);
678				dir[diroff] = NULL;
679				spin_unlock(needs_lock);
680				punch_lock = NULL;
681			} else
682				dir[diroff] = NULL;
683			nr_pages_to_free++;
684			list_add(&subdir->lru, &pages_to_free);
685		}
686		if (subdir && page_private(subdir) /* has swap entries */) {
687			size = limit - idx;
688			if (size > ENTRIES_PER_PAGE)
689				size = ENTRIES_PER_PAGE;
690			freed = shmem_map_and_free_swp(subdir,
691					offset, size, &dir, punch_lock);
692			if (!dir)
693				dir = shmem_dir_map(middir);
694			nr_swaps_freed += freed;
695			if (offset || punch_lock) {
696				spin_lock(&info->lock);
697				set_page_private(subdir,
698					page_private(subdir) - freed);
699				spin_unlock(&info->lock);
700			} else
701				BUG_ON(page_private(subdir) != freed);
702		}
703		offset = 0;
704	}
705done1:
706	shmem_dir_unmap(dir);
707done2:
708	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
709		/*
710		 * Call truncate_inode_pages again: racing shmem_unuse_inode
711		 * may have swizzled a page in from swap since vmtruncate or
712		 * generic_delete_inode did it, before we lowered next_index.
713		 * Also, though shmem_getpage checks i_size before adding to
714		 * cache, no recheck after: so fix the narrow window there too.
715		 *
716		 * Recalling truncate_inode_pages_range and unmap_mapping_range
717		 * every time for punch_hole (which never got a chance to clear
718		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
719		 * yet hardly ever necessary: try to optimize them out later.
720		 */
721		truncate_inode_pages_range(inode->i_mapping, start, end);
722		if (punch_hole)
723			unmap_mapping_range(inode->i_mapping, start,
724							end - start, 1);
725	}
726
727	spin_lock(&info->lock);
728	info->flags &= ~SHMEM_TRUNCATE;
729	info->swapped -= nr_swaps_freed;
730	if (nr_pages_to_free)
731		shmem_free_blocks(inode, nr_pages_to_free);
732	shmem_recalc_inode(inode);
733	spin_unlock(&info->lock);
734
735	/*
736	 * Empty swap vector directory pages to be freed?
737	 */
738	if (!list_empty(&pages_to_free)) {
739		pages_to_free.prev->next = NULL;
740		shmem_free_pages(pages_to_free.next);
741	}
742}
743
744static void shmem_truncate(struct inode *inode)
745{
746	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
747}
748
749static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
750{
751	struct inode *inode = dentry->d_inode;
752	struct page *page = NULL;
753	int error;
754
755	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
756		if (attr->ia_size < inode->i_size) {
757			/*
758			 * If truncating down to a partial page, then
759			 * if that page is already allocated, hold it
760			 * in memory until the truncation is over, so
761			 * truncate_partial_page cannnot miss it were
762			 * it assigned to swap.
763			 */
764			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
765				(void) shmem_getpage(inode,
766					attr->ia_size>>PAGE_CACHE_SHIFT,
767						&page, SGP_READ, NULL);
768				if (page)
769					unlock_page(page);
770			}
771			/*
772			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
773			 * detect if any pages might have been added to cache
774			 * after truncate_inode_pages.  But we needn't bother
775			 * if it's being fully truncated to zero-length: the
776			 * nrpages check is efficient enough in that case.
777			 */
778			if (attr->ia_size) {
779				struct shmem_inode_info *info = SHMEM_I(inode);
780				spin_lock(&info->lock);
781				info->flags &= ~SHMEM_PAGEIN;
782				spin_unlock(&info->lock);
783			}
784		}
785	}
786
787	error = inode_change_ok(inode, attr);
788	if (!error)
789		error = inode_setattr(inode, attr);
790#ifdef CONFIG_TMPFS_POSIX_ACL
791	if (!error && (attr->ia_valid & ATTR_MODE))
792		error = generic_acl_chmod(inode, &shmem_acl_ops);
793#endif
794	if (page)
795		page_cache_release(page);
796	return error;
797}
798
799static void shmem_delete_inode(struct inode *inode)
800{
801	struct shmem_inode_info *info = SHMEM_I(inode);
802
803	if (inode->i_op->truncate == shmem_truncate) {
804		truncate_inode_pages(inode->i_mapping, 0);
805		shmem_unacct_size(info->flags, inode->i_size);
806		inode->i_size = 0;
807		shmem_truncate(inode);
808		if (!list_empty(&info->swaplist)) {
809			mutex_lock(&shmem_swaplist_mutex);
810			list_del_init(&info->swaplist);
811			mutex_unlock(&shmem_swaplist_mutex);
812		}
813	}
814	BUG_ON(inode->i_blocks);
815	shmem_free_inode(inode->i_sb);
816	clear_inode(inode);
817}
818
819static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
820{
821	swp_entry_t *ptr;
822
823	for (ptr = dir; ptr < edir; ptr++) {
824		if (ptr->val == entry.val)
825			return ptr - dir;
826	}
827	return -1;
828}
829
830static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
831{
832	struct inode *inode;
833	unsigned long idx;
834	unsigned long size;
835	unsigned long limit;
836	unsigned long stage;
837	struct page **dir;
838	struct page *subdir;
839	swp_entry_t *ptr;
840	int offset;
841	int error;
842
843	idx = 0;
844	ptr = info->i_direct;
845	spin_lock(&info->lock);
846	if (!info->swapped) {
847		list_del_init(&info->swaplist);
848		goto lost2;
849	}
850	limit = info->next_index;
851	size = limit;
852	if (size > SHMEM_NR_DIRECT)
853		size = SHMEM_NR_DIRECT;
854	offset = shmem_find_swp(entry, ptr, ptr+size);
855	if (offset >= 0)
856		goto found;
857	if (!info->i_indirect)
858		goto lost2;
859
860	dir = shmem_dir_map(info->i_indirect);
861	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
862
863	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
864		if (unlikely(idx == stage)) {
865			shmem_dir_unmap(dir-1);
866			if (cond_resched_lock(&info->lock)) {
867				/* check it has not been truncated */
868				if (limit > info->next_index) {
869					limit = info->next_index;
870					if (idx >= limit)
871						goto lost2;
872				}
873			}
874			dir = shmem_dir_map(info->i_indirect) +
875			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
876			while (!*dir) {
877				dir++;
878				idx += ENTRIES_PER_PAGEPAGE;
879				if (idx >= limit)
880					goto lost1;
881			}
882			stage = idx + ENTRIES_PER_PAGEPAGE;
883			subdir = *dir;
884			shmem_dir_unmap(dir);
885			dir = shmem_dir_map(subdir);
886		}
887		subdir = *dir;
888		if (subdir && page_private(subdir)) {
889			ptr = shmem_swp_map(subdir);
890			size = limit - idx;
891			if (size > ENTRIES_PER_PAGE)
892				size = ENTRIES_PER_PAGE;
893			offset = shmem_find_swp(entry, ptr, ptr+size);
894			shmem_swp_unmap(ptr);
895			if (offset >= 0) {
896				shmem_dir_unmap(dir);
897				goto found;
898			}
899		}
900	}
901lost1:
902	shmem_dir_unmap(dir-1);
903lost2:
904	spin_unlock(&info->lock);
905	return 0;
906found:
907	idx += offset;
908	inode = igrab(&info->vfs_inode);
909	spin_unlock(&info->lock);
910
911	/*
912	 * Move _head_ to start search for next from here.
913	 * But be careful: shmem_delete_inode checks list_empty without taking
914	 * mutex, and there's an instant in list_move_tail when info->swaplist
915	 * would appear empty, if it were the only one on shmem_swaplist.  We
916	 * could avoid doing it if inode NULL; or use this minor optimization.
917	 */
918	if (shmem_swaplist.next != &info->swaplist)
919		list_move_tail(&shmem_swaplist, &info->swaplist);
920	mutex_unlock(&shmem_swaplist_mutex);
921
922	error = 1;
923	if (!inode)
924		goto out;
925	/* Precharge page using GFP_KERNEL while we can wait */
926	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
927	if (error)
928		goto out;
929	error = radix_tree_preload(GFP_KERNEL);
930	if (error) {
931		mem_cgroup_uncharge_cache_page(page);
932		goto out;
933	}
934	error = 1;
935
936	spin_lock(&info->lock);
937	ptr = shmem_swp_entry(info, idx, NULL);
938	if (ptr && ptr->val == entry.val) {
939		error = add_to_page_cache_locked(page, inode->i_mapping,
940						idx, GFP_NOWAIT);
941		/* does mem_cgroup_uncharge_cache_page on error */
942	} else	/* we must compensate for our precharge above */
943		mem_cgroup_uncharge_cache_page(page);
944
945	if (error == -EEXIST) {
946		struct page *filepage = find_get_page(inode->i_mapping, idx);
947		error = 1;
948		if (filepage) {
949			/*
950			 * There might be a more uptodate page coming down
951			 * from a stacked writepage: forget our swappage if so.
952			 */
953			if (PageUptodate(filepage))
954				error = 0;
955			page_cache_release(filepage);
956		}
957	}
958	if (!error) {
959		delete_from_swap_cache(page);
960		set_page_dirty(page);
961		info->flags |= SHMEM_PAGEIN;
962		shmem_swp_set(info, ptr, 0);
963		swap_free(entry);
964		error = 1;	/* not an error, but entry was found */
965	}
966	if (ptr)
967		shmem_swp_unmap(ptr);
968	spin_unlock(&info->lock);
969	radix_tree_preload_end();
970out:
971	unlock_page(page);
972	page_cache_release(page);
973	iput(inode);		/* allows for NULL */
974	return error;
975}
976
977/*
978 * shmem_unuse() search for an eventually swapped out shmem page.
979 */
980int shmem_unuse(swp_entry_t entry, struct page *page)
981{
982	struct list_head *p, *next;
983	struct shmem_inode_info *info;
984	int found = 0;
985
986	mutex_lock(&shmem_swaplist_mutex);
987	list_for_each_safe(p, next, &shmem_swaplist) {
988		info = list_entry(p, struct shmem_inode_info, swaplist);
989		found = shmem_unuse_inode(info, entry, page);
990		cond_resched();
991		if (found)
992			goto out;
993	}
994	mutex_unlock(&shmem_swaplist_mutex);
995out:	return found;	/* 0 or 1 or -ENOMEM */
996}
997
998/*
999 * Move the page from the page cache to the swap cache.
1000 */
1001static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1002{
1003	struct shmem_inode_info *info;
1004	swp_entry_t *entry, swap;
1005	struct address_space *mapping;
1006	unsigned long index;
1007	struct inode *inode;
1008
1009	BUG_ON(!PageLocked(page));
1010	mapping = page->mapping;
1011	index = page->index;
1012	inode = mapping->host;
1013	info = SHMEM_I(inode);
1014	if (info->flags & VM_LOCKED)
1015		goto redirty;
1016	if (!total_swap_pages)
1017		goto redirty;
1018
1019	/*
1020	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1021	 * sync from ever calling shmem_writepage; but a stacking filesystem
1022	 * may use the ->writepage of its underlying filesystem, in which case
1023	 * tmpfs should write out to swap only in response to memory pressure,
1024	 * and not for pdflush or sync.  However, in those cases, we do still
1025	 * want to check if there's a redundant swappage to be discarded.
1026	 */
1027	if (wbc->for_reclaim)
1028		swap = get_swap_page();
1029	else
1030		swap.val = 0;
1031
1032	spin_lock(&info->lock);
1033	if (index >= info->next_index) {
1034		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1035		goto unlock;
1036	}
1037	entry = shmem_swp_entry(info, index, NULL);
1038	if (entry->val) {
1039		/*
1040		 * The more uptodate page coming down from a stacked
1041		 * writepage should replace our old swappage.
1042		 */
1043		free_swap_and_cache(*entry);
1044		shmem_swp_set(info, entry, 0);
1045	}
1046	shmem_recalc_inode(inode);
1047
1048	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1049		remove_from_page_cache(page);
1050		shmem_swp_set(info, entry, swap.val);
1051		shmem_swp_unmap(entry);
1052		if (list_empty(&info->swaplist))
1053			inode = igrab(inode);
1054		else
1055			inode = NULL;
1056		spin_unlock(&info->lock);
1057		swap_duplicate(swap);
1058		BUG_ON(page_mapped(page));
1059		page_cache_release(page);	/* pagecache ref */
1060		set_page_dirty(page);
1061		unlock_page(page);
1062		if (inode) {
1063			mutex_lock(&shmem_swaplist_mutex);
1064			/* move instead of add in case we're racing */
1065			list_move_tail(&info->swaplist, &shmem_swaplist);
1066			mutex_unlock(&shmem_swaplist_mutex);
1067			iput(inode);
1068		}
1069		return 0;
1070	}
1071
1072	shmem_swp_unmap(entry);
1073unlock:
1074	spin_unlock(&info->lock);
1075	swap_free(swap);
1076redirty:
1077	set_page_dirty(page);
1078	if (wbc->for_reclaim)
1079		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1080	unlock_page(page);
1081	return 0;
1082}
1083
1084#ifdef CONFIG_NUMA
1085#ifdef CONFIG_TMPFS
1086static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1087{
1088	char buffer[64];
1089
1090	if (!mpol || mpol->mode == MPOL_DEFAULT)
1091		return;		/* show nothing */
1092
1093	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1094
1095	seq_printf(seq, ",mpol=%s", buffer);
1096}
1097
1098static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1099{
1100	struct mempolicy *mpol = NULL;
1101	if (sbinfo->mpol) {
1102		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1103		mpol = sbinfo->mpol;
1104		mpol_get(mpol);
1105		spin_unlock(&sbinfo->stat_lock);
1106	}
1107	return mpol;
1108}
1109#endif /* CONFIG_TMPFS */
1110
1111static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1112			struct shmem_inode_info *info, unsigned long idx)
1113{
1114	struct mempolicy mpol, *spol;
1115	struct vm_area_struct pvma;
1116	struct page *page;
1117
1118	spol = mpol_cond_copy(&mpol,
1119				mpol_shared_policy_lookup(&info->policy, idx));
1120
1121	/* Create a pseudo vma that just contains the policy */
1122	pvma.vm_start = 0;
1123	pvma.vm_pgoff = idx;
1124	pvma.vm_ops = NULL;
1125	pvma.vm_policy = spol;
1126	page = swapin_readahead(entry, gfp, &pvma, 0);
1127	return page;
1128}
1129
1130static struct page *shmem_alloc_page(gfp_t gfp,
1131			struct shmem_inode_info *info, unsigned long idx)
1132{
1133	struct vm_area_struct pvma;
1134
1135	/* Create a pseudo vma that just contains the policy */
1136	pvma.vm_start = 0;
1137	pvma.vm_pgoff = idx;
1138	pvma.vm_ops = NULL;
1139	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1140
1141	/*
1142	 * alloc_page_vma() will drop the shared policy reference
1143	 */
1144	return alloc_page_vma(gfp, &pvma, 0);
1145}
1146#else /* !CONFIG_NUMA */
1147#ifdef CONFIG_TMPFS
1148static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1149{
1150}
1151#endif /* CONFIG_TMPFS */
1152
1153static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1154			struct shmem_inode_info *info, unsigned long idx)
1155{
1156	return swapin_readahead(entry, gfp, NULL, 0);
1157}
1158
1159static inline struct page *shmem_alloc_page(gfp_t gfp,
1160			struct shmem_inode_info *info, unsigned long idx)
1161{
1162	return alloc_page(gfp);
1163}
1164#endif /* CONFIG_NUMA */
1165
1166#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1167static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1168{
1169	return NULL;
1170}
1171#endif
1172
1173/*
1174 * shmem_getpage - either get the page from swap or allocate a new one
1175 *
1176 * If we allocate a new one we do not mark it dirty. That's up to the
1177 * vm. If we swap it in we mark it dirty since we also free the swap
1178 * entry since a page cannot live in both the swap and page cache
1179 */
1180static int shmem_getpage(struct inode *inode, unsigned long idx,
1181			struct page **pagep, enum sgp_type sgp, int *type)
1182{
1183	struct address_space *mapping = inode->i_mapping;
1184	struct shmem_inode_info *info = SHMEM_I(inode);
1185	struct shmem_sb_info *sbinfo;
1186	struct page *filepage = *pagep;
1187	struct page *swappage;
1188	swp_entry_t *entry;
1189	swp_entry_t swap;
1190	gfp_t gfp;
1191	int error;
1192
1193	if (idx >= SHMEM_MAX_INDEX)
1194		return -EFBIG;
1195
1196	if (type)
1197		*type = 0;
1198
1199	/*
1200	 * Normally, filepage is NULL on entry, and either found
1201	 * uptodate immediately, or allocated and zeroed, or read
1202	 * in under swappage, which is then assigned to filepage.
1203	 * But shmem_readpage (required for splice) passes in a locked
1204	 * filepage, which may be found not uptodate by other callers
1205	 * too, and may need to be copied from the swappage read in.
1206	 */
1207repeat:
1208	if (!filepage)
1209		filepage = find_lock_page(mapping, idx);
1210	if (filepage && PageUptodate(filepage))
1211		goto done;
1212	error = 0;
1213	gfp = mapping_gfp_mask(mapping);
1214	if (!filepage) {
1215		/*
1216		 * Try to preload while we can wait, to not make a habit of
1217		 * draining atomic reserves; but don't latch on to this cpu.
1218		 */
1219		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1220		if (error)
1221			goto failed;
1222		radix_tree_preload_end();
1223	}
1224
1225	spin_lock(&info->lock);
1226	shmem_recalc_inode(inode);
1227	entry = shmem_swp_alloc(info, idx, sgp);
1228	if (IS_ERR(entry)) {
1229		spin_unlock(&info->lock);
1230		error = PTR_ERR(entry);
1231		goto failed;
1232	}
1233	swap = *entry;
1234
1235	if (swap.val) {
1236		/* Look it up and read it in.. */
1237		swappage = lookup_swap_cache(swap);
1238		if (!swappage) {
1239			shmem_swp_unmap(entry);
1240			/* here we actually do the io */
1241			if (type && !(*type & VM_FAULT_MAJOR)) {
1242				__count_vm_event(PGMAJFAULT);
1243				*type |= VM_FAULT_MAJOR;
1244			}
1245			spin_unlock(&info->lock);
1246			swappage = shmem_swapin(swap, gfp, info, idx);
1247			if (!swappage) {
1248				spin_lock(&info->lock);
1249				entry = shmem_swp_alloc(info, idx, sgp);
1250				if (IS_ERR(entry))
1251					error = PTR_ERR(entry);
1252				else {
1253					if (entry->val == swap.val)
1254						error = -ENOMEM;
1255					shmem_swp_unmap(entry);
1256				}
1257				spin_unlock(&info->lock);
1258				if (error)
1259					goto failed;
1260				goto repeat;
1261			}
1262			wait_on_page_locked(swappage);
1263			page_cache_release(swappage);
1264			goto repeat;
1265		}
1266
1267		/* We have to do this with page locked to prevent races */
1268		if (TestSetPageLocked(swappage)) {
1269			shmem_swp_unmap(entry);
1270			spin_unlock(&info->lock);
1271			wait_on_page_locked(swappage);
1272			page_cache_release(swappage);
1273			goto repeat;
1274		}
1275		if (PageWriteback(swappage)) {
1276			shmem_swp_unmap(entry);
1277			spin_unlock(&info->lock);
1278			wait_on_page_writeback(swappage);
1279			unlock_page(swappage);
1280			page_cache_release(swappage);
1281			goto repeat;
1282		}
1283		if (!PageUptodate(swappage)) {
1284			shmem_swp_unmap(entry);
1285			spin_unlock(&info->lock);
1286			unlock_page(swappage);
1287			page_cache_release(swappage);
1288			error = -EIO;
1289			goto failed;
1290		}
1291
1292		if (filepage) {
1293			shmem_swp_set(info, entry, 0);
1294			shmem_swp_unmap(entry);
1295			delete_from_swap_cache(swappage);
1296			spin_unlock(&info->lock);
1297			copy_highpage(filepage, swappage);
1298			unlock_page(swappage);
1299			page_cache_release(swappage);
1300			flush_dcache_page(filepage);
1301			SetPageUptodate(filepage);
1302			set_page_dirty(filepage);
1303			swap_free(swap);
1304		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1305					idx, GFP_NOWAIT))) {
1306			info->flags |= SHMEM_PAGEIN;
1307			shmem_swp_set(info, entry, 0);
1308			shmem_swp_unmap(entry);
1309			delete_from_swap_cache(swappage);
1310			spin_unlock(&info->lock);
1311			filepage = swappage;
1312			set_page_dirty(filepage);
1313			swap_free(swap);
1314		} else {
1315			shmem_swp_unmap(entry);
1316			spin_unlock(&info->lock);
1317			unlock_page(swappage);
1318			page_cache_release(swappage);
1319			if (error == -ENOMEM) {
1320				/* allow reclaim from this memory cgroup */
1321				error = mem_cgroup_shrink_usage(current->mm,
1322								gfp);
1323				if (error)
1324					goto failed;
1325			}
1326			goto repeat;
1327		}
1328	} else if (sgp == SGP_READ && !filepage) {
1329		shmem_swp_unmap(entry);
1330		filepage = find_get_page(mapping, idx);
1331		if (filepage &&
1332		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1333			spin_unlock(&info->lock);
1334			wait_on_page_locked(filepage);
1335			page_cache_release(filepage);
1336			filepage = NULL;
1337			goto repeat;
1338		}
1339		spin_unlock(&info->lock);
1340	} else {
1341		shmem_swp_unmap(entry);
1342		sbinfo = SHMEM_SB(inode->i_sb);
1343		if (sbinfo->max_blocks) {
1344			spin_lock(&sbinfo->stat_lock);
1345			if (sbinfo->free_blocks == 0 ||
1346			    shmem_acct_block(info->flags)) {
1347				spin_unlock(&sbinfo->stat_lock);
1348				spin_unlock(&info->lock);
1349				error = -ENOSPC;
1350				goto failed;
1351			}
1352			sbinfo->free_blocks--;
1353			inode->i_blocks += BLOCKS_PER_PAGE;
1354			spin_unlock(&sbinfo->stat_lock);
1355		} else if (shmem_acct_block(info->flags)) {
1356			spin_unlock(&info->lock);
1357			error = -ENOSPC;
1358			goto failed;
1359		}
1360
1361		if (!filepage) {
1362			int ret;
1363
1364			spin_unlock(&info->lock);
1365			filepage = shmem_alloc_page(gfp, info, idx);
1366			if (!filepage) {
1367				shmem_unacct_blocks(info->flags, 1);
1368				shmem_free_blocks(inode, 1);
1369				error = -ENOMEM;
1370				goto failed;
1371			}
1372
1373			/* Precharge page while we can wait, compensate after */
1374			error = mem_cgroup_cache_charge(filepage, current->mm,
1375							gfp & ~__GFP_HIGHMEM);
1376			if (error) {
1377				page_cache_release(filepage);
1378				shmem_unacct_blocks(info->flags, 1);
1379				shmem_free_blocks(inode, 1);
1380				filepage = NULL;
1381				goto failed;
1382			}
1383
1384			spin_lock(&info->lock);
1385			entry = shmem_swp_alloc(info, idx, sgp);
1386			if (IS_ERR(entry))
1387				error = PTR_ERR(entry);
1388			else {
1389				swap = *entry;
1390				shmem_swp_unmap(entry);
1391			}
1392			ret = error || swap.val;
1393			if (ret)
1394				mem_cgroup_uncharge_cache_page(filepage);
1395			else
1396				ret = add_to_page_cache_lru(filepage, mapping,
1397						idx, GFP_NOWAIT);
1398			/*
1399			 * At add_to_page_cache_lru() failure, uncharge will
1400			 * be done automatically.
1401			 */
1402			if (ret) {
1403				spin_unlock(&info->lock);
1404				page_cache_release(filepage);
1405				shmem_unacct_blocks(info->flags, 1);
1406				shmem_free_blocks(inode, 1);
1407				filepage = NULL;
1408				if (error)
1409					goto failed;
1410				goto repeat;
1411			}
1412			info->flags |= SHMEM_PAGEIN;
1413		}
1414
1415		info->alloced++;
1416		spin_unlock(&info->lock);
1417		clear_highpage(filepage);
1418		flush_dcache_page(filepage);
1419		SetPageUptodate(filepage);
1420		if (sgp == SGP_DIRTY)
1421			set_page_dirty(filepage);
1422	}
1423done:
1424	*pagep = filepage;
1425	return 0;
1426
1427failed:
1428	if (*pagep != filepage) {
1429		unlock_page(filepage);
1430		page_cache_release(filepage);
1431	}
1432	return error;
1433}
1434
1435static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1436{
1437	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1438	int error;
1439	int ret;
1440
1441	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1442		return VM_FAULT_SIGBUS;
1443
1444	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1445	if (error)
1446		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1447
1448	mark_page_accessed(vmf->page);
1449	return ret | VM_FAULT_LOCKED;
1450}
1451
1452#ifdef CONFIG_NUMA
1453static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1454{
1455	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1456	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1457}
1458
1459static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1460					  unsigned long addr)
1461{
1462	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1463	unsigned long idx;
1464
1465	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1466	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1467}
1468#endif
1469
1470int shmem_lock(struct file *file, int lock, struct user_struct *user)
1471{
1472	struct inode *inode = file->f_path.dentry->d_inode;
1473	struct shmem_inode_info *info = SHMEM_I(inode);
1474	int retval = -ENOMEM;
1475
1476	spin_lock(&info->lock);
1477	if (lock && !(info->flags & VM_LOCKED)) {
1478		if (!user_shm_lock(inode->i_size, user))
1479			goto out_nomem;
1480		info->flags |= VM_LOCKED;
1481	}
1482	if (!lock && (info->flags & VM_LOCKED) && user) {
1483		user_shm_unlock(inode->i_size, user);
1484		info->flags &= ~VM_LOCKED;
1485	}
1486	retval = 0;
1487out_nomem:
1488	spin_unlock(&info->lock);
1489	return retval;
1490}
1491
1492static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1493{
1494	file_accessed(file);
1495	vma->vm_ops = &shmem_vm_ops;
1496	vma->vm_flags |= VM_CAN_NONLINEAR;
1497	return 0;
1498}
1499
1500static struct inode *
1501shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1502{
1503	struct inode *inode;
1504	struct shmem_inode_info *info;
1505	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1506
1507	if (shmem_reserve_inode(sb))
1508		return NULL;
1509
1510	inode = new_inode(sb);
1511	if (inode) {
1512		inode->i_mode = mode;
1513		inode->i_uid = current->fsuid;
1514		inode->i_gid = current->fsgid;
1515		inode->i_blocks = 0;
1516		inode->i_mapping->a_ops = &shmem_aops;
1517		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1518		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1519		inode->i_generation = get_seconds();
1520		info = SHMEM_I(inode);
1521		memset(info, 0, (char *)inode - (char *)info);
1522		spin_lock_init(&info->lock);
1523		INIT_LIST_HEAD(&info->swaplist);
1524
1525		switch (mode & S_IFMT) {
1526		default:
1527			inode->i_op = &shmem_special_inode_operations;
1528			init_special_inode(inode, mode, dev);
1529			break;
1530		case S_IFREG:
1531			inode->i_op = &shmem_inode_operations;
1532			inode->i_fop = &shmem_file_operations;
1533			mpol_shared_policy_init(&info->policy,
1534						 shmem_get_sbmpol(sbinfo));
1535			break;
1536		case S_IFDIR:
1537			inc_nlink(inode);
1538			/* Some things misbehave if size == 0 on a directory */
1539			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1540			inode->i_op = &shmem_dir_inode_operations;
1541			inode->i_fop = &simple_dir_operations;
1542			break;
1543		case S_IFLNK:
1544			/*
1545			 * Must not load anything in the rbtree,
1546			 * mpol_free_shared_policy will not be called.
1547			 */
1548			mpol_shared_policy_init(&info->policy, NULL);
1549			break;
1550		}
1551	} else
1552		shmem_free_inode(sb);
1553	return inode;
1554}
1555
1556#ifdef CONFIG_TMPFS
1557static const struct inode_operations shmem_symlink_inode_operations;
1558static const struct inode_operations shmem_symlink_inline_operations;
1559
1560/*
1561 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1562 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1563 * below the loop driver, in the generic fashion that many filesystems support.
1564 */
1565static int shmem_readpage(struct file *file, struct page *page)
1566{
1567	struct inode *inode = page->mapping->host;
1568	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1569	unlock_page(page);
1570	return error;
1571}
1572
1573static int
1574shmem_write_begin(struct file *file, struct address_space *mapping,
1575			loff_t pos, unsigned len, unsigned flags,
1576			struct page **pagep, void **fsdata)
1577{
1578	struct inode *inode = mapping->host;
1579	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1580	*pagep = NULL;
1581	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1582}
1583
1584static int
1585shmem_write_end(struct file *file, struct address_space *mapping,
1586			loff_t pos, unsigned len, unsigned copied,
1587			struct page *page, void *fsdata)
1588{
1589	struct inode *inode = mapping->host;
1590
1591	if (pos + copied > inode->i_size)
1592		i_size_write(inode, pos + copied);
1593
1594	unlock_page(page);
1595	set_page_dirty(page);
1596	page_cache_release(page);
1597
1598	return copied;
1599}
1600
1601static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1602{
1603	struct inode *inode = filp->f_path.dentry->d_inode;
1604	struct address_space *mapping = inode->i_mapping;
1605	unsigned long index, offset;
1606	enum sgp_type sgp = SGP_READ;
1607
1608	/*
1609	 * Might this read be for a stacking filesystem?  Then when reading
1610	 * holes of a sparse file, we actually need to allocate those pages,
1611	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1612	 */
1613	if (segment_eq(get_fs(), KERNEL_DS))
1614		sgp = SGP_DIRTY;
1615
1616	index = *ppos >> PAGE_CACHE_SHIFT;
1617	offset = *ppos & ~PAGE_CACHE_MASK;
1618
1619	for (;;) {
1620		struct page *page = NULL;
1621		unsigned long end_index, nr, ret;
1622		loff_t i_size = i_size_read(inode);
1623
1624		end_index = i_size >> PAGE_CACHE_SHIFT;
1625		if (index > end_index)
1626			break;
1627		if (index == end_index) {
1628			nr = i_size & ~PAGE_CACHE_MASK;
1629			if (nr <= offset)
1630				break;
1631		}
1632
1633		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1634		if (desc->error) {
1635			if (desc->error == -EINVAL)
1636				desc->error = 0;
1637			break;
1638		}
1639		if (page)
1640			unlock_page(page);
1641
1642		/*
1643		 * We must evaluate after, since reads (unlike writes)
1644		 * are called without i_mutex protection against truncate
1645		 */
1646		nr = PAGE_CACHE_SIZE;
1647		i_size = i_size_read(inode);
1648		end_index = i_size >> PAGE_CACHE_SHIFT;
1649		if (index == end_index) {
1650			nr = i_size & ~PAGE_CACHE_MASK;
1651			if (nr <= offset) {
1652				if (page)
1653					page_cache_release(page);
1654				break;
1655			}
1656		}
1657		nr -= offset;
1658
1659		if (page) {
1660			/*
1661			 * If users can be writing to this page using arbitrary
1662			 * virtual addresses, take care about potential aliasing
1663			 * before reading the page on the kernel side.
1664			 */
1665			if (mapping_writably_mapped(mapping))
1666				flush_dcache_page(page);
1667			/*
1668			 * Mark the page accessed if we read the beginning.
1669			 */
1670			if (!offset)
1671				mark_page_accessed(page);
1672		} else {
1673			page = ZERO_PAGE(0);
1674			page_cache_get(page);
1675		}
1676
1677		/*
1678		 * Ok, we have the page, and it's up-to-date, so
1679		 * now we can copy it to user space...
1680		 *
1681		 * The actor routine returns how many bytes were actually used..
1682		 * NOTE! This may not be the same as how much of a user buffer
1683		 * we filled up (we may be padding etc), so we can only update
1684		 * "pos" here (the actor routine has to update the user buffer
1685		 * pointers and the remaining count).
1686		 */
1687		ret = actor(desc, page, offset, nr);
1688		offset += ret;
1689		index += offset >> PAGE_CACHE_SHIFT;
1690		offset &= ~PAGE_CACHE_MASK;
1691
1692		page_cache_release(page);
1693		if (ret != nr || !desc->count)
1694			break;
1695
1696		cond_resched();
1697	}
1698
1699	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1700	file_accessed(filp);
1701}
1702
1703static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1704		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1705{
1706	struct file *filp = iocb->ki_filp;
1707	ssize_t retval;
1708	unsigned long seg;
1709	size_t count;
1710	loff_t *ppos = &iocb->ki_pos;
1711
1712	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1713	if (retval)
1714		return retval;
1715
1716	for (seg = 0; seg < nr_segs; seg++) {
1717		read_descriptor_t desc;
1718
1719		desc.written = 0;
1720		desc.arg.buf = iov[seg].iov_base;
1721		desc.count = iov[seg].iov_len;
1722		if (desc.count == 0)
1723			continue;
1724		desc.error = 0;
1725		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1726		retval += desc.written;
1727		if (desc.error) {
1728			retval = retval ?: desc.error;
1729			break;
1730		}
1731		if (desc.count > 0)
1732			break;
1733	}
1734	return retval;
1735}
1736
1737static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1738{
1739	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1740
1741	buf->f_type = TMPFS_MAGIC;
1742	buf->f_bsize = PAGE_CACHE_SIZE;
1743	buf->f_namelen = NAME_MAX;
1744	spin_lock(&sbinfo->stat_lock);
1745	if (sbinfo->max_blocks) {
1746		buf->f_blocks = sbinfo->max_blocks;
1747		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1748	}
1749	if (sbinfo->max_inodes) {
1750		buf->f_files = sbinfo->max_inodes;
1751		buf->f_ffree = sbinfo->free_inodes;
1752	}
1753	/* else leave those fields 0 like simple_statfs */
1754	spin_unlock(&sbinfo->stat_lock);
1755	return 0;
1756}
1757
1758/*
1759 * File creation. Allocate an inode, and we're done..
1760 */
1761static int
1762shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1763{
1764	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1765	int error = -ENOSPC;
1766
1767	if (inode) {
1768		error = security_inode_init_security(inode, dir, NULL, NULL,
1769						     NULL);
1770		if (error) {
1771			if (error != -EOPNOTSUPP) {
1772				iput(inode);
1773				return error;
1774			}
1775		}
1776		error = shmem_acl_init(inode, dir);
1777		if (error) {
1778			iput(inode);
1779			return error;
1780		}
1781		if (dir->i_mode & S_ISGID) {
1782			inode->i_gid = dir->i_gid;
1783			if (S_ISDIR(mode))
1784				inode->i_mode |= S_ISGID;
1785		}
1786		dir->i_size += BOGO_DIRENT_SIZE;
1787		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1788		d_instantiate(dentry, inode);
1789		dget(dentry); /* Extra count - pin the dentry in core */
1790	}
1791	return error;
1792}
1793
1794static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1795{
1796	int error;
1797
1798	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1799		return error;
1800	inc_nlink(dir);
1801	return 0;
1802}
1803
1804static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1805		struct nameidata *nd)
1806{
1807	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1808}
1809
1810/*
1811 * Link a file..
1812 */
1813static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1814{
1815	struct inode *inode = old_dentry->d_inode;
1816	int ret;
1817
1818	/*
1819	 * No ordinary (disk based) filesystem counts links as inodes;
1820	 * but each new link needs a new dentry, pinning lowmem, and
1821	 * tmpfs dentries cannot be pruned until they are unlinked.
1822	 */
1823	ret = shmem_reserve_inode(inode->i_sb);
1824	if (ret)
1825		goto out;
1826
1827	dir->i_size += BOGO_DIRENT_SIZE;
1828	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1829	inc_nlink(inode);
1830	atomic_inc(&inode->i_count);	/* New dentry reference */
1831	dget(dentry);		/* Extra pinning count for the created dentry */
1832	d_instantiate(dentry, inode);
1833out:
1834	return ret;
1835}
1836
1837static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1838{
1839	struct inode *inode = dentry->d_inode;
1840
1841	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1842		shmem_free_inode(inode->i_sb);
1843
1844	dir->i_size -= BOGO_DIRENT_SIZE;
1845	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1846	drop_nlink(inode);
1847	dput(dentry);	/* Undo the count from "create" - this does all the work */
1848	return 0;
1849}
1850
1851static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1852{
1853	if (!simple_empty(dentry))
1854		return -ENOTEMPTY;
1855
1856	drop_nlink(dentry->d_inode);
1857	drop_nlink(dir);
1858	return shmem_unlink(dir, dentry);
1859}
1860
1861/*
1862 * The VFS layer already does all the dentry stuff for rename,
1863 * we just have to decrement the usage count for the target if
1864 * it exists so that the VFS layer correctly free's it when it
1865 * gets overwritten.
1866 */
1867static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1868{
1869	struct inode *inode = old_dentry->d_inode;
1870	int they_are_dirs = S_ISDIR(inode->i_mode);
1871
1872	if (!simple_empty(new_dentry))
1873		return -ENOTEMPTY;
1874
1875	if (new_dentry->d_inode) {
1876		(void) shmem_unlink(new_dir, new_dentry);
1877		if (they_are_dirs)
1878			drop_nlink(old_dir);
1879	} else if (they_are_dirs) {
1880		drop_nlink(old_dir);
1881		inc_nlink(new_dir);
1882	}
1883
1884	old_dir->i_size -= BOGO_DIRENT_SIZE;
1885	new_dir->i_size += BOGO_DIRENT_SIZE;
1886	old_dir->i_ctime = old_dir->i_mtime =
1887	new_dir->i_ctime = new_dir->i_mtime =
1888	inode->i_ctime = CURRENT_TIME;
1889	return 0;
1890}
1891
1892static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1893{
1894	int error;
1895	int len;
1896	struct inode *inode;
1897	struct page *page = NULL;
1898	char *kaddr;
1899	struct shmem_inode_info *info;
1900
1901	len = strlen(symname) + 1;
1902	if (len > PAGE_CACHE_SIZE)
1903		return -ENAMETOOLONG;
1904
1905	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1906	if (!inode)
1907		return -ENOSPC;
1908
1909	error = security_inode_init_security(inode, dir, NULL, NULL,
1910					     NULL);
1911	if (error) {
1912		if (error != -EOPNOTSUPP) {
1913			iput(inode);
1914			return error;
1915		}
1916		error = 0;
1917	}
1918
1919	info = SHMEM_I(inode);
1920	inode->i_size = len-1;
1921	if (len <= (char *)inode - (char *)info) {
1922		/* do it inline */
1923		memcpy(info, symname, len);
1924		inode->i_op = &shmem_symlink_inline_operations;
1925	} else {
1926		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1927		if (error) {
1928			iput(inode);
1929			return error;
1930		}
1931		unlock_page(page);
1932		inode->i_op = &shmem_symlink_inode_operations;
1933		kaddr = kmap_atomic(page, KM_USER0);
1934		memcpy(kaddr, symname, len);
1935		kunmap_atomic(kaddr, KM_USER0);
1936		set_page_dirty(page);
1937		page_cache_release(page);
1938	}
1939	if (dir->i_mode & S_ISGID)
1940		inode->i_gid = dir->i_gid;
1941	dir->i_size += BOGO_DIRENT_SIZE;
1942	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1943	d_instantiate(dentry, inode);
1944	dget(dentry);
1945	return 0;
1946}
1947
1948static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1949{
1950	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1951	return NULL;
1952}
1953
1954static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1955{
1956	struct page *page = NULL;
1957	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1958	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1959	if (page)
1960		unlock_page(page);
1961	return page;
1962}
1963
1964static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1965{
1966	if (!IS_ERR(nd_get_link(nd))) {
1967		struct page *page = cookie;
1968		kunmap(page);
1969		mark_page_accessed(page);
1970		page_cache_release(page);
1971	}
1972}
1973
1974static const struct inode_operations shmem_symlink_inline_operations = {
1975	.readlink	= generic_readlink,
1976	.follow_link	= shmem_follow_link_inline,
1977};
1978
1979static const struct inode_operations shmem_symlink_inode_operations = {
1980	.truncate	= shmem_truncate,
1981	.readlink	= generic_readlink,
1982	.follow_link	= shmem_follow_link,
1983	.put_link	= shmem_put_link,
1984};
1985
1986#ifdef CONFIG_TMPFS_POSIX_ACL
1987/*
1988 * Superblocks without xattr inode operations will get security.* xattr
1989 * support from the VFS "for free". As soon as we have any other xattrs
1990 * like ACLs, we also need to implement the security.* handlers at
1991 * filesystem level, though.
1992 */
1993
1994static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1995					size_t list_len, const char *name,
1996					size_t name_len)
1997{
1998	return security_inode_listsecurity(inode, list, list_len);
1999}
2000
2001static int shmem_xattr_security_get(struct inode *inode, const char *name,
2002				    void *buffer, size_t size)
2003{
2004	if (strcmp(name, "") == 0)
2005		return -EINVAL;
2006	return xattr_getsecurity(inode, name, buffer, size);
2007}
2008
2009static int shmem_xattr_security_set(struct inode *inode, const char *name,
2010				    const void *value, size_t size, int flags)
2011{
2012	if (strcmp(name, "") == 0)
2013		return -EINVAL;
2014	return security_inode_setsecurity(inode, name, value, size, flags);
2015}
2016
2017static struct xattr_handler shmem_xattr_security_handler = {
2018	.prefix = XATTR_SECURITY_PREFIX,
2019	.list   = shmem_xattr_security_list,
2020	.get    = shmem_xattr_security_get,
2021	.set    = shmem_xattr_security_set,
2022};
2023
2024static struct xattr_handler *shmem_xattr_handlers[] = {
2025	&shmem_xattr_acl_access_handler,
2026	&shmem_xattr_acl_default_handler,
2027	&shmem_xattr_security_handler,
2028	NULL
2029};
2030#endif
2031
2032static struct dentry *shmem_get_parent(struct dentry *child)
2033{
2034	return ERR_PTR(-ESTALE);
2035}
2036
2037static int shmem_match(struct inode *ino, void *vfh)
2038{
2039	__u32 *fh = vfh;
2040	__u64 inum = fh[2];
2041	inum = (inum << 32) | fh[1];
2042	return ino->i_ino == inum && fh[0] == ino->i_generation;
2043}
2044
2045static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2046		struct fid *fid, int fh_len, int fh_type)
2047{
2048	struct inode *inode;
2049	struct dentry *dentry = NULL;
2050	u64 inum = fid->raw[2];
2051	inum = (inum << 32) | fid->raw[1];
2052
2053	if (fh_len < 3)
2054		return NULL;
2055
2056	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2057			shmem_match, fid->raw);
2058	if (inode) {
2059		dentry = d_find_alias(inode);
2060		iput(inode);
2061	}
2062
2063	return dentry;
2064}
2065
2066static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2067				int connectable)
2068{
2069	struct inode *inode = dentry->d_inode;
2070
2071	if (*len < 3)
2072		return 255;
2073
2074	if (hlist_unhashed(&inode->i_hash)) {
2075		/* Unfortunately insert_inode_hash is not idempotent,
2076		 * so as we hash inodes here rather than at creation
2077		 * time, we need a lock to ensure we only try
2078		 * to do it once
2079		 */
2080		static DEFINE_SPINLOCK(lock);
2081		spin_lock(&lock);
2082		if (hlist_unhashed(&inode->i_hash))
2083			__insert_inode_hash(inode,
2084					    inode->i_ino + inode->i_generation);
2085		spin_unlock(&lock);
2086	}
2087
2088	fh[0] = inode->i_generation;
2089	fh[1] = inode->i_ino;
2090	fh[2] = ((__u64)inode->i_ino) >> 32;
2091
2092	*len = 3;
2093	return 1;
2094}
2095
2096static const struct export_operations shmem_export_ops = {
2097	.get_parent     = shmem_get_parent,
2098	.encode_fh      = shmem_encode_fh,
2099	.fh_to_dentry	= shmem_fh_to_dentry,
2100};
2101
2102static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2103			       bool remount)
2104{
2105	char *this_char, *value, *rest;
2106
2107	while (options != NULL) {
2108		this_char = options;
2109		for (;;) {
2110			/*
2111			 * NUL-terminate this option: unfortunately,
2112			 * mount options form a comma-separated list,
2113			 * but mpol's nodelist may also contain commas.
2114			 */
2115			options = strchr(options, ',');
2116			if (options == NULL)
2117				break;
2118			options++;
2119			if (!isdigit(*options)) {
2120				options[-1] = '\0';
2121				break;
2122			}
2123		}
2124		if (!*this_char)
2125			continue;
2126		if ((value = strchr(this_char,'=')) != NULL) {
2127			*value++ = 0;
2128		} else {
2129			printk(KERN_ERR
2130			    "tmpfs: No value for mount option '%s'\n",
2131			    this_char);
2132			return 1;
2133		}
2134
2135		if (!strcmp(this_char,"size")) {
2136			unsigned long long size;
2137			size = memparse(value,&rest);
2138			if (*rest == '%') {
2139				size <<= PAGE_SHIFT;
2140				size *= totalram_pages;
2141				do_div(size, 100);
2142				rest++;
2143			}
2144			if (*rest)
2145				goto bad_val;
2146			sbinfo->max_blocks =
2147				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2148		} else if (!strcmp(this_char,"nr_blocks")) {
2149			sbinfo->max_blocks = memparse(value, &rest);
2150			if (*rest)
2151				goto bad_val;
2152		} else if (!strcmp(this_char,"nr_inodes")) {
2153			sbinfo->max_inodes = memparse(value, &rest);
2154			if (*rest)
2155				goto bad_val;
2156		} else if (!strcmp(this_char,"mode")) {
2157			if (remount)
2158				continue;
2159			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2160			if (*rest)
2161				goto bad_val;
2162		} else if (!strcmp(this_char,"uid")) {
2163			if (remount)
2164				continue;
2165			sbinfo->uid = simple_strtoul(value, &rest, 0);
2166			if (*rest)
2167				goto bad_val;
2168		} else if (!strcmp(this_char,"gid")) {
2169			if (remount)
2170				continue;
2171			sbinfo->gid = simple_strtoul(value, &rest, 0);
2172			if (*rest)
2173				goto bad_val;
2174		} else if (!strcmp(this_char,"mpol")) {
2175			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2176				goto bad_val;
2177		} else {
2178			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2179			       this_char);
2180			return 1;
2181		}
2182	}
2183	return 0;
2184
2185bad_val:
2186	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2187	       value, this_char);
2188	return 1;
2189
2190}
2191
2192static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2193{
2194	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2195	struct shmem_sb_info config = *sbinfo;
2196	unsigned long blocks;
2197	unsigned long inodes;
2198	int error = -EINVAL;
2199
2200	if (shmem_parse_options(data, &config, true))
2201		return error;
2202
2203	spin_lock(&sbinfo->stat_lock);
2204	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2205	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2206	if (config.max_blocks < blocks)
2207		goto out;
2208	if (config.max_inodes < inodes)
2209		goto out;
2210	/*
2211	 * Those tests also disallow limited->unlimited while any are in
2212	 * use, so i_blocks will always be zero when max_blocks is zero;
2213	 * but we must separately disallow unlimited->limited, because
2214	 * in that case we have no record of how much is already in use.
2215	 */
2216	if (config.max_blocks && !sbinfo->max_blocks)
2217		goto out;
2218	if (config.max_inodes && !sbinfo->max_inodes)
2219		goto out;
2220
2221	error = 0;
2222	sbinfo->max_blocks  = config.max_blocks;
2223	sbinfo->free_blocks = config.max_blocks - blocks;
2224	sbinfo->max_inodes  = config.max_inodes;
2225	sbinfo->free_inodes = config.max_inodes - inodes;
2226
2227	mpol_put(sbinfo->mpol);
2228	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2229out:
2230	spin_unlock(&sbinfo->stat_lock);
2231	return error;
2232}
2233
2234static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2235{
2236	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2237
2238	if (sbinfo->max_blocks != shmem_default_max_blocks())
2239		seq_printf(seq, ",size=%luk",
2240			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2241	if (sbinfo->max_inodes != shmem_default_max_inodes())
2242		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2243	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2244		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2245	if (sbinfo->uid != 0)
2246		seq_printf(seq, ",uid=%u", sbinfo->uid);
2247	if (sbinfo->gid != 0)
2248		seq_printf(seq, ",gid=%u", sbinfo->gid);
2249	shmem_show_mpol(seq, sbinfo->mpol);
2250	return 0;
2251}
2252#endif /* CONFIG_TMPFS */
2253
2254static void shmem_put_super(struct super_block *sb)
2255{
2256	kfree(sb->s_fs_info);
2257	sb->s_fs_info = NULL;
2258}
2259
2260static int shmem_fill_super(struct super_block *sb,
2261			    void *data, int silent)
2262{
2263	struct inode *inode;
2264	struct dentry *root;
2265	struct shmem_sb_info *sbinfo;
2266	int err = -ENOMEM;
2267
2268	/* Round up to L1_CACHE_BYTES to resist false sharing */
2269	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2270				L1_CACHE_BYTES), GFP_KERNEL);
2271	if (!sbinfo)
2272		return -ENOMEM;
2273
2274	sbinfo->max_blocks = 0;
2275	sbinfo->max_inodes = 0;
2276	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2277	sbinfo->uid = current->fsuid;
2278	sbinfo->gid = current->fsgid;
2279	sbinfo->mpol = NULL;
2280	sb->s_fs_info = sbinfo;
2281
2282#ifdef CONFIG_TMPFS
2283	/*
2284	 * Per default we only allow half of the physical ram per
2285	 * tmpfs instance, limiting inodes to one per page of lowmem;
2286	 * but the internal instance is left unlimited.
2287	 */
2288	if (!(sb->s_flags & MS_NOUSER)) {
2289		sbinfo->max_blocks = shmem_default_max_blocks();
2290		sbinfo->max_inodes = shmem_default_max_inodes();
2291		if (shmem_parse_options(data, sbinfo, false)) {
2292			err = -EINVAL;
2293			goto failed;
2294		}
2295	}
2296	sb->s_export_op = &shmem_export_ops;
2297#else
2298	sb->s_flags |= MS_NOUSER;
2299#endif
2300
2301	spin_lock_init(&sbinfo->stat_lock);
2302	sbinfo->free_blocks = sbinfo->max_blocks;
2303	sbinfo->free_inodes = sbinfo->max_inodes;
2304
2305	sb->s_maxbytes = SHMEM_MAX_BYTES;
2306	sb->s_blocksize = PAGE_CACHE_SIZE;
2307	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2308	sb->s_magic = TMPFS_MAGIC;
2309	sb->s_op = &shmem_ops;
2310	sb->s_time_gran = 1;
2311#ifdef CONFIG_TMPFS_POSIX_ACL
2312	sb->s_xattr = shmem_xattr_handlers;
2313	sb->s_flags |= MS_POSIXACL;
2314#endif
2315
2316	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2317	if (!inode)
2318		goto failed;
2319	inode->i_uid = sbinfo->uid;
2320	inode->i_gid = sbinfo->gid;
2321	root = d_alloc_root(inode);
2322	if (!root)
2323		goto failed_iput;
2324	sb->s_root = root;
2325	return 0;
2326
2327failed_iput:
2328	iput(inode);
2329failed:
2330	shmem_put_super(sb);
2331	return err;
2332}
2333
2334static struct kmem_cache *shmem_inode_cachep;
2335
2336static struct inode *shmem_alloc_inode(struct super_block *sb)
2337{
2338	struct shmem_inode_info *p;
2339	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2340	if (!p)
2341		return NULL;
2342	return &p->vfs_inode;
2343}
2344
2345static void shmem_destroy_inode(struct inode *inode)
2346{
2347	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2348		/* only struct inode is valid if it's an inline symlink */
2349		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2350	}
2351	shmem_acl_destroy_inode(inode);
2352	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2353}
2354
2355static void init_once(struct kmem_cache *cachep, void *foo)
2356{
2357	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2358
2359	inode_init_once(&p->vfs_inode);
2360#ifdef CONFIG_TMPFS_POSIX_ACL
2361	p->i_acl = NULL;
2362	p->i_default_acl = NULL;
2363#endif
2364}
2365
2366static int init_inodecache(void)
2367{
2368	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2369				sizeof(struct shmem_inode_info),
2370				0, SLAB_PANIC, init_once);
2371	return 0;
2372}
2373
2374static void destroy_inodecache(void)
2375{
2376	kmem_cache_destroy(shmem_inode_cachep);
2377}
2378
2379static const struct address_space_operations shmem_aops = {
2380	.writepage	= shmem_writepage,
2381	.set_page_dirty	= __set_page_dirty_no_writeback,
2382#ifdef CONFIG_TMPFS
2383	.readpage	= shmem_readpage,
2384	.write_begin	= shmem_write_begin,
2385	.write_end	= shmem_write_end,
2386#endif
2387	.migratepage	= migrate_page,
2388};
2389
2390static const struct file_operations shmem_file_operations = {
2391	.mmap		= shmem_mmap,
2392#ifdef CONFIG_TMPFS
2393	.llseek		= generic_file_llseek,
2394	.read		= do_sync_read,
2395	.write		= do_sync_write,
2396	.aio_read	= shmem_file_aio_read,
2397	.aio_write	= generic_file_aio_write,
2398	.fsync		= simple_sync_file,
2399	.splice_read	= generic_file_splice_read,
2400	.splice_write	= generic_file_splice_write,
2401#endif
2402};
2403
2404static const struct inode_operations shmem_inode_operations = {
2405	.truncate	= shmem_truncate,
2406	.setattr	= shmem_notify_change,
2407	.truncate_range	= shmem_truncate_range,
2408#ifdef CONFIG_TMPFS_POSIX_ACL
2409	.setxattr	= generic_setxattr,
2410	.getxattr	= generic_getxattr,
2411	.listxattr	= generic_listxattr,
2412	.removexattr	= generic_removexattr,
2413	.permission	= shmem_permission,
2414#endif
2415
2416};
2417
2418static const struct inode_operations shmem_dir_inode_operations = {
2419#ifdef CONFIG_TMPFS
2420	.create		= shmem_create,
2421	.lookup		= simple_lookup,
2422	.link		= shmem_link,
2423	.unlink		= shmem_unlink,
2424	.symlink	= shmem_symlink,
2425	.mkdir		= shmem_mkdir,
2426	.rmdir		= shmem_rmdir,
2427	.mknod		= shmem_mknod,
2428	.rename		= shmem_rename,
2429#endif
2430#ifdef CONFIG_TMPFS_POSIX_ACL
2431	.setattr	= shmem_notify_change,
2432	.setxattr	= generic_setxattr,
2433	.getxattr	= generic_getxattr,
2434	.listxattr	= generic_listxattr,
2435	.removexattr	= generic_removexattr,
2436	.permission	= shmem_permission,
2437#endif
2438};
2439
2440static const struct inode_operations shmem_special_inode_operations = {
2441#ifdef CONFIG_TMPFS_POSIX_ACL
2442	.setattr	= shmem_notify_change,
2443	.setxattr	= generic_setxattr,
2444	.getxattr	= generic_getxattr,
2445	.listxattr	= generic_listxattr,
2446	.removexattr	= generic_removexattr,
2447	.permission	= shmem_permission,
2448#endif
2449};
2450
2451static const struct super_operations shmem_ops = {
2452	.alloc_inode	= shmem_alloc_inode,
2453	.destroy_inode	= shmem_destroy_inode,
2454#ifdef CONFIG_TMPFS
2455	.statfs		= shmem_statfs,
2456	.remount_fs	= shmem_remount_fs,
2457	.show_options	= shmem_show_options,
2458#endif
2459	.delete_inode	= shmem_delete_inode,
2460	.drop_inode	= generic_delete_inode,
2461	.put_super	= shmem_put_super,
2462};
2463
2464static struct vm_operations_struct shmem_vm_ops = {
2465	.fault		= shmem_fault,
2466#ifdef CONFIG_NUMA
2467	.set_policy     = shmem_set_policy,
2468	.get_policy     = shmem_get_policy,
2469#endif
2470};
2471
2472
2473static int shmem_get_sb(struct file_system_type *fs_type,
2474	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2475{
2476	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2477}
2478
2479static struct file_system_type tmpfs_fs_type = {
2480	.owner		= THIS_MODULE,
2481	.name		= "tmpfs",
2482	.get_sb		= shmem_get_sb,
2483	.kill_sb	= kill_litter_super,
2484};
2485static struct vfsmount *shm_mnt;
2486
2487static int __init init_tmpfs(void)
2488{
2489	int error;
2490
2491	error = bdi_init(&shmem_backing_dev_info);
2492	if (error)
2493		goto out4;
2494
2495	error = init_inodecache();
2496	if (error)
2497		goto out3;
2498
2499	error = register_filesystem(&tmpfs_fs_type);
2500	if (error) {
2501		printk(KERN_ERR "Could not register tmpfs\n");
2502		goto out2;
2503	}
2504
2505	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2506				tmpfs_fs_type.name, NULL);
2507	if (IS_ERR(shm_mnt)) {
2508		error = PTR_ERR(shm_mnt);
2509		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2510		goto out1;
2511	}
2512	return 0;
2513
2514out1:
2515	unregister_filesystem(&tmpfs_fs_type);
2516out2:
2517	destroy_inodecache();
2518out3:
2519	bdi_destroy(&shmem_backing_dev_info);
2520out4:
2521	shm_mnt = ERR_PTR(error);
2522	return error;
2523}
2524module_init(init_tmpfs)
2525
2526/**
2527 * shmem_file_setup - get an unlinked file living in tmpfs
2528 * @name: name for dentry (to be seen in /proc/<pid>/maps
2529 * @size: size to be set for the file
2530 * @flags: vm_flags
2531 */
2532struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2533{
2534	int error;
2535	struct file *file;
2536	struct inode *inode;
2537	struct dentry *dentry, *root;
2538	struct qstr this;
2539
2540	if (IS_ERR(shm_mnt))
2541		return (void *)shm_mnt;
2542
2543	if (size < 0 || size > SHMEM_MAX_BYTES)
2544		return ERR_PTR(-EINVAL);
2545
2546	if (shmem_acct_size(flags, size))
2547		return ERR_PTR(-ENOMEM);
2548
2549	error = -ENOMEM;
2550	this.name = name;
2551	this.len = strlen(name);
2552	this.hash = 0; /* will go */
2553	root = shm_mnt->mnt_root;
2554	dentry = d_alloc(root, &this);
2555	if (!dentry)
2556		goto put_memory;
2557
2558	error = -ENFILE;
2559	file = get_empty_filp();
2560	if (!file)
2561		goto put_dentry;
2562
2563	error = -ENOSPC;
2564	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2565	if (!inode)
2566		goto close_file;
2567
2568	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2569	d_instantiate(dentry, inode);
2570	inode->i_size = size;
2571	inode->i_nlink = 0;	/* It is unlinked */
2572	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2573			&shmem_file_operations);
2574	return file;
2575
2576close_file:
2577	put_filp(file);
2578put_dentry:
2579	dput(dentry);
2580put_memory:
2581	shmem_unacct_size(flags, size);
2582	return ERR_PTR(error);
2583}
2584
2585/**
2586 * shmem_zero_setup - setup a shared anonymous mapping
2587 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2588 */
2589int shmem_zero_setup(struct vm_area_struct *vma)
2590{
2591	struct file *file;
2592	loff_t size = vma->vm_end - vma->vm_start;
2593
2594	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2595	if (IS_ERR(file))
2596		return PTR_ERR(file);
2597
2598	if (vma->vm_file)
2599		fput(vma->vm_file);
2600	vma->vm_file = file;
2601	vma->vm_ops = &shmem_vm_ops;
2602	return 0;
2603}
2604