shmem.c revision e6c9366b2adb52cba64b359b3050200743c7568c
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/percpu_counter.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/security.h>
55#include <linux/swapops.h>
56#include <linux/mempolicy.h>
57#include <linux/namei.h>
58#include <linux/ctype.h>
59#include <linux/migrate.h>
60#include <linux/highmem.h>
61#include <linux/seq_file.h>
62#include <linux/magic.h>
63
64#include <asm/uaccess.h>
65#include <asm/div64.h>
66#include <asm/pgtable.h>
67
68/*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
80#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93#define SHMEM_PAGEIN	 VM_READ
94#define SHMEM_TRUNCATE	 VM_WRITE
95
96/* Definition to limit shmem_truncate's steps between cond_rescheds */
97#define LATENCY_LIMIT	 64
98
99/* Pretend that each entry is of this size in directory's i_size */
100#define BOGO_DIRENT_SIZE 20
101
102/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103enum sgp_type {
104	SGP_READ,	/* don't exceed i_size, don't allocate page */
105	SGP_CACHE,	/* don't exceed i_size, may allocate page */
106	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
107	SGP_WRITE,	/* may exceed i_size, may allocate page */
108};
109
110#ifdef CONFIG_TMPFS
111static unsigned long shmem_default_max_blocks(void)
112{
113	return totalram_pages / 2;
114}
115
116static unsigned long shmem_default_max_inodes(void)
117{
118	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119}
120#endif
121
122static int shmem_getpage(struct inode *inode, unsigned long idx,
123			 struct page **pagep, enum sgp_type sgp, int *type);
124
125static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
126{
127	/*
128	 * The above definition of ENTRIES_PER_PAGE, and the use of
129	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130	 * might be reconsidered if it ever diverges from PAGE_SIZE.
131	 *
132	 * Mobility flags are masked out as swap vectors cannot move
133	 */
134	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135				PAGE_CACHE_SHIFT-PAGE_SHIFT);
136}
137
138static inline void shmem_dir_free(struct page *page)
139{
140	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141}
142
143static struct page **shmem_dir_map(struct page *page)
144{
145	return (struct page **)kmap_atomic(page, KM_USER0);
146}
147
148static inline void shmem_dir_unmap(struct page **dir)
149{
150	kunmap_atomic(dir, KM_USER0);
151}
152
153static swp_entry_t *shmem_swp_map(struct page *page)
154{
155	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156}
157
158static inline void shmem_swp_balance_unmap(void)
159{
160	/*
161	 * When passing a pointer to an i_direct entry, to code which
162	 * also handles indirect entries and so will shmem_swp_unmap,
163	 * we must arrange for the preempt count to remain in balance.
164	 * What kmap_atomic of a lowmem page does depends on config
165	 * and architecture, so pretend to kmap_atomic some lowmem page.
166	 */
167	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168}
169
170static inline void shmem_swp_unmap(swp_entry_t *entry)
171{
172	kunmap_atomic(entry, KM_USER1);
173}
174
175static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176{
177	return sb->s_fs_info;
178}
179
180/*
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
185 */
186static inline int shmem_acct_size(unsigned long flags, loff_t size)
187{
188	return (flags & VM_NORESERVE) ?
189		0 : security_vm_enough_memory_kern(VM_ACCT(size));
190}
191
192static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193{
194	if (!(flags & VM_NORESERVE))
195		vm_unacct_memory(VM_ACCT(size));
196}
197
198/*
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203 */
204static inline int shmem_acct_block(unsigned long flags)
205{
206	return (flags & VM_NORESERVE) ?
207		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
212	if (flags & VM_NORESERVE)
213		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214}
215
216static const struct super_operations shmem_ops;
217static const struct address_space_operations shmem_aops;
218static const struct file_operations shmem_file_operations;
219static const struct inode_operations shmem_inode_operations;
220static const struct inode_operations shmem_dir_inode_operations;
221static const struct inode_operations shmem_special_inode_operations;
222static const struct vm_operations_struct shmem_vm_ops;
223
224static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
225	.ra_pages	= 0,	/* No readahead */
226	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227};
228
229static LIST_HEAD(shmem_swaplist);
230static DEFINE_MUTEX(shmem_swaplist_mutex);
231
232static void shmem_free_blocks(struct inode *inode, long pages)
233{
234	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235	if (sbinfo->max_blocks) {
236		percpu_counter_add(&sbinfo->used_blocks, -pages);
237		spin_lock(&inode->i_lock);
238		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239		spin_unlock(&inode->i_lock);
240	}
241}
242
243static int shmem_reserve_inode(struct super_block *sb)
244{
245	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246	if (sbinfo->max_inodes) {
247		spin_lock(&sbinfo->stat_lock);
248		if (!sbinfo->free_inodes) {
249			spin_unlock(&sbinfo->stat_lock);
250			return -ENOSPC;
251		}
252		sbinfo->free_inodes--;
253		spin_unlock(&sbinfo->stat_lock);
254	}
255	return 0;
256}
257
258static void shmem_free_inode(struct super_block *sb)
259{
260	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261	if (sbinfo->max_inodes) {
262		spin_lock(&sbinfo->stat_lock);
263		sbinfo->free_inodes++;
264		spin_unlock(&sbinfo->stat_lock);
265	}
266}
267
268/**
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
271 *
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
274 *
275 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 *
278 * It has to be called with the spinlock held.
279 */
280static void shmem_recalc_inode(struct inode *inode)
281{
282	struct shmem_inode_info *info = SHMEM_I(inode);
283	long freed;
284
285	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286	if (freed > 0) {
287		info->alloced -= freed;
288		shmem_unacct_blocks(info->flags, freed);
289		shmem_free_blocks(inode, freed);
290	}
291}
292
293/**
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info:  info structure for the inode
296 * @index: index of the page to find
297 * @page:  optional page to add to the structure. Has to be preset to
298 *         all zeros
299 *
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
303 *
304 * The swap vector is organized the following way:
305 *
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
309 *
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
313 *
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
316 *
317 * i_indirect -> dir --> 16-19
318 * 	      |	     +-> 20-23
319 * 	      |
320 * 	      +-->dir2 --> 24-27
321 * 	      |	       +-> 28-31
322 * 	      |	       +-> 32-35
323 * 	      |	       +-> 36-39
324 * 	      |
325 * 	      +-->dir3 --> 40-43
326 * 	       	       +-> 44-47
327 * 	      	       +-> 48-51
328 * 	      	       +-> 52-55
329 */
330static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331{
332	unsigned long offset;
333	struct page **dir;
334	struct page *subdir;
335
336	if (index < SHMEM_NR_DIRECT) {
337		shmem_swp_balance_unmap();
338		return info->i_direct+index;
339	}
340	if (!info->i_indirect) {
341		if (page) {
342			info->i_indirect = *page;
343			*page = NULL;
344		}
345		return NULL;			/* need another page */
346	}
347
348	index -= SHMEM_NR_DIRECT;
349	offset = index % ENTRIES_PER_PAGE;
350	index /= ENTRIES_PER_PAGE;
351	dir = shmem_dir_map(info->i_indirect);
352
353	if (index >= ENTRIES_PER_PAGE/2) {
354		index -= ENTRIES_PER_PAGE/2;
355		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356		index %= ENTRIES_PER_PAGE;
357		subdir = *dir;
358		if (!subdir) {
359			if (page) {
360				*dir = *page;
361				*page = NULL;
362			}
363			shmem_dir_unmap(dir);
364			return NULL;		/* need another page */
365		}
366		shmem_dir_unmap(dir);
367		dir = shmem_dir_map(subdir);
368	}
369
370	dir += index;
371	subdir = *dir;
372	if (!subdir) {
373		if (!page || !(subdir = *page)) {
374			shmem_dir_unmap(dir);
375			return NULL;		/* need a page */
376		}
377		*dir = subdir;
378		*page = NULL;
379	}
380	shmem_dir_unmap(dir);
381	return shmem_swp_map(subdir) + offset;
382}
383
384static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385{
386	long incdec = value? 1: -1;
387
388	entry->val = value;
389	info->swapped += incdec;
390	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391		struct page *page = kmap_atomic_to_page(entry);
392		set_page_private(page, page_private(page) + incdec);
393	}
394}
395
396/**
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info:	info structure for the inode
399 * @index:	index of the page to find
400 * @sgp:	check and recheck i_size? skip allocation?
401 *
402 * If the entry does not exist, allocate it.
403 */
404static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405{
406	struct inode *inode = &info->vfs_inode;
407	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408	struct page *page = NULL;
409	swp_entry_t *entry;
410
411	if (sgp != SGP_WRITE &&
412	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413		return ERR_PTR(-EINVAL);
414
415	while (!(entry = shmem_swp_entry(info, index, &page))) {
416		if (sgp == SGP_READ)
417			return shmem_swp_map(ZERO_PAGE(0));
418		/*
419		 * Test used_blocks against 1 less max_blocks, since we have 1 data
420		 * page (and perhaps indirect index pages) yet to allocate:
421		 * a waste to allocate index if we cannot allocate data.
422		 */
423		if (sbinfo->max_blocks) {
424			if (percpu_counter_compare(&sbinfo->used_blocks,
425						sbinfo->max_blocks - 1) >= 0)
426				return ERR_PTR(-ENOSPC);
427			percpu_counter_inc(&sbinfo->used_blocks);
428			spin_lock(&inode->i_lock);
429			inode->i_blocks += BLOCKS_PER_PAGE;
430			spin_unlock(&inode->i_lock);
431		}
432
433		spin_unlock(&info->lock);
434		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
435		spin_lock(&info->lock);
436
437		if (!page) {
438			shmem_free_blocks(inode, 1);
439			return ERR_PTR(-ENOMEM);
440		}
441		if (sgp != SGP_WRITE &&
442		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
443			entry = ERR_PTR(-EINVAL);
444			break;
445		}
446		if (info->next_index <= index)
447			info->next_index = index + 1;
448	}
449	if (page) {
450		/* another task gave its page, or truncated the file */
451		shmem_free_blocks(inode, 1);
452		shmem_dir_free(page);
453	}
454	if (info->next_index <= index && !IS_ERR(entry))
455		info->next_index = index + 1;
456	return entry;
457}
458
459/**
460 * shmem_free_swp - free some swap entries in a directory
461 * @dir:        pointer to the directory
462 * @edir:       pointer after last entry of the directory
463 * @punch_lock: pointer to spinlock when needed for the holepunch case
464 */
465static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
466						spinlock_t *punch_lock)
467{
468	spinlock_t *punch_unlock = NULL;
469	swp_entry_t *ptr;
470	int freed = 0;
471
472	for (ptr = dir; ptr < edir; ptr++) {
473		if (ptr->val) {
474			if (unlikely(punch_lock)) {
475				punch_unlock = punch_lock;
476				punch_lock = NULL;
477				spin_lock(punch_unlock);
478				if (!ptr->val)
479					continue;
480			}
481			free_swap_and_cache(*ptr);
482			*ptr = (swp_entry_t){0};
483			freed++;
484		}
485	}
486	if (punch_unlock)
487		spin_unlock(punch_unlock);
488	return freed;
489}
490
491static int shmem_map_and_free_swp(struct page *subdir, int offset,
492		int limit, struct page ***dir, spinlock_t *punch_lock)
493{
494	swp_entry_t *ptr;
495	int freed = 0;
496
497	ptr = shmem_swp_map(subdir);
498	for (; offset < limit; offset += LATENCY_LIMIT) {
499		int size = limit - offset;
500		if (size > LATENCY_LIMIT)
501			size = LATENCY_LIMIT;
502		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
503							punch_lock);
504		if (need_resched()) {
505			shmem_swp_unmap(ptr);
506			if (*dir) {
507				shmem_dir_unmap(*dir);
508				*dir = NULL;
509			}
510			cond_resched();
511			ptr = shmem_swp_map(subdir);
512		}
513	}
514	shmem_swp_unmap(ptr);
515	return freed;
516}
517
518static void shmem_free_pages(struct list_head *next)
519{
520	struct page *page;
521	int freed = 0;
522
523	do {
524		page = container_of(next, struct page, lru);
525		next = next->next;
526		shmem_dir_free(page);
527		freed++;
528		if (freed >= LATENCY_LIMIT) {
529			cond_resched();
530			freed = 0;
531		}
532	} while (next);
533}
534
535static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
536{
537	struct shmem_inode_info *info = SHMEM_I(inode);
538	unsigned long idx;
539	unsigned long size;
540	unsigned long limit;
541	unsigned long stage;
542	unsigned long diroff;
543	struct page **dir;
544	struct page *topdir;
545	struct page *middir;
546	struct page *subdir;
547	swp_entry_t *ptr;
548	LIST_HEAD(pages_to_free);
549	long nr_pages_to_free = 0;
550	long nr_swaps_freed = 0;
551	int offset;
552	int freed;
553	int punch_hole;
554	spinlock_t *needs_lock;
555	spinlock_t *punch_lock;
556	unsigned long upper_limit;
557
558	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
560	if (idx >= info->next_index)
561		return;
562
563	spin_lock(&info->lock);
564	info->flags |= SHMEM_TRUNCATE;
565	if (likely(end == (loff_t) -1)) {
566		limit = info->next_index;
567		upper_limit = SHMEM_MAX_INDEX;
568		info->next_index = idx;
569		needs_lock = NULL;
570		punch_hole = 0;
571	} else {
572		if (end + 1 >= inode->i_size) {	/* we may free a little more */
573			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
574							PAGE_CACHE_SHIFT;
575			upper_limit = SHMEM_MAX_INDEX;
576		} else {
577			limit = (end + 1) >> PAGE_CACHE_SHIFT;
578			upper_limit = limit;
579		}
580		needs_lock = &info->lock;
581		punch_hole = 1;
582	}
583
584	topdir = info->i_indirect;
585	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
586		info->i_indirect = NULL;
587		nr_pages_to_free++;
588		list_add(&topdir->lru, &pages_to_free);
589	}
590	spin_unlock(&info->lock);
591
592	if (info->swapped && idx < SHMEM_NR_DIRECT) {
593		ptr = info->i_direct;
594		size = limit;
595		if (size > SHMEM_NR_DIRECT)
596			size = SHMEM_NR_DIRECT;
597		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
598	}
599
600	/*
601	 * If there are no indirect blocks or we are punching a hole
602	 * below indirect blocks, nothing to be done.
603	 */
604	if (!topdir || limit <= SHMEM_NR_DIRECT)
605		goto done2;
606
607	/*
608	 * The truncation case has already dropped info->lock, and we're safe
609	 * because i_size and next_index have already been lowered, preventing
610	 * access beyond.  But in the punch_hole case, we still need to take
611	 * the lock when updating the swap directory, because there might be
612	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613	 * shmem_writepage.  However, whenever we find we can remove a whole
614	 * directory page (not at the misaligned start or end of the range),
615	 * we first NULLify its pointer in the level above, and then have no
616	 * need to take the lock when updating its contents: needs_lock and
617	 * punch_lock (either pointing to info->lock or NULL) manage this.
618	 */
619
620	upper_limit -= SHMEM_NR_DIRECT;
621	limit -= SHMEM_NR_DIRECT;
622	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
623	offset = idx % ENTRIES_PER_PAGE;
624	idx -= offset;
625
626	dir = shmem_dir_map(topdir);
627	stage = ENTRIES_PER_PAGEPAGE/2;
628	if (idx < ENTRIES_PER_PAGEPAGE/2) {
629		middir = topdir;
630		diroff = idx/ENTRIES_PER_PAGE;
631	} else {
632		dir += ENTRIES_PER_PAGE/2;
633		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
634		while (stage <= idx)
635			stage += ENTRIES_PER_PAGEPAGE;
636		middir = *dir;
637		if (*dir) {
638			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
639				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
640			if (!diroff && !offset && upper_limit >= stage) {
641				if (needs_lock) {
642					spin_lock(needs_lock);
643					*dir = NULL;
644					spin_unlock(needs_lock);
645					needs_lock = NULL;
646				} else
647					*dir = NULL;
648				nr_pages_to_free++;
649				list_add(&middir->lru, &pages_to_free);
650			}
651			shmem_dir_unmap(dir);
652			dir = shmem_dir_map(middir);
653		} else {
654			diroff = 0;
655			offset = 0;
656			idx = stage;
657		}
658	}
659
660	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
661		if (unlikely(idx == stage)) {
662			shmem_dir_unmap(dir);
663			dir = shmem_dir_map(topdir) +
664			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
665			while (!*dir) {
666				dir++;
667				idx += ENTRIES_PER_PAGEPAGE;
668				if (idx >= limit)
669					goto done1;
670			}
671			stage = idx + ENTRIES_PER_PAGEPAGE;
672			middir = *dir;
673			if (punch_hole)
674				needs_lock = &info->lock;
675			if (upper_limit >= stage) {
676				if (needs_lock) {
677					spin_lock(needs_lock);
678					*dir = NULL;
679					spin_unlock(needs_lock);
680					needs_lock = NULL;
681				} else
682					*dir = NULL;
683				nr_pages_to_free++;
684				list_add(&middir->lru, &pages_to_free);
685			}
686			shmem_dir_unmap(dir);
687			cond_resched();
688			dir = shmem_dir_map(middir);
689			diroff = 0;
690		}
691		punch_lock = needs_lock;
692		subdir = dir[diroff];
693		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
694			if (needs_lock) {
695				spin_lock(needs_lock);
696				dir[diroff] = NULL;
697				spin_unlock(needs_lock);
698				punch_lock = NULL;
699			} else
700				dir[diroff] = NULL;
701			nr_pages_to_free++;
702			list_add(&subdir->lru, &pages_to_free);
703		}
704		if (subdir && page_private(subdir) /* has swap entries */) {
705			size = limit - idx;
706			if (size > ENTRIES_PER_PAGE)
707				size = ENTRIES_PER_PAGE;
708			freed = shmem_map_and_free_swp(subdir,
709					offset, size, &dir, punch_lock);
710			if (!dir)
711				dir = shmem_dir_map(middir);
712			nr_swaps_freed += freed;
713			if (offset || punch_lock) {
714				spin_lock(&info->lock);
715				set_page_private(subdir,
716					page_private(subdir) - freed);
717				spin_unlock(&info->lock);
718			} else
719				BUG_ON(page_private(subdir) != freed);
720		}
721		offset = 0;
722	}
723done1:
724	shmem_dir_unmap(dir);
725done2:
726	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
727		/*
728		 * Call truncate_inode_pages again: racing shmem_unuse_inode
729		 * may have swizzled a page in from swap since
730		 * truncate_pagecache or generic_delete_inode did it, before we
731		 * lowered next_index.  Also, though shmem_getpage checks
732		 * i_size before adding to cache, no recheck after: so fix the
733		 * narrow window there too.
734		 *
735		 * Recalling truncate_inode_pages_range and unmap_mapping_range
736		 * every time for punch_hole (which never got a chance to clear
737		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738		 * yet hardly ever necessary: try to optimize them out later.
739		 */
740		truncate_inode_pages_range(inode->i_mapping, start, end);
741		if (punch_hole)
742			unmap_mapping_range(inode->i_mapping, start,
743							end - start, 1);
744	}
745
746	spin_lock(&info->lock);
747	info->flags &= ~SHMEM_TRUNCATE;
748	info->swapped -= nr_swaps_freed;
749	if (nr_pages_to_free)
750		shmem_free_blocks(inode, nr_pages_to_free);
751	shmem_recalc_inode(inode);
752	spin_unlock(&info->lock);
753
754	/*
755	 * Empty swap vector directory pages to be freed?
756	 */
757	if (!list_empty(&pages_to_free)) {
758		pages_to_free.prev->next = NULL;
759		shmem_free_pages(pages_to_free.next);
760	}
761}
762
763static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
764{
765	struct inode *inode = dentry->d_inode;
766	loff_t newsize = attr->ia_size;
767	int error;
768
769	error = inode_change_ok(inode, attr);
770	if (error)
771		return error;
772
773	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
774					&& newsize != inode->i_size) {
775		struct page *page = NULL;
776
777		if (newsize < inode->i_size) {
778			/*
779			 * If truncating down to a partial page, then
780			 * if that page is already allocated, hold it
781			 * in memory until the truncation is over, so
782			 * truncate_partial_page cannot miss it were
783			 * it assigned to swap.
784			 */
785			if (newsize & (PAGE_CACHE_SIZE-1)) {
786				(void) shmem_getpage(inode,
787					newsize >> PAGE_CACHE_SHIFT,
788						&page, SGP_READ, NULL);
789				if (page)
790					unlock_page(page);
791			}
792			/*
793			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794			 * detect if any pages might have been added to cache
795			 * after truncate_inode_pages.  But we needn't bother
796			 * if it's being fully truncated to zero-length: the
797			 * nrpages check is efficient enough in that case.
798			 */
799			if (newsize) {
800				struct shmem_inode_info *info = SHMEM_I(inode);
801				spin_lock(&info->lock);
802				info->flags &= ~SHMEM_PAGEIN;
803				spin_unlock(&info->lock);
804			}
805		}
806
807		/* XXX(truncate): truncate_setsize should be called last */
808		truncate_setsize(inode, newsize);
809		if (page)
810			page_cache_release(page);
811		shmem_truncate_range(inode, newsize, (loff_t)-1);
812	}
813
814	setattr_copy(inode, attr);
815#ifdef CONFIG_TMPFS_POSIX_ACL
816	if (attr->ia_valid & ATTR_MODE)
817		error = generic_acl_chmod(inode);
818#endif
819	return error;
820}
821
822static void shmem_evict_inode(struct inode *inode)
823{
824	struct shmem_inode_info *info = SHMEM_I(inode);
825
826	if (inode->i_mapping->a_ops == &shmem_aops) {
827		truncate_inode_pages(inode->i_mapping, 0);
828		shmem_unacct_size(info->flags, inode->i_size);
829		inode->i_size = 0;
830		shmem_truncate_range(inode, 0, (loff_t)-1);
831		if (!list_empty(&info->swaplist)) {
832			mutex_lock(&shmem_swaplist_mutex);
833			list_del_init(&info->swaplist);
834			mutex_unlock(&shmem_swaplist_mutex);
835		}
836	}
837	BUG_ON(inode->i_blocks);
838	shmem_free_inode(inode->i_sb);
839	end_writeback(inode);
840}
841
842static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
843{
844	swp_entry_t *ptr;
845
846	for (ptr = dir; ptr < edir; ptr++) {
847		if (ptr->val == entry.val)
848			return ptr - dir;
849	}
850	return -1;
851}
852
853static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
854{
855	struct address_space *mapping;
856	unsigned long idx;
857	unsigned long size;
858	unsigned long limit;
859	unsigned long stage;
860	struct page **dir;
861	struct page *subdir;
862	swp_entry_t *ptr;
863	int offset;
864	int error;
865
866	idx = 0;
867	ptr = info->i_direct;
868	spin_lock(&info->lock);
869	if (!info->swapped) {
870		list_del_init(&info->swaplist);
871		goto lost2;
872	}
873	limit = info->next_index;
874	size = limit;
875	if (size > SHMEM_NR_DIRECT)
876		size = SHMEM_NR_DIRECT;
877	offset = shmem_find_swp(entry, ptr, ptr+size);
878	if (offset >= 0) {
879		shmem_swp_balance_unmap();
880		goto found;
881	}
882	if (!info->i_indirect)
883		goto lost2;
884
885	dir = shmem_dir_map(info->i_indirect);
886	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
887
888	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
889		if (unlikely(idx == stage)) {
890			shmem_dir_unmap(dir-1);
891			if (cond_resched_lock(&info->lock)) {
892				/* check it has not been truncated */
893				if (limit > info->next_index) {
894					limit = info->next_index;
895					if (idx >= limit)
896						goto lost2;
897				}
898			}
899			dir = shmem_dir_map(info->i_indirect) +
900			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
901			while (!*dir) {
902				dir++;
903				idx += ENTRIES_PER_PAGEPAGE;
904				if (idx >= limit)
905					goto lost1;
906			}
907			stage = idx + ENTRIES_PER_PAGEPAGE;
908			subdir = *dir;
909			shmem_dir_unmap(dir);
910			dir = shmem_dir_map(subdir);
911		}
912		subdir = *dir;
913		if (subdir && page_private(subdir)) {
914			ptr = shmem_swp_map(subdir);
915			size = limit - idx;
916			if (size > ENTRIES_PER_PAGE)
917				size = ENTRIES_PER_PAGE;
918			offset = shmem_find_swp(entry, ptr, ptr+size);
919			shmem_swp_unmap(ptr);
920			if (offset >= 0) {
921				shmem_dir_unmap(dir);
922				ptr = shmem_swp_map(subdir);
923				goto found;
924			}
925		}
926	}
927lost1:
928	shmem_dir_unmap(dir-1);
929lost2:
930	spin_unlock(&info->lock);
931	return 0;
932found:
933	idx += offset;
934	ptr += offset;
935
936	/*
937	 * Move _head_ to start search for next from here.
938	 * But be careful: shmem_evict_inode checks list_empty without taking
939	 * mutex, and there's an instant in list_move_tail when info->swaplist
940	 * would appear empty, if it were the only one on shmem_swaplist.  We
941	 * could avoid doing it if inode NULL; or use this minor optimization.
942	 */
943	if (shmem_swaplist.next != &info->swaplist)
944		list_move_tail(&shmem_swaplist, &info->swaplist);
945
946	/*
947	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
948	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
949	 * beneath us (pagelock doesn't help until the page is in pagecache).
950	 */
951	mapping = info->vfs_inode.i_mapping;
952	error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
953	/* which does mem_cgroup_uncharge_cache_page on error */
954
955	if (error == -EEXIST) {
956		struct page *filepage = find_get_page(mapping, idx);
957		error = 1;
958		if (filepage) {
959			/*
960			 * There might be a more uptodate page coming down
961			 * from a stacked writepage: forget our swappage if so.
962			 */
963			if (PageUptodate(filepage))
964				error = 0;
965			page_cache_release(filepage);
966		}
967	}
968	if (!error) {
969		delete_from_swap_cache(page);
970		set_page_dirty(page);
971		info->flags |= SHMEM_PAGEIN;
972		shmem_swp_set(info, ptr, 0);
973		swap_free(entry);
974		error = 1;	/* not an error, but entry was found */
975	}
976	shmem_swp_unmap(ptr);
977	spin_unlock(&info->lock);
978	return error;
979}
980
981/*
982 * shmem_unuse() search for an eventually swapped out shmem page.
983 */
984int shmem_unuse(swp_entry_t entry, struct page *page)
985{
986	struct list_head *p, *next;
987	struct shmem_inode_info *info;
988	int found = 0;
989	int error;
990
991	/*
992	 * Charge page using GFP_KERNEL while we can wait, before taking
993	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
994	 * Charged back to the user (not to caller) when swap account is used.
995	 * add_to_page_cache() will be called with GFP_NOWAIT.
996	 */
997	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
998	if (error)
999		goto out;
1000	/*
1001	 * Try to preload while we can wait, to not make a habit of
1002	 * draining atomic reserves; but don't latch on to this cpu,
1003	 * it's okay if sometimes we get rescheduled after this.
1004	 */
1005	error = radix_tree_preload(GFP_KERNEL);
1006	if (error)
1007		goto uncharge;
1008	radix_tree_preload_end();
1009
1010	mutex_lock(&shmem_swaplist_mutex);
1011	list_for_each_safe(p, next, &shmem_swaplist) {
1012		info = list_entry(p, struct shmem_inode_info, swaplist);
1013		found = shmem_unuse_inode(info, entry, page);
1014		cond_resched();
1015		if (found)
1016			break;
1017	}
1018	mutex_unlock(&shmem_swaplist_mutex);
1019
1020uncharge:
1021	if (!found)
1022		mem_cgroup_uncharge_cache_page(page);
1023	if (found < 0)
1024		error = found;
1025out:
1026	unlock_page(page);
1027	page_cache_release(page);
1028	return error;
1029}
1030
1031/*
1032 * Move the page from the page cache to the swap cache.
1033 */
1034static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1035{
1036	struct shmem_inode_info *info;
1037	swp_entry_t *entry, swap;
1038	struct address_space *mapping;
1039	unsigned long index;
1040	struct inode *inode;
1041
1042	BUG_ON(!PageLocked(page));
1043	mapping = page->mapping;
1044	index = page->index;
1045	inode = mapping->host;
1046	info = SHMEM_I(inode);
1047	if (info->flags & VM_LOCKED)
1048		goto redirty;
1049	if (!total_swap_pages)
1050		goto redirty;
1051
1052	/*
1053	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1054	 * sync from ever calling shmem_writepage; but a stacking filesystem
1055	 * may use the ->writepage of its underlying filesystem, in which case
1056	 * tmpfs should write out to swap only in response to memory pressure,
1057	 * and not for the writeback threads or sync.  However, in those cases,
1058	 * we do still want to check if there's a redundant swappage to be
1059	 * discarded.
1060	 */
1061	if (wbc->for_reclaim)
1062		swap = get_swap_page();
1063	else
1064		swap.val = 0;
1065
1066	/*
1067	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1068	 * if it's not already there.  Do it now because we cannot take
1069	 * mutex while holding spinlock, and must do so before the page
1070	 * is moved to swap cache, when its pagelock no longer protects
1071	 * the inode from eviction.  But don't unlock the mutex until
1072	 * we've taken the spinlock, because shmem_unuse_inode() will
1073	 * prune a !swapped inode from the swaplist under both locks.
1074	 */
1075	if (swap.val) {
1076		mutex_lock(&shmem_swaplist_mutex);
1077		if (list_empty(&info->swaplist))
1078			list_add_tail(&info->swaplist, &shmem_swaplist);
1079	}
1080
1081	spin_lock(&info->lock);
1082	if (swap.val)
1083		mutex_unlock(&shmem_swaplist_mutex);
1084
1085	if (index >= info->next_index) {
1086		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1087		goto unlock;
1088	}
1089	entry = shmem_swp_entry(info, index, NULL);
1090	if (entry->val) {
1091		/*
1092		 * The more uptodate page coming down from a stacked
1093		 * writepage should replace our old swappage.
1094		 */
1095		free_swap_and_cache(*entry);
1096		shmem_swp_set(info, entry, 0);
1097	}
1098	shmem_recalc_inode(inode);
1099
1100	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1101		delete_from_page_cache(page);
1102		shmem_swp_set(info, entry, swap.val);
1103		shmem_swp_unmap(entry);
1104		spin_unlock(&info->lock);
1105		swap_shmem_alloc(swap);
1106		BUG_ON(page_mapped(page));
1107		swap_writepage(page, wbc);
1108		return 0;
1109	}
1110
1111	shmem_swp_unmap(entry);
1112unlock:
1113	spin_unlock(&info->lock);
1114	/*
1115	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1116	 * clear SWAP_HAS_CACHE flag.
1117	 */
1118	swapcache_free(swap, NULL);
1119redirty:
1120	set_page_dirty(page);
1121	if (wbc->for_reclaim)
1122		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1123	unlock_page(page);
1124	return 0;
1125}
1126
1127#ifdef CONFIG_NUMA
1128#ifdef CONFIG_TMPFS
1129static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1130{
1131	char buffer[64];
1132
1133	if (!mpol || mpol->mode == MPOL_DEFAULT)
1134		return;		/* show nothing */
1135
1136	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1137
1138	seq_printf(seq, ",mpol=%s", buffer);
1139}
1140
1141static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1142{
1143	struct mempolicy *mpol = NULL;
1144	if (sbinfo->mpol) {
1145		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1146		mpol = sbinfo->mpol;
1147		mpol_get(mpol);
1148		spin_unlock(&sbinfo->stat_lock);
1149	}
1150	return mpol;
1151}
1152#endif /* CONFIG_TMPFS */
1153
1154static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1155			struct shmem_inode_info *info, unsigned long idx)
1156{
1157	struct mempolicy mpol, *spol;
1158	struct vm_area_struct pvma;
1159	struct page *page;
1160
1161	spol = mpol_cond_copy(&mpol,
1162				mpol_shared_policy_lookup(&info->policy, idx));
1163
1164	/* Create a pseudo vma that just contains the policy */
1165	pvma.vm_start = 0;
1166	pvma.vm_pgoff = idx;
1167	pvma.vm_ops = NULL;
1168	pvma.vm_policy = spol;
1169	page = swapin_readahead(entry, gfp, &pvma, 0);
1170	return page;
1171}
1172
1173static struct page *shmem_alloc_page(gfp_t gfp,
1174			struct shmem_inode_info *info, unsigned long idx)
1175{
1176	struct vm_area_struct pvma;
1177
1178	/* Create a pseudo vma that just contains the policy */
1179	pvma.vm_start = 0;
1180	pvma.vm_pgoff = idx;
1181	pvma.vm_ops = NULL;
1182	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1183
1184	/*
1185	 * alloc_page_vma() will drop the shared policy reference
1186	 */
1187	return alloc_page_vma(gfp, &pvma, 0);
1188}
1189#else /* !CONFIG_NUMA */
1190#ifdef CONFIG_TMPFS
1191static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1192{
1193}
1194#endif /* CONFIG_TMPFS */
1195
1196static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1197			struct shmem_inode_info *info, unsigned long idx)
1198{
1199	return swapin_readahead(entry, gfp, NULL, 0);
1200}
1201
1202static inline struct page *shmem_alloc_page(gfp_t gfp,
1203			struct shmem_inode_info *info, unsigned long idx)
1204{
1205	return alloc_page(gfp);
1206}
1207#endif /* CONFIG_NUMA */
1208
1209#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1210static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1211{
1212	return NULL;
1213}
1214#endif
1215
1216/*
1217 * shmem_getpage - either get the page from swap or allocate a new one
1218 *
1219 * If we allocate a new one we do not mark it dirty. That's up to the
1220 * vm. If we swap it in we mark it dirty since we also free the swap
1221 * entry since a page cannot live in both the swap and page cache
1222 */
1223static int shmem_getpage(struct inode *inode, unsigned long idx,
1224			struct page **pagep, enum sgp_type sgp, int *type)
1225{
1226	struct address_space *mapping = inode->i_mapping;
1227	struct shmem_inode_info *info = SHMEM_I(inode);
1228	struct shmem_sb_info *sbinfo;
1229	struct page *filepage = *pagep;
1230	struct page *swappage;
1231	struct page *prealloc_page = NULL;
1232	swp_entry_t *entry;
1233	swp_entry_t swap;
1234	gfp_t gfp;
1235	int error;
1236
1237	if (idx >= SHMEM_MAX_INDEX)
1238		return -EFBIG;
1239
1240	if (type)
1241		*type = 0;
1242
1243	/*
1244	 * Normally, filepage is NULL on entry, and either found
1245	 * uptodate immediately, or allocated and zeroed, or read
1246	 * in under swappage, which is then assigned to filepage.
1247	 * But shmem_readpage (required for splice) passes in a locked
1248	 * filepage, which may be found not uptodate by other callers
1249	 * too, and may need to be copied from the swappage read in.
1250	 */
1251repeat:
1252	if (!filepage)
1253		filepage = find_lock_page(mapping, idx);
1254	if (filepage && PageUptodate(filepage))
1255		goto done;
1256	gfp = mapping_gfp_mask(mapping);
1257	if (!filepage) {
1258		/*
1259		 * Try to preload while we can wait, to not make a habit of
1260		 * draining atomic reserves; but don't latch on to this cpu.
1261		 */
1262		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1263		if (error)
1264			goto failed;
1265		radix_tree_preload_end();
1266		if (sgp != SGP_READ && !prealloc_page) {
1267			/* We don't care if this fails */
1268			prealloc_page = shmem_alloc_page(gfp, info, idx);
1269			if (prealloc_page) {
1270				if (mem_cgroup_cache_charge(prealloc_page,
1271						current->mm, GFP_KERNEL)) {
1272					page_cache_release(prealloc_page);
1273					prealloc_page = NULL;
1274				}
1275			}
1276		}
1277	}
1278	error = 0;
1279
1280	spin_lock(&info->lock);
1281	shmem_recalc_inode(inode);
1282	entry = shmem_swp_alloc(info, idx, sgp);
1283	if (IS_ERR(entry)) {
1284		spin_unlock(&info->lock);
1285		error = PTR_ERR(entry);
1286		goto failed;
1287	}
1288	swap = *entry;
1289
1290	if (swap.val) {
1291		/* Look it up and read it in.. */
1292		swappage = lookup_swap_cache(swap);
1293		if (!swappage) {
1294			shmem_swp_unmap(entry);
1295			/* here we actually do the io */
1296			if (type && !(*type & VM_FAULT_MAJOR)) {
1297				__count_vm_event(PGMAJFAULT);
1298				*type |= VM_FAULT_MAJOR;
1299			}
1300			spin_unlock(&info->lock);
1301			swappage = shmem_swapin(swap, gfp, info, idx);
1302			if (!swappage) {
1303				spin_lock(&info->lock);
1304				entry = shmem_swp_alloc(info, idx, sgp);
1305				if (IS_ERR(entry))
1306					error = PTR_ERR(entry);
1307				else {
1308					if (entry->val == swap.val)
1309						error = -ENOMEM;
1310					shmem_swp_unmap(entry);
1311				}
1312				spin_unlock(&info->lock);
1313				if (error)
1314					goto failed;
1315				goto repeat;
1316			}
1317			wait_on_page_locked(swappage);
1318			page_cache_release(swappage);
1319			goto repeat;
1320		}
1321
1322		/* We have to do this with page locked to prevent races */
1323		if (!trylock_page(swappage)) {
1324			shmem_swp_unmap(entry);
1325			spin_unlock(&info->lock);
1326			wait_on_page_locked(swappage);
1327			page_cache_release(swappage);
1328			goto repeat;
1329		}
1330		if (PageWriteback(swappage)) {
1331			shmem_swp_unmap(entry);
1332			spin_unlock(&info->lock);
1333			wait_on_page_writeback(swappage);
1334			unlock_page(swappage);
1335			page_cache_release(swappage);
1336			goto repeat;
1337		}
1338		if (!PageUptodate(swappage)) {
1339			shmem_swp_unmap(entry);
1340			spin_unlock(&info->lock);
1341			unlock_page(swappage);
1342			page_cache_release(swappage);
1343			error = -EIO;
1344			goto failed;
1345		}
1346
1347		if (filepage) {
1348			shmem_swp_set(info, entry, 0);
1349			shmem_swp_unmap(entry);
1350			delete_from_swap_cache(swappage);
1351			spin_unlock(&info->lock);
1352			copy_highpage(filepage, swappage);
1353			unlock_page(swappage);
1354			page_cache_release(swappage);
1355			flush_dcache_page(filepage);
1356			SetPageUptodate(filepage);
1357			set_page_dirty(filepage);
1358			swap_free(swap);
1359		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1360					idx, GFP_NOWAIT))) {
1361			info->flags |= SHMEM_PAGEIN;
1362			shmem_swp_set(info, entry, 0);
1363			shmem_swp_unmap(entry);
1364			delete_from_swap_cache(swappage);
1365			spin_unlock(&info->lock);
1366			filepage = swappage;
1367			set_page_dirty(filepage);
1368			swap_free(swap);
1369		} else {
1370			shmem_swp_unmap(entry);
1371			spin_unlock(&info->lock);
1372			if (error == -ENOMEM) {
1373				/*
1374				 * reclaim from proper memory cgroup and
1375				 * call memcg's OOM if needed.
1376				 */
1377				error = mem_cgroup_shmem_charge_fallback(
1378								swappage,
1379								current->mm,
1380								gfp);
1381				if (error) {
1382					unlock_page(swappage);
1383					page_cache_release(swappage);
1384					goto failed;
1385				}
1386			}
1387			unlock_page(swappage);
1388			page_cache_release(swappage);
1389			goto repeat;
1390		}
1391	} else if (sgp == SGP_READ && !filepage) {
1392		shmem_swp_unmap(entry);
1393		filepage = find_get_page(mapping, idx);
1394		if (filepage &&
1395		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1396			spin_unlock(&info->lock);
1397			wait_on_page_locked(filepage);
1398			page_cache_release(filepage);
1399			filepage = NULL;
1400			goto repeat;
1401		}
1402		spin_unlock(&info->lock);
1403	} else {
1404		shmem_swp_unmap(entry);
1405		sbinfo = SHMEM_SB(inode->i_sb);
1406		if (sbinfo->max_blocks) {
1407			if (percpu_counter_compare(&sbinfo->used_blocks,
1408						sbinfo->max_blocks) >= 0 ||
1409			    shmem_acct_block(info->flags))
1410				goto nospace;
1411			percpu_counter_inc(&sbinfo->used_blocks);
1412			spin_lock(&inode->i_lock);
1413			inode->i_blocks += BLOCKS_PER_PAGE;
1414			spin_unlock(&inode->i_lock);
1415		} else if (shmem_acct_block(info->flags))
1416			goto nospace;
1417
1418		if (!filepage) {
1419			int ret;
1420
1421			if (!prealloc_page) {
1422				spin_unlock(&info->lock);
1423				filepage = shmem_alloc_page(gfp, info, idx);
1424				if (!filepage) {
1425					shmem_unacct_blocks(info->flags, 1);
1426					shmem_free_blocks(inode, 1);
1427					error = -ENOMEM;
1428					goto failed;
1429				}
1430				SetPageSwapBacked(filepage);
1431
1432				/*
1433				 * Precharge page while we can wait, compensate
1434				 * after
1435				 */
1436				error = mem_cgroup_cache_charge(filepage,
1437					current->mm, GFP_KERNEL);
1438				if (error) {
1439					page_cache_release(filepage);
1440					shmem_unacct_blocks(info->flags, 1);
1441					shmem_free_blocks(inode, 1);
1442					filepage = NULL;
1443					goto failed;
1444				}
1445
1446				spin_lock(&info->lock);
1447			} else {
1448				filepage = prealloc_page;
1449				prealloc_page = NULL;
1450				SetPageSwapBacked(filepage);
1451			}
1452
1453			entry = shmem_swp_alloc(info, idx, sgp);
1454			if (IS_ERR(entry))
1455				error = PTR_ERR(entry);
1456			else {
1457				swap = *entry;
1458				shmem_swp_unmap(entry);
1459			}
1460			ret = error || swap.val;
1461			if (ret)
1462				mem_cgroup_uncharge_cache_page(filepage);
1463			else
1464				ret = add_to_page_cache_lru(filepage, mapping,
1465						idx, GFP_NOWAIT);
1466			/*
1467			 * At add_to_page_cache_lru() failure, uncharge will
1468			 * be done automatically.
1469			 */
1470			if (ret) {
1471				spin_unlock(&info->lock);
1472				page_cache_release(filepage);
1473				shmem_unacct_blocks(info->flags, 1);
1474				shmem_free_blocks(inode, 1);
1475				filepage = NULL;
1476				if (error)
1477					goto failed;
1478				goto repeat;
1479			}
1480			info->flags |= SHMEM_PAGEIN;
1481		}
1482
1483		info->alloced++;
1484		spin_unlock(&info->lock);
1485		clear_highpage(filepage);
1486		flush_dcache_page(filepage);
1487		SetPageUptodate(filepage);
1488		if (sgp == SGP_DIRTY)
1489			set_page_dirty(filepage);
1490	}
1491done:
1492	*pagep = filepage;
1493	error = 0;
1494	goto out;
1495
1496nospace:
1497	/*
1498	 * Perhaps the page was brought in from swap between find_lock_page
1499	 * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1500	 * but must also avoid reporting a spurious ENOSPC while working on a
1501	 * full tmpfs.  (When filepage has been passed in to shmem_getpage, it
1502	 * is already in page cache, which prevents this race from occurring.)
1503	 */
1504	if (!filepage) {
1505		struct page *page = find_get_page(mapping, idx);
1506		if (page) {
1507			spin_unlock(&info->lock);
1508			page_cache_release(page);
1509			goto repeat;
1510		}
1511	}
1512	spin_unlock(&info->lock);
1513	error = -ENOSPC;
1514failed:
1515	if (*pagep != filepage) {
1516		unlock_page(filepage);
1517		page_cache_release(filepage);
1518	}
1519out:
1520	if (prealloc_page) {
1521		mem_cgroup_uncharge_cache_page(prealloc_page);
1522		page_cache_release(prealloc_page);
1523	}
1524	return error;
1525}
1526
1527static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1528{
1529	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1530	int error;
1531	int ret;
1532
1533	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1534		return VM_FAULT_SIGBUS;
1535
1536	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1537	if (error)
1538		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1539
1540	return ret | VM_FAULT_LOCKED;
1541}
1542
1543#ifdef CONFIG_NUMA
1544static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1545{
1546	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1547	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1548}
1549
1550static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1551					  unsigned long addr)
1552{
1553	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1554	unsigned long idx;
1555
1556	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1557	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1558}
1559#endif
1560
1561int shmem_lock(struct file *file, int lock, struct user_struct *user)
1562{
1563	struct inode *inode = file->f_path.dentry->d_inode;
1564	struct shmem_inode_info *info = SHMEM_I(inode);
1565	int retval = -ENOMEM;
1566
1567	spin_lock(&info->lock);
1568	if (lock && !(info->flags & VM_LOCKED)) {
1569		if (!user_shm_lock(inode->i_size, user))
1570			goto out_nomem;
1571		info->flags |= VM_LOCKED;
1572		mapping_set_unevictable(file->f_mapping);
1573	}
1574	if (!lock && (info->flags & VM_LOCKED) && user) {
1575		user_shm_unlock(inode->i_size, user);
1576		info->flags &= ~VM_LOCKED;
1577		mapping_clear_unevictable(file->f_mapping);
1578		scan_mapping_unevictable_pages(file->f_mapping);
1579	}
1580	retval = 0;
1581
1582out_nomem:
1583	spin_unlock(&info->lock);
1584	return retval;
1585}
1586
1587static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1588{
1589	file_accessed(file);
1590	vma->vm_ops = &shmem_vm_ops;
1591	vma->vm_flags |= VM_CAN_NONLINEAR;
1592	return 0;
1593}
1594
1595static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1596				     int mode, dev_t dev, unsigned long flags)
1597{
1598	struct inode *inode;
1599	struct shmem_inode_info *info;
1600	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1601
1602	if (shmem_reserve_inode(sb))
1603		return NULL;
1604
1605	inode = new_inode(sb);
1606	if (inode) {
1607		inode->i_ino = get_next_ino();
1608		inode_init_owner(inode, dir, mode);
1609		inode->i_blocks = 0;
1610		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1611		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1612		inode->i_generation = get_seconds();
1613		info = SHMEM_I(inode);
1614		memset(info, 0, (char *)inode - (char *)info);
1615		spin_lock_init(&info->lock);
1616		info->flags = flags & VM_NORESERVE;
1617		INIT_LIST_HEAD(&info->swaplist);
1618		cache_no_acl(inode);
1619
1620		switch (mode & S_IFMT) {
1621		default:
1622			inode->i_op = &shmem_special_inode_operations;
1623			init_special_inode(inode, mode, dev);
1624			break;
1625		case S_IFREG:
1626			inode->i_mapping->a_ops = &shmem_aops;
1627			inode->i_op = &shmem_inode_operations;
1628			inode->i_fop = &shmem_file_operations;
1629			mpol_shared_policy_init(&info->policy,
1630						 shmem_get_sbmpol(sbinfo));
1631			break;
1632		case S_IFDIR:
1633			inc_nlink(inode);
1634			/* Some things misbehave if size == 0 on a directory */
1635			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1636			inode->i_op = &shmem_dir_inode_operations;
1637			inode->i_fop = &simple_dir_operations;
1638			break;
1639		case S_IFLNK:
1640			/*
1641			 * Must not load anything in the rbtree,
1642			 * mpol_free_shared_policy will not be called.
1643			 */
1644			mpol_shared_policy_init(&info->policy, NULL);
1645			break;
1646		}
1647	} else
1648		shmem_free_inode(sb);
1649	return inode;
1650}
1651
1652#ifdef CONFIG_TMPFS
1653static const struct inode_operations shmem_symlink_inode_operations;
1654static const struct inode_operations shmem_symlink_inline_operations;
1655
1656/*
1657 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1658 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1659 * below the loop driver, in the generic fashion that many filesystems support.
1660 */
1661static int shmem_readpage(struct file *file, struct page *page)
1662{
1663	struct inode *inode = page->mapping->host;
1664	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1665	unlock_page(page);
1666	return error;
1667}
1668
1669static int
1670shmem_write_begin(struct file *file, struct address_space *mapping,
1671			loff_t pos, unsigned len, unsigned flags,
1672			struct page **pagep, void **fsdata)
1673{
1674	struct inode *inode = mapping->host;
1675	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1676	*pagep = NULL;
1677	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1678}
1679
1680static int
1681shmem_write_end(struct file *file, struct address_space *mapping,
1682			loff_t pos, unsigned len, unsigned copied,
1683			struct page *page, void *fsdata)
1684{
1685	struct inode *inode = mapping->host;
1686
1687	if (pos + copied > inode->i_size)
1688		i_size_write(inode, pos + copied);
1689
1690	set_page_dirty(page);
1691	unlock_page(page);
1692	page_cache_release(page);
1693
1694	return copied;
1695}
1696
1697static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1698{
1699	struct inode *inode = filp->f_path.dentry->d_inode;
1700	struct address_space *mapping = inode->i_mapping;
1701	unsigned long index, offset;
1702	enum sgp_type sgp = SGP_READ;
1703
1704	/*
1705	 * Might this read be for a stacking filesystem?  Then when reading
1706	 * holes of a sparse file, we actually need to allocate those pages,
1707	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1708	 */
1709	if (segment_eq(get_fs(), KERNEL_DS))
1710		sgp = SGP_DIRTY;
1711
1712	index = *ppos >> PAGE_CACHE_SHIFT;
1713	offset = *ppos & ~PAGE_CACHE_MASK;
1714
1715	for (;;) {
1716		struct page *page = NULL;
1717		unsigned long end_index, nr, ret;
1718		loff_t i_size = i_size_read(inode);
1719
1720		end_index = i_size >> PAGE_CACHE_SHIFT;
1721		if (index > end_index)
1722			break;
1723		if (index == end_index) {
1724			nr = i_size & ~PAGE_CACHE_MASK;
1725			if (nr <= offset)
1726				break;
1727		}
1728
1729		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1730		if (desc->error) {
1731			if (desc->error == -EINVAL)
1732				desc->error = 0;
1733			break;
1734		}
1735		if (page)
1736			unlock_page(page);
1737
1738		/*
1739		 * We must evaluate after, since reads (unlike writes)
1740		 * are called without i_mutex protection against truncate
1741		 */
1742		nr = PAGE_CACHE_SIZE;
1743		i_size = i_size_read(inode);
1744		end_index = i_size >> PAGE_CACHE_SHIFT;
1745		if (index == end_index) {
1746			nr = i_size & ~PAGE_CACHE_MASK;
1747			if (nr <= offset) {
1748				if (page)
1749					page_cache_release(page);
1750				break;
1751			}
1752		}
1753		nr -= offset;
1754
1755		if (page) {
1756			/*
1757			 * If users can be writing to this page using arbitrary
1758			 * virtual addresses, take care about potential aliasing
1759			 * before reading the page on the kernel side.
1760			 */
1761			if (mapping_writably_mapped(mapping))
1762				flush_dcache_page(page);
1763			/*
1764			 * Mark the page accessed if we read the beginning.
1765			 */
1766			if (!offset)
1767				mark_page_accessed(page);
1768		} else {
1769			page = ZERO_PAGE(0);
1770			page_cache_get(page);
1771		}
1772
1773		/*
1774		 * Ok, we have the page, and it's up-to-date, so
1775		 * now we can copy it to user space...
1776		 *
1777		 * The actor routine returns how many bytes were actually used..
1778		 * NOTE! This may not be the same as how much of a user buffer
1779		 * we filled up (we may be padding etc), so we can only update
1780		 * "pos" here (the actor routine has to update the user buffer
1781		 * pointers and the remaining count).
1782		 */
1783		ret = actor(desc, page, offset, nr);
1784		offset += ret;
1785		index += offset >> PAGE_CACHE_SHIFT;
1786		offset &= ~PAGE_CACHE_MASK;
1787
1788		page_cache_release(page);
1789		if (ret != nr || !desc->count)
1790			break;
1791
1792		cond_resched();
1793	}
1794
1795	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1796	file_accessed(filp);
1797}
1798
1799static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1800		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1801{
1802	struct file *filp = iocb->ki_filp;
1803	ssize_t retval;
1804	unsigned long seg;
1805	size_t count;
1806	loff_t *ppos = &iocb->ki_pos;
1807
1808	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1809	if (retval)
1810		return retval;
1811
1812	for (seg = 0; seg < nr_segs; seg++) {
1813		read_descriptor_t desc;
1814
1815		desc.written = 0;
1816		desc.arg.buf = iov[seg].iov_base;
1817		desc.count = iov[seg].iov_len;
1818		if (desc.count == 0)
1819			continue;
1820		desc.error = 0;
1821		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1822		retval += desc.written;
1823		if (desc.error) {
1824			retval = retval ?: desc.error;
1825			break;
1826		}
1827		if (desc.count > 0)
1828			break;
1829	}
1830	return retval;
1831}
1832
1833static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1834{
1835	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1836
1837	buf->f_type = TMPFS_MAGIC;
1838	buf->f_bsize = PAGE_CACHE_SIZE;
1839	buf->f_namelen = NAME_MAX;
1840	if (sbinfo->max_blocks) {
1841		buf->f_blocks = sbinfo->max_blocks;
1842		buf->f_bavail = buf->f_bfree =
1843				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1844	}
1845	if (sbinfo->max_inodes) {
1846		buf->f_files = sbinfo->max_inodes;
1847		buf->f_ffree = sbinfo->free_inodes;
1848	}
1849	/* else leave those fields 0 like simple_statfs */
1850	return 0;
1851}
1852
1853/*
1854 * File creation. Allocate an inode, and we're done..
1855 */
1856static int
1857shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1858{
1859	struct inode *inode;
1860	int error = -ENOSPC;
1861
1862	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1863	if (inode) {
1864		error = security_inode_init_security(inode, dir,
1865						     &dentry->d_name, NULL,
1866						     NULL, NULL);
1867		if (error) {
1868			if (error != -EOPNOTSUPP) {
1869				iput(inode);
1870				return error;
1871			}
1872		}
1873#ifdef CONFIG_TMPFS_POSIX_ACL
1874		error = generic_acl_init(inode, dir);
1875		if (error) {
1876			iput(inode);
1877			return error;
1878		}
1879#else
1880		error = 0;
1881#endif
1882		dir->i_size += BOGO_DIRENT_SIZE;
1883		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1884		d_instantiate(dentry, inode);
1885		dget(dentry); /* Extra count - pin the dentry in core */
1886	}
1887	return error;
1888}
1889
1890static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1891{
1892	int error;
1893
1894	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1895		return error;
1896	inc_nlink(dir);
1897	return 0;
1898}
1899
1900static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1901		struct nameidata *nd)
1902{
1903	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1904}
1905
1906/*
1907 * Link a file..
1908 */
1909static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1910{
1911	struct inode *inode = old_dentry->d_inode;
1912	int ret;
1913
1914	/*
1915	 * No ordinary (disk based) filesystem counts links as inodes;
1916	 * but each new link needs a new dentry, pinning lowmem, and
1917	 * tmpfs dentries cannot be pruned until they are unlinked.
1918	 */
1919	ret = shmem_reserve_inode(inode->i_sb);
1920	if (ret)
1921		goto out;
1922
1923	dir->i_size += BOGO_DIRENT_SIZE;
1924	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1925	inc_nlink(inode);
1926	ihold(inode);	/* New dentry reference */
1927	dget(dentry);		/* Extra pinning count for the created dentry */
1928	d_instantiate(dentry, inode);
1929out:
1930	return ret;
1931}
1932
1933static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1934{
1935	struct inode *inode = dentry->d_inode;
1936
1937	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1938		shmem_free_inode(inode->i_sb);
1939
1940	dir->i_size -= BOGO_DIRENT_SIZE;
1941	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1942	drop_nlink(inode);
1943	dput(dentry);	/* Undo the count from "create" - this does all the work */
1944	return 0;
1945}
1946
1947static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1948{
1949	if (!simple_empty(dentry))
1950		return -ENOTEMPTY;
1951
1952	drop_nlink(dentry->d_inode);
1953	drop_nlink(dir);
1954	return shmem_unlink(dir, dentry);
1955}
1956
1957/*
1958 * The VFS layer already does all the dentry stuff for rename,
1959 * we just have to decrement the usage count for the target if
1960 * it exists so that the VFS layer correctly free's it when it
1961 * gets overwritten.
1962 */
1963static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1964{
1965	struct inode *inode = old_dentry->d_inode;
1966	int they_are_dirs = S_ISDIR(inode->i_mode);
1967
1968	if (!simple_empty(new_dentry))
1969		return -ENOTEMPTY;
1970
1971	if (new_dentry->d_inode) {
1972		(void) shmem_unlink(new_dir, new_dentry);
1973		if (they_are_dirs)
1974			drop_nlink(old_dir);
1975	} else if (they_are_dirs) {
1976		drop_nlink(old_dir);
1977		inc_nlink(new_dir);
1978	}
1979
1980	old_dir->i_size -= BOGO_DIRENT_SIZE;
1981	new_dir->i_size += BOGO_DIRENT_SIZE;
1982	old_dir->i_ctime = old_dir->i_mtime =
1983	new_dir->i_ctime = new_dir->i_mtime =
1984	inode->i_ctime = CURRENT_TIME;
1985	return 0;
1986}
1987
1988static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1989{
1990	int error;
1991	int len;
1992	struct inode *inode;
1993	struct page *page = NULL;
1994	char *kaddr;
1995	struct shmem_inode_info *info;
1996
1997	len = strlen(symname) + 1;
1998	if (len > PAGE_CACHE_SIZE)
1999		return -ENAMETOOLONG;
2000
2001	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2002	if (!inode)
2003		return -ENOSPC;
2004
2005	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2006					     NULL, NULL);
2007	if (error) {
2008		if (error != -EOPNOTSUPP) {
2009			iput(inode);
2010			return error;
2011		}
2012		error = 0;
2013	}
2014
2015	info = SHMEM_I(inode);
2016	inode->i_size = len-1;
2017	if (len <= (char *)inode - (char *)info) {
2018		/* do it inline */
2019		memcpy(info, symname, len);
2020		inode->i_op = &shmem_symlink_inline_operations;
2021	} else {
2022		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2023		if (error) {
2024			iput(inode);
2025			return error;
2026		}
2027		inode->i_mapping->a_ops = &shmem_aops;
2028		inode->i_op = &shmem_symlink_inode_operations;
2029		kaddr = kmap_atomic(page, KM_USER0);
2030		memcpy(kaddr, symname, len);
2031		kunmap_atomic(kaddr, KM_USER0);
2032		set_page_dirty(page);
2033		unlock_page(page);
2034		page_cache_release(page);
2035	}
2036	dir->i_size += BOGO_DIRENT_SIZE;
2037	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2038	d_instantiate(dentry, inode);
2039	dget(dentry);
2040	return 0;
2041}
2042
2043static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2044{
2045	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2046	return NULL;
2047}
2048
2049static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2050{
2051	struct page *page = NULL;
2052	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2053	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2054	if (page)
2055		unlock_page(page);
2056	return page;
2057}
2058
2059static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2060{
2061	if (!IS_ERR(nd_get_link(nd))) {
2062		struct page *page = cookie;
2063		kunmap(page);
2064		mark_page_accessed(page);
2065		page_cache_release(page);
2066	}
2067}
2068
2069static const struct inode_operations shmem_symlink_inline_operations = {
2070	.readlink	= generic_readlink,
2071	.follow_link	= shmem_follow_link_inline,
2072};
2073
2074static const struct inode_operations shmem_symlink_inode_operations = {
2075	.readlink	= generic_readlink,
2076	.follow_link	= shmem_follow_link,
2077	.put_link	= shmem_put_link,
2078};
2079
2080#ifdef CONFIG_TMPFS_POSIX_ACL
2081/*
2082 * Superblocks without xattr inode operations will get security.* xattr
2083 * support from the VFS "for free". As soon as we have any other xattrs
2084 * like ACLs, we also need to implement the security.* handlers at
2085 * filesystem level, though.
2086 */
2087
2088static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2089					size_t list_len, const char *name,
2090					size_t name_len, int handler_flags)
2091{
2092	return security_inode_listsecurity(dentry->d_inode, list, list_len);
2093}
2094
2095static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2096		void *buffer, size_t size, int handler_flags)
2097{
2098	if (strcmp(name, "") == 0)
2099		return -EINVAL;
2100	return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2101}
2102
2103static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2104		const void *value, size_t size, int flags, int handler_flags)
2105{
2106	if (strcmp(name, "") == 0)
2107		return -EINVAL;
2108	return security_inode_setsecurity(dentry->d_inode, name, value,
2109					  size, flags);
2110}
2111
2112static const struct xattr_handler shmem_xattr_security_handler = {
2113	.prefix = XATTR_SECURITY_PREFIX,
2114	.list   = shmem_xattr_security_list,
2115	.get    = shmem_xattr_security_get,
2116	.set    = shmem_xattr_security_set,
2117};
2118
2119static const struct xattr_handler *shmem_xattr_handlers[] = {
2120	&generic_acl_access_handler,
2121	&generic_acl_default_handler,
2122	&shmem_xattr_security_handler,
2123	NULL
2124};
2125#endif
2126
2127static struct dentry *shmem_get_parent(struct dentry *child)
2128{
2129	return ERR_PTR(-ESTALE);
2130}
2131
2132static int shmem_match(struct inode *ino, void *vfh)
2133{
2134	__u32 *fh = vfh;
2135	__u64 inum = fh[2];
2136	inum = (inum << 32) | fh[1];
2137	return ino->i_ino == inum && fh[0] == ino->i_generation;
2138}
2139
2140static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2141		struct fid *fid, int fh_len, int fh_type)
2142{
2143	struct inode *inode;
2144	struct dentry *dentry = NULL;
2145	u64 inum = fid->raw[2];
2146	inum = (inum << 32) | fid->raw[1];
2147
2148	if (fh_len < 3)
2149		return NULL;
2150
2151	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2152			shmem_match, fid->raw);
2153	if (inode) {
2154		dentry = d_find_alias(inode);
2155		iput(inode);
2156	}
2157
2158	return dentry;
2159}
2160
2161static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2162				int connectable)
2163{
2164	struct inode *inode = dentry->d_inode;
2165
2166	if (*len < 3) {
2167		*len = 3;
2168		return 255;
2169	}
2170
2171	if (inode_unhashed(inode)) {
2172		/* Unfortunately insert_inode_hash is not idempotent,
2173		 * so as we hash inodes here rather than at creation
2174		 * time, we need a lock to ensure we only try
2175		 * to do it once
2176		 */
2177		static DEFINE_SPINLOCK(lock);
2178		spin_lock(&lock);
2179		if (inode_unhashed(inode))
2180			__insert_inode_hash(inode,
2181					    inode->i_ino + inode->i_generation);
2182		spin_unlock(&lock);
2183	}
2184
2185	fh[0] = inode->i_generation;
2186	fh[1] = inode->i_ino;
2187	fh[2] = ((__u64)inode->i_ino) >> 32;
2188
2189	*len = 3;
2190	return 1;
2191}
2192
2193static const struct export_operations shmem_export_ops = {
2194	.get_parent     = shmem_get_parent,
2195	.encode_fh      = shmem_encode_fh,
2196	.fh_to_dentry	= shmem_fh_to_dentry,
2197};
2198
2199static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2200			       bool remount)
2201{
2202	char *this_char, *value, *rest;
2203
2204	while (options != NULL) {
2205		this_char = options;
2206		for (;;) {
2207			/*
2208			 * NUL-terminate this option: unfortunately,
2209			 * mount options form a comma-separated list,
2210			 * but mpol's nodelist may also contain commas.
2211			 */
2212			options = strchr(options, ',');
2213			if (options == NULL)
2214				break;
2215			options++;
2216			if (!isdigit(*options)) {
2217				options[-1] = '\0';
2218				break;
2219			}
2220		}
2221		if (!*this_char)
2222			continue;
2223		if ((value = strchr(this_char,'=')) != NULL) {
2224			*value++ = 0;
2225		} else {
2226			printk(KERN_ERR
2227			    "tmpfs: No value for mount option '%s'\n",
2228			    this_char);
2229			return 1;
2230		}
2231
2232		if (!strcmp(this_char,"size")) {
2233			unsigned long long size;
2234			size = memparse(value,&rest);
2235			if (*rest == '%') {
2236				size <<= PAGE_SHIFT;
2237				size *= totalram_pages;
2238				do_div(size, 100);
2239				rest++;
2240			}
2241			if (*rest)
2242				goto bad_val;
2243			sbinfo->max_blocks =
2244				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2245		} else if (!strcmp(this_char,"nr_blocks")) {
2246			sbinfo->max_blocks = memparse(value, &rest);
2247			if (*rest)
2248				goto bad_val;
2249		} else if (!strcmp(this_char,"nr_inodes")) {
2250			sbinfo->max_inodes = memparse(value, &rest);
2251			if (*rest)
2252				goto bad_val;
2253		} else if (!strcmp(this_char,"mode")) {
2254			if (remount)
2255				continue;
2256			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2257			if (*rest)
2258				goto bad_val;
2259		} else if (!strcmp(this_char,"uid")) {
2260			if (remount)
2261				continue;
2262			sbinfo->uid = simple_strtoul(value, &rest, 0);
2263			if (*rest)
2264				goto bad_val;
2265		} else if (!strcmp(this_char,"gid")) {
2266			if (remount)
2267				continue;
2268			sbinfo->gid = simple_strtoul(value, &rest, 0);
2269			if (*rest)
2270				goto bad_val;
2271		} else if (!strcmp(this_char,"mpol")) {
2272			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2273				goto bad_val;
2274		} else {
2275			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2276			       this_char);
2277			return 1;
2278		}
2279	}
2280	return 0;
2281
2282bad_val:
2283	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2284	       value, this_char);
2285	return 1;
2286
2287}
2288
2289static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2290{
2291	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2292	struct shmem_sb_info config = *sbinfo;
2293	unsigned long inodes;
2294	int error = -EINVAL;
2295
2296	if (shmem_parse_options(data, &config, true))
2297		return error;
2298
2299	spin_lock(&sbinfo->stat_lock);
2300	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2301	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2302		goto out;
2303	if (config.max_inodes < inodes)
2304		goto out;
2305	/*
2306	 * Those tests also disallow limited->unlimited while any are in
2307	 * use, so i_blocks will always be zero when max_blocks is zero;
2308	 * but we must separately disallow unlimited->limited, because
2309	 * in that case we have no record of how much is already in use.
2310	 */
2311	if (config.max_blocks && !sbinfo->max_blocks)
2312		goto out;
2313	if (config.max_inodes && !sbinfo->max_inodes)
2314		goto out;
2315
2316	error = 0;
2317	sbinfo->max_blocks  = config.max_blocks;
2318	sbinfo->max_inodes  = config.max_inodes;
2319	sbinfo->free_inodes = config.max_inodes - inodes;
2320
2321	mpol_put(sbinfo->mpol);
2322	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2323out:
2324	spin_unlock(&sbinfo->stat_lock);
2325	return error;
2326}
2327
2328static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2329{
2330	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2331
2332	if (sbinfo->max_blocks != shmem_default_max_blocks())
2333		seq_printf(seq, ",size=%luk",
2334			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2335	if (sbinfo->max_inodes != shmem_default_max_inodes())
2336		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2337	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2338		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2339	if (sbinfo->uid != 0)
2340		seq_printf(seq, ",uid=%u", sbinfo->uid);
2341	if (sbinfo->gid != 0)
2342		seq_printf(seq, ",gid=%u", sbinfo->gid);
2343	shmem_show_mpol(seq, sbinfo->mpol);
2344	return 0;
2345}
2346#endif /* CONFIG_TMPFS */
2347
2348static void shmem_put_super(struct super_block *sb)
2349{
2350	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2351
2352	percpu_counter_destroy(&sbinfo->used_blocks);
2353	kfree(sbinfo);
2354	sb->s_fs_info = NULL;
2355}
2356
2357int shmem_fill_super(struct super_block *sb, void *data, int silent)
2358{
2359	struct inode *inode;
2360	struct dentry *root;
2361	struct shmem_sb_info *sbinfo;
2362	int err = -ENOMEM;
2363
2364	/* Round up to L1_CACHE_BYTES to resist false sharing */
2365	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2366				L1_CACHE_BYTES), GFP_KERNEL);
2367	if (!sbinfo)
2368		return -ENOMEM;
2369
2370	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2371	sbinfo->uid = current_fsuid();
2372	sbinfo->gid = current_fsgid();
2373	sb->s_fs_info = sbinfo;
2374
2375#ifdef CONFIG_TMPFS
2376	/*
2377	 * Per default we only allow half of the physical ram per
2378	 * tmpfs instance, limiting inodes to one per page of lowmem;
2379	 * but the internal instance is left unlimited.
2380	 */
2381	if (!(sb->s_flags & MS_NOUSER)) {
2382		sbinfo->max_blocks = shmem_default_max_blocks();
2383		sbinfo->max_inodes = shmem_default_max_inodes();
2384		if (shmem_parse_options(data, sbinfo, false)) {
2385			err = -EINVAL;
2386			goto failed;
2387		}
2388	}
2389	sb->s_export_op = &shmem_export_ops;
2390#else
2391	sb->s_flags |= MS_NOUSER;
2392#endif
2393
2394	spin_lock_init(&sbinfo->stat_lock);
2395	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2396		goto failed;
2397	sbinfo->free_inodes = sbinfo->max_inodes;
2398
2399	sb->s_maxbytes = SHMEM_MAX_BYTES;
2400	sb->s_blocksize = PAGE_CACHE_SIZE;
2401	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2402	sb->s_magic = TMPFS_MAGIC;
2403	sb->s_op = &shmem_ops;
2404	sb->s_time_gran = 1;
2405#ifdef CONFIG_TMPFS_POSIX_ACL
2406	sb->s_xattr = shmem_xattr_handlers;
2407	sb->s_flags |= MS_POSIXACL;
2408#endif
2409
2410	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2411	if (!inode)
2412		goto failed;
2413	inode->i_uid = sbinfo->uid;
2414	inode->i_gid = sbinfo->gid;
2415	root = d_alloc_root(inode);
2416	if (!root)
2417		goto failed_iput;
2418	sb->s_root = root;
2419	return 0;
2420
2421failed_iput:
2422	iput(inode);
2423failed:
2424	shmem_put_super(sb);
2425	return err;
2426}
2427
2428static struct kmem_cache *shmem_inode_cachep;
2429
2430static struct inode *shmem_alloc_inode(struct super_block *sb)
2431{
2432	struct shmem_inode_info *p;
2433	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2434	if (!p)
2435		return NULL;
2436	return &p->vfs_inode;
2437}
2438
2439static void shmem_i_callback(struct rcu_head *head)
2440{
2441	struct inode *inode = container_of(head, struct inode, i_rcu);
2442	INIT_LIST_HEAD(&inode->i_dentry);
2443	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2444}
2445
2446static void shmem_destroy_inode(struct inode *inode)
2447{
2448	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2449		/* only struct inode is valid if it's an inline symlink */
2450		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2451	}
2452	call_rcu(&inode->i_rcu, shmem_i_callback);
2453}
2454
2455static void init_once(void *foo)
2456{
2457	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2458
2459	inode_init_once(&p->vfs_inode);
2460}
2461
2462static int init_inodecache(void)
2463{
2464	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2465				sizeof(struct shmem_inode_info),
2466				0, SLAB_PANIC, init_once);
2467	return 0;
2468}
2469
2470static void destroy_inodecache(void)
2471{
2472	kmem_cache_destroy(shmem_inode_cachep);
2473}
2474
2475static const struct address_space_operations shmem_aops = {
2476	.writepage	= shmem_writepage,
2477	.set_page_dirty	= __set_page_dirty_no_writeback,
2478#ifdef CONFIG_TMPFS
2479	.readpage	= shmem_readpage,
2480	.write_begin	= shmem_write_begin,
2481	.write_end	= shmem_write_end,
2482#endif
2483	.migratepage	= migrate_page,
2484	.error_remove_page = generic_error_remove_page,
2485};
2486
2487static const struct file_operations shmem_file_operations = {
2488	.mmap		= shmem_mmap,
2489#ifdef CONFIG_TMPFS
2490	.llseek		= generic_file_llseek,
2491	.read		= do_sync_read,
2492	.write		= do_sync_write,
2493	.aio_read	= shmem_file_aio_read,
2494	.aio_write	= generic_file_aio_write,
2495	.fsync		= noop_fsync,
2496	.splice_read	= generic_file_splice_read,
2497	.splice_write	= generic_file_splice_write,
2498#endif
2499};
2500
2501static const struct inode_operations shmem_inode_operations = {
2502	.setattr	= shmem_notify_change,
2503	.truncate_range	= shmem_truncate_range,
2504#ifdef CONFIG_TMPFS_POSIX_ACL
2505	.setxattr	= generic_setxattr,
2506	.getxattr	= generic_getxattr,
2507	.listxattr	= generic_listxattr,
2508	.removexattr	= generic_removexattr,
2509	.check_acl	= generic_check_acl,
2510#endif
2511
2512};
2513
2514static const struct inode_operations shmem_dir_inode_operations = {
2515#ifdef CONFIG_TMPFS
2516	.create		= shmem_create,
2517	.lookup		= simple_lookup,
2518	.link		= shmem_link,
2519	.unlink		= shmem_unlink,
2520	.symlink	= shmem_symlink,
2521	.mkdir		= shmem_mkdir,
2522	.rmdir		= shmem_rmdir,
2523	.mknod		= shmem_mknod,
2524	.rename		= shmem_rename,
2525#endif
2526#ifdef CONFIG_TMPFS_POSIX_ACL
2527	.setattr	= shmem_notify_change,
2528	.setxattr	= generic_setxattr,
2529	.getxattr	= generic_getxattr,
2530	.listxattr	= generic_listxattr,
2531	.removexattr	= generic_removexattr,
2532	.check_acl	= generic_check_acl,
2533#endif
2534};
2535
2536static const struct inode_operations shmem_special_inode_operations = {
2537#ifdef CONFIG_TMPFS_POSIX_ACL
2538	.setattr	= shmem_notify_change,
2539	.setxattr	= generic_setxattr,
2540	.getxattr	= generic_getxattr,
2541	.listxattr	= generic_listxattr,
2542	.removexattr	= generic_removexattr,
2543	.check_acl	= generic_check_acl,
2544#endif
2545};
2546
2547static const struct super_operations shmem_ops = {
2548	.alloc_inode	= shmem_alloc_inode,
2549	.destroy_inode	= shmem_destroy_inode,
2550#ifdef CONFIG_TMPFS
2551	.statfs		= shmem_statfs,
2552	.remount_fs	= shmem_remount_fs,
2553	.show_options	= shmem_show_options,
2554#endif
2555	.evict_inode	= shmem_evict_inode,
2556	.drop_inode	= generic_delete_inode,
2557	.put_super	= shmem_put_super,
2558};
2559
2560static const struct vm_operations_struct shmem_vm_ops = {
2561	.fault		= shmem_fault,
2562#ifdef CONFIG_NUMA
2563	.set_policy     = shmem_set_policy,
2564	.get_policy     = shmem_get_policy,
2565#endif
2566};
2567
2568
2569static struct dentry *shmem_mount(struct file_system_type *fs_type,
2570	int flags, const char *dev_name, void *data)
2571{
2572	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2573}
2574
2575static struct file_system_type tmpfs_fs_type = {
2576	.owner		= THIS_MODULE,
2577	.name		= "tmpfs",
2578	.mount		= shmem_mount,
2579	.kill_sb	= kill_litter_super,
2580};
2581
2582int __init init_tmpfs(void)
2583{
2584	int error;
2585
2586	error = bdi_init(&shmem_backing_dev_info);
2587	if (error)
2588		goto out4;
2589
2590	error = init_inodecache();
2591	if (error)
2592		goto out3;
2593
2594	error = register_filesystem(&tmpfs_fs_type);
2595	if (error) {
2596		printk(KERN_ERR "Could not register tmpfs\n");
2597		goto out2;
2598	}
2599
2600	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2601				tmpfs_fs_type.name, NULL);
2602	if (IS_ERR(shm_mnt)) {
2603		error = PTR_ERR(shm_mnt);
2604		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2605		goto out1;
2606	}
2607	return 0;
2608
2609out1:
2610	unregister_filesystem(&tmpfs_fs_type);
2611out2:
2612	destroy_inodecache();
2613out3:
2614	bdi_destroy(&shmem_backing_dev_info);
2615out4:
2616	shm_mnt = ERR_PTR(error);
2617	return error;
2618}
2619
2620#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2621/**
2622 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2623 * @inode: the inode to be searched
2624 * @pgoff: the offset to be searched
2625 * @pagep: the pointer for the found page to be stored
2626 * @ent: the pointer for the found swap entry to be stored
2627 *
2628 * If a page is found, refcount of it is incremented. Callers should handle
2629 * these refcount.
2630 */
2631void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2632					struct page **pagep, swp_entry_t *ent)
2633{
2634	swp_entry_t entry = { .val = 0 }, *ptr;
2635	struct page *page = NULL;
2636	struct shmem_inode_info *info = SHMEM_I(inode);
2637
2638	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2639		goto out;
2640
2641	spin_lock(&info->lock);
2642	ptr = shmem_swp_entry(info, pgoff, NULL);
2643#ifdef CONFIG_SWAP
2644	if (ptr && ptr->val) {
2645		entry.val = ptr->val;
2646		page = find_get_page(&swapper_space, entry.val);
2647	} else
2648#endif
2649		page = find_get_page(inode->i_mapping, pgoff);
2650	if (ptr)
2651		shmem_swp_unmap(ptr);
2652	spin_unlock(&info->lock);
2653out:
2654	*pagep = page;
2655	*ent = entry;
2656}
2657#endif
2658
2659#else /* !CONFIG_SHMEM */
2660
2661/*
2662 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2663 *
2664 * This is intended for small system where the benefits of the full
2665 * shmem code (swap-backed and resource-limited) are outweighed by
2666 * their complexity. On systems without swap this code should be
2667 * effectively equivalent, but much lighter weight.
2668 */
2669
2670#include <linux/ramfs.h>
2671
2672static struct file_system_type tmpfs_fs_type = {
2673	.name		= "tmpfs",
2674	.mount		= ramfs_mount,
2675	.kill_sb	= kill_litter_super,
2676};
2677
2678int __init init_tmpfs(void)
2679{
2680	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2681
2682	shm_mnt = kern_mount(&tmpfs_fs_type);
2683	BUG_ON(IS_ERR(shm_mnt));
2684
2685	return 0;
2686}
2687
2688int shmem_unuse(swp_entry_t entry, struct page *page)
2689{
2690	return 0;
2691}
2692
2693int shmem_lock(struct file *file, int lock, struct user_struct *user)
2694{
2695	return 0;
2696}
2697
2698#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2699/**
2700 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2701 * @inode: the inode to be searched
2702 * @pgoff: the offset to be searched
2703 * @pagep: the pointer for the found page to be stored
2704 * @ent: the pointer for the found swap entry to be stored
2705 *
2706 * If a page is found, refcount of it is incremented. Callers should handle
2707 * these refcount.
2708 */
2709void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2710					struct page **pagep, swp_entry_t *ent)
2711{
2712	struct page *page = NULL;
2713
2714	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2715		goto out;
2716	page = find_get_page(inode->i_mapping, pgoff);
2717out:
2718	*pagep = page;
2719	*ent = (swp_entry_t){ .val = 0 };
2720}
2721#endif
2722
2723#define shmem_vm_ops				generic_file_vm_ops
2724#define shmem_file_operations			ramfs_file_operations
2725#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2726#define shmem_acct_size(flags, size)		0
2727#define shmem_unacct_size(flags, size)		do {} while (0)
2728#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2729
2730#endif /* CONFIG_SHMEM */
2731
2732/* common code */
2733
2734/**
2735 * shmem_file_setup - get an unlinked file living in tmpfs
2736 * @name: name for dentry (to be seen in /proc/<pid>/maps
2737 * @size: size to be set for the file
2738 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2739 */
2740struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2741{
2742	int error;
2743	struct file *file;
2744	struct inode *inode;
2745	struct path path;
2746	struct dentry *root;
2747	struct qstr this;
2748
2749	if (IS_ERR(shm_mnt))
2750		return (void *)shm_mnt;
2751
2752	if (size < 0 || size > SHMEM_MAX_BYTES)
2753		return ERR_PTR(-EINVAL);
2754
2755	if (shmem_acct_size(flags, size))
2756		return ERR_PTR(-ENOMEM);
2757
2758	error = -ENOMEM;
2759	this.name = name;
2760	this.len = strlen(name);
2761	this.hash = 0; /* will go */
2762	root = shm_mnt->mnt_root;
2763	path.dentry = d_alloc(root, &this);
2764	if (!path.dentry)
2765		goto put_memory;
2766	path.mnt = mntget(shm_mnt);
2767
2768	error = -ENOSPC;
2769	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2770	if (!inode)
2771		goto put_dentry;
2772
2773	d_instantiate(path.dentry, inode);
2774	inode->i_size = size;
2775	inode->i_nlink = 0;	/* It is unlinked */
2776#ifndef CONFIG_MMU
2777	error = ramfs_nommu_expand_for_mapping(inode, size);
2778	if (error)
2779		goto put_dentry;
2780#endif
2781
2782	error = -ENFILE;
2783	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2784		  &shmem_file_operations);
2785	if (!file)
2786		goto put_dentry;
2787
2788	return file;
2789
2790put_dentry:
2791	path_put(&path);
2792put_memory:
2793	shmem_unacct_size(flags, size);
2794	return ERR_PTR(error);
2795}
2796EXPORT_SYMBOL_GPL(shmem_file_setup);
2797
2798/**
2799 * shmem_zero_setup - setup a shared anonymous mapping
2800 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2801 */
2802int shmem_zero_setup(struct vm_area_struct *vma)
2803{
2804	struct file *file;
2805	loff_t size = vma->vm_end - vma->vm_start;
2806
2807	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2808	if (IS_ERR(file))
2809		return PTR_ERR(file);
2810
2811	if (vma->vm_file)
2812		fput(vma->vm_file);
2813	vma->vm_file = file;
2814	vma->vm_ops = &shmem_vm_ops;
2815	vma->vm_flags |= VM_CAN_NONLINEAR;
2816	return 0;
2817}
2818