shmem.c revision f0be3d32b05d3fea2fcdbbb81a39dac2a7163169
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52#include <linux/seq_file.h>
53
54#include <asm/uaccess.h>
55#include <asm/div64.h>
56#include <asm/pgtable.h>
57
58/* This magic number is used in glibc for posix shared memory */
59#define TMPFS_MAGIC	0x01021994
60
61#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
64
65#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67
68#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69
70/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71#define SHMEM_PAGEIN	 VM_READ
72#define SHMEM_TRUNCATE	 VM_WRITE
73
74/* Definition to limit shmem_truncate's steps between cond_rescheds */
75#define LATENCY_LIMIT	 64
76
77/* Pretend that each entry is of this size in directory's i_size */
78#define BOGO_DIRENT_SIZE 20
79
80/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81enum sgp_type {
82	SGP_READ,	/* don't exceed i_size, don't allocate page */
83	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
85	SGP_WRITE,	/* may exceed i_size, may allocate page */
86};
87
88#ifdef CONFIG_TMPFS
89static unsigned long shmem_default_max_blocks(void)
90{
91	return totalram_pages / 2;
92}
93
94static unsigned long shmem_default_max_inodes(void)
95{
96	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
97}
98#endif
99
100static int shmem_getpage(struct inode *inode, unsigned long idx,
101			 struct page **pagep, enum sgp_type sgp, int *type);
102
103static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
104{
105	/*
106	 * The above definition of ENTRIES_PER_PAGE, and the use of
107	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108	 * might be reconsidered if it ever diverges from PAGE_SIZE.
109	 *
110	 * Mobility flags are masked out as swap vectors cannot move
111	 */
112	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113				PAGE_CACHE_SHIFT-PAGE_SHIFT);
114}
115
116static inline void shmem_dir_free(struct page *page)
117{
118	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
119}
120
121static struct page **shmem_dir_map(struct page *page)
122{
123	return (struct page **)kmap_atomic(page, KM_USER0);
124}
125
126static inline void shmem_dir_unmap(struct page **dir)
127{
128	kunmap_atomic(dir, KM_USER0);
129}
130
131static swp_entry_t *shmem_swp_map(struct page *page)
132{
133	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
134}
135
136static inline void shmem_swp_balance_unmap(void)
137{
138	/*
139	 * When passing a pointer to an i_direct entry, to code which
140	 * also handles indirect entries and so will shmem_swp_unmap,
141	 * we must arrange for the preempt count to remain in balance.
142	 * What kmap_atomic of a lowmem page does depends on config
143	 * and architecture, so pretend to kmap_atomic some lowmem page.
144	 */
145	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
146}
147
148static inline void shmem_swp_unmap(swp_entry_t *entry)
149{
150	kunmap_atomic(entry, KM_USER1);
151}
152
153static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154{
155	return sb->s_fs_info;
156}
157
158/*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164static inline int shmem_acct_size(unsigned long flags, loff_t size)
165{
166	return (flags & VM_ACCOUNT)?
167		security_vm_enough_memory(VM_ACCT(size)): 0;
168}
169
170static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171{
172	if (flags & VM_ACCOUNT)
173		vm_unacct_memory(VM_ACCT(size));
174}
175
176/*
177 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
181 */
182static inline int shmem_acct_block(unsigned long flags)
183{
184	return (flags & VM_ACCOUNT)?
185		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
186}
187
188static inline void shmem_unacct_blocks(unsigned long flags, long pages)
189{
190	if (!(flags & VM_ACCOUNT))
191		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
192}
193
194static const struct super_operations shmem_ops;
195static const struct address_space_operations shmem_aops;
196static const struct file_operations shmem_file_operations;
197static const struct inode_operations shmem_inode_operations;
198static const struct inode_operations shmem_dir_inode_operations;
199static const struct inode_operations shmem_special_inode_operations;
200static struct vm_operations_struct shmem_vm_ops;
201
202static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
203	.ra_pages	= 0,	/* No readahead */
204	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
205	.unplug_io_fn	= default_unplug_io_fn,
206};
207
208static LIST_HEAD(shmem_swaplist);
209static DEFINE_MUTEX(shmem_swaplist_mutex);
210
211static void shmem_free_blocks(struct inode *inode, long pages)
212{
213	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214	if (sbinfo->max_blocks) {
215		spin_lock(&sbinfo->stat_lock);
216		sbinfo->free_blocks += pages;
217		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218		spin_unlock(&sbinfo->stat_lock);
219	}
220}
221
222static int shmem_reserve_inode(struct super_block *sb)
223{
224	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225	if (sbinfo->max_inodes) {
226		spin_lock(&sbinfo->stat_lock);
227		if (!sbinfo->free_inodes) {
228			spin_unlock(&sbinfo->stat_lock);
229			return -ENOSPC;
230		}
231		sbinfo->free_inodes--;
232		spin_unlock(&sbinfo->stat_lock);
233	}
234	return 0;
235}
236
237static void shmem_free_inode(struct super_block *sb)
238{
239	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240	if (sbinfo->max_inodes) {
241		spin_lock(&sbinfo->stat_lock);
242		sbinfo->free_inodes++;
243		spin_unlock(&sbinfo->stat_lock);
244	}
245}
246
247/**
248 * shmem_recalc_inode - recalculate the size of an inode
249 * @inode: inode to recalc
250 *
251 * We have to calculate the free blocks since the mm can drop
252 * undirtied hole pages behind our back.
253 *
254 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
255 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
256 *
257 * It has to be called with the spinlock held.
258 */
259static void shmem_recalc_inode(struct inode *inode)
260{
261	struct shmem_inode_info *info = SHMEM_I(inode);
262	long freed;
263
264	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
265	if (freed > 0) {
266		info->alloced -= freed;
267		shmem_unacct_blocks(info->flags, freed);
268		shmem_free_blocks(inode, freed);
269	}
270}
271
272/**
273 * shmem_swp_entry - find the swap vector position in the info structure
274 * @info:  info structure for the inode
275 * @index: index of the page to find
276 * @page:  optional page to add to the structure. Has to be preset to
277 *         all zeros
278 *
279 * If there is no space allocated yet it will return NULL when
280 * page is NULL, else it will use the page for the needed block,
281 * setting it to NULL on return to indicate that it has been used.
282 *
283 * The swap vector is organized the following way:
284 *
285 * There are SHMEM_NR_DIRECT entries directly stored in the
286 * shmem_inode_info structure. So small files do not need an addional
287 * allocation.
288 *
289 * For pages with index > SHMEM_NR_DIRECT there is the pointer
290 * i_indirect which points to a page which holds in the first half
291 * doubly indirect blocks, in the second half triple indirect blocks:
292 *
293 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
294 * following layout (for SHMEM_NR_DIRECT == 16):
295 *
296 * i_indirect -> dir --> 16-19
297 * 	      |	     +-> 20-23
298 * 	      |
299 * 	      +-->dir2 --> 24-27
300 * 	      |	       +-> 28-31
301 * 	      |	       +-> 32-35
302 * 	      |	       +-> 36-39
303 * 	      |
304 * 	      +-->dir3 --> 40-43
305 * 	       	       +-> 44-47
306 * 	      	       +-> 48-51
307 * 	      	       +-> 52-55
308 */
309static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
310{
311	unsigned long offset;
312	struct page **dir;
313	struct page *subdir;
314
315	if (index < SHMEM_NR_DIRECT) {
316		shmem_swp_balance_unmap();
317		return info->i_direct+index;
318	}
319	if (!info->i_indirect) {
320		if (page) {
321			info->i_indirect = *page;
322			*page = NULL;
323		}
324		return NULL;			/* need another page */
325	}
326
327	index -= SHMEM_NR_DIRECT;
328	offset = index % ENTRIES_PER_PAGE;
329	index /= ENTRIES_PER_PAGE;
330	dir = shmem_dir_map(info->i_indirect);
331
332	if (index >= ENTRIES_PER_PAGE/2) {
333		index -= ENTRIES_PER_PAGE/2;
334		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
335		index %= ENTRIES_PER_PAGE;
336		subdir = *dir;
337		if (!subdir) {
338			if (page) {
339				*dir = *page;
340				*page = NULL;
341			}
342			shmem_dir_unmap(dir);
343			return NULL;		/* need another page */
344		}
345		shmem_dir_unmap(dir);
346		dir = shmem_dir_map(subdir);
347	}
348
349	dir += index;
350	subdir = *dir;
351	if (!subdir) {
352		if (!page || !(subdir = *page)) {
353			shmem_dir_unmap(dir);
354			return NULL;		/* need a page */
355		}
356		*dir = subdir;
357		*page = NULL;
358	}
359	shmem_dir_unmap(dir);
360	return shmem_swp_map(subdir) + offset;
361}
362
363static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
364{
365	long incdec = value? 1: -1;
366
367	entry->val = value;
368	info->swapped += incdec;
369	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
370		struct page *page = kmap_atomic_to_page(entry);
371		set_page_private(page, page_private(page) + incdec);
372	}
373}
374
375/**
376 * shmem_swp_alloc - get the position of the swap entry for the page.
377 * @info:	info structure for the inode
378 * @index:	index of the page to find
379 * @sgp:	check and recheck i_size? skip allocation?
380 *
381 * If the entry does not exist, allocate it.
382 */
383static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
384{
385	struct inode *inode = &info->vfs_inode;
386	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
387	struct page *page = NULL;
388	swp_entry_t *entry;
389
390	if (sgp != SGP_WRITE &&
391	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
392		return ERR_PTR(-EINVAL);
393
394	while (!(entry = shmem_swp_entry(info, index, &page))) {
395		if (sgp == SGP_READ)
396			return shmem_swp_map(ZERO_PAGE(0));
397		/*
398		 * Test free_blocks against 1 not 0, since we have 1 data
399		 * page (and perhaps indirect index pages) yet to allocate:
400		 * a waste to allocate index if we cannot allocate data.
401		 */
402		if (sbinfo->max_blocks) {
403			spin_lock(&sbinfo->stat_lock);
404			if (sbinfo->free_blocks <= 1) {
405				spin_unlock(&sbinfo->stat_lock);
406				return ERR_PTR(-ENOSPC);
407			}
408			sbinfo->free_blocks--;
409			inode->i_blocks += BLOCKS_PER_PAGE;
410			spin_unlock(&sbinfo->stat_lock);
411		}
412
413		spin_unlock(&info->lock);
414		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
415		if (page)
416			set_page_private(page, 0);
417		spin_lock(&info->lock);
418
419		if (!page) {
420			shmem_free_blocks(inode, 1);
421			return ERR_PTR(-ENOMEM);
422		}
423		if (sgp != SGP_WRITE &&
424		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
425			entry = ERR_PTR(-EINVAL);
426			break;
427		}
428		if (info->next_index <= index)
429			info->next_index = index + 1;
430	}
431	if (page) {
432		/* another task gave its page, or truncated the file */
433		shmem_free_blocks(inode, 1);
434		shmem_dir_free(page);
435	}
436	if (info->next_index <= index && !IS_ERR(entry))
437		info->next_index = index + 1;
438	return entry;
439}
440
441/**
442 * shmem_free_swp - free some swap entries in a directory
443 * @dir:        pointer to the directory
444 * @edir:       pointer after last entry of the directory
445 * @punch_lock: pointer to spinlock when needed for the holepunch case
446 */
447static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
448						spinlock_t *punch_lock)
449{
450	spinlock_t *punch_unlock = NULL;
451	swp_entry_t *ptr;
452	int freed = 0;
453
454	for (ptr = dir; ptr < edir; ptr++) {
455		if (ptr->val) {
456			if (unlikely(punch_lock)) {
457				punch_unlock = punch_lock;
458				punch_lock = NULL;
459				spin_lock(punch_unlock);
460				if (!ptr->val)
461					continue;
462			}
463			free_swap_and_cache(*ptr);
464			*ptr = (swp_entry_t){0};
465			freed++;
466		}
467	}
468	if (punch_unlock)
469		spin_unlock(punch_unlock);
470	return freed;
471}
472
473static int shmem_map_and_free_swp(struct page *subdir, int offset,
474		int limit, struct page ***dir, spinlock_t *punch_lock)
475{
476	swp_entry_t *ptr;
477	int freed = 0;
478
479	ptr = shmem_swp_map(subdir);
480	for (; offset < limit; offset += LATENCY_LIMIT) {
481		int size = limit - offset;
482		if (size > LATENCY_LIMIT)
483			size = LATENCY_LIMIT;
484		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
485							punch_lock);
486		if (need_resched()) {
487			shmem_swp_unmap(ptr);
488			if (*dir) {
489				shmem_dir_unmap(*dir);
490				*dir = NULL;
491			}
492			cond_resched();
493			ptr = shmem_swp_map(subdir);
494		}
495	}
496	shmem_swp_unmap(ptr);
497	return freed;
498}
499
500static void shmem_free_pages(struct list_head *next)
501{
502	struct page *page;
503	int freed = 0;
504
505	do {
506		page = container_of(next, struct page, lru);
507		next = next->next;
508		shmem_dir_free(page);
509		freed++;
510		if (freed >= LATENCY_LIMIT) {
511			cond_resched();
512			freed = 0;
513		}
514	} while (next);
515}
516
517static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
518{
519	struct shmem_inode_info *info = SHMEM_I(inode);
520	unsigned long idx;
521	unsigned long size;
522	unsigned long limit;
523	unsigned long stage;
524	unsigned long diroff;
525	struct page **dir;
526	struct page *topdir;
527	struct page *middir;
528	struct page *subdir;
529	swp_entry_t *ptr;
530	LIST_HEAD(pages_to_free);
531	long nr_pages_to_free = 0;
532	long nr_swaps_freed = 0;
533	int offset;
534	int freed;
535	int punch_hole;
536	spinlock_t *needs_lock;
537	spinlock_t *punch_lock;
538	unsigned long upper_limit;
539
540	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
541	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
542	if (idx >= info->next_index)
543		return;
544
545	spin_lock(&info->lock);
546	info->flags |= SHMEM_TRUNCATE;
547	if (likely(end == (loff_t) -1)) {
548		limit = info->next_index;
549		upper_limit = SHMEM_MAX_INDEX;
550		info->next_index = idx;
551		needs_lock = NULL;
552		punch_hole = 0;
553	} else {
554		if (end + 1 >= inode->i_size) {	/* we may free a little more */
555			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
556							PAGE_CACHE_SHIFT;
557			upper_limit = SHMEM_MAX_INDEX;
558		} else {
559			limit = (end + 1) >> PAGE_CACHE_SHIFT;
560			upper_limit = limit;
561		}
562		needs_lock = &info->lock;
563		punch_hole = 1;
564	}
565
566	topdir = info->i_indirect;
567	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
568		info->i_indirect = NULL;
569		nr_pages_to_free++;
570		list_add(&topdir->lru, &pages_to_free);
571	}
572	spin_unlock(&info->lock);
573
574	if (info->swapped && idx < SHMEM_NR_DIRECT) {
575		ptr = info->i_direct;
576		size = limit;
577		if (size > SHMEM_NR_DIRECT)
578			size = SHMEM_NR_DIRECT;
579		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
580	}
581
582	/*
583	 * If there are no indirect blocks or we are punching a hole
584	 * below indirect blocks, nothing to be done.
585	 */
586	if (!topdir || limit <= SHMEM_NR_DIRECT)
587		goto done2;
588
589	/*
590	 * The truncation case has already dropped info->lock, and we're safe
591	 * because i_size and next_index have already been lowered, preventing
592	 * access beyond.  But in the punch_hole case, we still need to take
593	 * the lock when updating the swap directory, because there might be
594	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
595	 * shmem_writepage.  However, whenever we find we can remove a whole
596	 * directory page (not at the misaligned start or end of the range),
597	 * we first NULLify its pointer in the level above, and then have no
598	 * need to take the lock when updating its contents: needs_lock and
599	 * punch_lock (either pointing to info->lock or NULL) manage this.
600	 */
601
602	upper_limit -= SHMEM_NR_DIRECT;
603	limit -= SHMEM_NR_DIRECT;
604	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
605	offset = idx % ENTRIES_PER_PAGE;
606	idx -= offset;
607
608	dir = shmem_dir_map(topdir);
609	stage = ENTRIES_PER_PAGEPAGE/2;
610	if (idx < ENTRIES_PER_PAGEPAGE/2) {
611		middir = topdir;
612		diroff = idx/ENTRIES_PER_PAGE;
613	} else {
614		dir += ENTRIES_PER_PAGE/2;
615		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
616		while (stage <= idx)
617			stage += ENTRIES_PER_PAGEPAGE;
618		middir = *dir;
619		if (*dir) {
620			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
621				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
622			if (!diroff && !offset && upper_limit >= stage) {
623				if (needs_lock) {
624					spin_lock(needs_lock);
625					*dir = NULL;
626					spin_unlock(needs_lock);
627					needs_lock = NULL;
628				} else
629					*dir = NULL;
630				nr_pages_to_free++;
631				list_add(&middir->lru, &pages_to_free);
632			}
633			shmem_dir_unmap(dir);
634			dir = shmem_dir_map(middir);
635		} else {
636			diroff = 0;
637			offset = 0;
638			idx = stage;
639		}
640	}
641
642	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
643		if (unlikely(idx == stage)) {
644			shmem_dir_unmap(dir);
645			dir = shmem_dir_map(topdir) +
646			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
647			while (!*dir) {
648				dir++;
649				idx += ENTRIES_PER_PAGEPAGE;
650				if (idx >= limit)
651					goto done1;
652			}
653			stage = idx + ENTRIES_PER_PAGEPAGE;
654			middir = *dir;
655			if (punch_hole)
656				needs_lock = &info->lock;
657			if (upper_limit >= stage) {
658				if (needs_lock) {
659					spin_lock(needs_lock);
660					*dir = NULL;
661					spin_unlock(needs_lock);
662					needs_lock = NULL;
663				} else
664					*dir = NULL;
665				nr_pages_to_free++;
666				list_add(&middir->lru, &pages_to_free);
667			}
668			shmem_dir_unmap(dir);
669			cond_resched();
670			dir = shmem_dir_map(middir);
671			diroff = 0;
672		}
673		punch_lock = needs_lock;
674		subdir = dir[diroff];
675		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
676			if (needs_lock) {
677				spin_lock(needs_lock);
678				dir[diroff] = NULL;
679				spin_unlock(needs_lock);
680				punch_lock = NULL;
681			} else
682				dir[diroff] = NULL;
683			nr_pages_to_free++;
684			list_add(&subdir->lru, &pages_to_free);
685		}
686		if (subdir && page_private(subdir) /* has swap entries */) {
687			size = limit - idx;
688			if (size > ENTRIES_PER_PAGE)
689				size = ENTRIES_PER_PAGE;
690			freed = shmem_map_and_free_swp(subdir,
691					offset, size, &dir, punch_lock);
692			if (!dir)
693				dir = shmem_dir_map(middir);
694			nr_swaps_freed += freed;
695			if (offset || punch_lock) {
696				spin_lock(&info->lock);
697				set_page_private(subdir,
698					page_private(subdir) - freed);
699				spin_unlock(&info->lock);
700			} else
701				BUG_ON(page_private(subdir) != freed);
702		}
703		offset = 0;
704	}
705done1:
706	shmem_dir_unmap(dir);
707done2:
708	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
709		/*
710		 * Call truncate_inode_pages again: racing shmem_unuse_inode
711		 * may have swizzled a page in from swap since vmtruncate or
712		 * generic_delete_inode did it, before we lowered next_index.
713		 * Also, though shmem_getpage checks i_size before adding to
714		 * cache, no recheck after: so fix the narrow window there too.
715		 *
716		 * Recalling truncate_inode_pages_range and unmap_mapping_range
717		 * every time for punch_hole (which never got a chance to clear
718		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
719		 * yet hardly ever necessary: try to optimize them out later.
720		 */
721		truncate_inode_pages_range(inode->i_mapping, start, end);
722		if (punch_hole)
723			unmap_mapping_range(inode->i_mapping, start,
724							end - start, 1);
725	}
726
727	spin_lock(&info->lock);
728	info->flags &= ~SHMEM_TRUNCATE;
729	info->swapped -= nr_swaps_freed;
730	if (nr_pages_to_free)
731		shmem_free_blocks(inode, nr_pages_to_free);
732	shmem_recalc_inode(inode);
733	spin_unlock(&info->lock);
734
735	/*
736	 * Empty swap vector directory pages to be freed?
737	 */
738	if (!list_empty(&pages_to_free)) {
739		pages_to_free.prev->next = NULL;
740		shmem_free_pages(pages_to_free.next);
741	}
742}
743
744static void shmem_truncate(struct inode *inode)
745{
746	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
747}
748
749static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
750{
751	struct inode *inode = dentry->d_inode;
752	struct page *page = NULL;
753	int error;
754
755	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
756		if (attr->ia_size < inode->i_size) {
757			/*
758			 * If truncating down to a partial page, then
759			 * if that page is already allocated, hold it
760			 * in memory until the truncation is over, so
761			 * truncate_partial_page cannnot miss it were
762			 * it assigned to swap.
763			 */
764			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
765				(void) shmem_getpage(inode,
766					attr->ia_size>>PAGE_CACHE_SHIFT,
767						&page, SGP_READ, NULL);
768				if (page)
769					unlock_page(page);
770			}
771			/*
772			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
773			 * detect if any pages might have been added to cache
774			 * after truncate_inode_pages.  But we needn't bother
775			 * if it's being fully truncated to zero-length: the
776			 * nrpages check is efficient enough in that case.
777			 */
778			if (attr->ia_size) {
779				struct shmem_inode_info *info = SHMEM_I(inode);
780				spin_lock(&info->lock);
781				info->flags &= ~SHMEM_PAGEIN;
782				spin_unlock(&info->lock);
783			}
784		}
785	}
786
787	error = inode_change_ok(inode, attr);
788	if (!error)
789		error = inode_setattr(inode, attr);
790#ifdef CONFIG_TMPFS_POSIX_ACL
791	if (!error && (attr->ia_valid & ATTR_MODE))
792		error = generic_acl_chmod(inode, &shmem_acl_ops);
793#endif
794	if (page)
795		page_cache_release(page);
796	return error;
797}
798
799static void shmem_delete_inode(struct inode *inode)
800{
801	struct shmem_inode_info *info = SHMEM_I(inode);
802
803	if (inode->i_op->truncate == shmem_truncate) {
804		truncate_inode_pages(inode->i_mapping, 0);
805		shmem_unacct_size(info->flags, inode->i_size);
806		inode->i_size = 0;
807		shmem_truncate(inode);
808		if (!list_empty(&info->swaplist)) {
809			mutex_lock(&shmem_swaplist_mutex);
810			list_del_init(&info->swaplist);
811			mutex_unlock(&shmem_swaplist_mutex);
812		}
813	}
814	BUG_ON(inode->i_blocks);
815	shmem_free_inode(inode->i_sb);
816	clear_inode(inode);
817}
818
819static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
820{
821	swp_entry_t *ptr;
822
823	for (ptr = dir; ptr < edir; ptr++) {
824		if (ptr->val == entry.val)
825			return ptr - dir;
826	}
827	return -1;
828}
829
830static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
831{
832	struct inode *inode;
833	unsigned long idx;
834	unsigned long size;
835	unsigned long limit;
836	unsigned long stage;
837	struct page **dir;
838	struct page *subdir;
839	swp_entry_t *ptr;
840	int offset;
841	int error;
842
843	idx = 0;
844	ptr = info->i_direct;
845	spin_lock(&info->lock);
846	if (!info->swapped) {
847		list_del_init(&info->swaplist);
848		goto lost2;
849	}
850	limit = info->next_index;
851	size = limit;
852	if (size > SHMEM_NR_DIRECT)
853		size = SHMEM_NR_DIRECT;
854	offset = shmem_find_swp(entry, ptr, ptr+size);
855	if (offset >= 0)
856		goto found;
857	if (!info->i_indirect)
858		goto lost2;
859
860	dir = shmem_dir_map(info->i_indirect);
861	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
862
863	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
864		if (unlikely(idx == stage)) {
865			shmem_dir_unmap(dir-1);
866			if (cond_resched_lock(&info->lock)) {
867				/* check it has not been truncated */
868				if (limit > info->next_index) {
869					limit = info->next_index;
870					if (idx >= limit)
871						goto lost2;
872				}
873			}
874			dir = shmem_dir_map(info->i_indirect) +
875			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
876			while (!*dir) {
877				dir++;
878				idx += ENTRIES_PER_PAGEPAGE;
879				if (idx >= limit)
880					goto lost1;
881			}
882			stage = idx + ENTRIES_PER_PAGEPAGE;
883			subdir = *dir;
884			shmem_dir_unmap(dir);
885			dir = shmem_dir_map(subdir);
886		}
887		subdir = *dir;
888		if (subdir && page_private(subdir)) {
889			ptr = shmem_swp_map(subdir);
890			size = limit - idx;
891			if (size > ENTRIES_PER_PAGE)
892				size = ENTRIES_PER_PAGE;
893			offset = shmem_find_swp(entry, ptr, ptr+size);
894			shmem_swp_unmap(ptr);
895			if (offset >= 0) {
896				shmem_dir_unmap(dir);
897				goto found;
898			}
899		}
900	}
901lost1:
902	shmem_dir_unmap(dir-1);
903lost2:
904	spin_unlock(&info->lock);
905	return 0;
906found:
907	idx += offset;
908	inode = igrab(&info->vfs_inode);
909	spin_unlock(&info->lock);
910
911	/*
912	 * Move _head_ to start search for next from here.
913	 * But be careful: shmem_delete_inode checks list_empty without taking
914	 * mutex, and there's an instant in list_move_tail when info->swaplist
915	 * would appear empty, if it were the only one on shmem_swaplist.  We
916	 * could avoid doing it if inode NULL; or use this minor optimization.
917	 */
918	if (shmem_swaplist.next != &info->swaplist)
919		list_move_tail(&shmem_swaplist, &info->swaplist);
920	mutex_unlock(&shmem_swaplist_mutex);
921
922	error = 1;
923	if (!inode)
924		goto out;
925	/* Precharge page while we can wait, compensate afterwards */
926	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
927	if (error)
928		goto out;
929	error = radix_tree_preload(GFP_KERNEL);
930	if (error)
931		goto uncharge;
932	error = 1;
933
934	spin_lock(&info->lock);
935	ptr = shmem_swp_entry(info, idx, NULL);
936	if (ptr && ptr->val == entry.val)
937		error = add_to_page_cache(page, inode->i_mapping,
938						idx, GFP_NOWAIT);
939	if (error == -EEXIST) {
940		struct page *filepage = find_get_page(inode->i_mapping, idx);
941		error = 1;
942		if (filepage) {
943			/*
944			 * There might be a more uptodate page coming down
945			 * from a stacked writepage: forget our swappage if so.
946			 */
947			if (PageUptodate(filepage))
948				error = 0;
949			page_cache_release(filepage);
950		}
951	}
952	if (!error) {
953		delete_from_swap_cache(page);
954		set_page_dirty(page);
955		info->flags |= SHMEM_PAGEIN;
956		shmem_swp_set(info, ptr, 0);
957		swap_free(entry);
958		error = 1;	/* not an error, but entry was found */
959	}
960	if (ptr)
961		shmem_swp_unmap(ptr);
962	spin_unlock(&info->lock);
963	radix_tree_preload_end();
964uncharge:
965	mem_cgroup_uncharge_page(page);
966out:
967	unlock_page(page);
968	page_cache_release(page);
969	iput(inode);		/* allows for NULL */
970	return error;
971}
972
973/*
974 * shmem_unuse() search for an eventually swapped out shmem page.
975 */
976int shmem_unuse(swp_entry_t entry, struct page *page)
977{
978	struct list_head *p, *next;
979	struct shmem_inode_info *info;
980	int found = 0;
981
982	mutex_lock(&shmem_swaplist_mutex);
983	list_for_each_safe(p, next, &shmem_swaplist) {
984		info = list_entry(p, struct shmem_inode_info, swaplist);
985		found = shmem_unuse_inode(info, entry, page);
986		cond_resched();
987		if (found)
988			goto out;
989	}
990	mutex_unlock(&shmem_swaplist_mutex);
991out:	return found;	/* 0 or 1 or -ENOMEM */
992}
993
994/*
995 * Move the page from the page cache to the swap cache.
996 */
997static int shmem_writepage(struct page *page, struct writeback_control *wbc)
998{
999	struct shmem_inode_info *info;
1000	swp_entry_t *entry, swap;
1001	struct address_space *mapping;
1002	unsigned long index;
1003	struct inode *inode;
1004
1005	BUG_ON(!PageLocked(page));
1006	mapping = page->mapping;
1007	index = page->index;
1008	inode = mapping->host;
1009	info = SHMEM_I(inode);
1010	if (info->flags & VM_LOCKED)
1011		goto redirty;
1012	if (!total_swap_pages)
1013		goto redirty;
1014
1015	/*
1016	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1017	 * sync from ever calling shmem_writepage; but a stacking filesystem
1018	 * may use the ->writepage of its underlying filesystem, in which case
1019	 * tmpfs should write out to swap only in response to memory pressure,
1020	 * and not for pdflush or sync.  However, in those cases, we do still
1021	 * want to check if there's a redundant swappage to be discarded.
1022	 */
1023	if (wbc->for_reclaim)
1024		swap = get_swap_page();
1025	else
1026		swap.val = 0;
1027
1028	spin_lock(&info->lock);
1029	if (index >= info->next_index) {
1030		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1031		goto unlock;
1032	}
1033	entry = shmem_swp_entry(info, index, NULL);
1034	if (entry->val) {
1035		/*
1036		 * The more uptodate page coming down from a stacked
1037		 * writepage should replace our old swappage.
1038		 */
1039		free_swap_and_cache(*entry);
1040		shmem_swp_set(info, entry, 0);
1041	}
1042	shmem_recalc_inode(inode);
1043
1044	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1045		remove_from_page_cache(page);
1046		shmem_swp_set(info, entry, swap.val);
1047		shmem_swp_unmap(entry);
1048		if (list_empty(&info->swaplist))
1049			inode = igrab(inode);
1050		else
1051			inode = NULL;
1052		spin_unlock(&info->lock);
1053		swap_duplicate(swap);
1054		BUG_ON(page_mapped(page));
1055		page_cache_release(page);	/* pagecache ref */
1056		set_page_dirty(page);
1057		unlock_page(page);
1058		if (inode) {
1059			mutex_lock(&shmem_swaplist_mutex);
1060			/* move instead of add in case we're racing */
1061			list_move_tail(&info->swaplist, &shmem_swaplist);
1062			mutex_unlock(&shmem_swaplist_mutex);
1063			iput(inode);
1064		}
1065		return 0;
1066	}
1067
1068	shmem_swp_unmap(entry);
1069unlock:
1070	spin_unlock(&info->lock);
1071	swap_free(swap);
1072redirty:
1073	set_page_dirty(page);
1074	if (wbc->for_reclaim)
1075		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1076	unlock_page(page);
1077	return 0;
1078}
1079
1080#ifdef CONFIG_NUMA
1081#ifdef CONFIG_TMPFS
1082static int shmem_parse_mpol(char *value, unsigned short *policy,
1083			unsigned short *mode_flags, nodemask_t *policy_nodes)
1084{
1085	char *nodelist = strchr(value, ':');
1086	char *flags = strchr(value, '=');
1087	int err = 1;
1088
1089	if (nodelist) {
1090		/* NUL-terminate policy string */
1091		*nodelist++ = '\0';
1092		if (nodelist_parse(nodelist, *policy_nodes))
1093			goto out;
1094		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1095			goto out;
1096	}
1097	if (flags)
1098		*flags++ = '\0';
1099	if (!strcmp(value, "default")) {
1100		*policy = MPOL_DEFAULT;
1101		/* Don't allow a nodelist */
1102		if (!nodelist)
1103			err = 0;
1104	} else if (!strcmp(value, "prefer")) {
1105		*policy = MPOL_PREFERRED;
1106		/* Insist on a nodelist of one node only */
1107		if (nodelist) {
1108			char *rest = nodelist;
1109			while (isdigit(*rest))
1110				rest++;
1111			if (!*rest)
1112				err = 0;
1113		}
1114	} else if (!strcmp(value, "bind")) {
1115		*policy = MPOL_BIND;
1116		/* Insist on a nodelist */
1117		if (nodelist)
1118			err = 0;
1119	} else if (!strcmp(value, "interleave")) {
1120		*policy = MPOL_INTERLEAVE;
1121		/*
1122		 * Default to online nodes with memory if no nodelist
1123		 */
1124		if (!nodelist)
1125			*policy_nodes = node_states[N_HIGH_MEMORY];
1126		err = 0;
1127	}
1128
1129	*mode_flags = 0;
1130	if (flags) {
1131		/*
1132		 * Currently, we only support two mutually exclusive
1133		 * mode flags.
1134		 */
1135		if (!strcmp(flags, "static"))
1136			*mode_flags |= MPOL_F_STATIC_NODES;
1137		else if (!strcmp(flags, "relative"))
1138			*mode_flags |= MPOL_F_RELATIVE_NODES;
1139		else
1140			err = 1;	/* unrecognized flag */
1141	}
1142out:
1143	/* Restore string for error message */
1144	if (nodelist)
1145		*--nodelist = ':';
1146	if (flags)
1147		*--flags = '=';
1148	return err;
1149}
1150
1151static void shmem_show_mpol(struct seq_file *seq, unsigned short policy,
1152			unsigned short flags, const nodemask_t policy_nodes)
1153{
1154	char *policy_string;
1155
1156	switch (policy) {
1157	case MPOL_PREFERRED:
1158		policy_string = "prefer";
1159		break;
1160	case MPOL_BIND:
1161		policy_string = "bind";
1162		break;
1163	case MPOL_INTERLEAVE:
1164		policy_string = "interleave";
1165		break;
1166	default:
1167		/* MPOL_DEFAULT */
1168		return;
1169	}
1170
1171	seq_printf(seq, ",mpol=%s", policy_string);
1172
1173	if (policy != MPOL_INTERLEAVE ||
1174	    !nodes_equal(policy_nodes, node_states[N_HIGH_MEMORY])) {
1175		char buffer[64];
1176		int len;
1177
1178		len = nodelist_scnprintf(buffer, sizeof(buffer), policy_nodes);
1179		if (len < sizeof(buffer))
1180			seq_printf(seq, ":%s", buffer);
1181		else
1182			seq_printf(seq, ":?");
1183	}
1184}
1185#endif /* CONFIG_TMPFS */
1186
1187static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1188			struct shmem_inode_info *info, unsigned long idx)
1189{
1190	struct vm_area_struct pvma;
1191	struct page *page;
1192
1193	/* Create a pseudo vma that just contains the policy */
1194	pvma.vm_start = 0;
1195	pvma.vm_pgoff = idx;
1196	pvma.vm_ops = NULL;
1197	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1198	page = swapin_readahead(entry, gfp, &pvma, 0);
1199	mpol_put(pvma.vm_policy);
1200	return page;
1201}
1202
1203static struct page *shmem_alloc_page(gfp_t gfp,
1204			struct shmem_inode_info *info, unsigned long idx)
1205{
1206	struct vm_area_struct pvma;
1207	struct page *page;
1208
1209	/* Create a pseudo vma that just contains the policy */
1210	pvma.vm_start = 0;
1211	pvma.vm_pgoff = idx;
1212	pvma.vm_ops = NULL;
1213	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1214	page = alloc_page_vma(gfp, &pvma, 0);
1215	mpol_put(pvma.vm_policy);
1216	return page;
1217}
1218#else /* !CONFIG_NUMA */
1219#ifdef CONFIG_TMPFS
1220static inline int shmem_parse_mpol(char *value, unsigned short *policy,
1221			unsigned short *mode_flags, nodemask_t *policy_nodes)
1222{
1223	return 1;
1224}
1225
1226static inline void shmem_show_mpol(struct seq_file *seq, unsigned short policy,
1227			unsigned short flags, const nodemask_t policy_nodes)
1228{
1229}
1230#endif /* CONFIG_TMPFS */
1231
1232static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1233			struct shmem_inode_info *info, unsigned long idx)
1234{
1235	return swapin_readahead(entry, gfp, NULL, 0);
1236}
1237
1238static inline struct page *shmem_alloc_page(gfp_t gfp,
1239			struct shmem_inode_info *info, unsigned long idx)
1240{
1241	return alloc_page(gfp);
1242}
1243#endif /* CONFIG_NUMA */
1244
1245/*
1246 * shmem_getpage - either get the page from swap or allocate a new one
1247 *
1248 * If we allocate a new one we do not mark it dirty. That's up to the
1249 * vm. If we swap it in we mark it dirty since we also free the swap
1250 * entry since a page cannot live in both the swap and page cache
1251 */
1252static int shmem_getpage(struct inode *inode, unsigned long idx,
1253			struct page **pagep, enum sgp_type sgp, int *type)
1254{
1255	struct address_space *mapping = inode->i_mapping;
1256	struct shmem_inode_info *info = SHMEM_I(inode);
1257	struct shmem_sb_info *sbinfo;
1258	struct page *filepage = *pagep;
1259	struct page *swappage;
1260	swp_entry_t *entry;
1261	swp_entry_t swap;
1262	gfp_t gfp;
1263	int error;
1264
1265	if (idx >= SHMEM_MAX_INDEX)
1266		return -EFBIG;
1267
1268	if (type)
1269		*type = 0;
1270
1271	/*
1272	 * Normally, filepage is NULL on entry, and either found
1273	 * uptodate immediately, or allocated and zeroed, or read
1274	 * in under swappage, which is then assigned to filepage.
1275	 * But shmem_readpage (required for splice) passes in a locked
1276	 * filepage, which may be found not uptodate by other callers
1277	 * too, and may need to be copied from the swappage read in.
1278	 */
1279repeat:
1280	if (!filepage)
1281		filepage = find_lock_page(mapping, idx);
1282	if (filepage && PageUptodate(filepage))
1283		goto done;
1284	error = 0;
1285	gfp = mapping_gfp_mask(mapping);
1286	if (!filepage) {
1287		/*
1288		 * Try to preload while we can wait, to not make a habit of
1289		 * draining atomic reserves; but don't latch on to this cpu.
1290		 */
1291		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1292		if (error)
1293			goto failed;
1294		radix_tree_preload_end();
1295	}
1296
1297	spin_lock(&info->lock);
1298	shmem_recalc_inode(inode);
1299	entry = shmem_swp_alloc(info, idx, sgp);
1300	if (IS_ERR(entry)) {
1301		spin_unlock(&info->lock);
1302		error = PTR_ERR(entry);
1303		goto failed;
1304	}
1305	swap = *entry;
1306
1307	if (swap.val) {
1308		/* Look it up and read it in.. */
1309		swappage = lookup_swap_cache(swap);
1310		if (!swappage) {
1311			shmem_swp_unmap(entry);
1312			/* here we actually do the io */
1313			if (type && !(*type & VM_FAULT_MAJOR)) {
1314				__count_vm_event(PGMAJFAULT);
1315				*type |= VM_FAULT_MAJOR;
1316			}
1317			spin_unlock(&info->lock);
1318			swappage = shmem_swapin(swap, gfp, info, idx);
1319			if (!swappage) {
1320				spin_lock(&info->lock);
1321				entry = shmem_swp_alloc(info, idx, sgp);
1322				if (IS_ERR(entry))
1323					error = PTR_ERR(entry);
1324				else {
1325					if (entry->val == swap.val)
1326						error = -ENOMEM;
1327					shmem_swp_unmap(entry);
1328				}
1329				spin_unlock(&info->lock);
1330				if (error)
1331					goto failed;
1332				goto repeat;
1333			}
1334			wait_on_page_locked(swappage);
1335			page_cache_release(swappage);
1336			goto repeat;
1337		}
1338
1339		/* We have to do this with page locked to prevent races */
1340		if (TestSetPageLocked(swappage)) {
1341			shmem_swp_unmap(entry);
1342			spin_unlock(&info->lock);
1343			wait_on_page_locked(swappage);
1344			page_cache_release(swappage);
1345			goto repeat;
1346		}
1347		if (PageWriteback(swappage)) {
1348			shmem_swp_unmap(entry);
1349			spin_unlock(&info->lock);
1350			wait_on_page_writeback(swappage);
1351			unlock_page(swappage);
1352			page_cache_release(swappage);
1353			goto repeat;
1354		}
1355		if (!PageUptodate(swappage)) {
1356			shmem_swp_unmap(entry);
1357			spin_unlock(&info->lock);
1358			unlock_page(swappage);
1359			page_cache_release(swappage);
1360			error = -EIO;
1361			goto failed;
1362		}
1363
1364		if (filepage) {
1365			shmem_swp_set(info, entry, 0);
1366			shmem_swp_unmap(entry);
1367			delete_from_swap_cache(swappage);
1368			spin_unlock(&info->lock);
1369			copy_highpage(filepage, swappage);
1370			unlock_page(swappage);
1371			page_cache_release(swappage);
1372			flush_dcache_page(filepage);
1373			SetPageUptodate(filepage);
1374			set_page_dirty(filepage);
1375			swap_free(swap);
1376		} else if (!(error = add_to_page_cache(
1377				swappage, mapping, idx, GFP_NOWAIT))) {
1378			info->flags |= SHMEM_PAGEIN;
1379			shmem_swp_set(info, entry, 0);
1380			shmem_swp_unmap(entry);
1381			delete_from_swap_cache(swappage);
1382			spin_unlock(&info->lock);
1383			filepage = swappage;
1384			set_page_dirty(filepage);
1385			swap_free(swap);
1386		} else {
1387			shmem_swp_unmap(entry);
1388			spin_unlock(&info->lock);
1389			unlock_page(swappage);
1390			if (error == -ENOMEM) {
1391				/* allow reclaim from this memory cgroup */
1392				error = mem_cgroup_cache_charge(swappage,
1393					current->mm, gfp & ~__GFP_HIGHMEM);
1394				if (error) {
1395					page_cache_release(swappage);
1396					goto failed;
1397				}
1398				mem_cgroup_uncharge_page(swappage);
1399			}
1400			page_cache_release(swappage);
1401			goto repeat;
1402		}
1403	} else if (sgp == SGP_READ && !filepage) {
1404		shmem_swp_unmap(entry);
1405		filepage = find_get_page(mapping, idx);
1406		if (filepage &&
1407		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1408			spin_unlock(&info->lock);
1409			wait_on_page_locked(filepage);
1410			page_cache_release(filepage);
1411			filepage = NULL;
1412			goto repeat;
1413		}
1414		spin_unlock(&info->lock);
1415	} else {
1416		shmem_swp_unmap(entry);
1417		sbinfo = SHMEM_SB(inode->i_sb);
1418		if (sbinfo->max_blocks) {
1419			spin_lock(&sbinfo->stat_lock);
1420			if (sbinfo->free_blocks == 0 ||
1421			    shmem_acct_block(info->flags)) {
1422				spin_unlock(&sbinfo->stat_lock);
1423				spin_unlock(&info->lock);
1424				error = -ENOSPC;
1425				goto failed;
1426			}
1427			sbinfo->free_blocks--;
1428			inode->i_blocks += BLOCKS_PER_PAGE;
1429			spin_unlock(&sbinfo->stat_lock);
1430		} else if (shmem_acct_block(info->flags)) {
1431			spin_unlock(&info->lock);
1432			error = -ENOSPC;
1433			goto failed;
1434		}
1435
1436		if (!filepage) {
1437			spin_unlock(&info->lock);
1438			filepage = shmem_alloc_page(gfp, info, idx);
1439			if (!filepage) {
1440				shmem_unacct_blocks(info->flags, 1);
1441				shmem_free_blocks(inode, 1);
1442				error = -ENOMEM;
1443				goto failed;
1444			}
1445
1446			/* Precharge page while we can wait, compensate after */
1447			error = mem_cgroup_cache_charge(filepage, current->mm,
1448							gfp & ~__GFP_HIGHMEM);
1449			if (error) {
1450				page_cache_release(filepage);
1451				shmem_unacct_blocks(info->flags, 1);
1452				shmem_free_blocks(inode, 1);
1453				filepage = NULL;
1454				goto failed;
1455			}
1456
1457			spin_lock(&info->lock);
1458			entry = shmem_swp_alloc(info, idx, sgp);
1459			if (IS_ERR(entry))
1460				error = PTR_ERR(entry);
1461			else {
1462				swap = *entry;
1463				shmem_swp_unmap(entry);
1464			}
1465			if (error || swap.val || 0 != add_to_page_cache_lru(
1466					filepage, mapping, idx, GFP_NOWAIT)) {
1467				spin_unlock(&info->lock);
1468				mem_cgroup_uncharge_page(filepage);
1469				page_cache_release(filepage);
1470				shmem_unacct_blocks(info->flags, 1);
1471				shmem_free_blocks(inode, 1);
1472				filepage = NULL;
1473				if (error)
1474					goto failed;
1475				goto repeat;
1476			}
1477			mem_cgroup_uncharge_page(filepage);
1478			info->flags |= SHMEM_PAGEIN;
1479		}
1480
1481		info->alloced++;
1482		spin_unlock(&info->lock);
1483		clear_highpage(filepage);
1484		flush_dcache_page(filepage);
1485		SetPageUptodate(filepage);
1486		if (sgp == SGP_DIRTY)
1487			set_page_dirty(filepage);
1488	}
1489done:
1490	*pagep = filepage;
1491	return 0;
1492
1493failed:
1494	if (*pagep != filepage) {
1495		unlock_page(filepage);
1496		page_cache_release(filepage);
1497	}
1498	return error;
1499}
1500
1501static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1502{
1503	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1504	int error;
1505	int ret;
1506
1507	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1508		return VM_FAULT_SIGBUS;
1509
1510	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1511	if (error)
1512		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1513
1514	mark_page_accessed(vmf->page);
1515	return ret | VM_FAULT_LOCKED;
1516}
1517
1518#ifdef CONFIG_NUMA
1519static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1520{
1521	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1522	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1523}
1524
1525static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1526					  unsigned long addr)
1527{
1528	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1529	unsigned long idx;
1530
1531	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1532	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1533}
1534#endif
1535
1536int shmem_lock(struct file *file, int lock, struct user_struct *user)
1537{
1538	struct inode *inode = file->f_path.dentry->d_inode;
1539	struct shmem_inode_info *info = SHMEM_I(inode);
1540	int retval = -ENOMEM;
1541
1542	spin_lock(&info->lock);
1543	if (lock && !(info->flags & VM_LOCKED)) {
1544		if (!user_shm_lock(inode->i_size, user))
1545			goto out_nomem;
1546		info->flags |= VM_LOCKED;
1547	}
1548	if (!lock && (info->flags & VM_LOCKED) && user) {
1549		user_shm_unlock(inode->i_size, user);
1550		info->flags &= ~VM_LOCKED;
1551	}
1552	retval = 0;
1553out_nomem:
1554	spin_unlock(&info->lock);
1555	return retval;
1556}
1557
1558static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1559{
1560	file_accessed(file);
1561	vma->vm_ops = &shmem_vm_ops;
1562	vma->vm_flags |= VM_CAN_NONLINEAR;
1563	return 0;
1564}
1565
1566static struct inode *
1567shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1568{
1569	struct inode *inode;
1570	struct shmem_inode_info *info;
1571	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1572
1573	if (shmem_reserve_inode(sb))
1574		return NULL;
1575
1576	inode = new_inode(sb);
1577	if (inode) {
1578		inode->i_mode = mode;
1579		inode->i_uid = current->fsuid;
1580		inode->i_gid = current->fsgid;
1581		inode->i_blocks = 0;
1582		inode->i_mapping->a_ops = &shmem_aops;
1583		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1584		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1585		inode->i_generation = get_seconds();
1586		info = SHMEM_I(inode);
1587		memset(info, 0, (char *)inode - (char *)info);
1588		spin_lock_init(&info->lock);
1589		INIT_LIST_HEAD(&info->swaplist);
1590
1591		switch (mode & S_IFMT) {
1592		default:
1593			inode->i_op = &shmem_special_inode_operations;
1594			init_special_inode(inode, mode, dev);
1595			break;
1596		case S_IFREG:
1597			inode->i_op = &shmem_inode_operations;
1598			inode->i_fop = &shmem_file_operations;
1599			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1600					sbinfo->flags, &sbinfo->policy_nodes);
1601			break;
1602		case S_IFDIR:
1603			inc_nlink(inode);
1604			/* Some things misbehave if size == 0 on a directory */
1605			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1606			inode->i_op = &shmem_dir_inode_operations;
1607			inode->i_fop = &simple_dir_operations;
1608			break;
1609		case S_IFLNK:
1610			/*
1611			 * Must not load anything in the rbtree,
1612			 * mpol_free_shared_policy will not be called.
1613			 */
1614			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT, 0,
1615						NULL);
1616			break;
1617		}
1618	} else
1619		shmem_free_inode(sb);
1620	return inode;
1621}
1622
1623#ifdef CONFIG_TMPFS
1624static const struct inode_operations shmem_symlink_inode_operations;
1625static const struct inode_operations shmem_symlink_inline_operations;
1626
1627/*
1628 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1629 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1630 * below the loop driver, in the generic fashion that many filesystems support.
1631 */
1632static int shmem_readpage(struct file *file, struct page *page)
1633{
1634	struct inode *inode = page->mapping->host;
1635	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1636	unlock_page(page);
1637	return error;
1638}
1639
1640static int
1641shmem_write_begin(struct file *file, struct address_space *mapping,
1642			loff_t pos, unsigned len, unsigned flags,
1643			struct page **pagep, void **fsdata)
1644{
1645	struct inode *inode = mapping->host;
1646	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1647	*pagep = NULL;
1648	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1649}
1650
1651static int
1652shmem_write_end(struct file *file, struct address_space *mapping,
1653			loff_t pos, unsigned len, unsigned copied,
1654			struct page *page, void *fsdata)
1655{
1656	struct inode *inode = mapping->host;
1657
1658	if (pos + copied > inode->i_size)
1659		i_size_write(inode, pos + copied);
1660
1661	unlock_page(page);
1662	set_page_dirty(page);
1663	page_cache_release(page);
1664
1665	return copied;
1666}
1667
1668static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1669{
1670	struct inode *inode = filp->f_path.dentry->d_inode;
1671	struct address_space *mapping = inode->i_mapping;
1672	unsigned long index, offset;
1673	enum sgp_type sgp = SGP_READ;
1674
1675	/*
1676	 * Might this read be for a stacking filesystem?  Then when reading
1677	 * holes of a sparse file, we actually need to allocate those pages,
1678	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1679	 */
1680	if (segment_eq(get_fs(), KERNEL_DS))
1681		sgp = SGP_DIRTY;
1682
1683	index = *ppos >> PAGE_CACHE_SHIFT;
1684	offset = *ppos & ~PAGE_CACHE_MASK;
1685
1686	for (;;) {
1687		struct page *page = NULL;
1688		unsigned long end_index, nr, ret;
1689		loff_t i_size = i_size_read(inode);
1690
1691		end_index = i_size >> PAGE_CACHE_SHIFT;
1692		if (index > end_index)
1693			break;
1694		if (index == end_index) {
1695			nr = i_size & ~PAGE_CACHE_MASK;
1696			if (nr <= offset)
1697				break;
1698		}
1699
1700		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1701		if (desc->error) {
1702			if (desc->error == -EINVAL)
1703				desc->error = 0;
1704			break;
1705		}
1706		if (page)
1707			unlock_page(page);
1708
1709		/*
1710		 * We must evaluate after, since reads (unlike writes)
1711		 * are called without i_mutex protection against truncate
1712		 */
1713		nr = PAGE_CACHE_SIZE;
1714		i_size = i_size_read(inode);
1715		end_index = i_size >> PAGE_CACHE_SHIFT;
1716		if (index == end_index) {
1717			nr = i_size & ~PAGE_CACHE_MASK;
1718			if (nr <= offset) {
1719				if (page)
1720					page_cache_release(page);
1721				break;
1722			}
1723		}
1724		nr -= offset;
1725
1726		if (page) {
1727			/*
1728			 * If users can be writing to this page using arbitrary
1729			 * virtual addresses, take care about potential aliasing
1730			 * before reading the page on the kernel side.
1731			 */
1732			if (mapping_writably_mapped(mapping))
1733				flush_dcache_page(page);
1734			/*
1735			 * Mark the page accessed if we read the beginning.
1736			 */
1737			if (!offset)
1738				mark_page_accessed(page);
1739		} else {
1740			page = ZERO_PAGE(0);
1741			page_cache_get(page);
1742		}
1743
1744		/*
1745		 * Ok, we have the page, and it's up-to-date, so
1746		 * now we can copy it to user space...
1747		 *
1748		 * The actor routine returns how many bytes were actually used..
1749		 * NOTE! This may not be the same as how much of a user buffer
1750		 * we filled up (we may be padding etc), so we can only update
1751		 * "pos" here (the actor routine has to update the user buffer
1752		 * pointers and the remaining count).
1753		 */
1754		ret = actor(desc, page, offset, nr);
1755		offset += ret;
1756		index += offset >> PAGE_CACHE_SHIFT;
1757		offset &= ~PAGE_CACHE_MASK;
1758
1759		page_cache_release(page);
1760		if (ret != nr || !desc->count)
1761			break;
1762
1763		cond_resched();
1764	}
1765
1766	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1767	file_accessed(filp);
1768}
1769
1770static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1771{
1772	read_descriptor_t desc;
1773
1774	if ((ssize_t) count < 0)
1775		return -EINVAL;
1776	if (!access_ok(VERIFY_WRITE, buf, count))
1777		return -EFAULT;
1778	if (!count)
1779		return 0;
1780
1781	desc.written = 0;
1782	desc.count = count;
1783	desc.arg.buf = buf;
1784	desc.error = 0;
1785
1786	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1787	if (desc.written)
1788		return desc.written;
1789	return desc.error;
1790}
1791
1792static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1793{
1794	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1795
1796	buf->f_type = TMPFS_MAGIC;
1797	buf->f_bsize = PAGE_CACHE_SIZE;
1798	buf->f_namelen = NAME_MAX;
1799	spin_lock(&sbinfo->stat_lock);
1800	if (sbinfo->max_blocks) {
1801		buf->f_blocks = sbinfo->max_blocks;
1802		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1803	}
1804	if (sbinfo->max_inodes) {
1805		buf->f_files = sbinfo->max_inodes;
1806		buf->f_ffree = sbinfo->free_inodes;
1807	}
1808	/* else leave those fields 0 like simple_statfs */
1809	spin_unlock(&sbinfo->stat_lock);
1810	return 0;
1811}
1812
1813/*
1814 * File creation. Allocate an inode, and we're done..
1815 */
1816static int
1817shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1818{
1819	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1820	int error = -ENOSPC;
1821
1822	if (inode) {
1823		error = security_inode_init_security(inode, dir, NULL, NULL,
1824						     NULL);
1825		if (error) {
1826			if (error != -EOPNOTSUPP) {
1827				iput(inode);
1828				return error;
1829			}
1830		}
1831		error = shmem_acl_init(inode, dir);
1832		if (error) {
1833			iput(inode);
1834			return error;
1835		}
1836		if (dir->i_mode & S_ISGID) {
1837			inode->i_gid = dir->i_gid;
1838			if (S_ISDIR(mode))
1839				inode->i_mode |= S_ISGID;
1840		}
1841		dir->i_size += BOGO_DIRENT_SIZE;
1842		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1843		d_instantiate(dentry, inode);
1844		dget(dentry); /* Extra count - pin the dentry in core */
1845	}
1846	return error;
1847}
1848
1849static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1850{
1851	int error;
1852
1853	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1854		return error;
1855	inc_nlink(dir);
1856	return 0;
1857}
1858
1859static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1860		struct nameidata *nd)
1861{
1862	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1863}
1864
1865/*
1866 * Link a file..
1867 */
1868static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1869{
1870	struct inode *inode = old_dentry->d_inode;
1871	int ret;
1872
1873	/*
1874	 * No ordinary (disk based) filesystem counts links as inodes;
1875	 * but each new link needs a new dentry, pinning lowmem, and
1876	 * tmpfs dentries cannot be pruned until they are unlinked.
1877	 */
1878	ret = shmem_reserve_inode(inode->i_sb);
1879	if (ret)
1880		goto out;
1881
1882	dir->i_size += BOGO_DIRENT_SIZE;
1883	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1884	inc_nlink(inode);
1885	atomic_inc(&inode->i_count);	/* New dentry reference */
1886	dget(dentry);		/* Extra pinning count for the created dentry */
1887	d_instantiate(dentry, inode);
1888out:
1889	return ret;
1890}
1891
1892static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1893{
1894	struct inode *inode = dentry->d_inode;
1895
1896	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1897		shmem_free_inode(inode->i_sb);
1898
1899	dir->i_size -= BOGO_DIRENT_SIZE;
1900	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1901	drop_nlink(inode);
1902	dput(dentry);	/* Undo the count from "create" - this does all the work */
1903	return 0;
1904}
1905
1906static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1907{
1908	if (!simple_empty(dentry))
1909		return -ENOTEMPTY;
1910
1911	drop_nlink(dentry->d_inode);
1912	drop_nlink(dir);
1913	return shmem_unlink(dir, dentry);
1914}
1915
1916/*
1917 * The VFS layer already does all the dentry stuff for rename,
1918 * we just have to decrement the usage count for the target if
1919 * it exists so that the VFS layer correctly free's it when it
1920 * gets overwritten.
1921 */
1922static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1923{
1924	struct inode *inode = old_dentry->d_inode;
1925	int they_are_dirs = S_ISDIR(inode->i_mode);
1926
1927	if (!simple_empty(new_dentry))
1928		return -ENOTEMPTY;
1929
1930	if (new_dentry->d_inode) {
1931		(void) shmem_unlink(new_dir, new_dentry);
1932		if (they_are_dirs)
1933			drop_nlink(old_dir);
1934	} else if (they_are_dirs) {
1935		drop_nlink(old_dir);
1936		inc_nlink(new_dir);
1937	}
1938
1939	old_dir->i_size -= BOGO_DIRENT_SIZE;
1940	new_dir->i_size += BOGO_DIRENT_SIZE;
1941	old_dir->i_ctime = old_dir->i_mtime =
1942	new_dir->i_ctime = new_dir->i_mtime =
1943	inode->i_ctime = CURRENT_TIME;
1944	return 0;
1945}
1946
1947static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1948{
1949	int error;
1950	int len;
1951	struct inode *inode;
1952	struct page *page = NULL;
1953	char *kaddr;
1954	struct shmem_inode_info *info;
1955
1956	len = strlen(symname) + 1;
1957	if (len > PAGE_CACHE_SIZE)
1958		return -ENAMETOOLONG;
1959
1960	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1961	if (!inode)
1962		return -ENOSPC;
1963
1964	error = security_inode_init_security(inode, dir, NULL, NULL,
1965					     NULL);
1966	if (error) {
1967		if (error != -EOPNOTSUPP) {
1968			iput(inode);
1969			return error;
1970		}
1971		error = 0;
1972	}
1973
1974	info = SHMEM_I(inode);
1975	inode->i_size = len-1;
1976	if (len <= (char *)inode - (char *)info) {
1977		/* do it inline */
1978		memcpy(info, symname, len);
1979		inode->i_op = &shmem_symlink_inline_operations;
1980	} else {
1981		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1982		if (error) {
1983			iput(inode);
1984			return error;
1985		}
1986		unlock_page(page);
1987		inode->i_op = &shmem_symlink_inode_operations;
1988		kaddr = kmap_atomic(page, KM_USER0);
1989		memcpy(kaddr, symname, len);
1990		kunmap_atomic(kaddr, KM_USER0);
1991		set_page_dirty(page);
1992		page_cache_release(page);
1993	}
1994	if (dir->i_mode & S_ISGID)
1995		inode->i_gid = dir->i_gid;
1996	dir->i_size += BOGO_DIRENT_SIZE;
1997	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1998	d_instantiate(dentry, inode);
1999	dget(dentry);
2000	return 0;
2001}
2002
2003static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2004{
2005	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2006	return NULL;
2007}
2008
2009static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2010{
2011	struct page *page = NULL;
2012	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2013	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2014	if (page)
2015		unlock_page(page);
2016	return page;
2017}
2018
2019static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2020{
2021	if (!IS_ERR(nd_get_link(nd))) {
2022		struct page *page = cookie;
2023		kunmap(page);
2024		mark_page_accessed(page);
2025		page_cache_release(page);
2026	}
2027}
2028
2029static const struct inode_operations shmem_symlink_inline_operations = {
2030	.readlink	= generic_readlink,
2031	.follow_link	= shmem_follow_link_inline,
2032};
2033
2034static const struct inode_operations shmem_symlink_inode_operations = {
2035	.truncate	= shmem_truncate,
2036	.readlink	= generic_readlink,
2037	.follow_link	= shmem_follow_link,
2038	.put_link	= shmem_put_link,
2039};
2040
2041#ifdef CONFIG_TMPFS_POSIX_ACL
2042/*
2043 * Superblocks without xattr inode operations will get security.* xattr
2044 * support from the VFS "for free". As soon as we have any other xattrs
2045 * like ACLs, we also need to implement the security.* handlers at
2046 * filesystem level, though.
2047 */
2048
2049static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2050					size_t list_len, const char *name,
2051					size_t name_len)
2052{
2053	return security_inode_listsecurity(inode, list, list_len);
2054}
2055
2056static int shmem_xattr_security_get(struct inode *inode, const char *name,
2057				    void *buffer, size_t size)
2058{
2059	if (strcmp(name, "") == 0)
2060		return -EINVAL;
2061	return xattr_getsecurity(inode, name, buffer, size);
2062}
2063
2064static int shmem_xattr_security_set(struct inode *inode, const char *name,
2065				    const void *value, size_t size, int flags)
2066{
2067	if (strcmp(name, "") == 0)
2068		return -EINVAL;
2069	return security_inode_setsecurity(inode, name, value, size, flags);
2070}
2071
2072static struct xattr_handler shmem_xattr_security_handler = {
2073	.prefix = XATTR_SECURITY_PREFIX,
2074	.list   = shmem_xattr_security_list,
2075	.get    = shmem_xattr_security_get,
2076	.set    = shmem_xattr_security_set,
2077};
2078
2079static struct xattr_handler *shmem_xattr_handlers[] = {
2080	&shmem_xattr_acl_access_handler,
2081	&shmem_xattr_acl_default_handler,
2082	&shmem_xattr_security_handler,
2083	NULL
2084};
2085#endif
2086
2087static struct dentry *shmem_get_parent(struct dentry *child)
2088{
2089	return ERR_PTR(-ESTALE);
2090}
2091
2092static int shmem_match(struct inode *ino, void *vfh)
2093{
2094	__u32 *fh = vfh;
2095	__u64 inum = fh[2];
2096	inum = (inum << 32) | fh[1];
2097	return ino->i_ino == inum && fh[0] == ino->i_generation;
2098}
2099
2100static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2101		struct fid *fid, int fh_len, int fh_type)
2102{
2103	struct inode *inode;
2104	struct dentry *dentry = NULL;
2105	u64 inum = fid->raw[2];
2106	inum = (inum << 32) | fid->raw[1];
2107
2108	if (fh_len < 3)
2109		return NULL;
2110
2111	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2112			shmem_match, fid->raw);
2113	if (inode) {
2114		dentry = d_find_alias(inode);
2115		iput(inode);
2116	}
2117
2118	return dentry;
2119}
2120
2121static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2122				int connectable)
2123{
2124	struct inode *inode = dentry->d_inode;
2125
2126	if (*len < 3)
2127		return 255;
2128
2129	if (hlist_unhashed(&inode->i_hash)) {
2130		/* Unfortunately insert_inode_hash is not idempotent,
2131		 * so as we hash inodes here rather than at creation
2132		 * time, we need a lock to ensure we only try
2133		 * to do it once
2134		 */
2135		static DEFINE_SPINLOCK(lock);
2136		spin_lock(&lock);
2137		if (hlist_unhashed(&inode->i_hash))
2138			__insert_inode_hash(inode,
2139					    inode->i_ino + inode->i_generation);
2140		spin_unlock(&lock);
2141	}
2142
2143	fh[0] = inode->i_generation;
2144	fh[1] = inode->i_ino;
2145	fh[2] = ((__u64)inode->i_ino) >> 32;
2146
2147	*len = 3;
2148	return 1;
2149}
2150
2151static const struct export_operations shmem_export_ops = {
2152	.get_parent     = shmem_get_parent,
2153	.encode_fh      = shmem_encode_fh,
2154	.fh_to_dentry	= shmem_fh_to_dentry,
2155};
2156
2157static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2158			       bool remount)
2159{
2160	char *this_char, *value, *rest;
2161
2162	while (options != NULL) {
2163		this_char = options;
2164		for (;;) {
2165			/*
2166			 * NUL-terminate this option: unfortunately,
2167			 * mount options form a comma-separated list,
2168			 * but mpol's nodelist may also contain commas.
2169			 */
2170			options = strchr(options, ',');
2171			if (options == NULL)
2172				break;
2173			options++;
2174			if (!isdigit(*options)) {
2175				options[-1] = '\0';
2176				break;
2177			}
2178		}
2179		if (!*this_char)
2180			continue;
2181		if ((value = strchr(this_char,'=')) != NULL) {
2182			*value++ = 0;
2183		} else {
2184			printk(KERN_ERR
2185			    "tmpfs: No value for mount option '%s'\n",
2186			    this_char);
2187			return 1;
2188		}
2189
2190		if (!strcmp(this_char,"size")) {
2191			unsigned long long size;
2192			size = memparse(value,&rest);
2193			if (*rest == '%') {
2194				size <<= PAGE_SHIFT;
2195				size *= totalram_pages;
2196				do_div(size, 100);
2197				rest++;
2198			}
2199			if (*rest)
2200				goto bad_val;
2201			sbinfo->max_blocks =
2202				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2203		} else if (!strcmp(this_char,"nr_blocks")) {
2204			sbinfo->max_blocks = memparse(value, &rest);
2205			if (*rest)
2206				goto bad_val;
2207		} else if (!strcmp(this_char,"nr_inodes")) {
2208			sbinfo->max_inodes = memparse(value, &rest);
2209			if (*rest)
2210				goto bad_val;
2211		} else if (!strcmp(this_char,"mode")) {
2212			if (remount)
2213				continue;
2214			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2215			if (*rest)
2216				goto bad_val;
2217		} else if (!strcmp(this_char,"uid")) {
2218			if (remount)
2219				continue;
2220			sbinfo->uid = simple_strtoul(value, &rest, 0);
2221			if (*rest)
2222				goto bad_val;
2223		} else if (!strcmp(this_char,"gid")) {
2224			if (remount)
2225				continue;
2226			sbinfo->gid = simple_strtoul(value, &rest, 0);
2227			if (*rest)
2228				goto bad_val;
2229		} else if (!strcmp(this_char,"mpol")) {
2230			if (shmem_parse_mpol(value, &sbinfo->policy,
2231				&sbinfo->flags, &sbinfo->policy_nodes))
2232				goto bad_val;
2233		} else {
2234			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2235			       this_char);
2236			return 1;
2237		}
2238	}
2239	return 0;
2240
2241bad_val:
2242	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2243	       value, this_char);
2244	return 1;
2245
2246}
2247
2248static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2249{
2250	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2251	struct shmem_sb_info config = *sbinfo;
2252	unsigned long blocks;
2253	unsigned long inodes;
2254	int error = -EINVAL;
2255
2256	if (shmem_parse_options(data, &config, true))
2257		return error;
2258
2259	spin_lock(&sbinfo->stat_lock);
2260	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2261	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2262	if (config.max_blocks < blocks)
2263		goto out;
2264	if (config.max_inodes < inodes)
2265		goto out;
2266	/*
2267	 * Those tests also disallow limited->unlimited while any are in
2268	 * use, so i_blocks will always be zero when max_blocks is zero;
2269	 * but we must separately disallow unlimited->limited, because
2270	 * in that case we have no record of how much is already in use.
2271	 */
2272	if (config.max_blocks && !sbinfo->max_blocks)
2273		goto out;
2274	if (config.max_inodes && !sbinfo->max_inodes)
2275		goto out;
2276
2277	error = 0;
2278	sbinfo->max_blocks  = config.max_blocks;
2279	sbinfo->free_blocks = config.max_blocks - blocks;
2280	sbinfo->max_inodes  = config.max_inodes;
2281	sbinfo->free_inodes = config.max_inodes - inodes;
2282	sbinfo->policy      = config.policy;
2283	sbinfo->flags	    = config.flags;
2284	sbinfo->policy_nodes = config.policy_nodes;
2285out:
2286	spin_unlock(&sbinfo->stat_lock);
2287	return error;
2288}
2289
2290static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2291{
2292	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2293
2294	if (sbinfo->max_blocks != shmem_default_max_blocks())
2295		seq_printf(seq, ",size=%luk",
2296			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2297	if (sbinfo->max_inodes != shmem_default_max_inodes())
2298		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2299	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2300		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2301	if (sbinfo->uid != 0)
2302		seq_printf(seq, ",uid=%u", sbinfo->uid);
2303	if (sbinfo->gid != 0)
2304		seq_printf(seq, ",gid=%u", sbinfo->gid);
2305	shmem_show_mpol(seq, sbinfo->policy, sbinfo->flags,
2306			sbinfo->policy_nodes);
2307	return 0;
2308}
2309#endif /* CONFIG_TMPFS */
2310
2311static void shmem_put_super(struct super_block *sb)
2312{
2313	kfree(sb->s_fs_info);
2314	sb->s_fs_info = NULL;
2315}
2316
2317static int shmem_fill_super(struct super_block *sb,
2318			    void *data, int silent)
2319{
2320	struct inode *inode;
2321	struct dentry *root;
2322	struct shmem_sb_info *sbinfo;
2323	int err = -ENOMEM;
2324
2325	/* Round up to L1_CACHE_BYTES to resist false sharing */
2326	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2327				L1_CACHE_BYTES), GFP_KERNEL);
2328	if (!sbinfo)
2329		return -ENOMEM;
2330
2331	sbinfo->max_blocks = 0;
2332	sbinfo->max_inodes = 0;
2333	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2334	sbinfo->uid = current->fsuid;
2335	sbinfo->gid = current->fsgid;
2336	sbinfo->policy = MPOL_DEFAULT;
2337	sbinfo->flags = 0;
2338	sbinfo->policy_nodes = node_states[N_HIGH_MEMORY];
2339	sb->s_fs_info = sbinfo;
2340
2341#ifdef CONFIG_TMPFS
2342	/*
2343	 * Per default we only allow half of the physical ram per
2344	 * tmpfs instance, limiting inodes to one per page of lowmem;
2345	 * but the internal instance is left unlimited.
2346	 */
2347	if (!(sb->s_flags & MS_NOUSER)) {
2348		sbinfo->max_blocks = shmem_default_max_blocks();
2349		sbinfo->max_inodes = shmem_default_max_inodes();
2350		if (shmem_parse_options(data, sbinfo, false)) {
2351			err = -EINVAL;
2352			goto failed;
2353		}
2354	}
2355	sb->s_export_op = &shmem_export_ops;
2356#else
2357	sb->s_flags |= MS_NOUSER;
2358#endif
2359
2360	spin_lock_init(&sbinfo->stat_lock);
2361	sbinfo->free_blocks = sbinfo->max_blocks;
2362	sbinfo->free_inodes = sbinfo->max_inodes;
2363
2364	sb->s_maxbytes = SHMEM_MAX_BYTES;
2365	sb->s_blocksize = PAGE_CACHE_SIZE;
2366	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2367	sb->s_magic = TMPFS_MAGIC;
2368	sb->s_op = &shmem_ops;
2369	sb->s_time_gran = 1;
2370#ifdef CONFIG_TMPFS_POSIX_ACL
2371	sb->s_xattr = shmem_xattr_handlers;
2372	sb->s_flags |= MS_POSIXACL;
2373#endif
2374
2375	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2376	if (!inode)
2377		goto failed;
2378	inode->i_uid = sbinfo->uid;
2379	inode->i_gid = sbinfo->gid;
2380	root = d_alloc_root(inode);
2381	if (!root)
2382		goto failed_iput;
2383	sb->s_root = root;
2384	return 0;
2385
2386failed_iput:
2387	iput(inode);
2388failed:
2389	shmem_put_super(sb);
2390	return err;
2391}
2392
2393static struct kmem_cache *shmem_inode_cachep;
2394
2395static struct inode *shmem_alloc_inode(struct super_block *sb)
2396{
2397	struct shmem_inode_info *p;
2398	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2399	if (!p)
2400		return NULL;
2401	return &p->vfs_inode;
2402}
2403
2404static void shmem_destroy_inode(struct inode *inode)
2405{
2406	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2407		/* only struct inode is valid if it's an inline symlink */
2408		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2409	}
2410	shmem_acl_destroy_inode(inode);
2411	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2412}
2413
2414static void init_once(struct kmem_cache *cachep, void *foo)
2415{
2416	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2417
2418	inode_init_once(&p->vfs_inode);
2419#ifdef CONFIG_TMPFS_POSIX_ACL
2420	p->i_acl = NULL;
2421	p->i_default_acl = NULL;
2422#endif
2423}
2424
2425static int init_inodecache(void)
2426{
2427	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2428				sizeof(struct shmem_inode_info),
2429				0, SLAB_PANIC, init_once);
2430	return 0;
2431}
2432
2433static void destroy_inodecache(void)
2434{
2435	kmem_cache_destroy(shmem_inode_cachep);
2436}
2437
2438static const struct address_space_operations shmem_aops = {
2439	.writepage	= shmem_writepage,
2440	.set_page_dirty	= __set_page_dirty_no_writeback,
2441#ifdef CONFIG_TMPFS
2442	.readpage	= shmem_readpage,
2443	.write_begin	= shmem_write_begin,
2444	.write_end	= shmem_write_end,
2445#endif
2446	.migratepage	= migrate_page,
2447};
2448
2449static const struct file_operations shmem_file_operations = {
2450	.mmap		= shmem_mmap,
2451#ifdef CONFIG_TMPFS
2452	.llseek		= generic_file_llseek,
2453	.read		= shmem_file_read,
2454	.write		= do_sync_write,
2455	.aio_write	= generic_file_aio_write,
2456	.fsync		= simple_sync_file,
2457	.splice_read	= generic_file_splice_read,
2458	.splice_write	= generic_file_splice_write,
2459#endif
2460};
2461
2462static const struct inode_operations shmem_inode_operations = {
2463	.truncate	= shmem_truncate,
2464	.setattr	= shmem_notify_change,
2465	.truncate_range	= shmem_truncate_range,
2466#ifdef CONFIG_TMPFS_POSIX_ACL
2467	.setxattr	= generic_setxattr,
2468	.getxattr	= generic_getxattr,
2469	.listxattr	= generic_listxattr,
2470	.removexattr	= generic_removexattr,
2471	.permission	= shmem_permission,
2472#endif
2473
2474};
2475
2476static const struct inode_operations shmem_dir_inode_operations = {
2477#ifdef CONFIG_TMPFS
2478	.create		= shmem_create,
2479	.lookup		= simple_lookup,
2480	.link		= shmem_link,
2481	.unlink		= shmem_unlink,
2482	.symlink	= shmem_symlink,
2483	.mkdir		= shmem_mkdir,
2484	.rmdir		= shmem_rmdir,
2485	.mknod		= shmem_mknod,
2486	.rename		= shmem_rename,
2487#endif
2488#ifdef CONFIG_TMPFS_POSIX_ACL
2489	.setattr	= shmem_notify_change,
2490	.setxattr	= generic_setxattr,
2491	.getxattr	= generic_getxattr,
2492	.listxattr	= generic_listxattr,
2493	.removexattr	= generic_removexattr,
2494	.permission	= shmem_permission,
2495#endif
2496};
2497
2498static const struct inode_operations shmem_special_inode_operations = {
2499#ifdef CONFIG_TMPFS_POSIX_ACL
2500	.setattr	= shmem_notify_change,
2501	.setxattr	= generic_setxattr,
2502	.getxattr	= generic_getxattr,
2503	.listxattr	= generic_listxattr,
2504	.removexattr	= generic_removexattr,
2505	.permission	= shmem_permission,
2506#endif
2507};
2508
2509static const struct super_operations shmem_ops = {
2510	.alloc_inode	= shmem_alloc_inode,
2511	.destroy_inode	= shmem_destroy_inode,
2512#ifdef CONFIG_TMPFS
2513	.statfs		= shmem_statfs,
2514	.remount_fs	= shmem_remount_fs,
2515	.show_options	= shmem_show_options,
2516#endif
2517	.delete_inode	= shmem_delete_inode,
2518	.drop_inode	= generic_delete_inode,
2519	.put_super	= shmem_put_super,
2520};
2521
2522static struct vm_operations_struct shmem_vm_ops = {
2523	.fault		= shmem_fault,
2524#ifdef CONFIG_NUMA
2525	.set_policy     = shmem_set_policy,
2526	.get_policy     = shmem_get_policy,
2527#endif
2528};
2529
2530
2531static int shmem_get_sb(struct file_system_type *fs_type,
2532	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2533{
2534	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2535}
2536
2537static struct file_system_type tmpfs_fs_type = {
2538	.owner		= THIS_MODULE,
2539	.name		= "tmpfs",
2540	.get_sb		= shmem_get_sb,
2541	.kill_sb	= kill_litter_super,
2542};
2543static struct vfsmount *shm_mnt;
2544
2545static int __init init_tmpfs(void)
2546{
2547	int error;
2548
2549	error = bdi_init(&shmem_backing_dev_info);
2550	if (error)
2551		goto out4;
2552
2553	error = init_inodecache();
2554	if (error)
2555		goto out3;
2556
2557	error = register_filesystem(&tmpfs_fs_type);
2558	if (error) {
2559		printk(KERN_ERR "Could not register tmpfs\n");
2560		goto out2;
2561	}
2562
2563	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2564				tmpfs_fs_type.name, NULL);
2565	if (IS_ERR(shm_mnt)) {
2566		error = PTR_ERR(shm_mnt);
2567		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2568		goto out1;
2569	}
2570	return 0;
2571
2572out1:
2573	unregister_filesystem(&tmpfs_fs_type);
2574out2:
2575	destroy_inodecache();
2576out3:
2577	bdi_destroy(&shmem_backing_dev_info);
2578out4:
2579	shm_mnt = ERR_PTR(error);
2580	return error;
2581}
2582module_init(init_tmpfs)
2583
2584/**
2585 * shmem_file_setup - get an unlinked file living in tmpfs
2586 * @name: name for dentry (to be seen in /proc/<pid>/maps
2587 * @size: size to be set for the file
2588 * @flags: vm_flags
2589 */
2590struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2591{
2592	int error;
2593	struct file *file;
2594	struct inode *inode;
2595	struct dentry *dentry, *root;
2596	struct qstr this;
2597
2598	if (IS_ERR(shm_mnt))
2599		return (void *)shm_mnt;
2600
2601	if (size < 0 || size > SHMEM_MAX_BYTES)
2602		return ERR_PTR(-EINVAL);
2603
2604	if (shmem_acct_size(flags, size))
2605		return ERR_PTR(-ENOMEM);
2606
2607	error = -ENOMEM;
2608	this.name = name;
2609	this.len = strlen(name);
2610	this.hash = 0; /* will go */
2611	root = shm_mnt->mnt_root;
2612	dentry = d_alloc(root, &this);
2613	if (!dentry)
2614		goto put_memory;
2615
2616	error = -ENFILE;
2617	file = get_empty_filp();
2618	if (!file)
2619		goto put_dentry;
2620
2621	error = -ENOSPC;
2622	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2623	if (!inode)
2624		goto close_file;
2625
2626	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2627	d_instantiate(dentry, inode);
2628	inode->i_size = size;
2629	inode->i_nlink = 0;	/* It is unlinked */
2630	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2631			&shmem_file_operations);
2632	return file;
2633
2634close_file:
2635	put_filp(file);
2636put_dentry:
2637	dput(dentry);
2638put_memory:
2639	shmem_unacct_size(flags, size);
2640	return ERR_PTR(error);
2641}
2642
2643/**
2644 * shmem_zero_setup - setup a shared anonymous mapping
2645 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2646 */
2647int shmem_zero_setup(struct vm_area_struct *vma)
2648{
2649	struct file *file;
2650	loff_t size = vma->vm_end - vma->vm_start;
2651
2652	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2653	if (IS_ERR(file))
2654		return PTR_ERR(file);
2655
2656	if (vma->vm_file)
2657		fput(vma->vm_file);
2658	vma->vm_file = file;
2659	vma->vm_ops = &shmem_vm_ops;
2660	return 0;
2661}
2662