shmem.c revision fa0d7e3de6d6fc5004ad9dea0dd6b286af8f03e9
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/percpu_counter.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/security.h>
55#include <linux/swapops.h>
56#include <linux/mempolicy.h>
57#include <linux/namei.h>
58#include <linux/ctype.h>
59#include <linux/migrate.h>
60#include <linux/highmem.h>
61#include <linux/seq_file.h>
62#include <linux/magic.h>
63
64#include <asm/uaccess.h>
65#include <asm/div64.h>
66#include <asm/pgtable.h>
67
68/*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
80#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93#define SHMEM_PAGEIN	 VM_READ
94#define SHMEM_TRUNCATE	 VM_WRITE
95
96/* Definition to limit shmem_truncate's steps between cond_rescheds */
97#define LATENCY_LIMIT	 64
98
99/* Pretend that each entry is of this size in directory's i_size */
100#define BOGO_DIRENT_SIZE 20
101
102/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103enum sgp_type {
104	SGP_READ,	/* don't exceed i_size, don't allocate page */
105	SGP_CACHE,	/* don't exceed i_size, may allocate page */
106	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
107	SGP_WRITE,	/* may exceed i_size, may allocate page */
108};
109
110#ifdef CONFIG_TMPFS
111static unsigned long shmem_default_max_blocks(void)
112{
113	return totalram_pages / 2;
114}
115
116static unsigned long shmem_default_max_inodes(void)
117{
118	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119}
120#endif
121
122static int shmem_getpage(struct inode *inode, unsigned long idx,
123			 struct page **pagep, enum sgp_type sgp, int *type);
124
125static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
126{
127	/*
128	 * The above definition of ENTRIES_PER_PAGE, and the use of
129	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130	 * might be reconsidered if it ever diverges from PAGE_SIZE.
131	 *
132	 * Mobility flags are masked out as swap vectors cannot move
133	 */
134	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135				PAGE_CACHE_SHIFT-PAGE_SHIFT);
136}
137
138static inline void shmem_dir_free(struct page *page)
139{
140	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141}
142
143static struct page **shmem_dir_map(struct page *page)
144{
145	return (struct page **)kmap_atomic(page, KM_USER0);
146}
147
148static inline void shmem_dir_unmap(struct page **dir)
149{
150	kunmap_atomic(dir, KM_USER0);
151}
152
153static swp_entry_t *shmem_swp_map(struct page *page)
154{
155	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156}
157
158static inline void shmem_swp_balance_unmap(void)
159{
160	/*
161	 * When passing a pointer to an i_direct entry, to code which
162	 * also handles indirect entries and so will shmem_swp_unmap,
163	 * we must arrange for the preempt count to remain in balance.
164	 * What kmap_atomic of a lowmem page does depends on config
165	 * and architecture, so pretend to kmap_atomic some lowmem page.
166	 */
167	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168}
169
170static inline void shmem_swp_unmap(swp_entry_t *entry)
171{
172	kunmap_atomic(entry, KM_USER1);
173}
174
175static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176{
177	return sb->s_fs_info;
178}
179
180/*
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
185 */
186static inline int shmem_acct_size(unsigned long flags, loff_t size)
187{
188	return (flags & VM_NORESERVE) ?
189		0 : security_vm_enough_memory_kern(VM_ACCT(size));
190}
191
192static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193{
194	if (!(flags & VM_NORESERVE))
195		vm_unacct_memory(VM_ACCT(size));
196}
197
198/*
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203 */
204static inline int shmem_acct_block(unsigned long flags)
205{
206	return (flags & VM_NORESERVE) ?
207		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
212	if (flags & VM_NORESERVE)
213		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214}
215
216static const struct super_operations shmem_ops;
217static const struct address_space_operations shmem_aops;
218static const struct file_operations shmem_file_operations;
219static const struct inode_operations shmem_inode_operations;
220static const struct inode_operations shmem_dir_inode_operations;
221static const struct inode_operations shmem_special_inode_operations;
222static const struct vm_operations_struct shmem_vm_ops;
223
224static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
225	.ra_pages	= 0,	/* No readahead */
226	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227	.unplug_io_fn	= default_unplug_io_fn,
228};
229
230static LIST_HEAD(shmem_swaplist);
231static DEFINE_MUTEX(shmem_swaplist_mutex);
232
233static void shmem_free_blocks(struct inode *inode, long pages)
234{
235	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236	if (sbinfo->max_blocks) {
237		percpu_counter_add(&sbinfo->used_blocks, -pages);
238		spin_lock(&inode->i_lock);
239		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
240		spin_unlock(&inode->i_lock);
241	}
242}
243
244static int shmem_reserve_inode(struct super_block *sb)
245{
246	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247	if (sbinfo->max_inodes) {
248		spin_lock(&sbinfo->stat_lock);
249		if (!sbinfo->free_inodes) {
250			spin_unlock(&sbinfo->stat_lock);
251			return -ENOSPC;
252		}
253		sbinfo->free_inodes--;
254		spin_unlock(&sbinfo->stat_lock);
255	}
256	return 0;
257}
258
259static void shmem_free_inode(struct super_block *sb)
260{
261	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
262	if (sbinfo->max_inodes) {
263		spin_lock(&sbinfo->stat_lock);
264		sbinfo->free_inodes++;
265		spin_unlock(&sbinfo->stat_lock);
266	}
267}
268
269/**
270 * shmem_recalc_inode - recalculate the size of an inode
271 * @inode: inode to recalc
272 *
273 * We have to calculate the free blocks since the mm can drop
274 * undirtied hole pages behind our back.
275 *
276 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278 *
279 * It has to be called with the spinlock held.
280 */
281static void shmem_recalc_inode(struct inode *inode)
282{
283	struct shmem_inode_info *info = SHMEM_I(inode);
284	long freed;
285
286	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
287	if (freed > 0) {
288		info->alloced -= freed;
289		shmem_unacct_blocks(info->flags, freed);
290		shmem_free_blocks(inode, freed);
291	}
292}
293
294/**
295 * shmem_swp_entry - find the swap vector position in the info structure
296 * @info:  info structure for the inode
297 * @index: index of the page to find
298 * @page:  optional page to add to the structure. Has to be preset to
299 *         all zeros
300 *
301 * If there is no space allocated yet it will return NULL when
302 * page is NULL, else it will use the page for the needed block,
303 * setting it to NULL on return to indicate that it has been used.
304 *
305 * The swap vector is organized the following way:
306 *
307 * There are SHMEM_NR_DIRECT entries directly stored in the
308 * shmem_inode_info structure. So small files do not need an addional
309 * allocation.
310 *
311 * For pages with index > SHMEM_NR_DIRECT there is the pointer
312 * i_indirect which points to a page which holds in the first half
313 * doubly indirect blocks, in the second half triple indirect blocks:
314 *
315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
316 * following layout (for SHMEM_NR_DIRECT == 16):
317 *
318 * i_indirect -> dir --> 16-19
319 * 	      |	     +-> 20-23
320 * 	      |
321 * 	      +-->dir2 --> 24-27
322 * 	      |	       +-> 28-31
323 * 	      |	       +-> 32-35
324 * 	      |	       +-> 36-39
325 * 	      |
326 * 	      +-->dir3 --> 40-43
327 * 	       	       +-> 44-47
328 * 	      	       +-> 48-51
329 * 	      	       +-> 52-55
330 */
331static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
332{
333	unsigned long offset;
334	struct page **dir;
335	struct page *subdir;
336
337	if (index < SHMEM_NR_DIRECT) {
338		shmem_swp_balance_unmap();
339		return info->i_direct+index;
340	}
341	if (!info->i_indirect) {
342		if (page) {
343			info->i_indirect = *page;
344			*page = NULL;
345		}
346		return NULL;			/* need another page */
347	}
348
349	index -= SHMEM_NR_DIRECT;
350	offset = index % ENTRIES_PER_PAGE;
351	index /= ENTRIES_PER_PAGE;
352	dir = shmem_dir_map(info->i_indirect);
353
354	if (index >= ENTRIES_PER_PAGE/2) {
355		index -= ENTRIES_PER_PAGE/2;
356		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
357		index %= ENTRIES_PER_PAGE;
358		subdir = *dir;
359		if (!subdir) {
360			if (page) {
361				*dir = *page;
362				*page = NULL;
363			}
364			shmem_dir_unmap(dir);
365			return NULL;		/* need another page */
366		}
367		shmem_dir_unmap(dir);
368		dir = shmem_dir_map(subdir);
369	}
370
371	dir += index;
372	subdir = *dir;
373	if (!subdir) {
374		if (!page || !(subdir = *page)) {
375			shmem_dir_unmap(dir);
376			return NULL;		/* need a page */
377		}
378		*dir = subdir;
379		*page = NULL;
380	}
381	shmem_dir_unmap(dir);
382	return shmem_swp_map(subdir) + offset;
383}
384
385static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
386{
387	long incdec = value? 1: -1;
388
389	entry->val = value;
390	info->swapped += incdec;
391	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
392		struct page *page = kmap_atomic_to_page(entry);
393		set_page_private(page, page_private(page) + incdec);
394	}
395}
396
397/**
398 * shmem_swp_alloc - get the position of the swap entry for the page.
399 * @info:	info structure for the inode
400 * @index:	index of the page to find
401 * @sgp:	check and recheck i_size? skip allocation?
402 *
403 * If the entry does not exist, allocate it.
404 */
405static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
406{
407	struct inode *inode = &info->vfs_inode;
408	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
409	struct page *page = NULL;
410	swp_entry_t *entry;
411
412	if (sgp != SGP_WRITE &&
413	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
414		return ERR_PTR(-EINVAL);
415
416	while (!(entry = shmem_swp_entry(info, index, &page))) {
417		if (sgp == SGP_READ)
418			return shmem_swp_map(ZERO_PAGE(0));
419		/*
420		 * Test used_blocks against 1 less max_blocks, since we have 1 data
421		 * page (and perhaps indirect index pages) yet to allocate:
422		 * a waste to allocate index if we cannot allocate data.
423		 */
424		if (sbinfo->max_blocks) {
425			if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0)
426				return ERR_PTR(-ENOSPC);
427			percpu_counter_inc(&sbinfo->used_blocks);
428			spin_lock(&inode->i_lock);
429			inode->i_blocks += BLOCKS_PER_PAGE;
430			spin_unlock(&inode->i_lock);
431		}
432
433		spin_unlock(&info->lock);
434		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
435		spin_lock(&info->lock);
436
437		if (!page) {
438			shmem_free_blocks(inode, 1);
439			return ERR_PTR(-ENOMEM);
440		}
441		if (sgp != SGP_WRITE &&
442		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
443			entry = ERR_PTR(-EINVAL);
444			break;
445		}
446		if (info->next_index <= index)
447			info->next_index = index + 1;
448	}
449	if (page) {
450		/* another task gave its page, or truncated the file */
451		shmem_free_blocks(inode, 1);
452		shmem_dir_free(page);
453	}
454	if (info->next_index <= index && !IS_ERR(entry))
455		info->next_index = index + 1;
456	return entry;
457}
458
459/**
460 * shmem_free_swp - free some swap entries in a directory
461 * @dir:        pointer to the directory
462 * @edir:       pointer after last entry of the directory
463 * @punch_lock: pointer to spinlock when needed for the holepunch case
464 */
465static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
466						spinlock_t *punch_lock)
467{
468	spinlock_t *punch_unlock = NULL;
469	swp_entry_t *ptr;
470	int freed = 0;
471
472	for (ptr = dir; ptr < edir; ptr++) {
473		if (ptr->val) {
474			if (unlikely(punch_lock)) {
475				punch_unlock = punch_lock;
476				punch_lock = NULL;
477				spin_lock(punch_unlock);
478				if (!ptr->val)
479					continue;
480			}
481			free_swap_and_cache(*ptr);
482			*ptr = (swp_entry_t){0};
483			freed++;
484		}
485	}
486	if (punch_unlock)
487		spin_unlock(punch_unlock);
488	return freed;
489}
490
491static int shmem_map_and_free_swp(struct page *subdir, int offset,
492		int limit, struct page ***dir, spinlock_t *punch_lock)
493{
494	swp_entry_t *ptr;
495	int freed = 0;
496
497	ptr = shmem_swp_map(subdir);
498	for (; offset < limit; offset += LATENCY_LIMIT) {
499		int size = limit - offset;
500		if (size > LATENCY_LIMIT)
501			size = LATENCY_LIMIT;
502		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
503							punch_lock);
504		if (need_resched()) {
505			shmem_swp_unmap(ptr);
506			if (*dir) {
507				shmem_dir_unmap(*dir);
508				*dir = NULL;
509			}
510			cond_resched();
511			ptr = shmem_swp_map(subdir);
512		}
513	}
514	shmem_swp_unmap(ptr);
515	return freed;
516}
517
518static void shmem_free_pages(struct list_head *next)
519{
520	struct page *page;
521	int freed = 0;
522
523	do {
524		page = container_of(next, struct page, lru);
525		next = next->next;
526		shmem_dir_free(page);
527		freed++;
528		if (freed >= LATENCY_LIMIT) {
529			cond_resched();
530			freed = 0;
531		}
532	} while (next);
533}
534
535static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
536{
537	struct shmem_inode_info *info = SHMEM_I(inode);
538	unsigned long idx;
539	unsigned long size;
540	unsigned long limit;
541	unsigned long stage;
542	unsigned long diroff;
543	struct page **dir;
544	struct page *topdir;
545	struct page *middir;
546	struct page *subdir;
547	swp_entry_t *ptr;
548	LIST_HEAD(pages_to_free);
549	long nr_pages_to_free = 0;
550	long nr_swaps_freed = 0;
551	int offset;
552	int freed;
553	int punch_hole;
554	spinlock_t *needs_lock;
555	spinlock_t *punch_lock;
556	unsigned long upper_limit;
557
558	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
560	if (idx >= info->next_index)
561		return;
562
563	spin_lock(&info->lock);
564	info->flags |= SHMEM_TRUNCATE;
565	if (likely(end == (loff_t) -1)) {
566		limit = info->next_index;
567		upper_limit = SHMEM_MAX_INDEX;
568		info->next_index = idx;
569		needs_lock = NULL;
570		punch_hole = 0;
571	} else {
572		if (end + 1 >= inode->i_size) {	/* we may free a little more */
573			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
574							PAGE_CACHE_SHIFT;
575			upper_limit = SHMEM_MAX_INDEX;
576		} else {
577			limit = (end + 1) >> PAGE_CACHE_SHIFT;
578			upper_limit = limit;
579		}
580		needs_lock = &info->lock;
581		punch_hole = 1;
582	}
583
584	topdir = info->i_indirect;
585	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
586		info->i_indirect = NULL;
587		nr_pages_to_free++;
588		list_add(&topdir->lru, &pages_to_free);
589	}
590	spin_unlock(&info->lock);
591
592	if (info->swapped && idx < SHMEM_NR_DIRECT) {
593		ptr = info->i_direct;
594		size = limit;
595		if (size > SHMEM_NR_DIRECT)
596			size = SHMEM_NR_DIRECT;
597		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
598	}
599
600	/*
601	 * If there are no indirect blocks or we are punching a hole
602	 * below indirect blocks, nothing to be done.
603	 */
604	if (!topdir || limit <= SHMEM_NR_DIRECT)
605		goto done2;
606
607	/*
608	 * The truncation case has already dropped info->lock, and we're safe
609	 * because i_size and next_index have already been lowered, preventing
610	 * access beyond.  But in the punch_hole case, we still need to take
611	 * the lock when updating the swap directory, because there might be
612	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613	 * shmem_writepage.  However, whenever we find we can remove a whole
614	 * directory page (not at the misaligned start or end of the range),
615	 * we first NULLify its pointer in the level above, and then have no
616	 * need to take the lock when updating its contents: needs_lock and
617	 * punch_lock (either pointing to info->lock or NULL) manage this.
618	 */
619
620	upper_limit -= SHMEM_NR_DIRECT;
621	limit -= SHMEM_NR_DIRECT;
622	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
623	offset = idx % ENTRIES_PER_PAGE;
624	idx -= offset;
625
626	dir = shmem_dir_map(topdir);
627	stage = ENTRIES_PER_PAGEPAGE/2;
628	if (idx < ENTRIES_PER_PAGEPAGE/2) {
629		middir = topdir;
630		diroff = idx/ENTRIES_PER_PAGE;
631	} else {
632		dir += ENTRIES_PER_PAGE/2;
633		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
634		while (stage <= idx)
635			stage += ENTRIES_PER_PAGEPAGE;
636		middir = *dir;
637		if (*dir) {
638			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
639				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
640			if (!diroff && !offset && upper_limit >= stage) {
641				if (needs_lock) {
642					spin_lock(needs_lock);
643					*dir = NULL;
644					spin_unlock(needs_lock);
645					needs_lock = NULL;
646				} else
647					*dir = NULL;
648				nr_pages_to_free++;
649				list_add(&middir->lru, &pages_to_free);
650			}
651			shmem_dir_unmap(dir);
652			dir = shmem_dir_map(middir);
653		} else {
654			diroff = 0;
655			offset = 0;
656			idx = stage;
657		}
658	}
659
660	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
661		if (unlikely(idx == stage)) {
662			shmem_dir_unmap(dir);
663			dir = shmem_dir_map(topdir) +
664			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
665			while (!*dir) {
666				dir++;
667				idx += ENTRIES_PER_PAGEPAGE;
668				if (idx >= limit)
669					goto done1;
670			}
671			stage = idx + ENTRIES_PER_PAGEPAGE;
672			middir = *dir;
673			if (punch_hole)
674				needs_lock = &info->lock;
675			if (upper_limit >= stage) {
676				if (needs_lock) {
677					spin_lock(needs_lock);
678					*dir = NULL;
679					spin_unlock(needs_lock);
680					needs_lock = NULL;
681				} else
682					*dir = NULL;
683				nr_pages_to_free++;
684				list_add(&middir->lru, &pages_to_free);
685			}
686			shmem_dir_unmap(dir);
687			cond_resched();
688			dir = shmem_dir_map(middir);
689			diroff = 0;
690		}
691		punch_lock = needs_lock;
692		subdir = dir[diroff];
693		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
694			if (needs_lock) {
695				spin_lock(needs_lock);
696				dir[diroff] = NULL;
697				spin_unlock(needs_lock);
698				punch_lock = NULL;
699			} else
700				dir[diroff] = NULL;
701			nr_pages_to_free++;
702			list_add(&subdir->lru, &pages_to_free);
703		}
704		if (subdir && page_private(subdir) /* has swap entries */) {
705			size = limit - idx;
706			if (size > ENTRIES_PER_PAGE)
707				size = ENTRIES_PER_PAGE;
708			freed = shmem_map_and_free_swp(subdir,
709					offset, size, &dir, punch_lock);
710			if (!dir)
711				dir = shmem_dir_map(middir);
712			nr_swaps_freed += freed;
713			if (offset || punch_lock) {
714				spin_lock(&info->lock);
715				set_page_private(subdir,
716					page_private(subdir) - freed);
717				spin_unlock(&info->lock);
718			} else
719				BUG_ON(page_private(subdir) != freed);
720		}
721		offset = 0;
722	}
723done1:
724	shmem_dir_unmap(dir);
725done2:
726	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
727		/*
728		 * Call truncate_inode_pages again: racing shmem_unuse_inode
729		 * may have swizzled a page in from swap since
730		 * truncate_pagecache or generic_delete_inode did it, before we
731		 * lowered next_index.  Also, though shmem_getpage checks
732		 * i_size before adding to cache, no recheck after: so fix the
733		 * narrow window there too.
734		 *
735		 * Recalling truncate_inode_pages_range and unmap_mapping_range
736		 * every time for punch_hole (which never got a chance to clear
737		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738		 * yet hardly ever necessary: try to optimize them out later.
739		 */
740		truncate_inode_pages_range(inode->i_mapping, start, end);
741		if (punch_hole)
742			unmap_mapping_range(inode->i_mapping, start,
743							end - start, 1);
744	}
745
746	spin_lock(&info->lock);
747	info->flags &= ~SHMEM_TRUNCATE;
748	info->swapped -= nr_swaps_freed;
749	if (nr_pages_to_free)
750		shmem_free_blocks(inode, nr_pages_to_free);
751	shmem_recalc_inode(inode);
752	spin_unlock(&info->lock);
753
754	/*
755	 * Empty swap vector directory pages to be freed?
756	 */
757	if (!list_empty(&pages_to_free)) {
758		pages_to_free.prev->next = NULL;
759		shmem_free_pages(pages_to_free.next);
760	}
761}
762
763static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
764{
765	struct inode *inode = dentry->d_inode;
766	loff_t newsize = attr->ia_size;
767	int error;
768
769	error = inode_change_ok(inode, attr);
770	if (error)
771		return error;
772
773	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
774					&& newsize != inode->i_size) {
775		struct page *page = NULL;
776
777		if (newsize < inode->i_size) {
778			/*
779			 * If truncating down to a partial page, then
780			 * if that page is already allocated, hold it
781			 * in memory until the truncation is over, so
782			 * truncate_partial_page cannnot miss it were
783			 * it assigned to swap.
784			 */
785			if (newsize & (PAGE_CACHE_SIZE-1)) {
786				(void) shmem_getpage(inode,
787					newsize >> PAGE_CACHE_SHIFT,
788						&page, SGP_READ, NULL);
789				if (page)
790					unlock_page(page);
791			}
792			/*
793			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794			 * detect if any pages might have been added to cache
795			 * after truncate_inode_pages.  But we needn't bother
796			 * if it's being fully truncated to zero-length: the
797			 * nrpages check is efficient enough in that case.
798			 */
799			if (newsize) {
800				struct shmem_inode_info *info = SHMEM_I(inode);
801				spin_lock(&info->lock);
802				info->flags &= ~SHMEM_PAGEIN;
803				spin_unlock(&info->lock);
804			}
805		}
806
807		/* XXX(truncate): truncate_setsize should be called last */
808		truncate_setsize(inode, newsize);
809		if (page)
810			page_cache_release(page);
811		shmem_truncate_range(inode, newsize, (loff_t)-1);
812	}
813
814	setattr_copy(inode, attr);
815#ifdef CONFIG_TMPFS_POSIX_ACL
816	if (attr->ia_valid & ATTR_MODE)
817		error = generic_acl_chmod(inode);
818#endif
819	return error;
820}
821
822static void shmem_evict_inode(struct inode *inode)
823{
824	struct shmem_inode_info *info = SHMEM_I(inode);
825
826	if (inode->i_mapping->a_ops == &shmem_aops) {
827		truncate_inode_pages(inode->i_mapping, 0);
828		shmem_unacct_size(info->flags, inode->i_size);
829		inode->i_size = 0;
830		shmem_truncate_range(inode, 0, (loff_t)-1);
831		if (!list_empty(&info->swaplist)) {
832			mutex_lock(&shmem_swaplist_mutex);
833			list_del_init(&info->swaplist);
834			mutex_unlock(&shmem_swaplist_mutex);
835		}
836	}
837	BUG_ON(inode->i_blocks);
838	shmem_free_inode(inode->i_sb);
839	end_writeback(inode);
840}
841
842static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
843{
844	swp_entry_t *ptr;
845
846	for (ptr = dir; ptr < edir; ptr++) {
847		if (ptr->val == entry.val)
848			return ptr - dir;
849	}
850	return -1;
851}
852
853static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
854{
855	struct inode *inode;
856	unsigned long idx;
857	unsigned long size;
858	unsigned long limit;
859	unsigned long stage;
860	struct page **dir;
861	struct page *subdir;
862	swp_entry_t *ptr;
863	int offset;
864	int error;
865
866	idx = 0;
867	ptr = info->i_direct;
868	spin_lock(&info->lock);
869	if (!info->swapped) {
870		list_del_init(&info->swaplist);
871		goto lost2;
872	}
873	limit = info->next_index;
874	size = limit;
875	if (size > SHMEM_NR_DIRECT)
876		size = SHMEM_NR_DIRECT;
877	offset = shmem_find_swp(entry, ptr, ptr+size);
878	if (offset >= 0)
879		goto found;
880	if (!info->i_indirect)
881		goto lost2;
882
883	dir = shmem_dir_map(info->i_indirect);
884	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
885
886	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
887		if (unlikely(idx == stage)) {
888			shmem_dir_unmap(dir-1);
889			if (cond_resched_lock(&info->lock)) {
890				/* check it has not been truncated */
891				if (limit > info->next_index) {
892					limit = info->next_index;
893					if (idx >= limit)
894						goto lost2;
895				}
896			}
897			dir = shmem_dir_map(info->i_indirect) +
898			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
899			while (!*dir) {
900				dir++;
901				idx += ENTRIES_PER_PAGEPAGE;
902				if (idx >= limit)
903					goto lost1;
904			}
905			stage = idx + ENTRIES_PER_PAGEPAGE;
906			subdir = *dir;
907			shmem_dir_unmap(dir);
908			dir = shmem_dir_map(subdir);
909		}
910		subdir = *dir;
911		if (subdir && page_private(subdir)) {
912			ptr = shmem_swp_map(subdir);
913			size = limit - idx;
914			if (size > ENTRIES_PER_PAGE)
915				size = ENTRIES_PER_PAGE;
916			offset = shmem_find_swp(entry, ptr, ptr+size);
917			shmem_swp_unmap(ptr);
918			if (offset >= 0) {
919				shmem_dir_unmap(dir);
920				goto found;
921			}
922		}
923	}
924lost1:
925	shmem_dir_unmap(dir-1);
926lost2:
927	spin_unlock(&info->lock);
928	return 0;
929found:
930	idx += offset;
931	inode = igrab(&info->vfs_inode);
932	spin_unlock(&info->lock);
933
934	/*
935	 * Move _head_ to start search for next from here.
936	 * But be careful: shmem_evict_inode checks list_empty without taking
937	 * mutex, and there's an instant in list_move_tail when info->swaplist
938	 * would appear empty, if it were the only one on shmem_swaplist.  We
939	 * could avoid doing it if inode NULL; or use this minor optimization.
940	 */
941	if (shmem_swaplist.next != &info->swaplist)
942		list_move_tail(&shmem_swaplist, &info->swaplist);
943	mutex_unlock(&shmem_swaplist_mutex);
944
945	error = 1;
946	if (!inode)
947		goto out;
948	/*
949	 * Charge page using GFP_KERNEL while we can wait.
950	 * Charged back to the user(not to caller) when swap account is used.
951	 * add_to_page_cache() will be called with GFP_NOWAIT.
952	 */
953	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
954	if (error)
955		goto out;
956	error = radix_tree_preload(GFP_KERNEL);
957	if (error) {
958		mem_cgroup_uncharge_cache_page(page);
959		goto out;
960	}
961	error = 1;
962
963	spin_lock(&info->lock);
964	ptr = shmem_swp_entry(info, idx, NULL);
965	if (ptr && ptr->val == entry.val) {
966		error = add_to_page_cache_locked(page, inode->i_mapping,
967						idx, GFP_NOWAIT);
968		/* does mem_cgroup_uncharge_cache_page on error */
969	} else	/* we must compensate for our precharge above */
970		mem_cgroup_uncharge_cache_page(page);
971
972	if (error == -EEXIST) {
973		struct page *filepage = find_get_page(inode->i_mapping, idx);
974		error = 1;
975		if (filepage) {
976			/*
977			 * There might be a more uptodate page coming down
978			 * from a stacked writepage: forget our swappage if so.
979			 */
980			if (PageUptodate(filepage))
981				error = 0;
982			page_cache_release(filepage);
983		}
984	}
985	if (!error) {
986		delete_from_swap_cache(page);
987		set_page_dirty(page);
988		info->flags |= SHMEM_PAGEIN;
989		shmem_swp_set(info, ptr, 0);
990		swap_free(entry);
991		error = 1;	/* not an error, but entry was found */
992	}
993	if (ptr)
994		shmem_swp_unmap(ptr);
995	spin_unlock(&info->lock);
996	radix_tree_preload_end();
997out:
998	unlock_page(page);
999	page_cache_release(page);
1000	iput(inode);		/* allows for NULL */
1001	return error;
1002}
1003
1004/*
1005 * shmem_unuse() search for an eventually swapped out shmem page.
1006 */
1007int shmem_unuse(swp_entry_t entry, struct page *page)
1008{
1009	struct list_head *p, *next;
1010	struct shmem_inode_info *info;
1011	int found = 0;
1012
1013	mutex_lock(&shmem_swaplist_mutex);
1014	list_for_each_safe(p, next, &shmem_swaplist) {
1015		info = list_entry(p, struct shmem_inode_info, swaplist);
1016		found = shmem_unuse_inode(info, entry, page);
1017		cond_resched();
1018		if (found)
1019			goto out;
1020	}
1021	mutex_unlock(&shmem_swaplist_mutex);
1022	/*
1023	 * Can some race bring us here?  We've been holding page lock,
1024	 * so I think not; but would rather try again later than BUG()
1025	 */
1026	unlock_page(page);
1027	page_cache_release(page);
1028out:
1029	return (found < 0) ? found : 0;
1030}
1031
1032/*
1033 * Move the page from the page cache to the swap cache.
1034 */
1035static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1036{
1037	struct shmem_inode_info *info;
1038	swp_entry_t *entry, swap;
1039	struct address_space *mapping;
1040	unsigned long index;
1041	struct inode *inode;
1042
1043	BUG_ON(!PageLocked(page));
1044	mapping = page->mapping;
1045	index = page->index;
1046	inode = mapping->host;
1047	info = SHMEM_I(inode);
1048	if (info->flags & VM_LOCKED)
1049		goto redirty;
1050	if (!total_swap_pages)
1051		goto redirty;
1052
1053	/*
1054	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1055	 * sync from ever calling shmem_writepage; but a stacking filesystem
1056	 * may use the ->writepage of its underlying filesystem, in which case
1057	 * tmpfs should write out to swap only in response to memory pressure,
1058	 * and not for the writeback threads or sync.  However, in those cases,
1059	 * we do still want to check if there's a redundant swappage to be
1060	 * discarded.
1061	 */
1062	if (wbc->for_reclaim)
1063		swap = get_swap_page();
1064	else
1065		swap.val = 0;
1066
1067	spin_lock(&info->lock);
1068	if (index >= info->next_index) {
1069		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1070		goto unlock;
1071	}
1072	entry = shmem_swp_entry(info, index, NULL);
1073	if (entry->val) {
1074		/*
1075		 * The more uptodate page coming down from a stacked
1076		 * writepage should replace our old swappage.
1077		 */
1078		free_swap_and_cache(*entry);
1079		shmem_swp_set(info, entry, 0);
1080	}
1081	shmem_recalc_inode(inode);
1082
1083	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1084		remove_from_page_cache(page);
1085		shmem_swp_set(info, entry, swap.val);
1086		shmem_swp_unmap(entry);
1087		if (list_empty(&info->swaplist))
1088			inode = igrab(inode);
1089		else
1090			inode = NULL;
1091		spin_unlock(&info->lock);
1092		swap_shmem_alloc(swap);
1093		BUG_ON(page_mapped(page));
1094		page_cache_release(page);	/* pagecache ref */
1095		swap_writepage(page, wbc);
1096		if (inode) {
1097			mutex_lock(&shmem_swaplist_mutex);
1098			/* move instead of add in case we're racing */
1099			list_move_tail(&info->swaplist, &shmem_swaplist);
1100			mutex_unlock(&shmem_swaplist_mutex);
1101			iput(inode);
1102		}
1103		return 0;
1104	}
1105
1106	shmem_swp_unmap(entry);
1107unlock:
1108	spin_unlock(&info->lock);
1109	/*
1110	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1111	 * clear SWAP_HAS_CACHE flag.
1112	 */
1113	swapcache_free(swap, NULL);
1114redirty:
1115	set_page_dirty(page);
1116	if (wbc->for_reclaim)
1117		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1118	unlock_page(page);
1119	return 0;
1120}
1121
1122#ifdef CONFIG_NUMA
1123#ifdef CONFIG_TMPFS
1124static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1125{
1126	char buffer[64];
1127
1128	if (!mpol || mpol->mode == MPOL_DEFAULT)
1129		return;		/* show nothing */
1130
1131	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1132
1133	seq_printf(seq, ",mpol=%s", buffer);
1134}
1135
1136static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1137{
1138	struct mempolicy *mpol = NULL;
1139	if (sbinfo->mpol) {
1140		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1141		mpol = sbinfo->mpol;
1142		mpol_get(mpol);
1143		spin_unlock(&sbinfo->stat_lock);
1144	}
1145	return mpol;
1146}
1147#endif /* CONFIG_TMPFS */
1148
1149static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1150			struct shmem_inode_info *info, unsigned long idx)
1151{
1152	struct mempolicy mpol, *spol;
1153	struct vm_area_struct pvma;
1154	struct page *page;
1155
1156	spol = mpol_cond_copy(&mpol,
1157				mpol_shared_policy_lookup(&info->policy, idx));
1158
1159	/* Create a pseudo vma that just contains the policy */
1160	pvma.vm_start = 0;
1161	pvma.vm_pgoff = idx;
1162	pvma.vm_ops = NULL;
1163	pvma.vm_policy = spol;
1164	page = swapin_readahead(entry, gfp, &pvma, 0);
1165	return page;
1166}
1167
1168static struct page *shmem_alloc_page(gfp_t gfp,
1169			struct shmem_inode_info *info, unsigned long idx)
1170{
1171	struct vm_area_struct pvma;
1172
1173	/* Create a pseudo vma that just contains the policy */
1174	pvma.vm_start = 0;
1175	pvma.vm_pgoff = idx;
1176	pvma.vm_ops = NULL;
1177	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1178
1179	/*
1180	 * alloc_page_vma() will drop the shared policy reference
1181	 */
1182	return alloc_page_vma(gfp, &pvma, 0);
1183}
1184#else /* !CONFIG_NUMA */
1185#ifdef CONFIG_TMPFS
1186static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1187{
1188}
1189#endif /* CONFIG_TMPFS */
1190
1191static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1192			struct shmem_inode_info *info, unsigned long idx)
1193{
1194	return swapin_readahead(entry, gfp, NULL, 0);
1195}
1196
1197static inline struct page *shmem_alloc_page(gfp_t gfp,
1198			struct shmem_inode_info *info, unsigned long idx)
1199{
1200	return alloc_page(gfp);
1201}
1202#endif /* CONFIG_NUMA */
1203
1204#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1205static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1206{
1207	return NULL;
1208}
1209#endif
1210
1211/*
1212 * shmem_getpage - either get the page from swap or allocate a new one
1213 *
1214 * If we allocate a new one we do not mark it dirty. That's up to the
1215 * vm. If we swap it in we mark it dirty since we also free the swap
1216 * entry since a page cannot live in both the swap and page cache
1217 */
1218static int shmem_getpage(struct inode *inode, unsigned long idx,
1219			struct page **pagep, enum sgp_type sgp, int *type)
1220{
1221	struct address_space *mapping = inode->i_mapping;
1222	struct shmem_inode_info *info = SHMEM_I(inode);
1223	struct shmem_sb_info *sbinfo;
1224	struct page *filepage = *pagep;
1225	struct page *swappage;
1226	struct page *prealloc_page = NULL;
1227	swp_entry_t *entry;
1228	swp_entry_t swap;
1229	gfp_t gfp;
1230	int error;
1231
1232	if (idx >= SHMEM_MAX_INDEX)
1233		return -EFBIG;
1234
1235	if (type)
1236		*type = 0;
1237
1238	/*
1239	 * Normally, filepage is NULL on entry, and either found
1240	 * uptodate immediately, or allocated and zeroed, or read
1241	 * in under swappage, which is then assigned to filepage.
1242	 * But shmem_readpage (required for splice) passes in a locked
1243	 * filepage, which may be found not uptodate by other callers
1244	 * too, and may need to be copied from the swappage read in.
1245	 */
1246repeat:
1247	if (!filepage)
1248		filepage = find_lock_page(mapping, idx);
1249	if (filepage && PageUptodate(filepage))
1250		goto done;
1251	gfp = mapping_gfp_mask(mapping);
1252	if (!filepage) {
1253		/*
1254		 * Try to preload while we can wait, to not make a habit of
1255		 * draining atomic reserves; but don't latch on to this cpu.
1256		 */
1257		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1258		if (error)
1259			goto failed;
1260		radix_tree_preload_end();
1261		if (sgp != SGP_READ && !prealloc_page) {
1262			/* We don't care if this fails */
1263			prealloc_page = shmem_alloc_page(gfp, info, idx);
1264			if (prealloc_page) {
1265				if (mem_cgroup_cache_charge(prealloc_page,
1266						current->mm, GFP_KERNEL)) {
1267					page_cache_release(prealloc_page);
1268					prealloc_page = NULL;
1269				}
1270			}
1271		}
1272	}
1273	error = 0;
1274
1275	spin_lock(&info->lock);
1276	shmem_recalc_inode(inode);
1277	entry = shmem_swp_alloc(info, idx, sgp);
1278	if (IS_ERR(entry)) {
1279		spin_unlock(&info->lock);
1280		error = PTR_ERR(entry);
1281		goto failed;
1282	}
1283	swap = *entry;
1284
1285	if (swap.val) {
1286		/* Look it up and read it in.. */
1287		swappage = lookup_swap_cache(swap);
1288		if (!swappage) {
1289			shmem_swp_unmap(entry);
1290			/* here we actually do the io */
1291			if (type && !(*type & VM_FAULT_MAJOR)) {
1292				__count_vm_event(PGMAJFAULT);
1293				*type |= VM_FAULT_MAJOR;
1294			}
1295			spin_unlock(&info->lock);
1296			swappage = shmem_swapin(swap, gfp, info, idx);
1297			if (!swappage) {
1298				spin_lock(&info->lock);
1299				entry = shmem_swp_alloc(info, idx, sgp);
1300				if (IS_ERR(entry))
1301					error = PTR_ERR(entry);
1302				else {
1303					if (entry->val == swap.val)
1304						error = -ENOMEM;
1305					shmem_swp_unmap(entry);
1306				}
1307				spin_unlock(&info->lock);
1308				if (error)
1309					goto failed;
1310				goto repeat;
1311			}
1312			wait_on_page_locked(swappage);
1313			page_cache_release(swappage);
1314			goto repeat;
1315		}
1316
1317		/* We have to do this with page locked to prevent races */
1318		if (!trylock_page(swappage)) {
1319			shmem_swp_unmap(entry);
1320			spin_unlock(&info->lock);
1321			wait_on_page_locked(swappage);
1322			page_cache_release(swappage);
1323			goto repeat;
1324		}
1325		if (PageWriteback(swappage)) {
1326			shmem_swp_unmap(entry);
1327			spin_unlock(&info->lock);
1328			wait_on_page_writeback(swappage);
1329			unlock_page(swappage);
1330			page_cache_release(swappage);
1331			goto repeat;
1332		}
1333		if (!PageUptodate(swappage)) {
1334			shmem_swp_unmap(entry);
1335			spin_unlock(&info->lock);
1336			unlock_page(swappage);
1337			page_cache_release(swappage);
1338			error = -EIO;
1339			goto failed;
1340		}
1341
1342		if (filepage) {
1343			shmem_swp_set(info, entry, 0);
1344			shmem_swp_unmap(entry);
1345			delete_from_swap_cache(swappage);
1346			spin_unlock(&info->lock);
1347			copy_highpage(filepage, swappage);
1348			unlock_page(swappage);
1349			page_cache_release(swappage);
1350			flush_dcache_page(filepage);
1351			SetPageUptodate(filepage);
1352			set_page_dirty(filepage);
1353			swap_free(swap);
1354		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1355					idx, GFP_NOWAIT))) {
1356			info->flags |= SHMEM_PAGEIN;
1357			shmem_swp_set(info, entry, 0);
1358			shmem_swp_unmap(entry);
1359			delete_from_swap_cache(swappage);
1360			spin_unlock(&info->lock);
1361			filepage = swappage;
1362			set_page_dirty(filepage);
1363			swap_free(swap);
1364		} else {
1365			shmem_swp_unmap(entry);
1366			spin_unlock(&info->lock);
1367			if (error == -ENOMEM) {
1368				/*
1369				 * reclaim from proper memory cgroup and
1370				 * call memcg's OOM if needed.
1371				 */
1372				error = mem_cgroup_shmem_charge_fallback(
1373								swappage,
1374								current->mm,
1375								gfp);
1376				if (error) {
1377					unlock_page(swappage);
1378					page_cache_release(swappage);
1379					goto failed;
1380				}
1381			}
1382			unlock_page(swappage);
1383			page_cache_release(swappage);
1384			goto repeat;
1385		}
1386	} else if (sgp == SGP_READ && !filepage) {
1387		shmem_swp_unmap(entry);
1388		filepage = find_get_page(mapping, idx);
1389		if (filepage &&
1390		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1391			spin_unlock(&info->lock);
1392			wait_on_page_locked(filepage);
1393			page_cache_release(filepage);
1394			filepage = NULL;
1395			goto repeat;
1396		}
1397		spin_unlock(&info->lock);
1398	} else {
1399		shmem_swp_unmap(entry);
1400		sbinfo = SHMEM_SB(inode->i_sb);
1401		if (sbinfo->max_blocks) {
1402			if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) ||
1403			    shmem_acct_block(info->flags)) {
1404				spin_unlock(&info->lock);
1405				error = -ENOSPC;
1406				goto failed;
1407			}
1408			percpu_counter_inc(&sbinfo->used_blocks);
1409			spin_lock(&inode->i_lock);
1410			inode->i_blocks += BLOCKS_PER_PAGE;
1411			spin_unlock(&inode->i_lock);
1412		} else if (shmem_acct_block(info->flags)) {
1413			spin_unlock(&info->lock);
1414			error = -ENOSPC;
1415			goto failed;
1416		}
1417
1418		if (!filepage) {
1419			int ret;
1420
1421			if (!prealloc_page) {
1422				spin_unlock(&info->lock);
1423				filepage = shmem_alloc_page(gfp, info, idx);
1424				if (!filepage) {
1425					shmem_unacct_blocks(info->flags, 1);
1426					shmem_free_blocks(inode, 1);
1427					error = -ENOMEM;
1428					goto failed;
1429				}
1430				SetPageSwapBacked(filepage);
1431
1432				/*
1433				 * Precharge page while we can wait, compensate
1434				 * after
1435				 */
1436				error = mem_cgroup_cache_charge(filepage,
1437					current->mm, GFP_KERNEL);
1438				if (error) {
1439					page_cache_release(filepage);
1440					shmem_unacct_blocks(info->flags, 1);
1441					shmem_free_blocks(inode, 1);
1442					filepage = NULL;
1443					goto failed;
1444				}
1445
1446				spin_lock(&info->lock);
1447			} else {
1448				filepage = prealloc_page;
1449				prealloc_page = NULL;
1450				SetPageSwapBacked(filepage);
1451			}
1452
1453			entry = shmem_swp_alloc(info, idx, sgp);
1454			if (IS_ERR(entry))
1455				error = PTR_ERR(entry);
1456			else {
1457				swap = *entry;
1458				shmem_swp_unmap(entry);
1459			}
1460			ret = error || swap.val;
1461			if (ret)
1462				mem_cgroup_uncharge_cache_page(filepage);
1463			else
1464				ret = add_to_page_cache_lru(filepage, mapping,
1465						idx, GFP_NOWAIT);
1466			/*
1467			 * At add_to_page_cache_lru() failure, uncharge will
1468			 * be done automatically.
1469			 */
1470			if (ret) {
1471				spin_unlock(&info->lock);
1472				page_cache_release(filepage);
1473				shmem_unacct_blocks(info->flags, 1);
1474				shmem_free_blocks(inode, 1);
1475				filepage = NULL;
1476				if (error)
1477					goto failed;
1478				goto repeat;
1479			}
1480			info->flags |= SHMEM_PAGEIN;
1481		}
1482
1483		info->alloced++;
1484		spin_unlock(&info->lock);
1485		clear_highpage(filepage);
1486		flush_dcache_page(filepage);
1487		SetPageUptodate(filepage);
1488		if (sgp == SGP_DIRTY)
1489			set_page_dirty(filepage);
1490	}
1491done:
1492	*pagep = filepage;
1493	error = 0;
1494	goto out;
1495
1496failed:
1497	if (*pagep != filepage) {
1498		unlock_page(filepage);
1499		page_cache_release(filepage);
1500	}
1501out:
1502	if (prealloc_page) {
1503		mem_cgroup_uncharge_cache_page(prealloc_page);
1504		page_cache_release(prealloc_page);
1505	}
1506	return error;
1507}
1508
1509static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1510{
1511	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1512	int error;
1513	int ret;
1514
1515	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1516		return VM_FAULT_SIGBUS;
1517
1518	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1519	if (error)
1520		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1521
1522	return ret | VM_FAULT_LOCKED;
1523}
1524
1525#ifdef CONFIG_NUMA
1526static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1527{
1528	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1529	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1530}
1531
1532static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1533					  unsigned long addr)
1534{
1535	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1536	unsigned long idx;
1537
1538	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1539	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1540}
1541#endif
1542
1543int shmem_lock(struct file *file, int lock, struct user_struct *user)
1544{
1545	struct inode *inode = file->f_path.dentry->d_inode;
1546	struct shmem_inode_info *info = SHMEM_I(inode);
1547	int retval = -ENOMEM;
1548
1549	spin_lock(&info->lock);
1550	if (lock && !(info->flags & VM_LOCKED)) {
1551		if (!user_shm_lock(inode->i_size, user))
1552			goto out_nomem;
1553		info->flags |= VM_LOCKED;
1554		mapping_set_unevictable(file->f_mapping);
1555	}
1556	if (!lock && (info->flags & VM_LOCKED) && user) {
1557		user_shm_unlock(inode->i_size, user);
1558		info->flags &= ~VM_LOCKED;
1559		mapping_clear_unevictable(file->f_mapping);
1560		scan_mapping_unevictable_pages(file->f_mapping);
1561	}
1562	retval = 0;
1563
1564out_nomem:
1565	spin_unlock(&info->lock);
1566	return retval;
1567}
1568
1569static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1570{
1571	file_accessed(file);
1572	vma->vm_ops = &shmem_vm_ops;
1573	vma->vm_flags |= VM_CAN_NONLINEAR;
1574	return 0;
1575}
1576
1577static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1578				     int mode, dev_t dev, unsigned long flags)
1579{
1580	struct inode *inode;
1581	struct shmem_inode_info *info;
1582	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1583
1584	if (shmem_reserve_inode(sb))
1585		return NULL;
1586
1587	inode = new_inode(sb);
1588	if (inode) {
1589		inode->i_ino = get_next_ino();
1590		inode_init_owner(inode, dir, mode);
1591		inode->i_blocks = 0;
1592		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1593		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1594		inode->i_generation = get_seconds();
1595		info = SHMEM_I(inode);
1596		memset(info, 0, (char *)inode - (char *)info);
1597		spin_lock_init(&info->lock);
1598		info->flags = flags & VM_NORESERVE;
1599		INIT_LIST_HEAD(&info->swaplist);
1600		cache_no_acl(inode);
1601
1602		switch (mode & S_IFMT) {
1603		default:
1604			inode->i_op = &shmem_special_inode_operations;
1605			init_special_inode(inode, mode, dev);
1606			break;
1607		case S_IFREG:
1608			inode->i_mapping->a_ops = &shmem_aops;
1609			inode->i_op = &shmem_inode_operations;
1610			inode->i_fop = &shmem_file_operations;
1611			mpol_shared_policy_init(&info->policy,
1612						 shmem_get_sbmpol(sbinfo));
1613			break;
1614		case S_IFDIR:
1615			inc_nlink(inode);
1616			/* Some things misbehave if size == 0 on a directory */
1617			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1618			inode->i_op = &shmem_dir_inode_operations;
1619			inode->i_fop = &simple_dir_operations;
1620			break;
1621		case S_IFLNK:
1622			/*
1623			 * Must not load anything in the rbtree,
1624			 * mpol_free_shared_policy will not be called.
1625			 */
1626			mpol_shared_policy_init(&info->policy, NULL);
1627			break;
1628		}
1629	} else
1630		shmem_free_inode(sb);
1631	return inode;
1632}
1633
1634#ifdef CONFIG_TMPFS
1635static const struct inode_operations shmem_symlink_inode_operations;
1636static const struct inode_operations shmem_symlink_inline_operations;
1637
1638/*
1639 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1640 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1641 * below the loop driver, in the generic fashion that many filesystems support.
1642 */
1643static int shmem_readpage(struct file *file, struct page *page)
1644{
1645	struct inode *inode = page->mapping->host;
1646	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1647	unlock_page(page);
1648	return error;
1649}
1650
1651static int
1652shmem_write_begin(struct file *file, struct address_space *mapping,
1653			loff_t pos, unsigned len, unsigned flags,
1654			struct page **pagep, void **fsdata)
1655{
1656	struct inode *inode = mapping->host;
1657	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1658	*pagep = NULL;
1659	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1660}
1661
1662static int
1663shmem_write_end(struct file *file, struct address_space *mapping,
1664			loff_t pos, unsigned len, unsigned copied,
1665			struct page *page, void *fsdata)
1666{
1667	struct inode *inode = mapping->host;
1668
1669	if (pos + copied > inode->i_size)
1670		i_size_write(inode, pos + copied);
1671
1672	set_page_dirty(page);
1673	unlock_page(page);
1674	page_cache_release(page);
1675
1676	return copied;
1677}
1678
1679static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1680{
1681	struct inode *inode = filp->f_path.dentry->d_inode;
1682	struct address_space *mapping = inode->i_mapping;
1683	unsigned long index, offset;
1684	enum sgp_type sgp = SGP_READ;
1685
1686	/*
1687	 * Might this read be for a stacking filesystem?  Then when reading
1688	 * holes of a sparse file, we actually need to allocate those pages,
1689	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1690	 */
1691	if (segment_eq(get_fs(), KERNEL_DS))
1692		sgp = SGP_DIRTY;
1693
1694	index = *ppos >> PAGE_CACHE_SHIFT;
1695	offset = *ppos & ~PAGE_CACHE_MASK;
1696
1697	for (;;) {
1698		struct page *page = NULL;
1699		unsigned long end_index, nr, ret;
1700		loff_t i_size = i_size_read(inode);
1701
1702		end_index = i_size >> PAGE_CACHE_SHIFT;
1703		if (index > end_index)
1704			break;
1705		if (index == end_index) {
1706			nr = i_size & ~PAGE_CACHE_MASK;
1707			if (nr <= offset)
1708				break;
1709		}
1710
1711		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1712		if (desc->error) {
1713			if (desc->error == -EINVAL)
1714				desc->error = 0;
1715			break;
1716		}
1717		if (page)
1718			unlock_page(page);
1719
1720		/*
1721		 * We must evaluate after, since reads (unlike writes)
1722		 * are called without i_mutex protection against truncate
1723		 */
1724		nr = PAGE_CACHE_SIZE;
1725		i_size = i_size_read(inode);
1726		end_index = i_size >> PAGE_CACHE_SHIFT;
1727		if (index == end_index) {
1728			nr = i_size & ~PAGE_CACHE_MASK;
1729			if (nr <= offset) {
1730				if (page)
1731					page_cache_release(page);
1732				break;
1733			}
1734		}
1735		nr -= offset;
1736
1737		if (page) {
1738			/*
1739			 * If users can be writing to this page using arbitrary
1740			 * virtual addresses, take care about potential aliasing
1741			 * before reading the page on the kernel side.
1742			 */
1743			if (mapping_writably_mapped(mapping))
1744				flush_dcache_page(page);
1745			/*
1746			 * Mark the page accessed if we read the beginning.
1747			 */
1748			if (!offset)
1749				mark_page_accessed(page);
1750		} else {
1751			page = ZERO_PAGE(0);
1752			page_cache_get(page);
1753		}
1754
1755		/*
1756		 * Ok, we have the page, and it's up-to-date, so
1757		 * now we can copy it to user space...
1758		 *
1759		 * The actor routine returns how many bytes were actually used..
1760		 * NOTE! This may not be the same as how much of a user buffer
1761		 * we filled up (we may be padding etc), so we can only update
1762		 * "pos" here (the actor routine has to update the user buffer
1763		 * pointers and the remaining count).
1764		 */
1765		ret = actor(desc, page, offset, nr);
1766		offset += ret;
1767		index += offset >> PAGE_CACHE_SHIFT;
1768		offset &= ~PAGE_CACHE_MASK;
1769
1770		page_cache_release(page);
1771		if (ret != nr || !desc->count)
1772			break;
1773
1774		cond_resched();
1775	}
1776
1777	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1778	file_accessed(filp);
1779}
1780
1781static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1782		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1783{
1784	struct file *filp = iocb->ki_filp;
1785	ssize_t retval;
1786	unsigned long seg;
1787	size_t count;
1788	loff_t *ppos = &iocb->ki_pos;
1789
1790	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1791	if (retval)
1792		return retval;
1793
1794	for (seg = 0; seg < nr_segs; seg++) {
1795		read_descriptor_t desc;
1796
1797		desc.written = 0;
1798		desc.arg.buf = iov[seg].iov_base;
1799		desc.count = iov[seg].iov_len;
1800		if (desc.count == 0)
1801			continue;
1802		desc.error = 0;
1803		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1804		retval += desc.written;
1805		if (desc.error) {
1806			retval = retval ?: desc.error;
1807			break;
1808		}
1809		if (desc.count > 0)
1810			break;
1811	}
1812	return retval;
1813}
1814
1815static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1816{
1817	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1818
1819	buf->f_type = TMPFS_MAGIC;
1820	buf->f_bsize = PAGE_CACHE_SIZE;
1821	buf->f_namelen = NAME_MAX;
1822	if (sbinfo->max_blocks) {
1823		buf->f_blocks = sbinfo->max_blocks;
1824		buf->f_bavail = buf->f_bfree =
1825				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1826	}
1827	if (sbinfo->max_inodes) {
1828		buf->f_files = sbinfo->max_inodes;
1829		buf->f_ffree = sbinfo->free_inodes;
1830	}
1831	/* else leave those fields 0 like simple_statfs */
1832	return 0;
1833}
1834
1835/*
1836 * File creation. Allocate an inode, and we're done..
1837 */
1838static int
1839shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1840{
1841	struct inode *inode;
1842	int error = -ENOSPC;
1843
1844	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1845	if (inode) {
1846		error = security_inode_init_security(inode, dir, NULL, NULL,
1847						     NULL);
1848		if (error) {
1849			if (error != -EOPNOTSUPP) {
1850				iput(inode);
1851				return error;
1852			}
1853		}
1854#ifdef CONFIG_TMPFS_POSIX_ACL
1855		error = generic_acl_init(inode, dir);
1856		if (error) {
1857			iput(inode);
1858			return error;
1859		}
1860#else
1861		error = 0;
1862#endif
1863		dir->i_size += BOGO_DIRENT_SIZE;
1864		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1865		d_instantiate(dentry, inode);
1866		dget(dentry); /* Extra count - pin the dentry in core */
1867	}
1868	return error;
1869}
1870
1871static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1872{
1873	int error;
1874
1875	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1876		return error;
1877	inc_nlink(dir);
1878	return 0;
1879}
1880
1881static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1882		struct nameidata *nd)
1883{
1884	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1885}
1886
1887/*
1888 * Link a file..
1889 */
1890static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1891{
1892	struct inode *inode = old_dentry->d_inode;
1893	int ret;
1894
1895	/*
1896	 * No ordinary (disk based) filesystem counts links as inodes;
1897	 * but each new link needs a new dentry, pinning lowmem, and
1898	 * tmpfs dentries cannot be pruned until they are unlinked.
1899	 */
1900	ret = shmem_reserve_inode(inode->i_sb);
1901	if (ret)
1902		goto out;
1903
1904	dir->i_size += BOGO_DIRENT_SIZE;
1905	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1906	inc_nlink(inode);
1907	ihold(inode);	/* New dentry reference */
1908	dget(dentry);		/* Extra pinning count for the created dentry */
1909	d_instantiate(dentry, inode);
1910out:
1911	return ret;
1912}
1913
1914static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1915{
1916	struct inode *inode = dentry->d_inode;
1917
1918	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1919		shmem_free_inode(inode->i_sb);
1920
1921	dir->i_size -= BOGO_DIRENT_SIZE;
1922	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1923	drop_nlink(inode);
1924	dput(dentry);	/* Undo the count from "create" - this does all the work */
1925	return 0;
1926}
1927
1928static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1929{
1930	if (!simple_empty(dentry))
1931		return -ENOTEMPTY;
1932
1933	drop_nlink(dentry->d_inode);
1934	drop_nlink(dir);
1935	return shmem_unlink(dir, dentry);
1936}
1937
1938/*
1939 * The VFS layer already does all the dentry stuff for rename,
1940 * we just have to decrement the usage count for the target if
1941 * it exists so that the VFS layer correctly free's it when it
1942 * gets overwritten.
1943 */
1944static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1945{
1946	struct inode *inode = old_dentry->d_inode;
1947	int they_are_dirs = S_ISDIR(inode->i_mode);
1948
1949	if (!simple_empty(new_dentry))
1950		return -ENOTEMPTY;
1951
1952	if (new_dentry->d_inode) {
1953		(void) shmem_unlink(new_dir, new_dentry);
1954		if (they_are_dirs)
1955			drop_nlink(old_dir);
1956	} else if (they_are_dirs) {
1957		drop_nlink(old_dir);
1958		inc_nlink(new_dir);
1959	}
1960
1961	old_dir->i_size -= BOGO_DIRENT_SIZE;
1962	new_dir->i_size += BOGO_DIRENT_SIZE;
1963	old_dir->i_ctime = old_dir->i_mtime =
1964	new_dir->i_ctime = new_dir->i_mtime =
1965	inode->i_ctime = CURRENT_TIME;
1966	return 0;
1967}
1968
1969static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1970{
1971	int error;
1972	int len;
1973	struct inode *inode;
1974	struct page *page = NULL;
1975	char *kaddr;
1976	struct shmem_inode_info *info;
1977
1978	len = strlen(symname) + 1;
1979	if (len > PAGE_CACHE_SIZE)
1980		return -ENAMETOOLONG;
1981
1982	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1983	if (!inode)
1984		return -ENOSPC;
1985
1986	error = security_inode_init_security(inode, dir, NULL, NULL,
1987					     NULL);
1988	if (error) {
1989		if (error != -EOPNOTSUPP) {
1990			iput(inode);
1991			return error;
1992		}
1993		error = 0;
1994	}
1995
1996	info = SHMEM_I(inode);
1997	inode->i_size = len-1;
1998	if (len <= (char *)inode - (char *)info) {
1999		/* do it inline */
2000		memcpy(info, symname, len);
2001		inode->i_op = &shmem_symlink_inline_operations;
2002	} else {
2003		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2004		if (error) {
2005			iput(inode);
2006			return error;
2007		}
2008		inode->i_mapping->a_ops = &shmem_aops;
2009		inode->i_op = &shmem_symlink_inode_operations;
2010		kaddr = kmap_atomic(page, KM_USER0);
2011		memcpy(kaddr, symname, len);
2012		kunmap_atomic(kaddr, KM_USER0);
2013		set_page_dirty(page);
2014		unlock_page(page);
2015		page_cache_release(page);
2016	}
2017	dir->i_size += BOGO_DIRENT_SIZE;
2018	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2019	d_instantiate(dentry, inode);
2020	dget(dentry);
2021	return 0;
2022}
2023
2024static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2025{
2026	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2027	return NULL;
2028}
2029
2030static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2031{
2032	struct page *page = NULL;
2033	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2034	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2035	if (page)
2036		unlock_page(page);
2037	return page;
2038}
2039
2040static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2041{
2042	if (!IS_ERR(nd_get_link(nd))) {
2043		struct page *page = cookie;
2044		kunmap(page);
2045		mark_page_accessed(page);
2046		page_cache_release(page);
2047	}
2048}
2049
2050static const struct inode_operations shmem_symlink_inline_operations = {
2051	.readlink	= generic_readlink,
2052	.follow_link	= shmem_follow_link_inline,
2053};
2054
2055static const struct inode_operations shmem_symlink_inode_operations = {
2056	.readlink	= generic_readlink,
2057	.follow_link	= shmem_follow_link,
2058	.put_link	= shmem_put_link,
2059};
2060
2061#ifdef CONFIG_TMPFS_POSIX_ACL
2062/*
2063 * Superblocks without xattr inode operations will get security.* xattr
2064 * support from the VFS "for free". As soon as we have any other xattrs
2065 * like ACLs, we also need to implement the security.* handlers at
2066 * filesystem level, though.
2067 */
2068
2069static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2070					size_t list_len, const char *name,
2071					size_t name_len, int handler_flags)
2072{
2073	return security_inode_listsecurity(dentry->d_inode, list, list_len);
2074}
2075
2076static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2077		void *buffer, size_t size, int handler_flags)
2078{
2079	if (strcmp(name, "") == 0)
2080		return -EINVAL;
2081	return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2082}
2083
2084static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2085		const void *value, size_t size, int flags, int handler_flags)
2086{
2087	if (strcmp(name, "") == 0)
2088		return -EINVAL;
2089	return security_inode_setsecurity(dentry->d_inode, name, value,
2090					  size, flags);
2091}
2092
2093static const struct xattr_handler shmem_xattr_security_handler = {
2094	.prefix = XATTR_SECURITY_PREFIX,
2095	.list   = shmem_xattr_security_list,
2096	.get    = shmem_xattr_security_get,
2097	.set    = shmem_xattr_security_set,
2098};
2099
2100static const struct xattr_handler *shmem_xattr_handlers[] = {
2101	&generic_acl_access_handler,
2102	&generic_acl_default_handler,
2103	&shmem_xattr_security_handler,
2104	NULL
2105};
2106#endif
2107
2108static struct dentry *shmem_get_parent(struct dentry *child)
2109{
2110	return ERR_PTR(-ESTALE);
2111}
2112
2113static int shmem_match(struct inode *ino, void *vfh)
2114{
2115	__u32 *fh = vfh;
2116	__u64 inum = fh[2];
2117	inum = (inum << 32) | fh[1];
2118	return ino->i_ino == inum && fh[0] == ino->i_generation;
2119}
2120
2121static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2122		struct fid *fid, int fh_len, int fh_type)
2123{
2124	struct inode *inode;
2125	struct dentry *dentry = NULL;
2126	u64 inum = fid->raw[2];
2127	inum = (inum << 32) | fid->raw[1];
2128
2129	if (fh_len < 3)
2130		return NULL;
2131
2132	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2133			shmem_match, fid->raw);
2134	if (inode) {
2135		dentry = d_find_alias(inode);
2136		iput(inode);
2137	}
2138
2139	return dentry;
2140}
2141
2142static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2143				int connectable)
2144{
2145	struct inode *inode = dentry->d_inode;
2146
2147	if (*len < 3)
2148		return 255;
2149
2150	if (inode_unhashed(inode)) {
2151		/* Unfortunately insert_inode_hash is not idempotent,
2152		 * so as we hash inodes here rather than at creation
2153		 * time, we need a lock to ensure we only try
2154		 * to do it once
2155		 */
2156		static DEFINE_SPINLOCK(lock);
2157		spin_lock(&lock);
2158		if (inode_unhashed(inode))
2159			__insert_inode_hash(inode,
2160					    inode->i_ino + inode->i_generation);
2161		spin_unlock(&lock);
2162	}
2163
2164	fh[0] = inode->i_generation;
2165	fh[1] = inode->i_ino;
2166	fh[2] = ((__u64)inode->i_ino) >> 32;
2167
2168	*len = 3;
2169	return 1;
2170}
2171
2172static const struct export_operations shmem_export_ops = {
2173	.get_parent     = shmem_get_parent,
2174	.encode_fh      = shmem_encode_fh,
2175	.fh_to_dentry	= shmem_fh_to_dentry,
2176};
2177
2178static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2179			       bool remount)
2180{
2181	char *this_char, *value, *rest;
2182
2183	while (options != NULL) {
2184		this_char = options;
2185		for (;;) {
2186			/*
2187			 * NUL-terminate this option: unfortunately,
2188			 * mount options form a comma-separated list,
2189			 * but mpol's nodelist may also contain commas.
2190			 */
2191			options = strchr(options, ',');
2192			if (options == NULL)
2193				break;
2194			options++;
2195			if (!isdigit(*options)) {
2196				options[-1] = '\0';
2197				break;
2198			}
2199		}
2200		if (!*this_char)
2201			continue;
2202		if ((value = strchr(this_char,'=')) != NULL) {
2203			*value++ = 0;
2204		} else {
2205			printk(KERN_ERR
2206			    "tmpfs: No value for mount option '%s'\n",
2207			    this_char);
2208			return 1;
2209		}
2210
2211		if (!strcmp(this_char,"size")) {
2212			unsigned long long size;
2213			size = memparse(value,&rest);
2214			if (*rest == '%') {
2215				size <<= PAGE_SHIFT;
2216				size *= totalram_pages;
2217				do_div(size, 100);
2218				rest++;
2219			}
2220			if (*rest)
2221				goto bad_val;
2222			sbinfo->max_blocks =
2223				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2224		} else if (!strcmp(this_char,"nr_blocks")) {
2225			sbinfo->max_blocks = memparse(value, &rest);
2226			if (*rest)
2227				goto bad_val;
2228		} else if (!strcmp(this_char,"nr_inodes")) {
2229			sbinfo->max_inodes = memparse(value, &rest);
2230			if (*rest)
2231				goto bad_val;
2232		} else if (!strcmp(this_char,"mode")) {
2233			if (remount)
2234				continue;
2235			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2236			if (*rest)
2237				goto bad_val;
2238		} else if (!strcmp(this_char,"uid")) {
2239			if (remount)
2240				continue;
2241			sbinfo->uid = simple_strtoul(value, &rest, 0);
2242			if (*rest)
2243				goto bad_val;
2244		} else if (!strcmp(this_char,"gid")) {
2245			if (remount)
2246				continue;
2247			sbinfo->gid = simple_strtoul(value, &rest, 0);
2248			if (*rest)
2249				goto bad_val;
2250		} else if (!strcmp(this_char,"mpol")) {
2251			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2252				goto bad_val;
2253		} else {
2254			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2255			       this_char);
2256			return 1;
2257		}
2258	}
2259	return 0;
2260
2261bad_val:
2262	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2263	       value, this_char);
2264	return 1;
2265
2266}
2267
2268static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2269{
2270	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2271	struct shmem_sb_info config = *sbinfo;
2272	unsigned long inodes;
2273	int error = -EINVAL;
2274
2275	if (shmem_parse_options(data, &config, true))
2276		return error;
2277
2278	spin_lock(&sbinfo->stat_lock);
2279	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2280	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2281		goto out;
2282	if (config.max_inodes < inodes)
2283		goto out;
2284	/*
2285	 * Those tests also disallow limited->unlimited while any are in
2286	 * use, so i_blocks will always be zero when max_blocks is zero;
2287	 * but we must separately disallow unlimited->limited, because
2288	 * in that case we have no record of how much is already in use.
2289	 */
2290	if (config.max_blocks && !sbinfo->max_blocks)
2291		goto out;
2292	if (config.max_inodes && !sbinfo->max_inodes)
2293		goto out;
2294
2295	error = 0;
2296	sbinfo->max_blocks  = config.max_blocks;
2297	sbinfo->max_inodes  = config.max_inodes;
2298	sbinfo->free_inodes = config.max_inodes - inodes;
2299
2300	mpol_put(sbinfo->mpol);
2301	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2302out:
2303	spin_unlock(&sbinfo->stat_lock);
2304	return error;
2305}
2306
2307static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2308{
2309	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2310
2311	if (sbinfo->max_blocks != shmem_default_max_blocks())
2312		seq_printf(seq, ",size=%luk",
2313			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2314	if (sbinfo->max_inodes != shmem_default_max_inodes())
2315		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2316	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2317		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2318	if (sbinfo->uid != 0)
2319		seq_printf(seq, ",uid=%u", sbinfo->uid);
2320	if (sbinfo->gid != 0)
2321		seq_printf(seq, ",gid=%u", sbinfo->gid);
2322	shmem_show_mpol(seq, sbinfo->mpol);
2323	return 0;
2324}
2325#endif /* CONFIG_TMPFS */
2326
2327static void shmem_put_super(struct super_block *sb)
2328{
2329	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2330
2331	percpu_counter_destroy(&sbinfo->used_blocks);
2332	kfree(sbinfo);
2333	sb->s_fs_info = NULL;
2334}
2335
2336int shmem_fill_super(struct super_block *sb, void *data, int silent)
2337{
2338	struct inode *inode;
2339	struct dentry *root;
2340	struct shmem_sb_info *sbinfo;
2341	int err = -ENOMEM;
2342
2343	/* Round up to L1_CACHE_BYTES to resist false sharing */
2344	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2345				L1_CACHE_BYTES), GFP_KERNEL);
2346	if (!sbinfo)
2347		return -ENOMEM;
2348
2349	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2350	sbinfo->uid = current_fsuid();
2351	sbinfo->gid = current_fsgid();
2352	sb->s_fs_info = sbinfo;
2353
2354#ifdef CONFIG_TMPFS
2355	/*
2356	 * Per default we only allow half of the physical ram per
2357	 * tmpfs instance, limiting inodes to one per page of lowmem;
2358	 * but the internal instance is left unlimited.
2359	 */
2360	if (!(sb->s_flags & MS_NOUSER)) {
2361		sbinfo->max_blocks = shmem_default_max_blocks();
2362		sbinfo->max_inodes = shmem_default_max_inodes();
2363		if (shmem_parse_options(data, sbinfo, false)) {
2364			err = -EINVAL;
2365			goto failed;
2366		}
2367	}
2368	sb->s_export_op = &shmem_export_ops;
2369#else
2370	sb->s_flags |= MS_NOUSER;
2371#endif
2372
2373	spin_lock_init(&sbinfo->stat_lock);
2374	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2375		goto failed;
2376	sbinfo->free_inodes = sbinfo->max_inodes;
2377
2378	sb->s_maxbytes = SHMEM_MAX_BYTES;
2379	sb->s_blocksize = PAGE_CACHE_SIZE;
2380	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2381	sb->s_magic = TMPFS_MAGIC;
2382	sb->s_op = &shmem_ops;
2383	sb->s_time_gran = 1;
2384#ifdef CONFIG_TMPFS_POSIX_ACL
2385	sb->s_xattr = shmem_xattr_handlers;
2386	sb->s_flags |= MS_POSIXACL;
2387#endif
2388
2389	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2390	if (!inode)
2391		goto failed;
2392	inode->i_uid = sbinfo->uid;
2393	inode->i_gid = sbinfo->gid;
2394	root = d_alloc_root(inode);
2395	if (!root)
2396		goto failed_iput;
2397	sb->s_root = root;
2398	return 0;
2399
2400failed_iput:
2401	iput(inode);
2402failed:
2403	shmem_put_super(sb);
2404	return err;
2405}
2406
2407static struct kmem_cache *shmem_inode_cachep;
2408
2409static struct inode *shmem_alloc_inode(struct super_block *sb)
2410{
2411	struct shmem_inode_info *p;
2412	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2413	if (!p)
2414		return NULL;
2415	return &p->vfs_inode;
2416}
2417
2418static void shmem_i_callback(struct rcu_head *head)
2419{
2420	struct inode *inode = container_of(head, struct inode, i_rcu);
2421	INIT_LIST_HEAD(&inode->i_dentry);
2422	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2423}
2424
2425static void shmem_destroy_inode(struct inode *inode)
2426{
2427	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2428		/* only struct inode is valid if it's an inline symlink */
2429		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2430	}
2431	call_rcu(&inode->i_rcu, shmem_i_callback);
2432}
2433
2434static void init_once(void *foo)
2435{
2436	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2437
2438	inode_init_once(&p->vfs_inode);
2439}
2440
2441static int init_inodecache(void)
2442{
2443	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2444				sizeof(struct shmem_inode_info),
2445				0, SLAB_PANIC, init_once);
2446	return 0;
2447}
2448
2449static void destroy_inodecache(void)
2450{
2451	kmem_cache_destroy(shmem_inode_cachep);
2452}
2453
2454static const struct address_space_operations shmem_aops = {
2455	.writepage	= shmem_writepage,
2456	.set_page_dirty	= __set_page_dirty_no_writeback,
2457#ifdef CONFIG_TMPFS
2458	.readpage	= shmem_readpage,
2459	.write_begin	= shmem_write_begin,
2460	.write_end	= shmem_write_end,
2461#endif
2462	.migratepage	= migrate_page,
2463	.error_remove_page = generic_error_remove_page,
2464};
2465
2466static const struct file_operations shmem_file_operations = {
2467	.mmap		= shmem_mmap,
2468#ifdef CONFIG_TMPFS
2469	.llseek		= generic_file_llseek,
2470	.read		= do_sync_read,
2471	.write		= do_sync_write,
2472	.aio_read	= shmem_file_aio_read,
2473	.aio_write	= generic_file_aio_write,
2474	.fsync		= noop_fsync,
2475	.splice_read	= generic_file_splice_read,
2476	.splice_write	= generic_file_splice_write,
2477#endif
2478};
2479
2480static const struct inode_operations shmem_inode_operations = {
2481	.setattr	= shmem_notify_change,
2482	.truncate_range	= shmem_truncate_range,
2483#ifdef CONFIG_TMPFS_POSIX_ACL
2484	.setxattr	= generic_setxattr,
2485	.getxattr	= generic_getxattr,
2486	.listxattr	= generic_listxattr,
2487	.removexattr	= generic_removexattr,
2488	.check_acl	= generic_check_acl,
2489#endif
2490
2491};
2492
2493static const struct inode_operations shmem_dir_inode_operations = {
2494#ifdef CONFIG_TMPFS
2495	.create		= shmem_create,
2496	.lookup		= simple_lookup,
2497	.link		= shmem_link,
2498	.unlink		= shmem_unlink,
2499	.symlink	= shmem_symlink,
2500	.mkdir		= shmem_mkdir,
2501	.rmdir		= shmem_rmdir,
2502	.mknod		= shmem_mknod,
2503	.rename		= shmem_rename,
2504#endif
2505#ifdef CONFIG_TMPFS_POSIX_ACL
2506	.setattr	= shmem_notify_change,
2507	.setxattr	= generic_setxattr,
2508	.getxattr	= generic_getxattr,
2509	.listxattr	= generic_listxattr,
2510	.removexattr	= generic_removexattr,
2511	.check_acl	= generic_check_acl,
2512#endif
2513};
2514
2515static const struct inode_operations shmem_special_inode_operations = {
2516#ifdef CONFIG_TMPFS_POSIX_ACL
2517	.setattr	= shmem_notify_change,
2518	.setxattr	= generic_setxattr,
2519	.getxattr	= generic_getxattr,
2520	.listxattr	= generic_listxattr,
2521	.removexattr	= generic_removexattr,
2522	.check_acl	= generic_check_acl,
2523#endif
2524};
2525
2526static const struct super_operations shmem_ops = {
2527	.alloc_inode	= shmem_alloc_inode,
2528	.destroy_inode	= shmem_destroy_inode,
2529#ifdef CONFIG_TMPFS
2530	.statfs		= shmem_statfs,
2531	.remount_fs	= shmem_remount_fs,
2532	.show_options	= shmem_show_options,
2533#endif
2534	.evict_inode	= shmem_evict_inode,
2535	.drop_inode	= generic_delete_inode,
2536	.put_super	= shmem_put_super,
2537};
2538
2539static const struct vm_operations_struct shmem_vm_ops = {
2540	.fault		= shmem_fault,
2541#ifdef CONFIG_NUMA
2542	.set_policy     = shmem_set_policy,
2543	.get_policy     = shmem_get_policy,
2544#endif
2545};
2546
2547
2548static struct dentry *shmem_mount(struct file_system_type *fs_type,
2549	int flags, const char *dev_name, void *data)
2550{
2551	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2552}
2553
2554static struct file_system_type tmpfs_fs_type = {
2555	.owner		= THIS_MODULE,
2556	.name		= "tmpfs",
2557	.mount		= shmem_mount,
2558	.kill_sb	= kill_litter_super,
2559};
2560
2561int __init init_tmpfs(void)
2562{
2563	int error;
2564
2565	error = bdi_init(&shmem_backing_dev_info);
2566	if (error)
2567		goto out4;
2568
2569	error = init_inodecache();
2570	if (error)
2571		goto out3;
2572
2573	error = register_filesystem(&tmpfs_fs_type);
2574	if (error) {
2575		printk(KERN_ERR "Could not register tmpfs\n");
2576		goto out2;
2577	}
2578
2579	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2580				tmpfs_fs_type.name, NULL);
2581	if (IS_ERR(shm_mnt)) {
2582		error = PTR_ERR(shm_mnt);
2583		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2584		goto out1;
2585	}
2586	return 0;
2587
2588out1:
2589	unregister_filesystem(&tmpfs_fs_type);
2590out2:
2591	destroy_inodecache();
2592out3:
2593	bdi_destroy(&shmem_backing_dev_info);
2594out4:
2595	shm_mnt = ERR_PTR(error);
2596	return error;
2597}
2598
2599#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2600/**
2601 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2602 * @inode: the inode to be searched
2603 * @pgoff: the offset to be searched
2604 * @pagep: the pointer for the found page to be stored
2605 * @ent: the pointer for the found swap entry to be stored
2606 *
2607 * If a page is found, refcount of it is incremented. Callers should handle
2608 * these refcount.
2609 */
2610void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2611					struct page **pagep, swp_entry_t *ent)
2612{
2613	swp_entry_t entry = { .val = 0 }, *ptr;
2614	struct page *page = NULL;
2615	struct shmem_inode_info *info = SHMEM_I(inode);
2616
2617	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2618		goto out;
2619
2620	spin_lock(&info->lock);
2621	ptr = shmem_swp_entry(info, pgoff, NULL);
2622#ifdef CONFIG_SWAP
2623	if (ptr && ptr->val) {
2624		entry.val = ptr->val;
2625		page = find_get_page(&swapper_space, entry.val);
2626	} else
2627#endif
2628		page = find_get_page(inode->i_mapping, pgoff);
2629	if (ptr)
2630		shmem_swp_unmap(ptr);
2631	spin_unlock(&info->lock);
2632out:
2633	*pagep = page;
2634	*ent = entry;
2635}
2636#endif
2637
2638#else /* !CONFIG_SHMEM */
2639
2640/*
2641 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2642 *
2643 * This is intended for small system where the benefits of the full
2644 * shmem code (swap-backed and resource-limited) are outweighed by
2645 * their complexity. On systems without swap this code should be
2646 * effectively equivalent, but much lighter weight.
2647 */
2648
2649#include <linux/ramfs.h>
2650
2651static struct file_system_type tmpfs_fs_type = {
2652	.name		= "tmpfs",
2653	.mount		= ramfs_mount,
2654	.kill_sb	= kill_litter_super,
2655};
2656
2657int __init init_tmpfs(void)
2658{
2659	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2660
2661	shm_mnt = kern_mount(&tmpfs_fs_type);
2662	BUG_ON(IS_ERR(shm_mnt));
2663
2664	return 0;
2665}
2666
2667int shmem_unuse(swp_entry_t entry, struct page *page)
2668{
2669	return 0;
2670}
2671
2672int shmem_lock(struct file *file, int lock, struct user_struct *user)
2673{
2674	return 0;
2675}
2676
2677#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2678/**
2679 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2680 * @inode: the inode to be searched
2681 * @pgoff: the offset to be searched
2682 * @pagep: the pointer for the found page to be stored
2683 * @ent: the pointer for the found swap entry to be stored
2684 *
2685 * If a page is found, refcount of it is incremented. Callers should handle
2686 * these refcount.
2687 */
2688void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2689					struct page **pagep, swp_entry_t *ent)
2690{
2691	struct page *page = NULL;
2692
2693	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2694		goto out;
2695	page = find_get_page(inode->i_mapping, pgoff);
2696out:
2697	*pagep = page;
2698	*ent = (swp_entry_t){ .val = 0 };
2699}
2700#endif
2701
2702#define shmem_vm_ops				generic_file_vm_ops
2703#define shmem_file_operations			ramfs_file_operations
2704#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2705#define shmem_acct_size(flags, size)		0
2706#define shmem_unacct_size(flags, size)		do {} while (0)
2707#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2708
2709#endif /* CONFIG_SHMEM */
2710
2711/* common code */
2712
2713/**
2714 * shmem_file_setup - get an unlinked file living in tmpfs
2715 * @name: name for dentry (to be seen in /proc/<pid>/maps
2716 * @size: size to be set for the file
2717 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2718 */
2719struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2720{
2721	int error;
2722	struct file *file;
2723	struct inode *inode;
2724	struct path path;
2725	struct dentry *root;
2726	struct qstr this;
2727
2728	if (IS_ERR(shm_mnt))
2729		return (void *)shm_mnt;
2730
2731	if (size < 0 || size > SHMEM_MAX_BYTES)
2732		return ERR_PTR(-EINVAL);
2733
2734	if (shmem_acct_size(flags, size))
2735		return ERR_PTR(-ENOMEM);
2736
2737	error = -ENOMEM;
2738	this.name = name;
2739	this.len = strlen(name);
2740	this.hash = 0; /* will go */
2741	root = shm_mnt->mnt_root;
2742	path.dentry = d_alloc(root, &this);
2743	if (!path.dentry)
2744		goto put_memory;
2745	path.mnt = mntget(shm_mnt);
2746
2747	error = -ENOSPC;
2748	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2749	if (!inode)
2750		goto put_dentry;
2751
2752	d_instantiate(path.dentry, inode);
2753	inode->i_size = size;
2754	inode->i_nlink = 0;	/* It is unlinked */
2755#ifndef CONFIG_MMU
2756	error = ramfs_nommu_expand_for_mapping(inode, size);
2757	if (error)
2758		goto put_dentry;
2759#endif
2760
2761	error = -ENFILE;
2762	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2763		  &shmem_file_operations);
2764	if (!file)
2765		goto put_dentry;
2766
2767	return file;
2768
2769put_dentry:
2770	path_put(&path);
2771put_memory:
2772	shmem_unacct_size(flags, size);
2773	return ERR_PTR(error);
2774}
2775EXPORT_SYMBOL_GPL(shmem_file_setup);
2776
2777/**
2778 * shmem_zero_setup - setup a shared anonymous mapping
2779 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2780 */
2781int shmem_zero_setup(struct vm_area_struct *vma)
2782{
2783	struct file *file;
2784	loff_t size = vma->vm_end - vma->vm_start;
2785
2786	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2787	if (IS_ERR(file))
2788		return PTR_ERR(file);
2789
2790	if (vma->vm_file)
2791		fput(vma->vm_file);
2792	vma->vm_file = file;
2793	vma->vm_ops = &shmem_vm_ops;
2794	return 0;
2795}
2796