shmem.c revision feda821e76f3bbbba4bd54d30b4d4005a7848aa5
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/aio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69
70#include <asm/uaccess.h>
71#include <asm/pgtable.h>
72
73#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
82/*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87struct shmem_falloc {
88	pgoff_t start;		/* start of range currently being fallocated */
89	pgoff_t next;		/* the next page offset to be fallocated */
90	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
91	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
92};
93
94/* Flag allocation requirements to shmem_getpage */
95enum sgp_type {
96	SGP_READ,	/* don't exceed i_size, don't allocate page */
97	SGP_CACHE,	/* don't exceed i_size, may allocate page */
98	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
99	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
100	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
101};
102
103#ifdef CONFIG_TMPFS
104static unsigned long shmem_default_max_blocks(void)
105{
106	return totalram_pages / 2;
107}
108
109static unsigned long shmem_default_max_inodes(void)
110{
111	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112}
113#endif
114
115static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117				struct shmem_inode_info *info, pgoff_t index);
118static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122	struct page **pagep, enum sgp_type sgp, int *fault_type)
123{
124	return shmem_getpage_gfp(inode, index, pagep, sgp,
125			mapping_gfp_mask(inode->i_mapping), fault_type);
126}
127
128static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129{
130	return sb->s_fs_info;
131}
132
133/*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139static inline int shmem_acct_size(unsigned long flags, loff_t size)
140{
141	return (flags & VM_NORESERVE) ?
142		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143}
144
145static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146{
147	if (!(flags & VM_NORESERVE))
148		vm_unacct_memory(VM_ACCT(size));
149}
150
151/*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157static inline int shmem_acct_block(unsigned long flags)
158{
159	return (flags & VM_NORESERVE) ?
160		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161}
162
163static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164{
165	if (flags & VM_NORESERVE)
166		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167}
168
169static const struct super_operations shmem_ops;
170static const struct address_space_operations shmem_aops;
171static const struct file_operations shmem_file_operations;
172static const struct inode_operations shmem_inode_operations;
173static const struct inode_operations shmem_dir_inode_operations;
174static const struct inode_operations shmem_special_inode_operations;
175static const struct vm_operations_struct shmem_vm_ops;
176
177static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
178	.ra_pages	= 0,	/* No readahead */
179	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180};
181
182static LIST_HEAD(shmem_swaplist);
183static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185static int shmem_reserve_inode(struct super_block *sb)
186{
187	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188	if (sbinfo->max_inodes) {
189		spin_lock(&sbinfo->stat_lock);
190		if (!sbinfo->free_inodes) {
191			spin_unlock(&sbinfo->stat_lock);
192			return -ENOSPC;
193		}
194		sbinfo->free_inodes--;
195		spin_unlock(&sbinfo->stat_lock);
196	}
197	return 0;
198}
199
200static void shmem_free_inode(struct super_block *sb)
201{
202	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203	if (sbinfo->max_inodes) {
204		spin_lock(&sbinfo->stat_lock);
205		sbinfo->free_inodes++;
206		spin_unlock(&sbinfo->stat_lock);
207	}
208}
209
210/**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222static void shmem_recalc_inode(struct inode *inode)
223{
224	struct shmem_inode_info *info = SHMEM_I(inode);
225	long freed;
226
227	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228	if (freed > 0) {
229		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230		if (sbinfo->max_blocks)
231			percpu_counter_add(&sbinfo->used_blocks, -freed);
232		info->alloced -= freed;
233		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234		shmem_unacct_blocks(info->flags, freed);
235	}
236}
237
238/*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241static int shmem_radix_tree_replace(struct address_space *mapping,
242			pgoff_t index, void *expected, void *replacement)
243{
244	void **pslot;
245	void *item = NULL;
246
247	VM_BUG_ON(!expected);
248	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
249	if (pslot)
250		item = radix_tree_deref_slot_protected(pslot,
251							&mapping->tree_lock);
252	if (item != expected)
253		return -ENOENT;
254	if (replacement)
255		radix_tree_replace_slot(pslot, replacement);
256	else
257		radix_tree_delete(&mapping->page_tree, index);
258	return 0;
259}
260
261/*
262 * Sometimes, before we decide whether to proceed or to fail, we must check
263 * that an entry was not already brought back from swap by a racing thread.
264 *
265 * Checking page is not enough: by the time a SwapCache page is locked, it
266 * might be reused, and again be SwapCache, using the same swap as before.
267 */
268static bool shmem_confirm_swap(struct address_space *mapping,
269			       pgoff_t index, swp_entry_t swap)
270{
271	void *item;
272
273	rcu_read_lock();
274	item = radix_tree_lookup(&mapping->page_tree, index);
275	rcu_read_unlock();
276	return item == swp_to_radix_entry(swap);
277}
278
279/*
280 * Like add_to_page_cache_locked, but error if expected item has gone.
281 */
282static int shmem_add_to_page_cache(struct page *page,
283				   struct address_space *mapping,
284				   pgoff_t index, gfp_t gfp, void *expected)
285{
286	int error;
287
288	VM_BUG_ON(!PageLocked(page));
289	VM_BUG_ON(!PageSwapBacked(page));
290
291	page_cache_get(page);
292	page->mapping = mapping;
293	page->index = index;
294
295	spin_lock_irq(&mapping->tree_lock);
296	if (!expected)
297		error = radix_tree_insert(&mapping->page_tree, index, page);
298	else
299		error = shmem_radix_tree_replace(mapping, index, expected,
300								 page);
301	if (!error) {
302		mapping->nrpages++;
303		__inc_zone_page_state(page, NR_FILE_PAGES);
304		__inc_zone_page_state(page, NR_SHMEM);
305		spin_unlock_irq(&mapping->tree_lock);
306	} else {
307		page->mapping = NULL;
308		spin_unlock_irq(&mapping->tree_lock);
309		page_cache_release(page);
310	}
311	return error;
312}
313
314/*
315 * Like delete_from_page_cache, but substitutes swap for page.
316 */
317static void shmem_delete_from_page_cache(struct page *page, void *radswap)
318{
319	struct address_space *mapping = page->mapping;
320	int error;
321
322	spin_lock_irq(&mapping->tree_lock);
323	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
324	page->mapping = NULL;
325	mapping->nrpages--;
326	__dec_zone_page_state(page, NR_FILE_PAGES);
327	__dec_zone_page_state(page, NR_SHMEM);
328	spin_unlock_irq(&mapping->tree_lock);
329	page_cache_release(page);
330	BUG_ON(error);
331}
332
333/*
334 * Like find_get_pages, but collecting swap entries as well as pages.
335 */
336static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
337					pgoff_t start, unsigned int nr_pages,
338					struct page **pages, pgoff_t *indices)
339{
340	void **slot;
341	unsigned int ret = 0;
342	struct radix_tree_iter iter;
343
344	if (!nr_pages)
345		return 0;
346
347	rcu_read_lock();
348restart:
349	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
350		struct page *page;
351repeat:
352		page = radix_tree_deref_slot(slot);
353		if (unlikely(!page))
354			continue;
355		if (radix_tree_exception(page)) {
356			if (radix_tree_deref_retry(page))
357				goto restart;
358			/*
359			 * Otherwise, we must be storing a swap entry
360			 * here as an exceptional entry: so return it
361			 * without attempting to raise page count.
362			 */
363			goto export;
364		}
365		if (!page_cache_get_speculative(page))
366			goto repeat;
367
368		/* Has the page moved? */
369		if (unlikely(page != *slot)) {
370			page_cache_release(page);
371			goto repeat;
372		}
373export:
374		indices[ret] = iter.index;
375		pages[ret] = page;
376		if (++ret == nr_pages)
377			break;
378	}
379	rcu_read_unlock();
380	return ret;
381}
382
383/*
384 * Remove swap entry from radix tree, free the swap and its page cache.
385 */
386static int shmem_free_swap(struct address_space *mapping,
387			   pgoff_t index, void *radswap)
388{
389	int error;
390
391	spin_lock_irq(&mapping->tree_lock);
392	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
393	spin_unlock_irq(&mapping->tree_lock);
394	if (!error)
395		free_swap_and_cache(radix_to_swp_entry(radswap));
396	return error;
397}
398
399/*
400 * Pagevec may contain swap entries, so shuffle up pages before releasing.
401 */
402static void shmem_deswap_pagevec(struct pagevec *pvec)
403{
404	int i, j;
405
406	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
407		struct page *page = pvec->pages[i];
408		if (!radix_tree_exceptional_entry(page))
409			pvec->pages[j++] = page;
410	}
411	pvec->nr = j;
412}
413
414/*
415 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416 */
417void shmem_unlock_mapping(struct address_space *mapping)
418{
419	struct pagevec pvec;
420	pgoff_t indices[PAGEVEC_SIZE];
421	pgoff_t index = 0;
422
423	pagevec_init(&pvec, 0);
424	/*
425	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426	 */
427	while (!mapping_unevictable(mapping)) {
428		/*
429		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
430		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431		 */
432		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
433					PAGEVEC_SIZE, pvec.pages, indices);
434		if (!pvec.nr)
435			break;
436		index = indices[pvec.nr - 1] + 1;
437		shmem_deswap_pagevec(&pvec);
438		check_move_unevictable_pages(pvec.pages, pvec.nr);
439		pagevec_release(&pvec);
440		cond_resched();
441	}
442}
443
444/*
445 * Remove range of pages and swap entries from radix tree, and free them.
446 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447 */
448static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
449								 bool unfalloc)
450{
451	struct address_space *mapping = inode->i_mapping;
452	struct shmem_inode_info *info = SHMEM_I(inode);
453	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
454	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
455	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
456	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
457	struct pagevec pvec;
458	pgoff_t indices[PAGEVEC_SIZE];
459	long nr_swaps_freed = 0;
460	pgoff_t index;
461	int i;
462
463	if (lend == -1)
464		end = -1;	/* unsigned, so actually very big */
465
466	pagevec_init(&pvec, 0);
467	index = start;
468	while (index < end) {
469		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
470				min(end - index, (pgoff_t)PAGEVEC_SIZE),
471							pvec.pages, indices);
472		if (!pvec.nr)
473			break;
474		mem_cgroup_uncharge_start();
475		for (i = 0; i < pagevec_count(&pvec); i++) {
476			struct page *page = pvec.pages[i];
477
478			index = indices[i];
479			if (index >= end)
480				break;
481
482			if (radix_tree_exceptional_entry(page)) {
483				if (unfalloc)
484					continue;
485				nr_swaps_freed += !shmem_free_swap(mapping,
486								index, page);
487				continue;
488			}
489
490			if (!trylock_page(page))
491				continue;
492			if (!unfalloc || !PageUptodate(page)) {
493				if (page->mapping == mapping) {
494					VM_BUG_ON(PageWriteback(page));
495					truncate_inode_page(mapping, page);
496				}
497			}
498			unlock_page(page);
499		}
500		shmem_deswap_pagevec(&pvec);
501		pagevec_release(&pvec);
502		mem_cgroup_uncharge_end();
503		cond_resched();
504		index++;
505	}
506
507	if (partial_start) {
508		struct page *page = NULL;
509		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
510		if (page) {
511			unsigned int top = PAGE_CACHE_SIZE;
512			if (start > end) {
513				top = partial_end;
514				partial_end = 0;
515			}
516			zero_user_segment(page, partial_start, top);
517			set_page_dirty(page);
518			unlock_page(page);
519			page_cache_release(page);
520		}
521	}
522	if (partial_end) {
523		struct page *page = NULL;
524		shmem_getpage(inode, end, &page, SGP_READ, NULL);
525		if (page) {
526			zero_user_segment(page, 0, partial_end);
527			set_page_dirty(page);
528			unlock_page(page);
529			page_cache_release(page);
530		}
531	}
532	if (start >= end)
533		return;
534
535	index = start;
536	for ( ; ; ) {
537		cond_resched();
538		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
539				min(end - index, (pgoff_t)PAGEVEC_SIZE),
540							pvec.pages, indices);
541		if (!pvec.nr) {
542			if (index == start || unfalloc)
543				break;
544			index = start;
545			continue;
546		}
547		if ((index == start || unfalloc) && indices[0] >= end) {
548			shmem_deswap_pagevec(&pvec);
549			pagevec_release(&pvec);
550			break;
551		}
552		mem_cgroup_uncharge_start();
553		for (i = 0; i < pagevec_count(&pvec); i++) {
554			struct page *page = pvec.pages[i];
555
556			index = indices[i];
557			if (index >= end)
558				break;
559
560			if (radix_tree_exceptional_entry(page)) {
561				if (unfalloc)
562					continue;
563				nr_swaps_freed += !shmem_free_swap(mapping,
564								index, page);
565				continue;
566			}
567
568			lock_page(page);
569			if (!unfalloc || !PageUptodate(page)) {
570				if (page->mapping == mapping) {
571					VM_BUG_ON(PageWriteback(page));
572					truncate_inode_page(mapping, page);
573				}
574			}
575			unlock_page(page);
576		}
577		shmem_deswap_pagevec(&pvec);
578		pagevec_release(&pvec);
579		mem_cgroup_uncharge_end();
580		index++;
581	}
582
583	spin_lock(&info->lock);
584	info->swapped -= nr_swaps_freed;
585	shmem_recalc_inode(inode);
586	spin_unlock(&info->lock);
587}
588
589void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
590{
591	shmem_undo_range(inode, lstart, lend, false);
592	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
593}
594EXPORT_SYMBOL_GPL(shmem_truncate_range);
595
596static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
597{
598	struct inode *inode = dentry->d_inode;
599	int error;
600
601	error = inode_change_ok(inode, attr);
602	if (error)
603		return error;
604
605	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
606		loff_t oldsize = inode->i_size;
607		loff_t newsize = attr->ia_size;
608
609		if (newsize != oldsize) {
610			i_size_write(inode, newsize);
611			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
612		}
613		if (newsize < oldsize) {
614			loff_t holebegin = round_up(newsize, PAGE_SIZE);
615			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616			shmem_truncate_range(inode, newsize, (loff_t)-1);
617			/* unmap again to remove racily COWed private pages */
618			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
619		}
620	}
621
622	setattr_copy(inode, attr);
623	if (attr->ia_valid & ATTR_MODE)
624		error = posix_acl_chmod(inode, inode->i_mode);
625	return error;
626}
627
628static void shmem_evict_inode(struct inode *inode)
629{
630	struct shmem_inode_info *info = SHMEM_I(inode);
631
632	if (inode->i_mapping->a_ops == &shmem_aops) {
633		shmem_unacct_size(info->flags, inode->i_size);
634		inode->i_size = 0;
635		shmem_truncate_range(inode, 0, (loff_t)-1);
636		if (!list_empty(&info->swaplist)) {
637			mutex_lock(&shmem_swaplist_mutex);
638			list_del_init(&info->swaplist);
639			mutex_unlock(&shmem_swaplist_mutex);
640		}
641	} else
642		kfree(info->symlink);
643
644	simple_xattrs_free(&info->xattrs);
645	WARN_ON(inode->i_blocks);
646	shmem_free_inode(inode->i_sb);
647	clear_inode(inode);
648}
649
650/*
651 * If swap found in inode, free it and move page from swapcache to filecache.
652 */
653static int shmem_unuse_inode(struct shmem_inode_info *info,
654			     swp_entry_t swap, struct page **pagep)
655{
656	struct address_space *mapping = info->vfs_inode.i_mapping;
657	void *radswap;
658	pgoff_t index;
659	gfp_t gfp;
660	int error = 0;
661
662	radswap = swp_to_radix_entry(swap);
663	index = radix_tree_locate_item(&mapping->page_tree, radswap);
664	if (index == -1)
665		return 0;
666
667	/*
668	 * Move _head_ to start search for next from here.
669	 * But be careful: shmem_evict_inode checks list_empty without taking
670	 * mutex, and there's an instant in list_move_tail when info->swaplist
671	 * would appear empty, if it were the only one on shmem_swaplist.
672	 */
673	if (shmem_swaplist.next != &info->swaplist)
674		list_move_tail(&shmem_swaplist, &info->swaplist);
675
676	gfp = mapping_gfp_mask(mapping);
677	if (shmem_should_replace_page(*pagep, gfp)) {
678		mutex_unlock(&shmem_swaplist_mutex);
679		error = shmem_replace_page(pagep, gfp, info, index);
680		mutex_lock(&shmem_swaplist_mutex);
681		/*
682		 * We needed to drop mutex to make that restrictive page
683		 * allocation, but the inode might have been freed while we
684		 * dropped it: although a racing shmem_evict_inode() cannot
685		 * complete without emptying the radix_tree, our page lock
686		 * on this swapcache page is not enough to prevent that -
687		 * free_swap_and_cache() of our swap entry will only
688		 * trylock_page(), removing swap from radix_tree whatever.
689		 *
690		 * We must not proceed to shmem_add_to_page_cache() if the
691		 * inode has been freed, but of course we cannot rely on
692		 * inode or mapping or info to check that.  However, we can
693		 * safely check if our swap entry is still in use (and here
694		 * it can't have got reused for another page): if it's still
695		 * in use, then the inode cannot have been freed yet, and we
696		 * can safely proceed (if it's no longer in use, that tells
697		 * nothing about the inode, but we don't need to unuse swap).
698		 */
699		if (!page_swapcount(*pagep))
700			error = -ENOENT;
701	}
702
703	/*
704	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
705	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
706	 * beneath us (pagelock doesn't help until the page is in pagecache).
707	 */
708	if (!error)
709		error = shmem_add_to_page_cache(*pagep, mapping, index,
710						GFP_NOWAIT, radswap);
711	if (error != -ENOMEM) {
712		/*
713		 * Truncation and eviction use free_swap_and_cache(), which
714		 * only does trylock page: if we raced, best clean up here.
715		 */
716		delete_from_swap_cache(*pagep);
717		set_page_dirty(*pagep);
718		if (!error) {
719			spin_lock(&info->lock);
720			info->swapped--;
721			spin_unlock(&info->lock);
722			swap_free(swap);
723		}
724		error = 1;	/* not an error, but entry was found */
725	}
726	return error;
727}
728
729/*
730 * Search through swapped inodes to find and replace swap by page.
731 */
732int shmem_unuse(swp_entry_t swap, struct page *page)
733{
734	struct list_head *this, *next;
735	struct shmem_inode_info *info;
736	int found = 0;
737	int error = 0;
738
739	/*
740	 * There's a faint possibility that swap page was replaced before
741	 * caller locked it: caller will come back later with the right page.
742	 */
743	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
744		goto out;
745
746	/*
747	 * Charge page using GFP_KERNEL while we can wait, before taking
748	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
749	 * Charged back to the user (not to caller) when swap account is used.
750	 */
751	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
752	if (error)
753		goto out;
754	/* No radix_tree_preload: swap entry keeps a place for page in tree */
755
756	mutex_lock(&shmem_swaplist_mutex);
757	list_for_each_safe(this, next, &shmem_swaplist) {
758		info = list_entry(this, struct shmem_inode_info, swaplist);
759		if (info->swapped)
760			found = shmem_unuse_inode(info, swap, &page);
761		else
762			list_del_init(&info->swaplist);
763		cond_resched();
764		if (found)
765			break;
766	}
767	mutex_unlock(&shmem_swaplist_mutex);
768
769	if (found < 0)
770		error = found;
771out:
772	unlock_page(page);
773	page_cache_release(page);
774	return error;
775}
776
777/*
778 * Move the page from the page cache to the swap cache.
779 */
780static int shmem_writepage(struct page *page, struct writeback_control *wbc)
781{
782	struct shmem_inode_info *info;
783	struct address_space *mapping;
784	struct inode *inode;
785	swp_entry_t swap;
786	pgoff_t index;
787
788	BUG_ON(!PageLocked(page));
789	mapping = page->mapping;
790	index = page->index;
791	inode = mapping->host;
792	info = SHMEM_I(inode);
793	if (info->flags & VM_LOCKED)
794		goto redirty;
795	if (!total_swap_pages)
796		goto redirty;
797
798	/*
799	 * shmem_backing_dev_info's capabilities prevent regular writeback or
800	 * sync from ever calling shmem_writepage; but a stacking filesystem
801	 * might use ->writepage of its underlying filesystem, in which case
802	 * tmpfs should write out to swap only in response to memory pressure,
803	 * and not for the writeback threads or sync.
804	 */
805	if (!wbc->for_reclaim) {
806		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
807		goto redirty;
808	}
809
810	/*
811	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
812	 * value into swapfile.c, the only way we can correctly account for a
813	 * fallocated page arriving here is now to initialize it and write it.
814	 *
815	 * That's okay for a page already fallocated earlier, but if we have
816	 * not yet completed the fallocation, then (a) we want to keep track
817	 * of this page in case we have to undo it, and (b) it may not be a
818	 * good idea to continue anyway, once we're pushing into swap.  So
819	 * reactivate the page, and let shmem_fallocate() quit when too many.
820	 */
821	if (!PageUptodate(page)) {
822		if (inode->i_private) {
823			struct shmem_falloc *shmem_falloc;
824			spin_lock(&inode->i_lock);
825			shmem_falloc = inode->i_private;
826			if (shmem_falloc &&
827			    index >= shmem_falloc->start &&
828			    index < shmem_falloc->next)
829				shmem_falloc->nr_unswapped++;
830			else
831				shmem_falloc = NULL;
832			spin_unlock(&inode->i_lock);
833			if (shmem_falloc)
834				goto redirty;
835		}
836		clear_highpage(page);
837		flush_dcache_page(page);
838		SetPageUptodate(page);
839	}
840
841	swap = get_swap_page();
842	if (!swap.val)
843		goto redirty;
844
845	/*
846	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
847	 * if it's not already there.  Do it now before the page is
848	 * moved to swap cache, when its pagelock no longer protects
849	 * the inode from eviction.  But don't unlock the mutex until
850	 * we've incremented swapped, because shmem_unuse_inode() will
851	 * prune a !swapped inode from the swaplist under this mutex.
852	 */
853	mutex_lock(&shmem_swaplist_mutex);
854	if (list_empty(&info->swaplist))
855		list_add_tail(&info->swaplist, &shmem_swaplist);
856
857	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
858		swap_shmem_alloc(swap);
859		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
860
861		spin_lock(&info->lock);
862		info->swapped++;
863		shmem_recalc_inode(inode);
864		spin_unlock(&info->lock);
865
866		mutex_unlock(&shmem_swaplist_mutex);
867		BUG_ON(page_mapped(page));
868		swap_writepage(page, wbc);
869		return 0;
870	}
871
872	mutex_unlock(&shmem_swaplist_mutex);
873	swapcache_free(swap, NULL);
874redirty:
875	set_page_dirty(page);
876	if (wbc->for_reclaim)
877		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
878	unlock_page(page);
879	return 0;
880}
881
882#ifdef CONFIG_NUMA
883#ifdef CONFIG_TMPFS
884static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
885{
886	char buffer[64];
887
888	if (!mpol || mpol->mode == MPOL_DEFAULT)
889		return;		/* show nothing */
890
891	mpol_to_str(buffer, sizeof(buffer), mpol);
892
893	seq_printf(seq, ",mpol=%s", buffer);
894}
895
896static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
897{
898	struct mempolicy *mpol = NULL;
899	if (sbinfo->mpol) {
900		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
901		mpol = sbinfo->mpol;
902		mpol_get(mpol);
903		spin_unlock(&sbinfo->stat_lock);
904	}
905	return mpol;
906}
907#endif /* CONFIG_TMPFS */
908
909static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
910			struct shmem_inode_info *info, pgoff_t index)
911{
912	struct vm_area_struct pvma;
913	struct page *page;
914
915	/* Create a pseudo vma that just contains the policy */
916	pvma.vm_start = 0;
917	/* Bias interleave by inode number to distribute better across nodes */
918	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
919	pvma.vm_ops = NULL;
920	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
921
922	page = swapin_readahead(swap, gfp, &pvma, 0);
923
924	/* Drop reference taken by mpol_shared_policy_lookup() */
925	mpol_cond_put(pvma.vm_policy);
926
927	return page;
928}
929
930static struct page *shmem_alloc_page(gfp_t gfp,
931			struct shmem_inode_info *info, pgoff_t index)
932{
933	struct vm_area_struct pvma;
934	struct page *page;
935
936	/* Create a pseudo vma that just contains the policy */
937	pvma.vm_start = 0;
938	/* Bias interleave by inode number to distribute better across nodes */
939	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
940	pvma.vm_ops = NULL;
941	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
942
943	page = alloc_page_vma(gfp, &pvma, 0);
944
945	/* Drop reference taken by mpol_shared_policy_lookup() */
946	mpol_cond_put(pvma.vm_policy);
947
948	return page;
949}
950#else /* !CONFIG_NUMA */
951#ifdef CONFIG_TMPFS
952static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
953{
954}
955#endif /* CONFIG_TMPFS */
956
957static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
958			struct shmem_inode_info *info, pgoff_t index)
959{
960	return swapin_readahead(swap, gfp, NULL, 0);
961}
962
963static inline struct page *shmem_alloc_page(gfp_t gfp,
964			struct shmem_inode_info *info, pgoff_t index)
965{
966	return alloc_page(gfp);
967}
968#endif /* CONFIG_NUMA */
969
970#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
971static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
972{
973	return NULL;
974}
975#endif
976
977/*
978 * When a page is moved from swapcache to shmem filecache (either by the
979 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
980 * shmem_unuse_inode()), it may have been read in earlier from swap, in
981 * ignorance of the mapping it belongs to.  If that mapping has special
982 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
983 * we may need to copy to a suitable page before moving to filecache.
984 *
985 * In a future release, this may well be extended to respect cpuset and
986 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
987 * but for now it is a simple matter of zone.
988 */
989static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
990{
991	return page_zonenum(page) > gfp_zone(gfp);
992}
993
994static int shmem_replace_page(struct page **pagep, gfp_t gfp,
995				struct shmem_inode_info *info, pgoff_t index)
996{
997	struct page *oldpage, *newpage;
998	struct address_space *swap_mapping;
999	pgoff_t swap_index;
1000	int error;
1001
1002	oldpage = *pagep;
1003	swap_index = page_private(oldpage);
1004	swap_mapping = page_mapping(oldpage);
1005
1006	/*
1007	 * We have arrived here because our zones are constrained, so don't
1008	 * limit chance of success by further cpuset and node constraints.
1009	 */
1010	gfp &= ~GFP_CONSTRAINT_MASK;
1011	newpage = shmem_alloc_page(gfp, info, index);
1012	if (!newpage)
1013		return -ENOMEM;
1014
1015	page_cache_get(newpage);
1016	copy_highpage(newpage, oldpage);
1017	flush_dcache_page(newpage);
1018
1019	__set_page_locked(newpage);
1020	SetPageUptodate(newpage);
1021	SetPageSwapBacked(newpage);
1022	set_page_private(newpage, swap_index);
1023	SetPageSwapCache(newpage);
1024
1025	/*
1026	 * Our caller will very soon move newpage out of swapcache, but it's
1027	 * a nice clean interface for us to replace oldpage by newpage there.
1028	 */
1029	spin_lock_irq(&swap_mapping->tree_lock);
1030	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1031								   newpage);
1032	if (!error) {
1033		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1034		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1035	}
1036	spin_unlock_irq(&swap_mapping->tree_lock);
1037
1038	if (unlikely(error)) {
1039		/*
1040		 * Is this possible?  I think not, now that our callers check
1041		 * both PageSwapCache and page_private after getting page lock;
1042		 * but be defensive.  Reverse old to newpage for clear and free.
1043		 */
1044		oldpage = newpage;
1045	} else {
1046		mem_cgroup_replace_page_cache(oldpage, newpage);
1047		lru_cache_add_anon(newpage);
1048		*pagep = newpage;
1049	}
1050
1051	ClearPageSwapCache(oldpage);
1052	set_page_private(oldpage, 0);
1053
1054	unlock_page(oldpage);
1055	page_cache_release(oldpage);
1056	page_cache_release(oldpage);
1057	return error;
1058}
1059
1060/*
1061 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1062 *
1063 * If we allocate a new one we do not mark it dirty. That's up to the
1064 * vm. If we swap it in we mark it dirty since we also free the swap
1065 * entry since a page cannot live in both the swap and page cache
1066 */
1067static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1068	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1069{
1070	struct address_space *mapping = inode->i_mapping;
1071	struct shmem_inode_info *info;
1072	struct shmem_sb_info *sbinfo;
1073	struct page *page;
1074	swp_entry_t swap;
1075	int error;
1076	int once = 0;
1077	int alloced = 0;
1078
1079	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1080		return -EFBIG;
1081repeat:
1082	swap.val = 0;
1083	page = find_lock_page(mapping, index);
1084	if (radix_tree_exceptional_entry(page)) {
1085		swap = radix_to_swp_entry(page);
1086		page = NULL;
1087	}
1088
1089	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1090	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1091		error = -EINVAL;
1092		goto failed;
1093	}
1094
1095	/* fallocated page? */
1096	if (page && !PageUptodate(page)) {
1097		if (sgp != SGP_READ)
1098			goto clear;
1099		unlock_page(page);
1100		page_cache_release(page);
1101		page = NULL;
1102	}
1103	if (page || (sgp == SGP_READ && !swap.val)) {
1104		*pagep = page;
1105		return 0;
1106	}
1107
1108	/*
1109	 * Fast cache lookup did not find it:
1110	 * bring it back from swap or allocate.
1111	 */
1112	info = SHMEM_I(inode);
1113	sbinfo = SHMEM_SB(inode->i_sb);
1114
1115	if (swap.val) {
1116		/* Look it up and read it in.. */
1117		page = lookup_swap_cache(swap);
1118		if (!page) {
1119			/* here we actually do the io */
1120			if (fault_type)
1121				*fault_type |= VM_FAULT_MAJOR;
1122			page = shmem_swapin(swap, gfp, info, index);
1123			if (!page) {
1124				error = -ENOMEM;
1125				goto failed;
1126			}
1127		}
1128
1129		/* We have to do this with page locked to prevent races */
1130		lock_page(page);
1131		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1132		    !shmem_confirm_swap(mapping, index, swap)) {
1133			error = -EEXIST;	/* try again */
1134			goto unlock;
1135		}
1136		if (!PageUptodate(page)) {
1137			error = -EIO;
1138			goto failed;
1139		}
1140		wait_on_page_writeback(page);
1141
1142		if (shmem_should_replace_page(page, gfp)) {
1143			error = shmem_replace_page(&page, gfp, info, index);
1144			if (error)
1145				goto failed;
1146		}
1147
1148		error = mem_cgroup_cache_charge(page, current->mm,
1149						gfp & GFP_RECLAIM_MASK);
1150		if (!error) {
1151			error = shmem_add_to_page_cache(page, mapping, index,
1152						gfp, swp_to_radix_entry(swap));
1153			/*
1154			 * We already confirmed swap under page lock, and make
1155			 * no memory allocation here, so usually no possibility
1156			 * of error; but free_swap_and_cache() only trylocks a
1157			 * page, so it is just possible that the entry has been
1158			 * truncated or holepunched since swap was confirmed.
1159			 * shmem_undo_range() will have done some of the
1160			 * unaccounting, now delete_from_swap_cache() will do
1161			 * the rest (including mem_cgroup_uncharge_swapcache).
1162			 * Reset swap.val? No, leave it so "failed" goes back to
1163			 * "repeat": reading a hole and writing should succeed.
1164			 */
1165			if (error)
1166				delete_from_swap_cache(page);
1167		}
1168		if (error)
1169			goto failed;
1170
1171		spin_lock(&info->lock);
1172		info->swapped--;
1173		shmem_recalc_inode(inode);
1174		spin_unlock(&info->lock);
1175
1176		delete_from_swap_cache(page);
1177		set_page_dirty(page);
1178		swap_free(swap);
1179
1180	} else {
1181		if (shmem_acct_block(info->flags)) {
1182			error = -ENOSPC;
1183			goto failed;
1184		}
1185		if (sbinfo->max_blocks) {
1186			if (percpu_counter_compare(&sbinfo->used_blocks,
1187						sbinfo->max_blocks) >= 0) {
1188				error = -ENOSPC;
1189				goto unacct;
1190			}
1191			percpu_counter_inc(&sbinfo->used_blocks);
1192		}
1193
1194		page = shmem_alloc_page(gfp, info, index);
1195		if (!page) {
1196			error = -ENOMEM;
1197			goto decused;
1198		}
1199
1200		SetPageSwapBacked(page);
1201		__set_page_locked(page);
1202		error = mem_cgroup_cache_charge(page, current->mm,
1203						gfp & GFP_RECLAIM_MASK);
1204		if (error)
1205			goto decused;
1206		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1207		if (!error) {
1208			error = shmem_add_to_page_cache(page, mapping, index,
1209							gfp, NULL);
1210			radix_tree_preload_end();
1211		}
1212		if (error) {
1213			mem_cgroup_uncharge_cache_page(page);
1214			goto decused;
1215		}
1216		lru_cache_add_anon(page);
1217
1218		spin_lock(&info->lock);
1219		info->alloced++;
1220		inode->i_blocks += BLOCKS_PER_PAGE;
1221		shmem_recalc_inode(inode);
1222		spin_unlock(&info->lock);
1223		alloced = true;
1224
1225		/*
1226		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1227		 */
1228		if (sgp == SGP_FALLOC)
1229			sgp = SGP_WRITE;
1230clear:
1231		/*
1232		 * Let SGP_WRITE caller clear ends if write does not fill page;
1233		 * but SGP_FALLOC on a page fallocated earlier must initialize
1234		 * it now, lest undo on failure cancel our earlier guarantee.
1235		 */
1236		if (sgp != SGP_WRITE) {
1237			clear_highpage(page);
1238			flush_dcache_page(page);
1239			SetPageUptodate(page);
1240		}
1241		if (sgp == SGP_DIRTY)
1242			set_page_dirty(page);
1243	}
1244
1245	/* Perhaps the file has been truncated since we checked */
1246	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1247	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1248		error = -EINVAL;
1249		if (alloced)
1250			goto trunc;
1251		else
1252			goto failed;
1253	}
1254	*pagep = page;
1255	return 0;
1256
1257	/*
1258	 * Error recovery.
1259	 */
1260trunc:
1261	info = SHMEM_I(inode);
1262	ClearPageDirty(page);
1263	delete_from_page_cache(page);
1264	spin_lock(&info->lock);
1265	info->alloced--;
1266	inode->i_blocks -= BLOCKS_PER_PAGE;
1267	spin_unlock(&info->lock);
1268decused:
1269	sbinfo = SHMEM_SB(inode->i_sb);
1270	if (sbinfo->max_blocks)
1271		percpu_counter_add(&sbinfo->used_blocks, -1);
1272unacct:
1273	shmem_unacct_blocks(info->flags, 1);
1274failed:
1275	if (swap.val && error != -EINVAL &&
1276	    !shmem_confirm_swap(mapping, index, swap))
1277		error = -EEXIST;
1278unlock:
1279	if (page) {
1280		unlock_page(page);
1281		page_cache_release(page);
1282	}
1283	if (error == -ENOSPC && !once++) {
1284		info = SHMEM_I(inode);
1285		spin_lock(&info->lock);
1286		shmem_recalc_inode(inode);
1287		spin_unlock(&info->lock);
1288		goto repeat;
1289	}
1290	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1291		goto repeat;
1292	return error;
1293}
1294
1295static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1296{
1297	struct inode *inode = file_inode(vma->vm_file);
1298	int error;
1299	int ret = VM_FAULT_LOCKED;
1300
1301	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1302	if (error)
1303		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1304
1305	if (ret & VM_FAULT_MAJOR) {
1306		count_vm_event(PGMAJFAULT);
1307		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1308	}
1309	return ret;
1310}
1311
1312#ifdef CONFIG_NUMA
1313static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1314{
1315	struct inode *inode = file_inode(vma->vm_file);
1316	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1317}
1318
1319static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1320					  unsigned long addr)
1321{
1322	struct inode *inode = file_inode(vma->vm_file);
1323	pgoff_t index;
1324
1325	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1326	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1327}
1328#endif
1329
1330int shmem_lock(struct file *file, int lock, struct user_struct *user)
1331{
1332	struct inode *inode = file_inode(file);
1333	struct shmem_inode_info *info = SHMEM_I(inode);
1334	int retval = -ENOMEM;
1335
1336	spin_lock(&info->lock);
1337	if (lock && !(info->flags & VM_LOCKED)) {
1338		if (!user_shm_lock(inode->i_size, user))
1339			goto out_nomem;
1340		info->flags |= VM_LOCKED;
1341		mapping_set_unevictable(file->f_mapping);
1342	}
1343	if (!lock && (info->flags & VM_LOCKED) && user) {
1344		user_shm_unlock(inode->i_size, user);
1345		info->flags &= ~VM_LOCKED;
1346		mapping_clear_unevictable(file->f_mapping);
1347	}
1348	retval = 0;
1349
1350out_nomem:
1351	spin_unlock(&info->lock);
1352	return retval;
1353}
1354
1355static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1356{
1357	file_accessed(file);
1358	vma->vm_ops = &shmem_vm_ops;
1359	return 0;
1360}
1361
1362static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1363				     umode_t mode, dev_t dev, unsigned long flags)
1364{
1365	struct inode *inode;
1366	struct shmem_inode_info *info;
1367	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1368
1369	if (shmem_reserve_inode(sb))
1370		return NULL;
1371
1372	inode = new_inode(sb);
1373	if (inode) {
1374		inode->i_ino = get_next_ino();
1375		inode_init_owner(inode, dir, mode);
1376		inode->i_blocks = 0;
1377		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1378		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1379		inode->i_generation = get_seconds();
1380		info = SHMEM_I(inode);
1381		memset(info, 0, (char *)inode - (char *)info);
1382		spin_lock_init(&info->lock);
1383		info->flags = flags & VM_NORESERVE;
1384		INIT_LIST_HEAD(&info->swaplist);
1385		simple_xattrs_init(&info->xattrs);
1386		cache_no_acl(inode);
1387
1388		switch (mode & S_IFMT) {
1389		default:
1390			inode->i_op = &shmem_special_inode_operations;
1391			init_special_inode(inode, mode, dev);
1392			break;
1393		case S_IFREG:
1394			inode->i_mapping->a_ops = &shmem_aops;
1395			inode->i_op = &shmem_inode_operations;
1396			inode->i_fop = &shmem_file_operations;
1397			mpol_shared_policy_init(&info->policy,
1398						 shmem_get_sbmpol(sbinfo));
1399			break;
1400		case S_IFDIR:
1401			inc_nlink(inode);
1402			/* Some things misbehave if size == 0 on a directory */
1403			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1404			inode->i_op = &shmem_dir_inode_operations;
1405			inode->i_fop = &simple_dir_operations;
1406			break;
1407		case S_IFLNK:
1408			/*
1409			 * Must not load anything in the rbtree,
1410			 * mpol_free_shared_policy will not be called.
1411			 */
1412			mpol_shared_policy_init(&info->policy, NULL);
1413			break;
1414		}
1415	} else
1416		shmem_free_inode(sb);
1417	return inode;
1418}
1419
1420#ifdef CONFIG_TMPFS
1421static const struct inode_operations shmem_symlink_inode_operations;
1422static const struct inode_operations shmem_short_symlink_operations;
1423
1424#ifdef CONFIG_TMPFS_XATTR
1425static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1426#else
1427#define shmem_initxattrs NULL
1428#endif
1429
1430static int
1431shmem_write_begin(struct file *file, struct address_space *mapping,
1432			loff_t pos, unsigned len, unsigned flags,
1433			struct page **pagep, void **fsdata)
1434{
1435	struct inode *inode = mapping->host;
1436	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1437	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1438}
1439
1440static int
1441shmem_write_end(struct file *file, struct address_space *mapping,
1442			loff_t pos, unsigned len, unsigned copied,
1443			struct page *page, void *fsdata)
1444{
1445	struct inode *inode = mapping->host;
1446
1447	if (pos + copied > inode->i_size)
1448		i_size_write(inode, pos + copied);
1449
1450	if (!PageUptodate(page)) {
1451		if (copied < PAGE_CACHE_SIZE) {
1452			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1453			zero_user_segments(page, 0, from,
1454					from + copied, PAGE_CACHE_SIZE);
1455		}
1456		SetPageUptodate(page);
1457	}
1458	set_page_dirty(page);
1459	unlock_page(page);
1460	page_cache_release(page);
1461
1462	return copied;
1463}
1464
1465static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1466{
1467	struct inode *inode = file_inode(filp);
1468	struct address_space *mapping = inode->i_mapping;
1469	pgoff_t index;
1470	unsigned long offset;
1471	enum sgp_type sgp = SGP_READ;
1472
1473	/*
1474	 * Might this read be for a stacking filesystem?  Then when reading
1475	 * holes of a sparse file, we actually need to allocate those pages,
1476	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1477	 */
1478	if (segment_eq(get_fs(), KERNEL_DS))
1479		sgp = SGP_DIRTY;
1480
1481	index = *ppos >> PAGE_CACHE_SHIFT;
1482	offset = *ppos & ~PAGE_CACHE_MASK;
1483
1484	for (;;) {
1485		struct page *page = NULL;
1486		pgoff_t end_index;
1487		unsigned long nr, ret;
1488		loff_t i_size = i_size_read(inode);
1489
1490		end_index = i_size >> PAGE_CACHE_SHIFT;
1491		if (index > end_index)
1492			break;
1493		if (index == end_index) {
1494			nr = i_size & ~PAGE_CACHE_MASK;
1495			if (nr <= offset)
1496				break;
1497		}
1498
1499		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1500		if (desc->error) {
1501			if (desc->error == -EINVAL)
1502				desc->error = 0;
1503			break;
1504		}
1505		if (page)
1506			unlock_page(page);
1507
1508		/*
1509		 * We must evaluate after, since reads (unlike writes)
1510		 * are called without i_mutex protection against truncate
1511		 */
1512		nr = PAGE_CACHE_SIZE;
1513		i_size = i_size_read(inode);
1514		end_index = i_size >> PAGE_CACHE_SHIFT;
1515		if (index == end_index) {
1516			nr = i_size & ~PAGE_CACHE_MASK;
1517			if (nr <= offset) {
1518				if (page)
1519					page_cache_release(page);
1520				break;
1521			}
1522		}
1523		nr -= offset;
1524
1525		if (page) {
1526			/*
1527			 * If users can be writing to this page using arbitrary
1528			 * virtual addresses, take care about potential aliasing
1529			 * before reading the page on the kernel side.
1530			 */
1531			if (mapping_writably_mapped(mapping))
1532				flush_dcache_page(page);
1533			/*
1534			 * Mark the page accessed if we read the beginning.
1535			 */
1536			if (!offset)
1537				mark_page_accessed(page);
1538		} else {
1539			page = ZERO_PAGE(0);
1540			page_cache_get(page);
1541		}
1542
1543		/*
1544		 * Ok, we have the page, and it's up-to-date, so
1545		 * now we can copy it to user space...
1546		 *
1547		 * The actor routine returns how many bytes were actually used..
1548		 * NOTE! This may not be the same as how much of a user buffer
1549		 * we filled up (we may be padding etc), so we can only update
1550		 * "pos" here (the actor routine has to update the user buffer
1551		 * pointers and the remaining count).
1552		 */
1553		ret = actor(desc, page, offset, nr);
1554		offset += ret;
1555		index += offset >> PAGE_CACHE_SHIFT;
1556		offset &= ~PAGE_CACHE_MASK;
1557
1558		page_cache_release(page);
1559		if (ret != nr || !desc->count)
1560			break;
1561
1562		cond_resched();
1563	}
1564
1565	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1566	file_accessed(filp);
1567}
1568
1569static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1570		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1571{
1572	struct file *filp = iocb->ki_filp;
1573	ssize_t retval;
1574	unsigned long seg;
1575	size_t count;
1576	loff_t *ppos = &iocb->ki_pos;
1577
1578	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1579	if (retval)
1580		return retval;
1581
1582	for (seg = 0; seg < nr_segs; seg++) {
1583		read_descriptor_t desc;
1584
1585		desc.written = 0;
1586		desc.arg.buf = iov[seg].iov_base;
1587		desc.count = iov[seg].iov_len;
1588		if (desc.count == 0)
1589			continue;
1590		desc.error = 0;
1591		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1592		retval += desc.written;
1593		if (desc.error) {
1594			retval = retval ?: desc.error;
1595			break;
1596		}
1597		if (desc.count > 0)
1598			break;
1599	}
1600	return retval;
1601}
1602
1603static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1604				struct pipe_inode_info *pipe, size_t len,
1605				unsigned int flags)
1606{
1607	struct address_space *mapping = in->f_mapping;
1608	struct inode *inode = mapping->host;
1609	unsigned int loff, nr_pages, req_pages;
1610	struct page *pages[PIPE_DEF_BUFFERS];
1611	struct partial_page partial[PIPE_DEF_BUFFERS];
1612	struct page *page;
1613	pgoff_t index, end_index;
1614	loff_t isize, left;
1615	int error, page_nr;
1616	struct splice_pipe_desc spd = {
1617		.pages = pages,
1618		.partial = partial,
1619		.nr_pages_max = PIPE_DEF_BUFFERS,
1620		.flags = flags,
1621		.ops = &page_cache_pipe_buf_ops,
1622		.spd_release = spd_release_page,
1623	};
1624
1625	isize = i_size_read(inode);
1626	if (unlikely(*ppos >= isize))
1627		return 0;
1628
1629	left = isize - *ppos;
1630	if (unlikely(left < len))
1631		len = left;
1632
1633	if (splice_grow_spd(pipe, &spd))
1634		return -ENOMEM;
1635
1636	index = *ppos >> PAGE_CACHE_SHIFT;
1637	loff = *ppos & ~PAGE_CACHE_MASK;
1638	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1639	nr_pages = min(req_pages, pipe->buffers);
1640
1641	spd.nr_pages = find_get_pages_contig(mapping, index,
1642						nr_pages, spd.pages);
1643	index += spd.nr_pages;
1644	error = 0;
1645
1646	while (spd.nr_pages < nr_pages) {
1647		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1648		if (error)
1649			break;
1650		unlock_page(page);
1651		spd.pages[spd.nr_pages++] = page;
1652		index++;
1653	}
1654
1655	index = *ppos >> PAGE_CACHE_SHIFT;
1656	nr_pages = spd.nr_pages;
1657	spd.nr_pages = 0;
1658
1659	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1660		unsigned int this_len;
1661
1662		if (!len)
1663			break;
1664
1665		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1666		page = spd.pages[page_nr];
1667
1668		if (!PageUptodate(page) || page->mapping != mapping) {
1669			error = shmem_getpage(inode, index, &page,
1670							SGP_CACHE, NULL);
1671			if (error)
1672				break;
1673			unlock_page(page);
1674			page_cache_release(spd.pages[page_nr]);
1675			spd.pages[page_nr] = page;
1676		}
1677
1678		isize = i_size_read(inode);
1679		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1680		if (unlikely(!isize || index > end_index))
1681			break;
1682
1683		if (end_index == index) {
1684			unsigned int plen;
1685
1686			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1687			if (plen <= loff)
1688				break;
1689
1690			this_len = min(this_len, plen - loff);
1691			len = this_len;
1692		}
1693
1694		spd.partial[page_nr].offset = loff;
1695		spd.partial[page_nr].len = this_len;
1696		len -= this_len;
1697		loff = 0;
1698		spd.nr_pages++;
1699		index++;
1700	}
1701
1702	while (page_nr < nr_pages)
1703		page_cache_release(spd.pages[page_nr++]);
1704
1705	if (spd.nr_pages)
1706		error = splice_to_pipe(pipe, &spd);
1707
1708	splice_shrink_spd(&spd);
1709
1710	if (error > 0) {
1711		*ppos += error;
1712		file_accessed(in);
1713	}
1714	return error;
1715}
1716
1717/*
1718 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1719 */
1720static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1721				    pgoff_t index, pgoff_t end, int whence)
1722{
1723	struct page *page;
1724	struct pagevec pvec;
1725	pgoff_t indices[PAGEVEC_SIZE];
1726	bool done = false;
1727	int i;
1728
1729	pagevec_init(&pvec, 0);
1730	pvec.nr = 1;		/* start small: we may be there already */
1731	while (!done) {
1732		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1733					pvec.nr, pvec.pages, indices);
1734		if (!pvec.nr) {
1735			if (whence == SEEK_DATA)
1736				index = end;
1737			break;
1738		}
1739		for (i = 0; i < pvec.nr; i++, index++) {
1740			if (index < indices[i]) {
1741				if (whence == SEEK_HOLE) {
1742					done = true;
1743					break;
1744				}
1745				index = indices[i];
1746			}
1747			page = pvec.pages[i];
1748			if (page && !radix_tree_exceptional_entry(page)) {
1749				if (!PageUptodate(page))
1750					page = NULL;
1751			}
1752			if (index >= end ||
1753			    (page && whence == SEEK_DATA) ||
1754			    (!page && whence == SEEK_HOLE)) {
1755				done = true;
1756				break;
1757			}
1758		}
1759		shmem_deswap_pagevec(&pvec);
1760		pagevec_release(&pvec);
1761		pvec.nr = PAGEVEC_SIZE;
1762		cond_resched();
1763	}
1764	return index;
1765}
1766
1767static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1768{
1769	struct address_space *mapping = file->f_mapping;
1770	struct inode *inode = mapping->host;
1771	pgoff_t start, end;
1772	loff_t new_offset;
1773
1774	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1775		return generic_file_llseek_size(file, offset, whence,
1776					MAX_LFS_FILESIZE, i_size_read(inode));
1777	mutex_lock(&inode->i_mutex);
1778	/* We're holding i_mutex so we can access i_size directly */
1779
1780	if (offset < 0)
1781		offset = -EINVAL;
1782	else if (offset >= inode->i_size)
1783		offset = -ENXIO;
1784	else {
1785		start = offset >> PAGE_CACHE_SHIFT;
1786		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1787		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1788		new_offset <<= PAGE_CACHE_SHIFT;
1789		if (new_offset > offset) {
1790			if (new_offset < inode->i_size)
1791				offset = new_offset;
1792			else if (whence == SEEK_DATA)
1793				offset = -ENXIO;
1794			else
1795				offset = inode->i_size;
1796		}
1797	}
1798
1799	if (offset >= 0)
1800		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1801	mutex_unlock(&inode->i_mutex);
1802	return offset;
1803}
1804
1805static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1806							 loff_t len)
1807{
1808	struct inode *inode = file_inode(file);
1809	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1810	struct shmem_falloc shmem_falloc;
1811	pgoff_t start, index, end;
1812	int error;
1813
1814	mutex_lock(&inode->i_mutex);
1815
1816	if (mode & FALLOC_FL_PUNCH_HOLE) {
1817		struct address_space *mapping = file->f_mapping;
1818		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1819		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1820
1821		if ((u64)unmap_end > (u64)unmap_start)
1822			unmap_mapping_range(mapping, unmap_start,
1823					    1 + unmap_end - unmap_start, 0);
1824		shmem_truncate_range(inode, offset, offset + len - 1);
1825		/* No need to unmap again: hole-punching leaves COWed pages */
1826		error = 0;
1827		goto out;
1828	}
1829
1830	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1831	error = inode_newsize_ok(inode, offset + len);
1832	if (error)
1833		goto out;
1834
1835	start = offset >> PAGE_CACHE_SHIFT;
1836	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1837	/* Try to avoid a swapstorm if len is impossible to satisfy */
1838	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1839		error = -ENOSPC;
1840		goto out;
1841	}
1842
1843	shmem_falloc.start = start;
1844	shmem_falloc.next  = start;
1845	shmem_falloc.nr_falloced = 0;
1846	shmem_falloc.nr_unswapped = 0;
1847	spin_lock(&inode->i_lock);
1848	inode->i_private = &shmem_falloc;
1849	spin_unlock(&inode->i_lock);
1850
1851	for (index = start; index < end; index++) {
1852		struct page *page;
1853
1854		/*
1855		 * Good, the fallocate(2) manpage permits EINTR: we may have
1856		 * been interrupted because we are using up too much memory.
1857		 */
1858		if (signal_pending(current))
1859			error = -EINTR;
1860		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1861			error = -ENOMEM;
1862		else
1863			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1864									NULL);
1865		if (error) {
1866			/* Remove the !PageUptodate pages we added */
1867			shmem_undo_range(inode,
1868				(loff_t)start << PAGE_CACHE_SHIFT,
1869				(loff_t)index << PAGE_CACHE_SHIFT, true);
1870			goto undone;
1871		}
1872
1873		/*
1874		 * Inform shmem_writepage() how far we have reached.
1875		 * No need for lock or barrier: we have the page lock.
1876		 */
1877		shmem_falloc.next++;
1878		if (!PageUptodate(page))
1879			shmem_falloc.nr_falloced++;
1880
1881		/*
1882		 * If !PageUptodate, leave it that way so that freeable pages
1883		 * can be recognized if we need to rollback on error later.
1884		 * But set_page_dirty so that memory pressure will swap rather
1885		 * than free the pages we are allocating (and SGP_CACHE pages
1886		 * might still be clean: we now need to mark those dirty too).
1887		 */
1888		set_page_dirty(page);
1889		unlock_page(page);
1890		page_cache_release(page);
1891		cond_resched();
1892	}
1893
1894	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1895		i_size_write(inode, offset + len);
1896	inode->i_ctime = CURRENT_TIME;
1897undone:
1898	spin_lock(&inode->i_lock);
1899	inode->i_private = NULL;
1900	spin_unlock(&inode->i_lock);
1901out:
1902	mutex_unlock(&inode->i_mutex);
1903	return error;
1904}
1905
1906static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1907{
1908	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1909
1910	buf->f_type = TMPFS_MAGIC;
1911	buf->f_bsize = PAGE_CACHE_SIZE;
1912	buf->f_namelen = NAME_MAX;
1913	if (sbinfo->max_blocks) {
1914		buf->f_blocks = sbinfo->max_blocks;
1915		buf->f_bavail =
1916		buf->f_bfree  = sbinfo->max_blocks -
1917				percpu_counter_sum(&sbinfo->used_blocks);
1918	}
1919	if (sbinfo->max_inodes) {
1920		buf->f_files = sbinfo->max_inodes;
1921		buf->f_ffree = sbinfo->free_inodes;
1922	}
1923	/* else leave those fields 0 like simple_statfs */
1924	return 0;
1925}
1926
1927/*
1928 * File creation. Allocate an inode, and we're done..
1929 */
1930static int
1931shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1932{
1933	struct inode *inode;
1934	int error = -ENOSPC;
1935
1936	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1937	if (inode) {
1938		error = simple_acl_create(dir, inode);
1939		if (error)
1940			goto out_iput;
1941		error = security_inode_init_security(inode, dir,
1942						     &dentry->d_name,
1943						     shmem_initxattrs, NULL);
1944		if (error && error != -EOPNOTSUPP)
1945			goto out_iput;
1946
1947		error = 0;
1948		dir->i_size += BOGO_DIRENT_SIZE;
1949		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1950		d_instantiate(dentry, inode);
1951		dget(dentry); /* Extra count - pin the dentry in core */
1952	}
1953	return error;
1954out_iput:
1955	iput(inode);
1956	return error;
1957}
1958
1959static int
1960shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1961{
1962	struct inode *inode;
1963	int error = -ENOSPC;
1964
1965	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1966	if (inode) {
1967		error = security_inode_init_security(inode, dir,
1968						     NULL,
1969						     shmem_initxattrs, NULL);
1970		if (error && error != -EOPNOTSUPP)
1971			goto out_iput;
1972		error = simple_acl_create(dir, inode);
1973		if (error)
1974			goto out_iput;
1975		d_tmpfile(dentry, inode);
1976	}
1977	return error;
1978out_iput:
1979	iput(inode);
1980	return error;
1981}
1982
1983static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1984{
1985	int error;
1986
1987	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1988		return error;
1989	inc_nlink(dir);
1990	return 0;
1991}
1992
1993static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1994		bool excl)
1995{
1996	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1997}
1998
1999/*
2000 * Link a file..
2001 */
2002static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2003{
2004	struct inode *inode = old_dentry->d_inode;
2005	int ret;
2006
2007	/*
2008	 * No ordinary (disk based) filesystem counts links as inodes;
2009	 * but each new link needs a new dentry, pinning lowmem, and
2010	 * tmpfs dentries cannot be pruned until they are unlinked.
2011	 */
2012	ret = shmem_reserve_inode(inode->i_sb);
2013	if (ret)
2014		goto out;
2015
2016	dir->i_size += BOGO_DIRENT_SIZE;
2017	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2018	inc_nlink(inode);
2019	ihold(inode);	/* New dentry reference */
2020	dget(dentry);		/* Extra pinning count for the created dentry */
2021	d_instantiate(dentry, inode);
2022out:
2023	return ret;
2024}
2025
2026static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2027{
2028	struct inode *inode = dentry->d_inode;
2029
2030	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2031		shmem_free_inode(inode->i_sb);
2032
2033	dir->i_size -= BOGO_DIRENT_SIZE;
2034	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2035	drop_nlink(inode);
2036	dput(dentry);	/* Undo the count from "create" - this does all the work */
2037	return 0;
2038}
2039
2040static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2041{
2042	if (!simple_empty(dentry))
2043		return -ENOTEMPTY;
2044
2045	drop_nlink(dentry->d_inode);
2046	drop_nlink(dir);
2047	return shmem_unlink(dir, dentry);
2048}
2049
2050/*
2051 * The VFS layer already does all the dentry stuff for rename,
2052 * we just have to decrement the usage count for the target if
2053 * it exists so that the VFS layer correctly free's it when it
2054 * gets overwritten.
2055 */
2056static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2057{
2058	struct inode *inode = old_dentry->d_inode;
2059	int they_are_dirs = S_ISDIR(inode->i_mode);
2060
2061	if (!simple_empty(new_dentry))
2062		return -ENOTEMPTY;
2063
2064	if (new_dentry->d_inode) {
2065		(void) shmem_unlink(new_dir, new_dentry);
2066		if (they_are_dirs)
2067			drop_nlink(old_dir);
2068	} else if (they_are_dirs) {
2069		drop_nlink(old_dir);
2070		inc_nlink(new_dir);
2071	}
2072
2073	old_dir->i_size -= BOGO_DIRENT_SIZE;
2074	new_dir->i_size += BOGO_DIRENT_SIZE;
2075	old_dir->i_ctime = old_dir->i_mtime =
2076	new_dir->i_ctime = new_dir->i_mtime =
2077	inode->i_ctime = CURRENT_TIME;
2078	return 0;
2079}
2080
2081static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2082{
2083	int error;
2084	int len;
2085	struct inode *inode;
2086	struct page *page;
2087	char *kaddr;
2088	struct shmem_inode_info *info;
2089
2090	len = strlen(symname) + 1;
2091	if (len > PAGE_CACHE_SIZE)
2092		return -ENAMETOOLONG;
2093
2094	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2095	if (!inode)
2096		return -ENOSPC;
2097
2098	error = security_inode_init_security(inode, dir, &dentry->d_name,
2099					     shmem_initxattrs, NULL);
2100	if (error) {
2101		if (error != -EOPNOTSUPP) {
2102			iput(inode);
2103			return error;
2104		}
2105		error = 0;
2106	}
2107
2108	info = SHMEM_I(inode);
2109	inode->i_size = len-1;
2110	if (len <= SHORT_SYMLINK_LEN) {
2111		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2112		if (!info->symlink) {
2113			iput(inode);
2114			return -ENOMEM;
2115		}
2116		inode->i_op = &shmem_short_symlink_operations;
2117	} else {
2118		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2119		if (error) {
2120			iput(inode);
2121			return error;
2122		}
2123		inode->i_mapping->a_ops = &shmem_aops;
2124		inode->i_op = &shmem_symlink_inode_operations;
2125		kaddr = kmap_atomic(page);
2126		memcpy(kaddr, symname, len);
2127		kunmap_atomic(kaddr);
2128		SetPageUptodate(page);
2129		set_page_dirty(page);
2130		unlock_page(page);
2131		page_cache_release(page);
2132	}
2133	dir->i_size += BOGO_DIRENT_SIZE;
2134	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2135	d_instantiate(dentry, inode);
2136	dget(dentry);
2137	return 0;
2138}
2139
2140static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2141{
2142	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2143	return NULL;
2144}
2145
2146static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2147{
2148	struct page *page = NULL;
2149	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2150	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2151	if (page)
2152		unlock_page(page);
2153	return page;
2154}
2155
2156static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2157{
2158	if (!IS_ERR(nd_get_link(nd))) {
2159		struct page *page = cookie;
2160		kunmap(page);
2161		mark_page_accessed(page);
2162		page_cache_release(page);
2163	}
2164}
2165
2166#ifdef CONFIG_TMPFS_XATTR
2167/*
2168 * Superblocks without xattr inode operations may get some security.* xattr
2169 * support from the LSM "for free". As soon as we have any other xattrs
2170 * like ACLs, we also need to implement the security.* handlers at
2171 * filesystem level, though.
2172 */
2173
2174/*
2175 * Callback for security_inode_init_security() for acquiring xattrs.
2176 */
2177static int shmem_initxattrs(struct inode *inode,
2178			    const struct xattr *xattr_array,
2179			    void *fs_info)
2180{
2181	struct shmem_inode_info *info = SHMEM_I(inode);
2182	const struct xattr *xattr;
2183	struct simple_xattr *new_xattr;
2184	size_t len;
2185
2186	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2187		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2188		if (!new_xattr)
2189			return -ENOMEM;
2190
2191		len = strlen(xattr->name) + 1;
2192		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2193					  GFP_KERNEL);
2194		if (!new_xattr->name) {
2195			kfree(new_xattr);
2196			return -ENOMEM;
2197		}
2198
2199		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2200		       XATTR_SECURITY_PREFIX_LEN);
2201		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2202		       xattr->name, len);
2203
2204		simple_xattr_list_add(&info->xattrs, new_xattr);
2205	}
2206
2207	return 0;
2208}
2209
2210static const struct xattr_handler *shmem_xattr_handlers[] = {
2211#ifdef CONFIG_TMPFS_POSIX_ACL
2212	&posix_acl_access_xattr_handler,
2213	&posix_acl_default_xattr_handler,
2214#endif
2215	NULL
2216};
2217
2218static int shmem_xattr_validate(const char *name)
2219{
2220	struct { const char *prefix; size_t len; } arr[] = {
2221		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2222		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2223	};
2224	int i;
2225
2226	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2227		size_t preflen = arr[i].len;
2228		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2229			if (!name[preflen])
2230				return -EINVAL;
2231			return 0;
2232		}
2233	}
2234	return -EOPNOTSUPP;
2235}
2236
2237static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2238			      void *buffer, size_t size)
2239{
2240	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2241	int err;
2242
2243	/*
2244	 * If this is a request for a synthetic attribute in the system.*
2245	 * namespace use the generic infrastructure to resolve a handler
2246	 * for it via sb->s_xattr.
2247	 */
2248	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2249		return generic_getxattr(dentry, name, buffer, size);
2250
2251	err = shmem_xattr_validate(name);
2252	if (err)
2253		return err;
2254
2255	return simple_xattr_get(&info->xattrs, name, buffer, size);
2256}
2257
2258static int shmem_setxattr(struct dentry *dentry, const char *name,
2259			  const void *value, size_t size, int flags)
2260{
2261	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2262	int err;
2263
2264	/*
2265	 * If this is a request for a synthetic attribute in the system.*
2266	 * namespace use the generic infrastructure to resolve a handler
2267	 * for it via sb->s_xattr.
2268	 */
2269	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2270		return generic_setxattr(dentry, name, value, size, flags);
2271
2272	err = shmem_xattr_validate(name);
2273	if (err)
2274		return err;
2275
2276	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2277}
2278
2279static int shmem_removexattr(struct dentry *dentry, const char *name)
2280{
2281	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2282	int err;
2283
2284	/*
2285	 * If this is a request for a synthetic attribute in the system.*
2286	 * namespace use the generic infrastructure to resolve a handler
2287	 * for it via sb->s_xattr.
2288	 */
2289	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2290		return generic_removexattr(dentry, name);
2291
2292	err = shmem_xattr_validate(name);
2293	if (err)
2294		return err;
2295
2296	return simple_xattr_remove(&info->xattrs, name);
2297}
2298
2299static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2300{
2301	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2302	return simple_xattr_list(&info->xattrs, buffer, size);
2303}
2304#endif /* CONFIG_TMPFS_XATTR */
2305
2306static const struct inode_operations shmem_short_symlink_operations = {
2307	.readlink	= generic_readlink,
2308	.follow_link	= shmem_follow_short_symlink,
2309#ifdef CONFIG_TMPFS_XATTR
2310	.setxattr	= shmem_setxattr,
2311	.getxattr	= shmem_getxattr,
2312	.listxattr	= shmem_listxattr,
2313	.removexattr	= shmem_removexattr,
2314#endif
2315};
2316
2317static const struct inode_operations shmem_symlink_inode_operations = {
2318	.readlink	= generic_readlink,
2319	.follow_link	= shmem_follow_link,
2320	.put_link	= shmem_put_link,
2321#ifdef CONFIG_TMPFS_XATTR
2322	.setxattr	= shmem_setxattr,
2323	.getxattr	= shmem_getxattr,
2324	.listxattr	= shmem_listxattr,
2325	.removexattr	= shmem_removexattr,
2326#endif
2327};
2328
2329static struct dentry *shmem_get_parent(struct dentry *child)
2330{
2331	return ERR_PTR(-ESTALE);
2332}
2333
2334static int shmem_match(struct inode *ino, void *vfh)
2335{
2336	__u32 *fh = vfh;
2337	__u64 inum = fh[2];
2338	inum = (inum << 32) | fh[1];
2339	return ino->i_ino == inum && fh[0] == ino->i_generation;
2340}
2341
2342static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2343		struct fid *fid, int fh_len, int fh_type)
2344{
2345	struct inode *inode;
2346	struct dentry *dentry = NULL;
2347	u64 inum;
2348
2349	if (fh_len < 3)
2350		return NULL;
2351
2352	inum = fid->raw[2];
2353	inum = (inum << 32) | fid->raw[1];
2354
2355	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2356			shmem_match, fid->raw);
2357	if (inode) {
2358		dentry = d_find_alias(inode);
2359		iput(inode);
2360	}
2361
2362	return dentry;
2363}
2364
2365static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2366				struct inode *parent)
2367{
2368	if (*len < 3) {
2369		*len = 3;
2370		return FILEID_INVALID;
2371	}
2372
2373	if (inode_unhashed(inode)) {
2374		/* Unfortunately insert_inode_hash is not idempotent,
2375		 * so as we hash inodes here rather than at creation
2376		 * time, we need a lock to ensure we only try
2377		 * to do it once
2378		 */
2379		static DEFINE_SPINLOCK(lock);
2380		spin_lock(&lock);
2381		if (inode_unhashed(inode))
2382			__insert_inode_hash(inode,
2383					    inode->i_ino + inode->i_generation);
2384		spin_unlock(&lock);
2385	}
2386
2387	fh[0] = inode->i_generation;
2388	fh[1] = inode->i_ino;
2389	fh[2] = ((__u64)inode->i_ino) >> 32;
2390
2391	*len = 3;
2392	return 1;
2393}
2394
2395static const struct export_operations shmem_export_ops = {
2396	.get_parent     = shmem_get_parent,
2397	.encode_fh      = shmem_encode_fh,
2398	.fh_to_dentry	= shmem_fh_to_dentry,
2399};
2400
2401static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2402			       bool remount)
2403{
2404	char *this_char, *value, *rest;
2405	struct mempolicy *mpol = NULL;
2406	uid_t uid;
2407	gid_t gid;
2408
2409	while (options != NULL) {
2410		this_char = options;
2411		for (;;) {
2412			/*
2413			 * NUL-terminate this option: unfortunately,
2414			 * mount options form a comma-separated list,
2415			 * but mpol's nodelist may also contain commas.
2416			 */
2417			options = strchr(options, ',');
2418			if (options == NULL)
2419				break;
2420			options++;
2421			if (!isdigit(*options)) {
2422				options[-1] = '\0';
2423				break;
2424			}
2425		}
2426		if (!*this_char)
2427			continue;
2428		if ((value = strchr(this_char,'=')) != NULL) {
2429			*value++ = 0;
2430		} else {
2431			printk(KERN_ERR
2432			    "tmpfs: No value for mount option '%s'\n",
2433			    this_char);
2434			goto error;
2435		}
2436
2437		if (!strcmp(this_char,"size")) {
2438			unsigned long long size;
2439			size = memparse(value,&rest);
2440			if (*rest == '%') {
2441				size <<= PAGE_SHIFT;
2442				size *= totalram_pages;
2443				do_div(size, 100);
2444				rest++;
2445			}
2446			if (*rest)
2447				goto bad_val;
2448			sbinfo->max_blocks =
2449				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2450		} else if (!strcmp(this_char,"nr_blocks")) {
2451			sbinfo->max_blocks = memparse(value, &rest);
2452			if (*rest)
2453				goto bad_val;
2454		} else if (!strcmp(this_char,"nr_inodes")) {
2455			sbinfo->max_inodes = memparse(value, &rest);
2456			if (*rest)
2457				goto bad_val;
2458		} else if (!strcmp(this_char,"mode")) {
2459			if (remount)
2460				continue;
2461			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2462			if (*rest)
2463				goto bad_val;
2464		} else if (!strcmp(this_char,"uid")) {
2465			if (remount)
2466				continue;
2467			uid = simple_strtoul(value, &rest, 0);
2468			if (*rest)
2469				goto bad_val;
2470			sbinfo->uid = make_kuid(current_user_ns(), uid);
2471			if (!uid_valid(sbinfo->uid))
2472				goto bad_val;
2473		} else if (!strcmp(this_char,"gid")) {
2474			if (remount)
2475				continue;
2476			gid = simple_strtoul(value, &rest, 0);
2477			if (*rest)
2478				goto bad_val;
2479			sbinfo->gid = make_kgid(current_user_ns(), gid);
2480			if (!gid_valid(sbinfo->gid))
2481				goto bad_val;
2482		} else if (!strcmp(this_char,"mpol")) {
2483			mpol_put(mpol);
2484			mpol = NULL;
2485			if (mpol_parse_str(value, &mpol))
2486				goto bad_val;
2487		} else {
2488			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2489			       this_char);
2490			goto error;
2491		}
2492	}
2493	sbinfo->mpol = mpol;
2494	return 0;
2495
2496bad_val:
2497	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2498	       value, this_char);
2499error:
2500	mpol_put(mpol);
2501	return 1;
2502
2503}
2504
2505static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2506{
2507	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2508	struct shmem_sb_info config = *sbinfo;
2509	unsigned long inodes;
2510	int error = -EINVAL;
2511
2512	config.mpol = NULL;
2513	if (shmem_parse_options(data, &config, true))
2514		return error;
2515
2516	spin_lock(&sbinfo->stat_lock);
2517	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2518	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2519		goto out;
2520	if (config.max_inodes < inodes)
2521		goto out;
2522	/*
2523	 * Those tests disallow limited->unlimited while any are in use;
2524	 * but we must separately disallow unlimited->limited, because
2525	 * in that case we have no record of how much is already in use.
2526	 */
2527	if (config.max_blocks && !sbinfo->max_blocks)
2528		goto out;
2529	if (config.max_inodes && !sbinfo->max_inodes)
2530		goto out;
2531
2532	error = 0;
2533	sbinfo->max_blocks  = config.max_blocks;
2534	sbinfo->max_inodes  = config.max_inodes;
2535	sbinfo->free_inodes = config.max_inodes - inodes;
2536
2537	/*
2538	 * Preserve previous mempolicy unless mpol remount option was specified.
2539	 */
2540	if (config.mpol) {
2541		mpol_put(sbinfo->mpol);
2542		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2543	}
2544out:
2545	spin_unlock(&sbinfo->stat_lock);
2546	return error;
2547}
2548
2549static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2550{
2551	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2552
2553	if (sbinfo->max_blocks != shmem_default_max_blocks())
2554		seq_printf(seq, ",size=%luk",
2555			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2556	if (sbinfo->max_inodes != shmem_default_max_inodes())
2557		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2558	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2559		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2560	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2561		seq_printf(seq, ",uid=%u",
2562				from_kuid_munged(&init_user_ns, sbinfo->uid));
2563	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2564		seq_printf(seq, ",gid=%u",
2565				from_kgid_munged(&init_user_ns, sbinfo->gid));
2566	shmem_show_mpol(seq, sbinfo->mpol);
2567	return 0;
2568}
2569#endif /* CONFIG_TMPFS */
2570
2571static void shmem_put_super(struct super_block *sb)
2572{
2573	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2574
2575	percpu_counter_destroy(&sbinfo->used_blocks);
2576	mpol_put(sbinfo->mpol);
2577	kfree(sbinfo);
2578	sb->s_fs_info = NULL;
2579}
2580
2581int shmem_fill_super(struct super_block *sb, void *data, int silent)
2582{
2583	struct inode *inode;
2584	struct shmem_sb_info *sbinfo;
2585	int err = -ENOMEM;
2586
2587	/* Round up to L1_CACHE_BYTES to resist false sharing */
2588	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2589				L1_CACHE_BYTES), GFP_KERNEL);
2590	if (!sbinfo)
2591		return -ENOMEM;
2592
2593	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2594	sbinfo->uid = current_fsuid();
2595	sbinfo->gid = current_fsgid();
2596	sb->s_fs_info = sbinfo;
2597
2598#ifdef CONFIG_TMPFS
2599	/*
2600	 * Per default we only allow half of the physical ram per
2601	 * tmpfs instance, limiting inodes to one per page of lowmem;
2602	 * but the internal instance is left unlimited.
2603	 */
2604	if (!(sb->s_flags & MS_KERNMOUNT)) {
2605		sbinfo->max_blocks = shmem_default_max_blocks();
2606		sbinfo->max_inodes = shmem_default_max_inodes();
2607		if (shmem_parse_options(data, sbinfo, false)) {
2608			err = -EINVAL;
2609			goto failed;
2610		}
2611	} else {
2612		sb->s_flags |= MS_NOUSER;
2613	}
2614	sb->s_export_op = &shmem_export_ops;
2615	sb->s_flags |= MS_NOSEC;
2616#else
2617	sb->s_flags |= MS_NOUSER;
2618#endif
2619
2620	spin_lock_init(&sbinfo->stat_lock);
2621	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2622		goto failed;
2623	sbinfo->free_inodes = sbinfo->max_inodes;
2624
2625	sb->s_maxbytes = MAX_LFS_FILESIZE;
2626	sb->s_blocksize = PAGE_CACHE_SIZE;
2627	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2628	sb->s_magic = TMPFS_MAGIC;
2629	sb->s_op = &shmem_ops;
2630	sb->s_time_gran = 1;
2631#ifdef CONFIG_TMPFS_XATTR
2632	sb->s_xattr = shmem_xattr_handlers;
2633#endif
2634#ifdef CONFIG_TMPFS_POSIX_ACL
2635	sb->s_flags |= MS_POSIXACL;
2636#endif
2637
2638	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2639	if (!inode)
2640		goto failed;
2641	inode->i_uid = sbinfo->uid;
2642	inode->i_gid = sbinfo->gid;
2643	sb->s_root = d_make_root(inode);
2644	if (!sb->s_root)
2645		goto failed;
2646	return 0;
2647
2648failed:
2649	shmem_put_super(sb);
2650	return err;
2651}
2652
2653static struct kmem_cache *shmem_inode_cachep;
2654
2655static struct inode *shmem_alloc_inode(struct super_block *sb)
2656{
2657	struct shmem_inode_info *info;
2658	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2659	if (!info)
2660		return NULL;
2661	return &info->vfs_inode;
2662}
2663
2664static void shmem_destroy_callback(struct rcu_head *head)
2665{
2666	struct inode *inode = container_of(head, struct inode, i_rcu);
2667	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2668}
2669
2670static void shmem_destroy_inode(struct inode *inode)
2671{
2672	if (S_ISREG(inode->i_mode))
2673		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2674	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2675}
2676
2677static void shmem_init_inode(void *foo)
2678{
2679	struct shmem_inode_info *info = foo;
2680	inode_init_once(&info->vfs_inode);
2681}
2682
2683static int shmem_init_inodecache(void)
2684{
2685	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2686				sizeof(struct shmem_inode_info),
2687				0, SLAB_PANIC, shmem_init_inode);
2688	return 0;
2689}
2690
2691static void shmem_destroy_inodecache(void)
2692{
2693	kmem_cache_destroy(shmem_inode_cachep);
2694}
2695
2696static const struct address_space_operations shmem_aops = {
2697	.writepage	= shmem_writepage,
2698	.set_page_dirty	= __set_page_dirty_no_writeback,
2699#ifdef CONFIG_TMPFS
2700	.write_begin	= shmem_write_begin,
2701	.write_end	= shmem_write_end,
2702#endif
2703	.migratepage	= migrate_page,
2704	.error_remove_page = generic_error_remove_page,
2705};
2706
2707static const struct file_operations shmem_file_operations = {
2708	.mmap		= shmem_mmap,
2709#ifdef CONFIG_TMPFS
2710	.llseek		= shmem_file_llseek,
2711	.read		= do_sync_read,
2712	.write		= do_sync_write,
2713	.aio_read	= shmem_file_aio_read,
2714	.aio_write	= generic_file_aio_write,
2715	.fsync		= noop_fsync,
2716	.splice_read	= shmem_file_splice_read,
2717	.splice_write	= generic_file_splice_write,
2718	.fallocate	= shmem_fallocate,
2719#endif
2720};
2721
2722static const struct inode_operations shmem_inode_operations = {
2723	.setattr	= shmem_setattr,
2724#ifdef CONFIG_TMPFS_XATTR
2725	.setxattr	= shmem_setxattr,
2726	.getxattr	= shmem_getxattr,
2727	.listxattr	= shmem_listxattr,
2728	.removexattr	= shmem_removexattr,
2729	.set_acl	= simple_set_acl,
2730#endif
2731};
2732
2733static const struct inode_operations shmem_dir_inode_operations = {
2734#ifdef CONFIG_TMPFS
2735	.create		= shmem_create,
2736	.lookup		= simple_lookup,
2737	.link		= shmem_link,
2738	.unlink		= shmem_unlink,
2739	.symlink	= shmem_symlink,
2740	.mkdir		= shmem_mkdir,
2741	.rmdir		= shmem_rmdir,
2742	.mknod		= shmem_mknod,
2743	.rename		= shmem_rename,
2744	.tmpfile	= shmem_tmpfile,
2745#endif
2746#ifdef CONFIG_TMPFS_XATTR
2747	.setxattr	= shmem_setxattr,
2748	.getxattr	= shmem_getxattr,
2749	.listxattr	= shmem_listxattr,
2750	.removexattr	= shmem_removexattr,
2751#endif
2752#ifdef CONFIG_TMPFS_POSIX_ACL
2753	.setattr	= shmem_setattr,
2754	.set_acl	= simple_set_acl,
2755#endif
2756};
2757
2758static const struct inode_operations shmem_special_inode_operations = {
2759#ifdef CONFIG_TMPFS_XATTR
2760	.setxattr	= shmem_setxattr,
2761	.getxattr	= shmem_getxattr,
2762	.listxattr	= shmem_listxattr,
2763	.removexattr	= shmem_removexattr,
2764#endif
2765#ifdef CONFIG_TMPFS_POSIX_ACL
2766	.setattr	= shmem_setattr,
2767	.set_acl	= simple_set_acl,
2768#endif
2769};
2770
2771static const struct super_operations shmem_ops = {
2772	.alloc_inode	= shmem_alloc_inode,
2773	.destroy_inode	= shmem_destroy_inode,
2774#ifdef CONFIG_TMPFS
2775	.statfs		= shmem_statfs,
2776	.remount_fs	= shmem_remount_fs,
2777	.show_options	= shmem_show_options,
2778#endif
2779	.evict_inode	= shmem_evict_inode,
2780	.drop_inode	= generic_delete_inode,
2781	.put_super	= shmem_put_super,
2782};
2783
2784static const struct vm_operations_struct shmem_vm_ops = {
2785	.fault		= shmem_fault,
2786#ifdef CONFIG_NUMA
2787	.set_policy     = shmem_set_policy,
2788	.get_policy     = shmem_get_policy,
2789#endif
2790	.remap_pages	= generic_file_remap_pages,
2791};
2792
2793static struct dentry *shmem_mount(struct file_system_type *fs_type,
2794	int flags, const char *dev_name, void *data)
2795{
2796	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2797}
2798
2799static struct file_system_type shmem_fs_type = {
2800	.owner		= THIS_MODULE,
2801	.name		= "tmpfs",
2802	.mount		= shmem_mount,
2803	.kill_sb	= kill_litter_super,
2804	.fs_flags	= FS_USERNS_MOUNT,
2805};
2806
2807int __init shmem_init(void)
2808{
2809	int error;
2810
2811	/* If rootfs called this, don't re-init */
2812	if (shmem_inode_cachep)
2813		return 0;
2814
2815	error = bdi_init(&shmem_backing_dev_info);
2816	if (error)
2817		goto out4;
2818
2819	error = shmem_init_inodecache();
2820	if (error)
2821		goto out3;
2822
2823	error = register_filesystem(&shmem_fs_type);
2824	if (error) {
2825		printk(KERN_ERR "Could not register tmpfs\n");
2826		goto out2;
2827	}
2828
2829	shm_mnt = kern_mount(&shmem_fs_type);
2830	if (IS_ERR(shm_mnt)) {
2831		error = PTR_ERR(shm_mnt);
2832		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2833		goto out1;
2834	}
2835	return 0;
2836
2837out1:
2838	unregister_filesystem(&shmem_fs_type);
2839out2:
2840	shmem_destroy_inodecache();
2841out3:
2842	bdi_destroy(&shmem_backing_dev_info);
2843out4:
2844	shm_mnt = ERR_PTR(error);
2845	return error;
2846}
2847
2848#else /* !CONFIG_SHMEM */
2849
2850/*
2851 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2852 *
2853 * This is intended for small system where the benefits of the full
2854 * shmem code (swap-backed and resource-limited) are outweighed by
2855 * their complexity. On systems without swap this code should be
2856 * effectively equivalent, but much lighter weight.
2857 */
2858
2859static struct file_system_type shmem_fs_type = {
2860	.name		= "tmpfs",
2861	.mount		= ramfs_mount,
2862	.kill_sb	= kill_litter_super,
2863	.fs_flags	= FS_USERNS_MOUNT,
2864};
2865
2866int __init shmem_init(void)
2867{
2868	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2869
2870	shm_mnt = kern_mount(&shmem_fs_type);
2871	BUG_ON(IS_ERR(shm_mnt));
2872
2873	return 0;
2874}
2875
2876int shmem_unuse(swp_entry_t swap, struct page *page)
2877{
2878	return 0;
2879}
2880
2881int shmem_lock(struct file *file, int lock, struct user_struct *user)
2882{
2883	return 0;
2884}
2885
2886void shmem_unlock_mapping(struct address_space *mapping)
2887{
2888}
2889
2890void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2891{
2892	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2893}
2894EXPORT_SYMBOL_GPL(shmem_truncate_range);
2895
2896#define shmem_vm_ops				generic_file_vm_ops
2897#define shmem_file_operations			ramfs_file_operations
2898#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2899#define shmem_acct_size(flags, size)		0
2900#define shmem_unacct_size(flags, size)		do {} while (0)
2901
2902#endif /* CONFIG_SHMEM */
2903
2904/* common code */
2905
2906static struct dentry_operations anon_ops = {
2907	.d_dname = simple_dname
2908};
2909
2910static struct file *__shmem_file_setup(const char *name, loff_t size,
2911				       unsigned long flags, unsigned int i_flags)
2912{
2913	struct file *res;
2914	struct inode *inode;
2915	struct path path;
2916	struct super_block *sb;
2917	struct qstr this;
2918
2919	if (IS_ERR(shm_mnt))
2920		return ERR_CAST(shm_mnt);
2921
2922	if (size < 0 || size > MAX_LFS_FILESIZE)
2923		return ERR_PTR(-EINVAL);
2924
2925	if (shmem_acct_size(flags, size))
2926		return ERR_PTR(-ENOMEM);
2927
2928	res = ERR_PTR(-ENOMEM);
2929	this.name = name;
2930	this.len = strlen(name);
2931	this.hash = 0; /* will go */
2932	sb = shm_mnt->mnt_sb;
2933	path.dentry = d_alloc_pseudo(sb, &this);
2934	if (!path.dentry)
2935		goto put_memory;
2936	d_set_d_op(path.dentry, &anon_ops);
2937	path.mnt = mntget(shm_mnt);
2938
2939	res = ERR_PTR(-ENOSPC);
2940	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2941	if (!inode)
2942		goto put_dentry;
2943
2944	inode->i_flags |= i_flags;
2945	d_instantiate(path.dentry, inode);
2946	inode->i_size = size;
2947	clear_nlink(inode);	/* It is unlinked */
2948	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2949	if (IS_ERR(res))
2950		goto put_dentry;
2951
2952	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2953		  &shmem_file_operations);
2954	if (IS_ERR(res))
2955		goto put_dentry;
2956
2957	return res;
2958
2959put_dentry:
2960	path_put(&path);
2961put_memory:
2962	shmem_unacct_size(flags, size);
2963	return res;
2964}
2965
2966/**
2967 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2968 * 	kernel internal.  There will be NO LSM permission checks against the
2969 * 	underlying inode.  So users of this interface must do LSM checks at a
2970 * 	higher layer.  The one user is the big_key implementation.  LSM checks
2971 * 	are provided at the key level rather than the inode level.
2972 * @name: name for dentry (to be seen in /proc/<pid>/maps
2973 * @size: size to be set for the file
2974 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2975 */
2976struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2977{
2978	return __shmem_file_setup(name, size, flags, S_PRIVATE);
2979}
2980
2981/**
2982 * shmem_file_setup - get an unlinked file living in tmpfs
2983 * @name: name for dentry (to be seen in /proc/<pid>/maps
2984 * @size: size to be set for the file
2985 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2986 */
2987struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2988{
2989	return __shmem_file_setup(name, size, flags, 0);
2990}
2991EXPORT_SYMBOL_GPL(shmem_file_setup);
2992
2993/**
2994 * shmem_zero_setup - setup a shared anonymous mapping
2995 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2996 */
2997int shmem_zero_setup(struct vm_area_struct *vma)
2998{
2999	struct file *file;
3000	loff_t size = vma->vm_end - vma->vm_start;
3001
3002	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3003	if (IS_ERR(file))
3004		return PTR_ERR(file);
3005
3006	if (vma->vm_file)
3007		fput(vma->vm_file);
3008	vma->vm_file = file;
3009	vma->vm_ops = &shmem_vm_ops;
3010	return 0;
3011}
3012
3013/**
3014 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3015 * @mapping:	the page's address_space
3016 * @index:	the page index
3017 * @gfp:	the page allocator flags to use if allocating
3018 *
3019 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3020 * with any new page allocations done using the specified allocation flags.
3021 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3022 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3023 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3024 *
3025 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3026 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3027 */
3028struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3029					 pgoff_t index, gfp_t gfp)
3030{
3031#ifdef CONFIG_SHMEM
3032	struct inode *inode = mapping->host;
3033	struct page *page;
3034	int error;
3035
3036	BUG_ON(mapping->a_ops != &shmem_aops);
3037	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3038	if (error)
3039		page = ERR_PTR(error);
3040	else
3041		unlock_page(page);
3042	return page;
3043#else
3044	/*
3045	 * The tiny !SHMEM case uses ramfs without swap
3046	 */
3047	return read_cache_page_gfp(mapping, index, gfp);
3048#endif
3049}
3050EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3051