shmem.c revision ff36b801624d02a876bb7deded6ab860ea3503f2
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/percpu_counter.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/security.h>
55#include <linux/swapops.h>
56#include <linux/mempolicy.h>
57#include <linux/namei.h>
58#include <linux/ctype.h>
59#include <linux/migrate.h>
60#include <linux/highmem.h>
61#include <linux/seq_file.h>
62#include <linux/magic.h>
63
64#include <asm/uaccess.h>
65#include <asm/div64.h>
66#include <asm/pgtable.h>
67
68/*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
80#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93#define SHMEM_PAGEIN	 VM_READ
94#define SHMEM_TRUNCATE	 VM_WRITE
95
96/* Definition to limit shmem_truncate's steps between cond_rescheds */
97#define LATENCY_LIMIT	 64
98
99/* Pretend that each entry is of this size in directory's i_size */
100#define BOGO_DIRENT_SIZE 20
101
102/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103enum sgp_type {
104	SGP_READ,	/* don't exceed i_size, don't allocate page */
105	SGP_CACHE,	/* don't exceed i_size, may allocate page */
106	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
107	SGP_WRITE,	/* may exceed i_size, may allocate page */
108};
109
110#ifdef CONFIG_TMPFS
111static unsigned long shmem_default_max_blocks(void)
112{
113	return totalram_pages / 2;
114}
115
116static unsigned long shmem_default_max_inodes(void)
117{
118	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119}
120#endif
121
122static int shmem_getpage(struct inode *inode, unsigned long idx,
123			 struct page **pagep, enum sgp_type sgp, int *type);
124
125static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
126{
127	/*
128	 * The above definition of ENTRIES_PER_PAGE, and the use of
129	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130	 * might be reconsidered if it ever diverges from PAGE_SIZE.
131	 *
132	 * Mobility flags are masked out as swap vectors cannot move
133	 */
134	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135				PAGE_CACHE_SHIFT-PAGE_SHIFT);
136}
137
138static inline void shmem_dir_free(struct page *page)
139{
140	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141}
142
143static struct page **shmem_dir_map(struct page *page)
144{
145	return (struct page **)kmap_atomic(page, KM_USER0);
146}
147
148static inline void shmem_dir_unmap(struct page **dir)
149{
150	kunmap_atomic(dir, KM_USER0);
151}
152
153static swp_entry_t *shmem_swp_map(struct page *page)
154{
155	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156}
157
158static inline void shmem_swp_balance_unmap(void)
159{
160	/*
161	 * When passing a pointer to an i_direct entry, to code which
162	 * also handles indirect entries and so will shmem_swp_unmap,
163	 * we must arrange for the preempt count to remain in balance.
164	 * What kmap_atomic of a lowmem page does depends on config
165	 * and architecture, so pretend to kmap_atomic some lowmem page.
166	 */
167	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168}
169
170static inline void shmem_swp_unmap(swp_entry_t *entry)
171{
172	kunmap_atomic(entry, KM_USER1);
173}
174
175static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176{
177	return sb->s_fs_info;
178}
179
180/*
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
185 */
186static inline int shmem_acct_size(unsigned long flags, loff_t size)
187{
188	return (flags & VM_NORESERVE) ?
189		0 : security_vm_enough_memory_kern(VM_ACCT(size));
190}
191
192static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193{
194	if (!(flags & VM_NORESERVE))
195		vm_unacct_memory(VM_ACCT(size));
196}
197
198/*
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203 */
204static inline int shmem_acct_block(unsigned long flags)
205{
206	return (flags & VM_NORESERVE) ?
207		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
212	if (flags & VM_NORESERVE)
213		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214}
215
216static const struct super_operations shmem_ops;
217static const struct address_space_operations shmem_aops;
218static const struct file_operations shmem_file_operations;
219static const struct inode_operations shmem_inode_operations;
220static const struct inode_operations shmem_dir_inode_operations;
221static const struct inode_operations shmem_special_inode_operations;
222static const struct vm_operations_struct shmem_vm_ops;
223
224static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
225	.ra_pages	= 0,	/* No readahead */
226	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227	.unplug_io_fn	= default_unplug_io_fn,
228};
229
230static LIST_HEAD(shmem_swaplist);
231static DEFINE_MUTEX(shmem_swaplist_mutex);
232
233static void shmem_free_blocks(struct inode *inode, long pages)
234{
235	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236	if (sbinfo->max_blocks) {
237		percpu_counter_add(&sbinfo->used_blocks, -pages);
238		spin_lock(&inode->i_lock);
239		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
240		spin_unlock(&inode->i_lock);
241	}
242}
243
244static int shmem_reserve_inode(struct super_block *sb)
245{
246	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247	if (sbinfo->max_inodes) {
248		spin_lock(&sbinfo->stat_lock);
249		if (!sbinfo->free_inodes) {
250			spin_unlock(&sbinfo->stat_lock);
251			return -ENOSPC;
252		}
253		sbinfo->free_inodes--;
254		spin_unlock(&sbinfo->stat_lock);
255	}
256	return 0;
257}
258
259static void shmem_free_inode(struct super_block *sb)
260{
261	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
262	if (sbinfo->max_inodes) {
263		spin_lock(&sbinfo->stat_lock);
264		sbinfo->free_inodes++;
265		spin_unlock(&sbinfo->stat_lock);
266	}
267}
268
269/**
270 * shmem_recalc_inode - recalculate the size of an inode
271 * @inode: inode to recalc
272 *
273 * We have to calculate the free blocks since the mm can drop
274 * undirtied hole pages behind our back.
275 *
276 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278 *
279 * It has to be called with the spinlock held.
280 */
281static void shmem_recalc_inode(struct inode *inode)
282{
283	struct shmem_inode_info *info = SHMEM_I(inode);
284	long freed;
285
286	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
287	if (freed > 0) {
288		info->alloced -= freed;
289		shmem_unacct_blocks(info->flags, freed);
290		shmem_free_blocks(inode, freed);
291	}
292}
293
294/**
295 * shmem_swp_entry - find the swap vector position in the info structure
296 * @info:  info structure for the inode
297 * @index: index of the page to find
298 * @page:  optional page to add to the structure. Has to be preset to
299 *         all zeros
300 *
301 * If there is no space allocated yet it will return NULL when
302 * page is NULL, else it will use the page for the needed block,
303 * setting it to NULL on return to indicate that it has been used.
304 *
305 * The swap vector is organized the following way:
306 *
307 * There are SHMEM_NR_DIRECT entries directly stored in the
308 * shmem_inode_info structure. So small files do not need an addional
309 * allocation.
310 *
311 * For pages with index > SHMEM_NR_DIRECT there is the pointer
312 * i_indirect which points to a page which holds in the first half
313 * doubly indirect blocks, in the second half triple indirect blocks:
314 *
315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
316 * following layout (for SHMEM_NR_DIRECT == 16):
317 *
318 * i_indirect -> dir --> 16-19
319 * 	      |	     +-> 20-23
320 * 	      |
321 * 	      +-->dir2 --> 24-27
322 * 	      |	       +-> 28-31
323 * 	      |	       +-> 32-35
324 * 	      |	       +-> 36-39
325 * 	      |
326 * 	      +-->dir3 --> 40-43
327 * 	       	       +-> 44-47
328 * 	      	       +-> 48-51
329 * 	      	       +-> 52-55
330 */
331static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
332{
333	unsigned long offset;
334	struct page **dir;
335	struct page *subdir;
336
337	if (index < SHMEM_NR_DIRECT) {
338		shmem_swp_balance_unmap();
339		return info->i_direct+index;
340	}
341	if (!info->i_indirect) {
342		if (page) {
343			info->i_indirect = *page;
344			*page = NULL;
345		}
346		return NULL;			/* need another page */
347	}
348
349	index -= SHMEM_NR_DIRECT;
350	offset = index % ENTRIES_PER_PAGE;
351	index /= ENTRIES_PER_PAGE;
352	dir = shmem_dir_map(info->i_indirect);
353
354	if (index >= ENTRIES_PER_PAGE/2) {
355		index -= ENTRIES_PER_PAGE/2;
356		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
357		index %= ENTRIES_PER_PAGE;
358		subdir = *dir;
359		if (!subdir) {
360			if (page) {
361				*dir = *page;
362				*page = NULL;
363			}
364			shmem_dir_unmap(dir);
365			return NULL;		/* need another page */
366		}
367		shmem_dir_unmap(dir);
368		dir = shmem_dir_map(subdir);
369	}
370
371	dir += index;
372	subdir = *dir;
373	if (!subdir) {
374		if (!page || !(subdir = *page)) {
375			shmem_dir_unmap(dir);
376			return NULL;		/* need a page */
377		}
378		*dir = subdir;
379		*page = NULL;
380	}
381	shmem_dir_unmap(dir);
382	return shmem_swp_map(subdir) + offset;
383}
384
385static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
386{
387	long incdec = value? 1: -1;
388
389	entry->val = value;
390	info->swapped += incdec;
391	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
392		struct page *page = kmap_atomic_to_page(entry);
393		set_page_private(page, page_private(page) + incdec);
394	}
395}
396
397/**
398 * shmem_swp_alloc - get the position of the swap entry for the page.
399 * @info:	info structure for the inode
400 * @index:	index of the page to find
401 * @sgp:	check and recheck i_size? skip allocation?
402 *
403 * If the entry does not exist, allocate it.
404 */
405static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
406{
407	struct inode *inode = &info->vfs_inode;
408	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
409	struct page *page = NULL;
410	swp_entry_t *entry;
411
412	if (sgp != SGP_WRITE &&
413	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
414		return ERR_PTR(-EINVAL);
415
416	while (!(entry = shmem_swp_entry(info, index, &page))) {
417		if (sgp == SGP_READ)
418			return shmem_swp_map(ZERO_PAGE(0));
419		/*
420		 * Test used_blocks against 1 less max_blocks, since we have 1 data
421		 * page (and perhaps indirect index pages) yet to allocate:
422		 * a waste to allocate index if we cannot allocate data.
423		 */
424		if (sbinfo->max_blocks) {
425			if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0)
426				return ERR_PTR(-ENOSPC);
427			percpu_counter_inc(&sbinfo->used_blocks);
428			spin_lock(&inode->i_lock);
429			inode->i_blocks += BLOCKS_PER_PAGE;
430			spin_unlock(&inode->i_lock);
431		}
432
433		spin_unlock(&info->lock);
434		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
435		spin_lock(&info->lock);
436
437		if (!page) {
438			shmem_free_blocks(inode, 1);
439			return ERR_PTR(-ENOMEM);
440		}
441		if (sgp != SGP_WRITE &&
442		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
443			entry = ERR_PTR(-EINVAL);
444			break;
445		}
446		if (info->next_index <= index)
447			info->next_index = index + 1;
448	}
449	if (page) {
450		/* another task gave its page, or truncated the file */
451		shmem_free_blocks(inode, 1);
452		shmem_dir_free(page);
453	}
454	if (info->next_index <= index && !IS_ERR(entry))
455		info->next_index = index + 1;
456	return entry;
457}
458
459/**
460 * shmem_free_swp - free some swap entries in a directory
461 * @dir:        pointer to the directory
462 * @edir:       pointer after last entry of the directory
463 * @punch_lock: pointer to spinlock when needed for the holepunch case
464 */
465static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
466						spinlock_t *punch_lock)
467{
468	spinlock_t *punch_unlock = NULL;
469	swp_entry_t *ptr;
470	int freed = 0;
471
472	for (ptr = dir; ptr < edir; ptr++) {
473		if (ptr->val) {
474			if (unlikely(punch_lock)) {
475				punch_unlock = punch_lock;
476				punch_lock = NULL;
477				spin_lock(punch_unlock);
478				if (!ptr->val)
479					continue;
480			}
481			free_swap_and_cache(*ptr);
482			*ptr = (swp_entry_t){0};
483			freed++;
484		}
485	}
486	if (punch_unlock)
487		spin_unlock(punch_unlock);
488	return freed;
489}
490
491static int shmem_map_and_free_swp(struct page *subdir, int offset,
492		int limit, struct page ***dir, spinlock_t *punch_lock)
493{
494	swp_entry_t *ptr;
495	int freed = 0;
496
497	ptr = shmem_swp_map(subdir);
498	for (; offset < limit; offset += LATENCY_LIMIT) {
499		int size = limit - offset;
500		if (size > LATENCY_LIMIT)
501			size = LATENCY_LIMIT;
502		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
503							punch_lock);
504		if (need_resched()) {
505			shmem_swp_unmap(ptr);
506			if (*dir) {
507				shmem_dir_unmap(*dir);
508				*dir = NULL;
509			}
510			cond_resched();
511			ptr = shmem_swp_map(subdir);
512		}
513	}
514	shmem_swp_unmap(ptr);
515	return freed;
516}
517
518static void shmem_free_pages(struct list_head *next)
519{
520	struct page *page;
521	int freed = 0;
522
523	do {
524		page = container_of(next, struct page, lru);
525		next = next->next;
526		shmem_dir_free(page);
527		freed++;
528		if (freed >= LATENCY_LIMIT) {
529			cond_resched();
530			freed = 0;
531		}
532	} while (next);
533}
534
535static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
536{
537	struct shmem_inode_info *info = SHMEM_I(inode);
538	unsigned long idx;
539	unsigned long size;
540	unsigned long limit;
541	unsigned long stage;
542	unsigned long diroff;
543	struct page **dir;
544	struct page *topdir;
545	struct page *middir;
546	struct page *subdir;
547	swp_entry_t *ptr;
548	LIST_HEAD(pages_to_free);
549	long nr_pages_to_free = 0;
550	long nr_swaps_freed = 0;
551	int offset;
552	int freed;
553	int punch_hole;
554	spinlock_t *needs_lock;
555	spinlock_t *punch_lock;
556	unsigned long upper_limit;
557
558	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
560	if (idx >= info->next_index)
561		return;
562
563	spin_lock(&info->lock);
564	info->flags |= SHMEM_TRUNCATE;
565	if (likely(end == (loff_t) -1)) {
566		limit = info->next_index;
567		upper_limit = SHMEM_MAX_INDEX;
568		info->next_index = idx;
569		needs_lock = NULL;
570		punch_hole = 0;
571	} else {
572		if (end + 1 >= inode->i_size) {	/* we may free a little more */
573			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
574							PAGE_CACHE_SHIFT;
575			upper_limit = SHMEM_MAX_INDEX;
576		} else {
577			limit = (end + 1) >> PAGE_CACHE_SHIFT;
578			upper_limit = limit;
579		}
580		needs_lock = &info->lock;
581		punch_hole = 1;
582	}
583
584	topdir = info->i_indirect;
585	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
586		info->i_indirect = NULL;
587		nr_pages_to_free++;
588		list_add(&topdir->lru, &pages_to_free);
589	}
590	spin_unlock(&info->lock);
591
592	if (info->swapped && idx < SHMEM_NR_DIRECT) {
593		ptr = info->i_direct;
594		size = limit;
595		if (size > SHMEM_NR_DIRECT)
596			size = SHMEM_NR_DIRECT;
597		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
598	}
599
600	/*
601	 * If there are no indirect blocks or we are punching a hole
602	 * below indirect blocks, nothing to be done.
603	 */
604	if (!topdir || limit <= SHMEM_NR_DIRECT)
605		goto done2;
606
607	/*
608	 * The truncation case has already dropped info->lock, and we're safe
609	 * because i_size and next_index have already been lowered, preventing
610	 * access beyond.  But in the punch_hole case, we still need to take
611	 * the lock when updating the swap directory, because there might be
612	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613	 * shmem_writepage.  However, whenever we find we can remove a whole
614	 * directory page (not at the misaligned start or end of the range),
615	 * we first NULLify its pointer in the level above, and then have no
616	 * need to take the lock when updating its contents: needs_lock and
617	 * punch_lock (either pointing to info->lock or NULL) manage this.
618	 */
619
620	upper_limit -= SHMEM_NR_DIRECT;
621	limit -= SHMEM_NR_DIRECT;
622	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
623	offset = idx % ENTRIES_PER_PAGE;
624	idx -= offset;
625
626	dir = shmem_dir_map(topdir);
627	stage = ENTRIES_PER_PAGEPAGE/2;
628	if (idx < ENTRIES_PER_PAGEPAGE/2) {
629		middir = topdir;
630		diroff = idx/ENTRIES_PER_PAGE;
631	} else {
632		dir += ENTRIES_PER_PAGE/2;
633		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
634		while (stage <= idx)
635			stage += ENTRIES_PER_PAGEPAGE;
636		middir = *dir;
637		if (*dir) {
638			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
639				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
640			if (!diroff && !offset && upper_limit >= stage) {
641				if (needs_lock) {
642					spin_lock(needs_lock);
643					*dir = NULL;
644					spin_unlock(needs_lock);
645					needs_lock = NULL;
646				} else
647					*dir = NULL;
648				nr_pages_to_free++;
649				list_add(&middir->lru, &pages_to_free);
650			}
651			shmem_dir_unmap(dir);
652			dir = shmem_dir_map(middir);
653		} else {
654			diroff = 0;
655			offset = 0;
656			idx = stage;
657		}
658	}
659
660	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
661		if (unlikely(idx == stage)) {
662			shmem_dir_unmap(dir);
663			dir = shmem_dir_map(topdir) +
664			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
665			while (!*dir) {
666				dir++;
667				idx += ENTRIES_PER_PAGEPAGE;
668				if (idx >= limit)
669					goto done1;
670			}
671			stage = idx + ENTRIES_PER_PAGEPAGE;
672			middir = *dir;
673			if (punch_hole)
674				needs_lock = &info->lock;
675			if (upper_limit >= stage) {
676				if (needs_lock) {
677					spin_lock(needs_lock);
678					*dir = NULL;
679					spin_unlock(needs_lock);
680					needs_lock = NULL;
681				} else
682					*dir = NULL;
683				nr_pages_to_free++;
684				list_add(&middir->lru, &pages_to_free);
685			}
686			shmem_dir_unmap(dir);
687			cond_resched();
688			dir = shmem_dir_map(middir);
689			diroff = 0;
690		}
691		punch_lock = needs_lock;
692		subdir = dir[diroff];
693		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
694			if (needs_lock) {
695				spin_lock(needs_lock);
696				dir[diroff] = NULL;
697				spin_unlock(needs_lock);
698				punch_lock = NULL;
699			} else
700				dir[diroff] = NULL;
701			nr_pages_to_free++;
702			list_add(&subdir->lru, &pages_to_free);
703		}
704		if (subdir && page_private(subdir) /* has swap entries */) {
705			size = limit - idx;
706			if (size > ENTRIES_PER_PAGE)
707				size = ENTRIES_PER_PAGE;
708			freed = shmem_map_and_free_swp(subdir,
709					offset, size, &dir, punch_lock);
710			if (!dir)
711				dir = shmem_dir_map(middir);
712			nr_swaps_freed += freed;
713			if (offset || punch_lock) {
714				spin_lock(&info->lock);
715				set_page_private(subdir,
716					page_private(subdir) - freed);
717				spin_unlock(&info->lock);
718			} else
719				BUG_ON(page_private(subdir) != freed);
720		}
721		offset = 0;
722	}
723done1:
724	shmem_dir_unmap(dir);
725done2:
726	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
727		/*
728		 * Call truncate_inode_pages again: racing shmem_unuse_inode
729		 * may have swizzled a page in from swap since
730		 * truncate_pagecache or generic_delete_inode did it, before we
731		 * lowered next_index.  Also, though shmem_getpage checks
732		 * i_size before adding to cache, no recheck after: so fix the
733		 * narrow window there too.
734		 *
735		 * Recalling truncate_inode_pages_range and unmap_mapping_range
736		 * every time for punch_hole (which never got a chance to clear
737		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738		 * yet hardly ever necessary: try to optimize them out later.
739		 */
740		truncate_inode_pages_range(inode->i_mapping, start, end);
741		if (punch_hole)
742			unmap_mapping_range(inode->i_mapping, start,
743							end - start, 1);
744	}
745
746	spin_lock(&info->lock);
747	info->flags &= ~SHMEM_TRUNCATE;
748	info->swapped -= nr_swaps_freed;
749	if (nr_pages_to_free)
750		shmem_free_blocks(inode, nr_pages_to_free);
751	shmem_recalc_inode(inode);
752	spin_unlock(&info->lock);
753
754	/*
755	 * Empty swap vector directory pages to be freed?
756	 */
757	if (!list_empty(&pages_to_free)) {
758		pages_to_free.prev->next = NULL;
759		shmem_free_pages(pages_to_free.next);
760	}
761}
762
763static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
764{
765	struct inode *inode = dentry->d_inode;
766	loff_t newsize = attr->ia_size;
767	int error;
768
769	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
770					&& newsize != inode->i_size) {
771		struct page *page = NULL;
772
773		if (newsize < inode->i_size) {
774			/*
775			 * If truncating down to a partial page, then
776			 * if that page is already allocated, hold it
777			 * in memory until the truncation is over, so
778			 * truncate_partial_page cannnot miss it were
779			 * it assigned to swap.
780			 */
781			if (newsize & (PAGE_CACHE_SIZE-1)) {
782				(void) shmem_getpage(inode,
783					newsize >> PAGE_CACHE_SHIFT,
784						&page, SGP_READ, NULL);
785				if (page)
786					unlock_page(page);
787			}
788			/*
789			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
790			 * detect if any pages might have been added to cache
791			 * after truncate_inode_pages.  But we needn't bother
792			 * if it's being fully truncated to zero-length: the
793			 * nrpages check is efficient enough in that case.
794			 */
795			if (newsize) {
796				struct shmem_inode_info *info = SHMEM_I(inode);
797				spin_lock(&info->lock);
798				info->flags &= ~SHMEM_PAGEIN;
799				spin_unlock(&info->lock);
800			}
801		}
802
803		error = simple_setsize(inode, newsize);
804		if (page)
805			page_cache_release(page);
806		if (error)
807			return error;
808		shmem_truncate_range(inode, newsize, (loff_t)-1);
809	}
810
811	error = inode_change_ok(inode, attr);
812	if (!error)
813		generic_setattr(inode, attr);
814#ifdef CONFIG_TMPFS_POSIX_ACL
815	if (!error && (attr->ia_valid & ATTR_MODE))
816		error = generic_acl_chmod(inode);
817#endif
818	return error;
819}
820
821static void shmem_delete_inode(struct inode *inode)
822{
823	struct shmem_inode_info *info = SHMEM_I(inode);
824
825	if (inode->i_mapping->a_ops == &shmem_aops) {
826		truncate_inode_pages(inode->i_mapping, 0);
827		shmem_unacct_size(info->flags, inode->i_size);
828		inode->i_size = 0;
829		shmem_truncate_range(inode, 0, (loff_t)-1);
830		if (!list_empty(&info->swaplist)) {
831			mutex_lock(&shmem_swaplist_mutex);
832			list_del_init(&info->swaplist);
833			mutex_unlock(&shmem_swaplist_mutex);
834		}
835	}
836	BUG_ON(inode->i_blocks);
837	shmem_free_inode(inode->i_sb);
838	clear_inode(inode);
839}
840
841static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
842{
843	swp_entry_t *ptr;
844
845	for (ptr = dir; ptr < edir; ptr++) {
846		if (ptr->val == entry.val)
847			return ptr - dir;
848	}
849	return -1;
850}
851
852static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
853{
854	struct inode *inode;
855	unsigned long idx;
856	unsigned long size;
857	unsigned long limit;
858	unsigned long stage;
859	struct page **dir;
860	struct page *subdir;
861	swp_entry_t *ptr;
862	int offset;
863	int error;
864
865	idx = 0;
866	ptr = info->i_direct;
867	spin_lock(&info->lock);
868	if (!info->swapped) {
869		list_del_init(&info->swaplist);
870		goto lost2;
871	}
872	limit = info->next_index;
873	size = limit;
874	if (size > SHMEM_NR_DIRECT)
875		size = SHMEM_NR_DIRECT;
876	offset = shmem_find_swp(entry, ptr, ptr+size);
877	if (offset >= 0)
878		goto found;
879	if (!info->i_indirect)
880		goto lost2;
881
882	dir = shmem_dir_map(info->i_indirect);
883	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
884
885	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
886		if (unlikely(idx == stage)) {
887			shmem_dir_unmap(dir-1);
888			if (cond_resched_lock(&info->lock)) {
889				/* check it has not been truncated */
890				if (limit > info->next_index) {
891					limit = info->next_index;
892					if (idx >= limit)
893						goto lost2;
894				}
895			}
896			dir = shmem_dir_map(info->i_indirect) +
897			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
898			while (!*dir) {
899				dir++;
900				idx += ENTRIES_PER_PAGEPAGE;
901				if (idx >= limit)
902					goto lost1;
903			}
904			stage = idx + ENTRIES_PER_PAGEPAGE;
905			subdir = *dir;
906			shmem_dir_unmap(dir);
907			dir = shmem_dir_map(subdir);
908		}
909		subdir = *dir;
910		if (subdir && page_private(subdir)) {
911			ptr = shmem_swp_map(subdir);
912			size = limit - idx;
913			if (size > ENTRIES_PER_PAGE)
914				size = ENTRIES_PER_PAGE;
915			offset = shmem_find_swp(entry, ptr, ptr+size);
916			shmem_swp_unmap(ptr);
917			if (offset >= 0) {
918				shmem_dir_unmap(dir);
919				goto found;
920			}
921		}
922	}
923lost1:
924	shmem_dir_unmap(dir-1);
925lost2:
926	spin_unlock(&info->lock);
927	return 0;
928found:
929	idx += offset;
930	inode = igrab(&info->vfs_inode);
931	spin_unlock(&info->lock);
932
933	/*
934	 * Move _head_ to start search for next from here.
935	 * But be careful: shmem_delete_inode checks list_empty without taking
936	 * mutex, and there's an instant in list_move_tail when info->swaplist
937	 * would appear empty, if it were the only one on shmem_swaplist.  We
938	 * could avoid doing it if inode NULL; or use this minor optimization.
939	 */
940	if (shmem_swaplist.next != &info->swaplist)
941		list_move_tail(&shmem_swaplist, &info->swaplist);
942	mutex_unlock(&shmem_swaplist_mutex);
943
944	error = 1;
945	if (!inode)
946		goto out;
947	/*
948	 * Charge page using GFP_KERNEL while we can wait.
949	 * Charged back to the user(not to caller) when swap account is used.
950	 * add_to_page_cache() will be called with GFP_NOWAIT.
951	 */
952	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
953	if (error)
954		goto out;
955	error = radix_tree_preload(GFP_KERNEL);
956	if (error) {
957		mem_cgroup_uncharge_cache_page(page);
958		goto out;
959	}
960	error = 1;
961
962	spin_lock(&info->lock);
963	ptr = shmem_swp_entry(info, idx, NULL);
964	if (ptr && ptr->val == entry.val) {
965		error = add_to_page_cache_locked(page, inode->i_mapping,
966						idx, GFP_NOWAIT);
967		/* does mem_cgroup_uncharge_cache_page on error */
968	} else	/* we must compensate for our precharge above */
969		mem_cgroup_uncharge_cache_page(page);
970
971	if (error == -EEXIST) {
972		struct page *filepage = find_get_page(inode->i_mapping, idx);
973		error = 1;
974		if (filepage) {
975			/*
976			 * There might be a more uptodate page coming down
977			 * from a stacked writepage: forget our swappage if so.
978			 */
979			if (PageUptodate(filepage))
980				error = 0;
981			page_cache_release(filepage);
982		}
983	}
984	if (!error) {
985		delete_from_swap_cache(page);
986		set_page_dirty(page);
987		info->flags |= SHMEM_PAGEIN;
988		shmem_swp_set(info, ptr, 0);
989		swap_free(entry);
990		error = 1;	/* not an error, but entry was found */
991	}
992	if (ptr)
993		shmem_swp_unmap(ptr);
994	spin_unlock(&info->lock);
995	radix_tree_preload_end();
996out:
997	unlock_page(page);
998	page_cache_release(page);
999	iput(inode);		/* allows for NULL */
1000	return error;
1001}
1002
1003/*
1004 * shmem_unuse() search for an eventually swapped out shmem page.
1005 */
1006int shmem_unuse(swp_entry_t entry, struct page *page)
1007{
1008	struct list_head *p, *next;
1009	struct shmem_inode_info *info;
1010	int found = 0;
1011
1012	mutex_lock(&shmem_swaplist_mutex);
1013	list_for_each_safe(p, next, &shmem_swaplist) {
1014		info = list_entry(p, struct shmem_inode_info, swaplist);
1015		found = shmem_unuse_inode(info, entry, page);
1016		cond_resched();
1017		if (found)
1018			goto out;
1019	}
1020	mutex_unlock(&shmem_swaplist_mutex);
1021	/*
1022	 * Can some race bring us here?  We've been holding page lock,
1023	 * so I think not; but would rather try again later than BUG()
1024	 */
1025	unlock_page(page);
1026	page_cache_release(page);
1027out:
1028	return (found < 0) ? found : 0;
1029}
1030
1031/*
1032 * Move the page from the page cache to the swap cache.
1033 */
1034static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1035{
1036	struct shmem_inode_info *info;
1037	swp_entry_t *entry, swap;
1038	struct address_space *mapping;
1039	unsigned long index;
1040	struct inode *inode;
1041
1042	BUG_ON(!PageLocked(page));
1043	mapping = page->mapping;
1044	index = page->index;
1045	inode = mapping->host;
1046	info = SHMEM_I(inode);
1047	if (info->flags & VM_LOCKED)
1048		goto redirty;
1049	if (!total_swap_pages)
1050		goto redirty;
1051
1052	/*
1053	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1054	 * sync from ever calling shmem_writepage; but a stacking filesystem
1055	 * may use the ->writepage of its underlying filesystem, in which case
1056	 * tmpfs should write out to swap only in response to memory pressure,
1057	 * and not for the writeback threads or sync.  However, in those cases,
1058	 * we do still want to check if there's a redundant swappage to be
1059	 * discarded.
1060	 */
1061	if (wbc->for_reclaim)
1062		swap = get_swap_page();
1063	else
1064		swap.val = 0;
1065
1066	spin_lock(&info->lock);
1067	if (index >= info->next_index) {
1068		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1069		goto unlock;
1070	}
1071	entry = shmem_swp_entry(info, index, NULL);
1072	if (entry->val) {
1073		/*
1074		 * The more uptodate page coming down from a stacked
1075		 * writepage should replace our old swappage.
1076		 */
1077		free_swap_and_cache(*entry);
1078		shmem_swp_set(info, entry, 0);
1079	}
1080	shmem_recalc_inode(inode);
1081
1082	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1083		remove_from_page_cache(page);
1084		shmem_swp_set(info, entry, swap.val);
1085		shmem_swp_unmap(entry);
1086		if (list_empty(&info->swaplist))
1087			inode = igrab(inode);
1088		else
1089			inode = NULL;
1090		spin_unlock(&info->lock);
1091		swap_shmem_alloc(swap);
1092		BUG_ON(page_mapped(page));
1093		page_cache_release(page);	/* pagecache ref */
1094		swap_writepage(page, wbc);
1095		if (inode) {
1096			mutex_lock(&shmem_swaplist_mutex);
1097			/* move instead of add in case we're racing */
1098			list_move_tail(&info->swaplist, &shmem_swaplist);
1099			mutex_unlock(&shmem_swaplist_mutex);
1100			iput(inode);
1101		}
1102		return 0;
1103	}
1104
1105	shmem_swp_unmap(entry);
1106unlock:
1107	spin_unlock(&info->lock);
1108	/*
1109	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1110	 * clear SWAP_HAS_CACHE flag.
1111	 */
1112	swapcache_free(swap, NULL);
1113redirty:
1114	set_page_dirty(page);
1115	if (wbc->for_reclaim)
1116		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1117	unlock_page(page);
1118	return 0;
1119}
1120
1121#ifdef CONFIG_NUMA
1122#ifdef CONFIG_TMPFS
1123static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1124{
1125	char buffer[64];
1126
1127	if (!mpol || mpol->mode == MPOL_DEFAULT)
1128		return;		/* show nothing */
1129
1130	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1131
1132	seq_printf(seq, ",mpol=%s", buffer);
1133}
1134
1135static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1136{
1137	struct mempolicy *mpol = NULL;
1138	if (sbinfo->mpol) {
1139		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1140		mpol = sbinfo->mpol;
1141		mpol_get(mpol);
1142		spin_unlock(&sbinfo->stat_lock);
1143	}
1144	return mpol;
1145}
1146#endif /* CONFIG_TMPFS */
1147
1148static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1149			struct shmem_inode_info *info, unsigned long idx)
1150{
1151	struct mempolicy mpol, *spol;
1152	struct vm_area_struct pvma;
1153	struct page *page;
1154
1155	spol = mpol_cond_copy(&mpol,
1156				mpol_shared_policy_lookup(&info->policy, idx));
1157
1158	/* Create a pseudo vma that just contains the policy */
1159	pvma.vm_start = 0;
1160	pvma.vm_pgoff = idx;
1161	pvma.vm_ops = NULL;
1162	pvma.vm_policy = spol;
1163	page = swapin_readahead(entry, gfp, &pvma, 0);
1164	return page;
1165}
1166
1167static struct page *shmem_alloc_page(gfp_t gfp,
1168			struct shmem_inode_info *info, unsigned long idx)
1169{
1170	struct vm_area_struct pvma;
1171
1172	/* Create a pseudo vma that just contains the policy */
1173	pvma.vm_start = 0;
1174	pvma.vm_pgoff = idx;
1175	pvma.vm_ops = NULL;
1176	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1177
1178	/*
1179	 * alloc_page_vma() will drop the shared policy reference
1180	 */
1181	return alloc_page_vma(gfp, &pvma, 0);
1182}
1183#else /* !CONFIG_NUMA */
1184#ifdef CONFIG_TMPFS
1185static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1186{
1187}
1188#endif /* CONFIG_TMPFS */
1189
1190static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1191			struct shmem_inode_info *info, unsigned long idx)
1192{
1193	return swapin_readahead(entry, gfp, NULL, 0);
1194}
1195
1196static inline struct page *shmem_alloc_page(gfp_t gfp,
1197			struct shmem_inode_info *info, unsigned long idx)
1198{
1199	return alloc_page(gfp);
1200}
1201#endif /* CONFIG_NUMA */
1202
1203#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1204static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1205{
1206	return NULL;
1207}
1208#endif
1209
1210/*
1211 * shmem_getpage - either get the page from swap or allocate a new one
1212 *
1213 * If we allocate a new one we do not mark it dirty. That's up to the
1214 * vm. If we swap it in we mark it dirty since we also free the swap
1215 * entry since a page cannot live in both the swap and page cache
1216 */
1217static int shmem_getpage(struct inode *inode, unsigned long idx,
1218			struct page **pagep, enum sgp_type sgp, int *type)
1219{
1220	struct address_space *mapping = inode->i_mapping;
1221	struct shmem_inode_info *info = SHMEM_I(inode);
1222	struct shmem_sb_info *sbinfo;
1223	struct page *filepage = *pagep;
1224	struct page *swappage;
1225	struct page *prealloc_page = NULL;
1226	swp_entry_t *entry;
1227	swp_entry_t swap;
1228	gfp_t gfp;
1229	int error;
1230
1231	if (idx >= SHMEM_MAX_INDEX)
1232		return -EFBIG;
1233
1234	if (type)
1235		*type = 0;
1236
1237	/*
1238	 * Normally, filepage is NULL on entry, and either found
1239	 * uptodate immediately, or allocated and zeroed, or read
1240	 * in under swappage, which is then assigned to filepage.
1241	 * But shmem_readpage (required for splice) passes in a locked
1242	 * filepage, which may be found not uptodate by other callers
1243	 * too, and may need to be copied from the swappage read in.
1244	 */
1245repeat:
1246	if (!filepage)
1247		filepage = find_lock_page(mapping, idx);
1248	if (filepage && PageUptodate(filepage))
1249		goto done;
1250	gfp = mapping_gfp_mask(mapping);
1251	if (!filepage) {
1252		/*
1253		 * Try to preload while we can wait, to not make a habit of
1254		 * draining atomic reserves; but don't latch on to this cpu.
1255		 */
1256		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1257		if (error)
1258			goto failed;
1259		radix_tree_preload_end();
1260		if (sgp != SGP_READ && !prealloc_page) {
1261			/* We don't care if this fails */
1262			prealloc_page = shmem_alloc_page(gfp, info, idx);
1263			if (prealloc_page) {
1264				if (mem_cgroup_cache_charge(prealloc_page,
1265						current->mm, GFP_KERNEL)) {
1266					page_cache_release(prealloc_page);
1267					prealloc_page = NULL;
1268				}
1269			}
1270		}
1271	}
1272	error = 0;
1273
1274	spin_lock(&info->lock);
1275	shmem_recalc_inode(inode);
1276	entry = shmem_swp_alloc(info, idx, sgp);
1277	if (IS_ERR(entry)) {
1278		spin_unlock(&info->lock);
1279		error = PTR_ERR(entry);
1280		goto failed;
1281	}
1282	swap = *entry;
1283
1284	if (swap.val) {
1285		/* Look it up and read it in.. */
1286		swappage = lookup_swap_cache(swap);
1287		if (!swappage) {
1288			shmem_swp_unmap(entry);
1289			/* here we actually do the io */
1290			if (type && !(*type & VM_FAULT_MAJOR)) {
1291				__count_vm_event(PGMAJFAULT);
1292				*type |= VM_FAULT_MAJOR;
1293			}
1294			spin_unlock(&info->lock);
1295			swappage = shmem_swapin(swap, gfp, info, idx);
1296			if (!swappage) {
1297				spin_lock(&info->lock);
1298				entry = shmem_swp_alloc(info, idx, sgp);
1299				if (IS_ERR(entry))
1300					error = PTR_ERR(entry);
1301				else {
1302					if (entry->val == swap.val)
1303						error = -ENOMEM;
1304					shmem_swp_unmap(entry);
1305				}
1306				spin_unlock(&info->lock);
1307				if (error)
1308					goto failed;
1309				goto repeat;
1310			}
1311			wait_on_page_locked(swappage);
1312			page_cache_release(swappage);
1313			goto repeat;
1314		}
1315
1316		/* We have to do this with page locked to prevent races */
1317		if (!trylock_page(swappage)) {
1318			shmem_swp_unmap(entry);
1319			spin_unlock(&info->lock);
1320			wait_on_page_locked(swappage);
1321			page_cache_release(swappage);
1322			goto repeat;
1323		}
1324		if (PageWriteback(swappage)) {
1325			shmem_swp_unmap(entry);
1326			spin_unlock(&info->lock);
1327			wait_on_page_writeback(swappage);
1328			unlock_page(swappage);
1329			page_cache_release(swappage);
1330			goto repeat;
1331		}
1332		if (!PageUptodate(swappage)) {
1333			shmem_swp_unmap(entry);
1334			spin_unlock(&info->lock);
1335			unlock_page(swappage);
1336			page_cache_release(swappage);
1337			error = -EIO;
1338			goto failed;
1339		}
1340
1341		if (filepage) {
1342			shmem_swp_set(info, entry, 0);
1343			shmem_swp_unmap(entry);
1344			delete_from_swap_cache(swappage);
1345			spin_unlock(&info->lock);
1346			copy_highpage(filepage, swappage);
1347			unlock_page(swappage);
1348			page_cache_release(swappage);
1349			flush_dcache_page(filepage);
1350			SetPageUptodate(filepage);
1351			set_page_dirty(filepage);
1352			swap_free(swap);
1353		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1354					idx, GFP_NOWAIT))) {
1355			info->flags |= SHMEM_PAGEIN;
1356			shmem_swp_set(info, entry, 0);
1357			shmem_swp_unmap(entry);
1358			delete_from_swap_cache(swappage);
1359			spin_unlock(&info->lock);
1360			filepage = swappage;
1361			set_page_dirty(filepage);
1362			swap_free(swap);
1363		} else {
1364			shmem_swp_unmap(entry);
1365			spin_unlock(&info->lock);
1366			if (error == -ENOMEM) {
1367				/*
1368				 * reclaim from proper memory cgroup and
1369				 * call memcg's OOM if needed.
1370				 */
1371				error = mem_cgroup_shmem_charge_fallback(
1372								swappage,
1373								current->mm,
1374								gfp);
1375				if (error) {
1376					unlock_page(swappage);
1377					page_cache_release(swappage);
1378					goto failed;
1379				}
1380			}
1381			unlock_page(swappage);
1382			page_cache_release(swappage);
1383			goto repeat;
1384		}
1385	} else if (sgp == SGP_READ && !filepage) {
1386		shmem_swp_unmap(entry);
1387		filepage = find_get_page(mapping, idx);
1388		if (filepage &&
1389		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1390			spin_unlock(&info->lock);
1391			wait_on_page_locked(filepage);
1392			page_cache_release(filepage);
1393			filepage = NULL;
1394			goto repeat;
1395		}
1396		spin_unlock(&info->lock);
1397	} else {
1398		shmem_swp_unmap(entry);
1399		sbinfo = SHMEM_SB(inode->i_sb);
1400		if (sbinfo->max_blocks) {
1401			if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) ||
1402			    shmem_acct_block(info->flags)) {
1403				spin_unlock(&info->lock);
1404				error = -ENOSPC;
1405				goto failed;
1406			}
1407			percpu_counter_inc(&sbinfo->used_blocks);
1408			spin_lock(&inode->i_lock);
1409			inode->i_blocks += BLOCKS_PER_PAGE;
1410			spin_unlock(&inode->i_lock);
1411		} else if (shmem_acct_block(info->flags)) {
1412			spin_unlock(&info->lock);
1413			error = -ENOSPC;
1414			goto failed;
1415		}
1416
1417		if (!filepage) {
1418			int ret;
1419
1420			if (!prealloc_page) {
1421				spin_unlock(&info->lock);
1422				filepage = shmem_alloc_page(gfp, info, idx);
1423				if (!filepage) {
1424					shmem_unacct_blocks(info->flags, 1);
1425					shmem_free_blocks(inode, 1);
1426					error = -ENOMEM;
1427					goto failed;
1428				}
1429				SetPageSwapBacked(filepage);
1430
1431				/*
1432				 * Precharge page while we can wait, compensate
1433				 * after
1434				 */
1435				error = mem_cgroup_cache_charge(filepage,
1436					current->mm, GFP_KERNEL);
1437				if (error) {
1438					page_cache_release(filepage);
1439					shmem_unacct_blocks(info->flags, 1);
1440					shmem_free_blocks(inode, 1);
1441					filepage = NULL;
1442					goto failed;
1443				}
1444
1445				spin_lock(&info->lock);
1446			} else {
1447				filepage = prealloc_page;
1448				prealloc_page = NULL;
1449				SetPageSwapBacked(filepage);
1450			}
1451
1452			entry = shmem_swp_alloc(info, idx, sgp);
1453			if (IS_ERR(entry))
1454				error = PTR_ERR(entry);
1455			else {
1456				swap = *entry;
1457				shmem_swp_unmap(entry);
1458			}
1459			ret = error || swap.val;
1460			if (ret)
1461				mem_cgroup_uncharge_cache_page(filepage);
1462			else
1463				ret = add_to_page_cache_lru(filepage, mapping,
1464						idx, GFP_NOWAIT);
1465			/*
1466			 * At add_to_page_cache_lru() failure, uncharge will
1467			 * be done automatically.
1468			 */
1469			if (ret) {
1470				spin_unlock(&info->lock);
1471				page_cache_release(filepage);
1472				shmem_unacct_blocks(info->flags, 1);
1473				shmem_free_blocks(inode, 1);
1474				filepage = NULL;
1475				if (error)
1476					goto failed;
1477				goto repeat;
1478			}
1479			info->flags |= SHMEM_PAGEIN;
1480		}
1481
1482		info->alloced++;
1483		spin_unlock(&info->lock);
1484		clear_highpage(filepage);
1485		flush_dcache_page(filepage);
1486		SetPageUptodate(filepage);
1487		if (sgp == SGP_DIRTY)
1488			set_page_dirty(filepage);
1489	}
1490done:
1491	*pagep = filepage;
1492	error = 0;
1493	goto out;
1494
1495failed:
1496	if (*pagep != filepage) {
1497		unlock_page(filepage);
1498		page_cache_release(filepage);
1499	}
1500out:
1501	if (prealloc_page) {
1502		mem_cgroup_uncharge_cache_page(prealloc_page);
1503		page_cache_release(prealloc_page);
1504	}
1505	return error;
1506}
1507
1508static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1509{
1510	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1511	int error;
1512	int ret;
1513
1514	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1515		return VM_FAULT_SIGBUS;
1516
1517	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1518	if (error)
1519		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1520
1521	return ret | VM_FAULT_LOCKED;
1522}
1523
1524#ifdef CONFIG_NUMA
1525static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1526{
1527	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1528	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1529}
1530
1531static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1532					  unsigned long addr)
1533{
1534	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1535	unsigned long idx;
1536
1537	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1538	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1539}
1540#endif
1541
1542int shmem_lock(struct file *file, int lock, struct user_struct *user)
1543{
1544	struct inode *inode = file->f_path.dentry->d_inode;
1545	struct shmem_inode_info *info = SHMEM_I(inode);
1546	int retval = -ENOMEM;
1547
1548	spin_lock(&info->lock);
1549	if (lock && !(info->flags & VM_LOCKED)) {
1550		if (!user_shm_lock(inode->i_size, user))
1551			goto out_nomem;
1552		info->flags |= VM_LOCKED;
1553		mapping_set_unevictable(file->f_mapping);
1554	}
1555	if (!lock && (info->flags & VM_LOCKED) && user) {
1556		user_shm_unlock(inode->i_size, user);
1557		info->flags &= ~VM_LOCKED;
1558		mapping_clear_unevictable(file->f_mapping);
1559		scan_mapping_unevictable_pages(file->f_mapping);
1560	}
1561	retval = 0;
1562
1563out_nomem:
1564	spin_unlock(&info->lock);
1565	return retval;
1566}
1567
1568static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1569{
1570	file_accessed(file);
1571	vma->vm_ops = &shmem_vm_ops;
1572	vma->vm_flags |= VM_CAN_NONLINEAR;
1573	return 0;
1574}
1575
1576static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1577				     int mode, dev_t dev, unsigned long flags)
1578{
1579	struct inode *inode;
1580	struct shmem_inode_info *info;
1581	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1582
1583	if (shmem_reserve_inode(sb))
1584		return NULL;
1585
1586	inode = new_inode(sb);
1587	if (inode) {
1588		inode_init_owner(inode, dir, mode);
1589		inode->i_blocks = 0;
1590		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1591		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1592		inode->i_generation = get_seconds();
1593		info = SHMEM_I(inode);
1594		memset(info, 0, (char *)inode - (char *)info);
1595		spin_lock_init(&info->lock);
1596		info->flags = flags & VM_NORESERVE;
1597		INIT_LIST_HEAD(&info->swaplist);
1598		cache_no_acl(inode);
1599
1600		switch (mode & S_IFMT) {
1601		default:
1602			inode->i_op = &shmem_special_inode_operations;
1603			init_special_inode(inode, mode, dev);
1604			break;
1605		case S_IFREG:
1606			inode->i_mapping->a_ops = &shmem_aops;
1607			inode->i_op = &shmem_inode_operations;
1608			inode->i_fop = &shmem_file_operations;
1609			mpol_shared_policy_init(&info->policy,
1610						 shmem_get_sbmpol(sbinfo));
1611			break;
1612		case S_IFDIR:
1613			inc_nlink(inode);
1614			/* Some things misbehave if size == 0 on a directory */
1615			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1616			inode->i_op = &shmem_dir_inode_operations;
1617			inode->i_fop = &simple_dir_operations;
1618			break;
1619		case S_IFLNK:
1620			/*
1621			 * Must not load anything in the rbtree,
1622			 * mpol_free_shared_policy will not be called.
1623			 */
1624			mpol_shared_policy_init(&info->policy, NULL);
1625			break;
1626		}
1627	} else
1628		shmem_free_inode(sb);
1629	return inode;
1630}
1631
1632#ifdef CONFIG_TMPFS
1633static const struct inode_operations shmem_symlink_inode_operations;
1634static const struct inode_operations shmem_symlink_inline_operations;
1635
1636/*
1637 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1638 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1639 * below the loop driver, in the generic fashion that many filesystems support.
1640 */
1641static int shmem_readpage(struct file *file, struct page *page)
1642{
1643	struct inode *inode = page->mapping->host;
1644	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1645	unlock_page(page);
1646	return error;
1647}
1648
1649static int
1650shmem_write_begin(struct file *file, struct address_space *mapping,
1651			loff_t pos, unsigned len, unsigned flags,
1652			struct page **pagep, void **fsdata)
1653{
1654	struct inode *inode = mapping->host;
1655	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1656	*pagep = NULL;
1657	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1658}
1659
1660static int
1661shmem_write_end(struct file *file, struct address_space *mapping,
1662			loff_t pos, unsigned len, unsigned copied,
1663			struct page *page, void *fsdata)
1664{
1665	struct inode *inode = mapping->host;
1666
1667	if (pos + copied > inode->i_size)
1668		i_size_write(inode, pos + copied);
1669
1670	set_page_dirty(page);
1671	unlock_page(page);
1672	page_cache_release(page);
1673
1674	return copied;
1675}
1676
1677static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1678{
1679	struct inode *inode = filp->f_path.dentry->d_inode;
1680	struct address_space *mapping = inode->i_mapping;
1681	unsigned long index, offset;
1682	enum sgp_type sgp = SGP_READ;
1683
1684	/*
1685	 * Might this read be for a stacking filesystem?  Then when reading
1686	 * holes of a sparse file, we actually need to allocate those pages,
1687	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1688	 */
1689	if (segment_eq(get_fs(), KERNEL_DS))
1690		sgp = SGP_DIRTY;
1691
1692	index = *ppos >> PAGE_CACHE_SHIFT;
1693	offset = *ppos & ~PAGE_CACHE_MASK;
1694
1695	for (;;) {
1696		struct page *page = NULL;
1697		unsigned long end_index, nr, ret;
1698		loff_t i_size = i_size_read(inode);
1699
1700		end_index = i_size >> PAGE_CACHE_SHIFT;
1701		if (index > end_index)
1702			break;
1703		if (index == end_index) {
1704			nr = i_size & ~PAGE_CACHE_MASK;
1705			if (nr <= offset)
1706				break;
1707		}
1708
1709		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1710		if (desc->error) {
1711			if (desc->error == -EINVAL)
1712				desc->error = 0;
1713			break;
1714		}
1715		if (page)
1716			unlock_page(page);
1717
1718		/*
1719		 * We must evaluate after, since reads (unlike writes)
1720		 * are called without i_mutex protection against truncate
1721		 */
1722		nr = PAGE_CACHE_SIZE;
1723		i_size = i_size_read(inode);
1724		end_index = i_size >> PAGE_CACHE_SHIFT;
1725		if (index == end_index) {
1726			nr = i_size & ~PAGE_CACHE_MASK;
1727			if (nr <= offset) {
1728				if (page)
1729					page_cache_release(page);
1730				break;
1731			}
1732		}
1733		nr -= offset;
1734
1735		if (page) {
1736			/*
1737			 * If users can be writing to this page using arbitrary
1738			 * virtual addresses, take care about potential aliasing
1739			 * before reading the page on the kernel side.
1740			 */
1741			if (mapping_writably_mapped(mapping))
1742				flush_dcache_page(page);
1743			/*
1744			 * Mark the page accessed if we read the beginning.
1745			 */
1746			if (!offset)
1747				mark_page_accessed(page);
1748		} else {
1749			page = ZERO_PAGE(0);
1750			page_cache_get(page);
1751		}
1752
1753		/*
1754		 * Ok, we have the page, and it's up-to-date, so
1755		 * now we can copy it to user space...
1756		 *
1757		 * The actor routine returns how many bytes were actually used..
1758		 * NOTE! This may not be the same as how much of a user buffer
1759		 * we filled up (we may be padding etc), so we can only update
1760		 * "pos" here (the actor routine has to update the user buffer
1761		 * pointers and the remaining count).
1762		 */
1763		ret = actor(desc, page, offset, nr);
1764		offset += ret;
1765		index += offset >> PAGE_CACHE_SHIFT;
1766		offset &= ~PAGE_CACHE_MASK;
1767
1768		page_cache_release(page);
1769		if (ret != nr || !desc->count)
1770			break;
1771
1772		cond_resched();
1773	}
1774
1775	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1776	file_accessed(filp);
1777}
1778
1779static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1780		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1781{
1782	struct file *filp = iocb->ki_filp;
1783	ssize_t retval;
1784	unsigned long seg;
1785	size_t count;
1786	loff_t *ppos = &iocb->ki_pos;
1787
1788	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1789	if (retval)
1790		return retval;
1791
1792	for (seg = 0; seg < nr_segs; seg++) {
1793		read_descriptor_t desc;
1794
1795		desc.written = 0;
1796		desc.arg.buf = iov[seg].iov_base;
1797		desc.count = iov[seg].iov_len;
1798		if (desc.count == 0)
1799			continue;
1800		desc.error = 0;
1801		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1802		retval += desc.written;
1803		if (desc.error) {
1804			retval = retval ?: desc.error;
1805			break;
1806		}
1807		if (desc.count > 0)
1808			break;
1809	}
1810	return retval;
1811}
1812
1813static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1814{
1815	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1816
1817	buf->f_type = TMPFS_MAGIC;
1818	buf->f_bsize = PAGE_CACHE_SIZE;
1819	buf->f_namelen = NAME_MAX;
1820	if (sbinfo->max_blocks) {
1821		buf->f_blocks = sbinfo->max_blocks;
1822		buf->f_bavail = buf->f_bfree =
1823				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1824	}
1825	if (sbinfo->max_inodes) {
1826		buf->f_files = sbinfo->max_inodes;
1827		buf->f_ffree = sbinfo->free_inodes;
1828	}
1829	/* else leave those fields 0 like simple_statfs */
1830	return 0;
1831}
1832
1833/*
1834 * File creation. Allocate an inode, and we're done..
1835 */
1836static int
1837shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1838{
1839	struct inode *inode;
1840	int error = -ENOSPC;
1841
1842	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1843	if (inode) {
1844		error = security_inode_init_security(inode, dir, NULL, NULL,
1845						     NULL);
1846		if (error) {
1847			if (error != -EOPNOTSUPP) {
1848				iput(inode);
1849				return error;
1850			}
1851		}
1852#ifdef CONFIG_TMPFS_POSIX_ACL
1853		error = generic_acl_init(inode, dir);
1854		if (error) {
1855			iput(inode);
1856			return error;
1857		}
1858#else
1859		error = 0;
1860#endif
1861		dir->i_size += BOGO_DIRENT_SIZE;
1862		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1863		d_instantiate(dentry, inode);
1864		dget(dentry); /* Extra count - pin the dentry in core */
1865	}
1866	return error;
1867}
1868
1869static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1870{
1871	int error;
1872
1873	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1874		return error;
1875	inc_nlink(dir);
1876	return 0;
1877}
1878
1879static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1880		struct nameidata *nd)
1881{
1882	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1883}
1884
1885/*
1886 * Link a file..
1887 */
1888static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1889{
1890	struct inode *inode = old_dentry->d_inode;
1891	int ret;
1892
1893	/*
1894	 * No ordinary (disk based) filesystem counts links as inodes;
1895	 * but each new link needs a new dentry, pinning lowmem, and
1896	 * tmpfs dentries cannot be pruned until they are unlinked.
1897	 */
1898	ret = shmem_reserve_inode(inode->i_sb);
1899	if (ret)
1900		goto out;
1901
1902	dir->i_size += BOGO_DIRENT_SIZE;
1903	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1904	inc_nlink(inode);
1905	atomic_inc(&inode->i_count);	/* New dentry reference */
1906	dget(dentry);		/* Extra pinning count for the created dentry */
1907	d_instantiate(dentry, inode);
1908out:
1909	return ret;
1910}
1911
1912static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1913{
1914	struct inode *inode = dentry->d_inode;
1915
1916	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1917		shmem_free_inode(inode->i_sb);
1918
1919	dir->i_size -= BOGO_DIRENT_SIZE;
1920	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1921	drop_nlink(inode);
1922	dput(dentry);	/* Undo the count from "create" - this does all the work */
1923	return 0;
1924}
1925
1926static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1927{
1928	if (!simple_empty(dentry))
1929		return -ENOTEMPTY;
1930
1931	drop_nlink(dentry->d_inode);
1932	drop_nlink(dir);
1933	return shmem_unlink(dir, dentry);
1934}
1935
1936/*
1937 * The VFS layer already does all the dentry stuff for rename,
1938 * we just have to decrement the usage count for the target if
1939 * it exists so that the VFS layer correctly free's it when it
1940 * gets overwritten.
1941 */
1942static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1943{
1944	struct inode *inode = old_dentry->d_inode;
1945	int they_are_dirs = S_ISDIR(inode->i_mode);
1946
1947	if (!simple_empty(new_dentry))
1948		return -ENOTEMPTY;
1949
1950	if (new_dentry->d_inode) {
1951		(void) shmem_unlink(new_dir, new_dentry);
1952		if (they_are_dirs)
1953			drop_nlink(old_dir);
1954	} else if (they_are_dirs) {
1955		drop_nlink(old_dir);
1956		inc_nlink(new_dir);
1957	}
1958
1959	old_dir->i_size -= BOGO_DIRENT_SIZE;
1960	new_dir->i_size += BOGO_DIRENT_SIZE;
1961	old_dir->i_ctime = old_dir->i_mtime =
1962	new_dir->i_ctime = new_dir->i_mtime =
1963	inode->i_ctime = CURRENT_TIME;
1964	return 0;
1965}
1966
1967static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1968{
1969	int error;
1970	int len;
1971	struct inode *inode;
1972	struct page *page = NULL;
1973	char *kaddr;
1974	struct shmem_inode_info *info;
1975
1976	len = strlen(symname) + 1;
1977	if (len > PAGE_CACHE_SIZE)
1978		return -ENAMETOOLONG;
1979
1980	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1981	if (!inode)
1982		return -ENOSPC;
1983
1984	error = security_inode_init_security(inode, dir, NULL, NULL,
1985					     NULL);
1986	if (error) {
1987		if (error != -EOPNOTSUPP) {
1988			iput(inode);
1989			return error;
1990		}
1991		error = 0;
1992	}
1993
1994	info = SHMEM_I(inode);
1995	inode->i_size = len-1;
1996	if (len <= (char *)inode - (char *)info) {
1997		/* do it inline */
1998		memcpy(info, symname, len);
1999		inode->i_op = &shmem_symlink_inline_operations;
2000	} else {
2001		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2002		if (error) {
2003			iput(inode);
2004			return error;
2005		}
2006		inode->i_mapping->a_ops = &shmem_aops;
2007		inode->i_op = &shmem_symlink_inode_operations;
2008		kaddr = kmap_atomic(page, KM_USER0);
2009		memcpy(kaddr, symname, len);
2010		kunmap_atomic(kaddr, KM_USER0);
2011		set_page_dirty(page);
2012		unlock_page(page);
2013		page_cache_release(page);
2014	}
2015	dir->i_size += BOGO_DIRENT_SIZE;
2016	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2017	d_instantiate(dentry, inode);
2018	dget(dentry);
2019	return 0;
2020}
2021
2022static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2023{
2024	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2025	return NULL;
2026}
2027
2028static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2029{
2030	struct page *page = NULL;
2031	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2032	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2033	if (page)
2034		unlock_page(page);
2035	return page;
2036}
2037
2038static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2039{
2040	if (!IS_ERR(nd_get_link(nd))) {
2041		struct page *page = cookie;
2042		kunmap(page);
2043		mark_page_accessed(page);
2044		page_cache_release(page);
2045	}
2046}
2047
2048static const struct inode_operations shmem_symlink_inline_operations = {
2049	.readlink	= generic_readlink,
2050	.follow_link	= shmem_follow_link_inline,
2051};
2052
2053static const struct inode_operations shmem_symlink_inode_operations = {
2054	.readlink	= generic_readlink,
2055	.follow_link	= shmem_follow_link,
2056	.put_link	= shmem_put_link,
2057};
2058
2059#ifdef CONFIG_TMPFS_POSIX_ACL
2060/*
2061 * Superblocks without xattr inode operations will get security.* xattr
2062 * support from the VFS "for free". As soon as we have any other xattrs
2063 * like ACLs, we also need to implement the security.* handlers at
2064 * filesystem level, though.
2065 */
2066
2067static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2068					size_t list_len, const char *name,
2069					size_t name_len, int handler_flags)
2070{
2071	return security_inode_listsecurity(dentry->d_inode, list, list_len);
2072}
2073
2074static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2075		void *buffer, size_t size, int handler_flags)
2076{
2077	if (strcmp(name, "") == 0)
2078		return -EINVAL;
2079	return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2080}
2081
2082static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2083		const void *value, size_t size, int flags, int handler_flags)
2084{
2085	if (strcmp(name, "") == 0)
2086		return -EINVAL;
2087	return security_inode_setsecurity(dentry->d_inode, name, value,
2088					  size, flags);
2089}
2090
2091static const struct xattr_handler shmem_xattr_security_handler = {
2092	.prefix = XATTR_SECURITY_PREFIX,
2093	.list   = shmem_xattr_security_list,
2094	.get    = shmem_xattr_security_get,
2095	.set    = shmem_xattr_security_set,
2096};
2097
2098static const struct xattr_handler *shmem_xattr_handlers[] = {
2099	&generic_acl_access_handler,
2100	&generic_acl_default_handler,
2101	&shmem_xattr_security_handler,
2102	NULL
2103};
2104#endif
2105
2106static struct dentry *shmem_get_parent(struct dentry *child)
2107{
2108	return ERR_PTR(-ESTALE);
2109}
2110
2111static int shmem_match(struct inode *ino, void *vfh)
2112{
2113	__u32 *fh = vfh;
2114	__u64 inum = fh[2];
2115	inum = (inum << 32) | fh[1];
2116	return ino->i_ino == inum && fh[0] == ino->i_generation;
2117}
2118
2119static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2120		struct fid *fid, int fh_len, int fh_type)
2121{
2122	struct inode *inode;
2123	struct dentry *dentry = NULL;
2124	u64 inum = fid->raw[2];
2125	inum = (inum << 32) | fid->raw[1];
2126
2127	if (fh_len < 3)
2128		return NULL;
2129
2130	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2131			shmem_match, fid->raw);
2132	if (inode) {
2133		dentry = d_find_alias(inode);
2134		iput(inode);
2135	}
2136
2137	return dentry;
2138}
2139
2140static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2141				int connectable)
2142{
2143	struct inode *inode = dentry->d_inode;
2144
2145	if (*len < 3)
2146		return 255;
2147
2148	if (hlist_unhashed(&inode->i_hash)) {
2149		/* Unfortunately insert_inode_hash is not idempotent,
2150		 * so as we hash inodes here rather than at creation
2151		 * time, we need a lock to ensure we only try
2152		 * to do it once
2153		 */
2154		static DEFINE_SPINLOCK(lock);
2155		spin_lock(&lock);
2156		if (hlist_unhashed(&inode->i_hash))
2157			__insert_inode_hash(inode,
2158					    inode->i_ino + inode->i_generation);
2159		spin_unlock(&lock);
2160	}
2161
2162	fh[0] = inode->i_generation;
2163	fh[1] = inode->i_ino;
2164	fh[2] = ((__u64)inode->i_ino) >> 32;
2165
2166	*len = 3;
2167	return 1;
2168}
2169
2170static const struct export_operations shmem_export_ops = {
2171	.get_parent     = shmem_get_parent,
2172	.encode_fh      = shmem_encode_fh,
2173	.fh_to_dentry	= shmem_fh_to_dentry,
2174};
2175
2176static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2177			       bool remount)
2178{
2179	char *this_char, *value, *rest;
2180
2181	while (options != NULL) {
2182		this_char = options;
2183		for (;;) {
2184			/*
2185			 * NUL-terminate this option: unfortunately,
2186			 * mount options form a comma-separated list,
2187			 * but mpol's nodelist may also contain commas.
2188			 */
2189			options = strchr(options, ',');
2190			if (options == NULL)
2191				break;
2192			options++;
2193			if (!isdigit(*options)) {
2194				options[-1] = '\0';
2195				break;
2196			}
2197		}
2198		if (!*this_char)
2199			continue;
2200		if ((value = strchr(this_char,'=')) != NULL) {
2201			*value++ = 0;
2202		} else {
2203			printk(KERN_ERR
2204			    "tmpfs: No value for mount option '%s'\n",
2205			    this_char);
2206			return 1;
2207		}
2208
2209		if (!strcmp(this_char,"size")) {
2210			unsigned long long size;
2211			size = memparse(value,&rest);
2212			if (*rest == '%') {
2213				size <<= PAGE_SHIFT;
2214				size *= totalram_pages;
2215				do_div(size, 100);
2216				rest++;
2217			}
2218			if (*rest)
2219				goto bad_val;
2220			sbinfo->max_blocks =
2221				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2222		} else if (!strcmp(this_char,"nr_blocks")) {
2223			sbinfo->max_blocks = memparse(value, &rest);
2224			if (*rest)
2225				goto bad_val;
2226		} else if (!strcmp(this_char,"nr_inodes")) {
2227			sbinfo->max_inodes = memparse(value, &rest);
2228			if (*rest)
2229				goto bad_val;
2230		} else if (!strcmp(this_char,"mode")) {
2231			if (remount)
2232				continue;
2233			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2234			if (*rest)
2235				goto bad_val;
2236		} else if (!strcmp(this_char,"uid")) {
2237			if (remount)
2238				continue;
2239			sbinfo->uid = simple_strtoul(value, &rest, 0);
2240			if (*rest)
2241				goto bad_val;
2242		} else if (!strcmp(this_char,"gid")) {
2243			if (remount)
2244				continue;
2245			sbinfo->gid = simple_strtoul(value, &rest, 0);
2246			if (*rest)
2247				goto bad_val;
2248		} else if (!strcmp(this_char,"mpol")) {
2249			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2250				goto bad_val;
2251		} else {
2252			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2253			       this_char);
2254			return 1;
2255		}
2256	}
2257	return 0;
2258
2259bad_val:
2260	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2261	       value, this_char);
2262	return 1;
2263
2264}
2265
2266static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2267{
2268	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2269	struct shmem_sb_info config = *sbinfo;
2270	unsigned long inodes;
2271	int error = -EINVAL;
2272
2273	if (shmem_parse_options(data, &config, true))
2274		return error;
2275
2276	spin_lock(&sbinfo->stat_lock);
2277	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2278	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2279		goto out;
2280	if (config.max_inodes < inodes)
2281		goto out;
2282	/*
2283	 * Those tests also disallow limited->unlimited while any are in
2284	 * use, so i_blocks will always be zero when max_blocks is zero;
2285	 * but we must separately disallow unlimited->limited, because
2286	 * in that case we have no record of how much is already in use.
2287	 */
2288	if (config.max_blocks && !sbinfo->max_blocks)
2289		goto out;
2290	if (config.max_inodes && !sbinfo->max_inodes)
2291		goto out;
2292
2293	error = 0;
2294	sbinfo->max_blocks  = config.max_blocks;
2295	sbinfo->max_inodes  = config.max_inodes;
2296	sbinfo->free_inodes = config.max_inodes - inodes;
2297
2298	mpol_put(sbinfo->mpol);
2299	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2300out:
2301	spin_unlock(&sbinfo->stat_lock);
2302	return error;
2303}
2304
2305static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2306{
2307	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2308
2309	if (sbinfo->max_blocks != shmem_default_max_blocks())
2310		seq_printf(seq, ",size=%luk",
2311			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2312	if (sbinfo->max_inodes != shmem_default_max_inodes())
2313		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2314	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2315		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2316	if (sbinfo->uid != 0)
2317		seq_printf(seq, ",uid=%u", sbinfo->uid);
2318	if (sbinfo->gid != 0)
2319		seq_printf(seq, ",gid=%u", sbinfo->gid);
2320	shmem_show_mpol(seq, sbinfo->mpol);
2321	return 0;
2322}
2323#endif /* CONFIG_TMPFS */
2324
2325static void shmem_put_super(struct super_block *sb)
2326{
2327	kfree(sb->s_fs_info);
2328	sb->s_fs_info = NULL;
2329}
2330
2331int shmem_fill_super(struct super_block *sb, void *data, int silent)
2332{
2333	struct inode *inode;
2334	struct dentry *root;
2335	struct shmem_sb_info *sbinfo;
2336	int err = -ENOMEM;
2337
2338	/* Round up to L1_CACHE_BYTES to resist false sharing */
2339	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2340				L1_CACHE_BYTES), GFP_KERNEL);
2341	if (!sbinfo)
2342		return -ENOMEM;
2343
2344	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2345	sbinfo->uid = current_fsuid();
2346	sbinfo->gid = current_fsgid();
2347	sb->s_fs_info = sbinfo;
2348
2349#ifdef CONFIG_TMPFS
2350	/*
2351	 * Per default we only allow half of the physical ram per
2352	 * tmpfs instance, limiting inodes to one per page of lowmem;
2353	 * but the internal instance is left unlimited.
2354	 */
2355	if (!(sb->s_flags & MS_NOUSER)) {
2356		sbinfo->max_blocks = shmem_default_max_blocks();
2357		sbinfo->max_inodes = shmem_default_max_inodes();
2358		if (shmem_parse_options(data, sbinfo, false)) {
2359			err = -EINVAL;
2360			goto failed;
2361		}
2362	}
2363	sb->s_export_op = &shmem_export_ops;
2364#else
2365	sb->s_flags |= MS_NOUSER;
2366#endif
2367
2368	spin_lock_init(&sbinfo->stat_lock);
2369	percpu_counter_init(&sbinfo->used_blocks, 0);
2370	sbinfo->free_inodes = sbinfo->max_inodes;
2371
2372	sb->s_maxbytes = SHMEM_MAX_BYTES;
2373	sb->s_blocksize = PAGE_CACHE_SIZE;
2374	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2375	sb->s_magic = TMPFS_MAGIC;
2376	sb->s_op = &shmem_ops;
2377	sb->s_time_gran = 1;
2378#ifdef CONFIG_TMPFS_POSIX_ACL
2379	sb->s_xattr = shmem_xattr_handlers;
2380	sb->s_flags |= MS_POSIXACL;
2381#endif
2382
2383	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2384	if (!inode)
2385		goto failed;
2386	inode->i_uid = sbinfo->uid;
2387	inode->i_gid = sbinfo->gid;
2388	root = d_alloc_root(inode);
2389	if (!root)
2390		goto failed_iput;
2391	sb->s_root = root;
2392	return 0;
2393
2394failed_iput:
2395	iput(inode);
2396failed:
2397	shmem_put_super(sb);
2398	return err;
2399}
2400
2401static struct kmem_cache *shmem_inode_cachep;
2402
2403static struct inode *shmem_alloc_inode(struct super_block *sb)
2404{
2405	struct shmem_inode_info *p;
2406	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2407	if (!p)
2408		return NULL;
2409	return &p->vfs_inode;
2410}
2411
2412static void shmem_destroy_inode(struct inode *inode)
2413{
2414	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2415		/* only struct inode is valid if it's an inline symlink */
2416		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2417	}
2418	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2419}
2420
2421static void init_once(void *foo)
2422{
2423	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2424
2425	inode_init_once(&p->vfs_inode);
2426}
2427
2428static int init_inodecache(void)
2429{
2430	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2431				sizeof(struct shmem_inode_info),
2432				0, SLAB_PANIC, init_once);
2433	return 0;
2434}
2435
2436static void destroy_inodecache(void)
2437{
2438	kmem_cache_destroy(shmem_inode_cachep);
2439}
2440
2441static const struct address_space_operations shmem_aops = {
2442	.writepage	= shmem_writepage,
2443	.set_page_dirty	= __set_page_dirty_no_writeback,
2444#ifdef CONFIG_TMPFS
2445	.readpage	= shmem_readpage,
2446	.write_begin	= shmem_write_begin,
2447	.write_end	= shmem_write_end,
2448#endif
2449	.migratepage	= migrate_page,
2450	.error_remove_page = generic_error_remove_page,
2451};
2452
2453static const struct file_operations shmem_file_operations = {
2454	.mmap		= shmem_mmap,
2455#ifdef CONFIG_TMPFS
2456	.llseek		= generic_file_llseek,
2457	.read		= do_sync_read,
2458	.write		= do_sync_write,
2459	.aio_read	= shmem_file_aio_read,
2460	.aio_write	= generic_file_aio_write,
2461	.fsync		= noop_fsync,
2462	.splice_read	= generic_file_splice_read,
2463	.splice_write	= generic_file_splice_write,
2464#endif
2465};
2466
2467static const struct inode_operations shmem_inode_operations = {
2468	.setattr	= shmem_notify_change,
2469	.truncate_range	= shmem_truncate_range,
2470#ifdef CONFIG_TMPFS_POSIX_ACL
2471	.setxattr	= generic_setxattr,
2472	.getxattr	= generic_getxattr,
2473	.listxattr	= generic_listxattr,
2474	.removexattr	= generic_removexattr,
2475	.check_acl	= generic_check_acl,
2476#endif
2477
2478};
2479
2480static const struct inode_operations shmem_dir_inode_operations = {
2481#ifdef CONFIG_TMPFS
2482	.create		= shmem_create,
2483	.lookup		= simple_lookup,
2484	.link		= shmem_link,
2485	.unlink		= shmem_unlink,
2486	.symlink	= shmem_symlink,
2487	.mkdir		= shmem_mkdir,
2488	.rmdir		= shmem_rmdir,
2489	.mknod		= shmem_mknod,
2490	.rename		= shmem_rename,
2491#endif
2492#ifdef CONFIG_TMPFS_POSIX_ACL
2493	.setattr	= shmem_notify_change,
2494	.setxattr	= generic_setxattr,
2495	.getxattr	= generic_getxattr,
2496	.listxattr	= generic_listxattr,
2497	.removexattr	= generic_removexattr,
2498	.check_acl	= generic_check_acl,
2499#endif
2500};
2501
2502static const struct inode_operations shmem_special_inode_operations = {
2503#ifdef CONFIG_TMPFS_POSIX_ACL
2504	.setattr	= shmem_notify_change,
2505	.setxattr	= generic_setxattr,
2506	.getxattr	= generic_getxattr,
2507	.listxattr	= generic_listxattr,
2508	.removexattr	= generic_removexattr,
2509	.check_acl	= generic_check_acl,
2510#endif
2511};
2512
2513static const struct super_operations shmem_ops = {
2514	.alloc_inode	= shmem_alloc_inode,
2515	.destroy_inode	= shmem_destroy_inode,
2516#ifdef CONFIG_TMPFS
2517	.statfs		= shmem_statfs,
2518	.remount_fs	= shmem_remount_fs,
2519	.show_options	= shmem_show_options,
2520#endif
2521	.delete_inode	= shmem_delete_inode,
2522	.drop_inode	= generic_delete_inode,
2523	.put_super	= shmem_put_super,
2524};
2525
2526static const struct vm_operations_struct shmem_vm_ops = {
2527	.fault		= shmem_fault,
2528#ifdef CONFIG_NUMA
2529	.set_policy     = shmem_set_policy,
2530	.get_policy     = shmem_get_policy,
2531#endif
2532};
2533
2534
2535static int shmem_get_sb(struct file_system_type *fs_type,
2536	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2537{
2538	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2539}
2540
2541static struct file_system_type tmpfs_fs_type = {
2542	.owner		= THIS_MODULE,
2543	.name		= "tmpfs",
2544	.get_sb		= shmem_get_sb,
2545	.kill_sb	= kill_litter_super,
2546};
2547
2548int __init init_tmpfs(void)
2549{
2550	int error;
2551
2552	error = bdi_init(&shmem_backing_dev_info);
2553	if (error)
2554		goto out4;
2555
2556	error = init_inodecache();
2557	if (error)
2558		goto out3;
2559
2560	error = register_filesystem(&tmpfs_fs_type);
2561	if (error) {
2562		printk(KERN_ERR "Could not register tmpfs\n");
2563		goto out2;
2564	}
2565
2566	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2567				tmpfs_fs_type.name, NULL);
2568	if (IS_ERR(shm_mnt)) {
2569		error = PTR_ERR(shm_mnt);
2570		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2571		goto out1;
2572	}
2573	return 0;
2574
2575out1:
2576	unregister_filesystem(&tmpfs_fs_type);
2577out2:
2578	destroy_inodecache();
2579out3:
2580	bdi_destroy(&shmem_backing_dev_info);
2581out4:
2582	shm_mnt = ERR_PTR(error);
2583	return error;
2584}
2585
2586#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2587/**
2588 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2589 * @inode: the inode to be searched
2590 * @pgoff: the offset to be searched
2591 * @pagep: the pointer for the found page to be stored
2592 * @ent: the pointer for the found swap entry to be stored
2593 *
2594 * If a page is found, refcount of it is incremented. Callers should handle
2595 * these refcount.
2596 */
2597void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2598					struct page **pagep, swp_entry_t *ent)
2599{
2600	swp_entry_t entry = { .val = 0 }, *ptr;
2601	struct page *page = NULL;
2602	struct shmem_inode_info *info = SHMEM_I(inode);
2603
2604	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2605		goto out;
2606
2607	spin_lock(&info->lock);
2608	ptr = shmem_swp_entry(info, pgoff, NULL);
2609#ifdef CONFIG_SWAP
2610	if (ptr && ptr->val) {
2611		entry.val = ptr->val;
2612		page = find_get_page(&swapper_space, entry.val);
2613	} else
2614#endif
2615		page = find_get_page(inode->i_mapping, pgoff);
2616	if (ptr)
2617		shmem_swp_unmap(ptr);
2618	spin_unlock(&info->lock);
2619out:
2620	*pagep = page;
2621	*ent = entry;
2622}
2623#endif
2624
2625#else /* !CONFIG_SHMEM */
2626
2627/*
2628 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2629 *
2630 * This is intended for small system where the benefits of the full
2631 * shmem code (swap-backed and resource-limited) are outweighed by
2632 * their complexity. On systems without swap this code should be
2633 * effectively equivalent, but much lighter weight.
2634 */
2635
2636#include <linux/ramfs.h>
2637
2638static struct file_system_type tmpfs_fs_type = {
2639	.name		= "tmpfs",
2640	.get_sb		= ramfs_get_sb,
2641	.kill_sb	= kill_litter_super,
2642};
2643
2644int __init init_tmpfs(void)
2645{
2646	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2647
2648	shm_mnt = kern_mount(&tmpfs_fs_type);
2649	BUG_ON(IS_ERR(shm_mnt));
2650
2651	return 0;
2652}
2653
2654int shmem_unuse(swp_entry_t entry, struct page *page)
2655{
2656	return 0;
2657}
2658
2659int shmem_lock(struct file *file, int lock, struct user_struct *user)
2660{
2661	return 0;
2662}
2663
2664#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2665/**
2666 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2667 * @inode: the inode to be searched
2668 * @pgoff: the offset to be searched
2669 * @pagep: the pointer for the found page to be stored
2670 * @ent: the pointer for the found swap entry to be stored
2671 *
2672 * If a page is found, refcount of it is incremented. Callers should handle
2673 * these refcount.
2674 */
2675void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2676					struct page **pagep, swp_entry_t *ent)
2677{
2678	struct page *page = NULL;
2679
2680	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2681		goto out;
2682	page = find_get_page(inode->i_mapping, pgoff);
2683out:
2684	*pagep = page;
2685	*ent = (swp_entry_t){ .val = 0 };
2686}
2687#endif
2688
2689#define shmem_vm_ops				generic_file_vm_ops
2690#define shmem_file_operations			ramfs_file_operations
2691#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2692#define shmem_acct_size(flags, size)		0
2693#define shmem_unacct_size(flags, size)		do {} while (0)
2694#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2695
2696#endif /* CONFIG_SHMEM */
2697
2698/* common code */
2699
2700/**
2701 * shmem_file_setup - get an unlinked file living in tmpfs
2702 * @name: name for dentry (to be seen in /proc/<pid>/maps
2703 * @size: size to be set for the file
2704 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2705 */
2706struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2707{
2708	int error;
2709	struct file *file;
2710	struct inode *inode;
2711	struct path path;
2712	struct dentry *root;
2713	struct qstr this;
2714
2715	if (IS_ERR(shm_mnt))
2716		return (void *)shm_mnt;
2717
2718	if (size < 0 || size > SHMEM_MAX_BYTES)
2719		return ERR_PTR(-EINVAL);
2720
2721	if (shmem_acct_size(flags, size))
2722		return ERR_PTR(-ENOMEM);
2723
2724	error = -ENOMEM;
2725	this.name = name;
2726	this.len = strlen(name);
2727	this.hash = 0; /* will go */
2728	root = shm_mnt->mnt_root;
2729	path.dentry = d_alloc(root, &this);
2730	if (!path.dentry)
2731		goto put_memory;
2732	path.mnt = mntget(shm_mnt);
2733
2734	error = -ENOSPC;
2735	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2736	if (!inode)
2737		goto put_dentry;
2738
2739	d_instantiate(path.dentry, inode);
2740	inode->i_size = size;
2741	inode->i_nlink = 0;	/* It is unlinked */
2742#ifndef CONFIG_MMU
2743	error = ramfs_nommu_expand_for_mapping(inode, size);
2744	if (error)
2745		goto put_dentry;
2746#endif
2747
2748	error = -ENFILE;
2749	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2750		  &shmem_file_operations);
2751	if (!file)
2752		goto put_dentry;
2753
2754	return file;
2755
2756put_dentry:
2757	path_put(&path);
2758put_memory:
2759	shmem_unacct_size(flags, size);
2760	return ERR_PTR(error);
2761}
2762EXPORT_SYMBOL_GPL(shmem_file_setup);
2763
2764/**
2765 * shmem_zero_setup - setup a shared anonymous mapping
2766 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2767 */
2768int shmem_zero_setup(struct vm_area_struct *vma)
2769{
2770	struct file *file;
2771	loff_t size = vma->vm_end - vma->vm_start;
2772
2773	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2774	if (IS_ERR(file))
2775		return PTR_ERR(file);
2776
2777	if (vma->vm_file)
2778		fput(vma->vm_file);
2779	vma->vm_file = file;
2780	vma->vm_ops = &shmem_vm_ops;
2781	return 0;
2782}
2783