sock.c revision 3f0666ee3039443fa7b7cf436dd16ce0dd8e3f95
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors:	Ross Biro
13 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 *		Alan Cox	: 	Numerous verify_area() problems
19 *		Alan Cox	:	Connecting on a connecting socket
20 *					now returns an error for tcp.
21 *		Alan Cox	:	sock->protocol is set correctly.
22 *					and is not sometimes left as 0.
23 *		Alan Cox	:	connect handles icmp errors on a
24 *					connect properly. Unfortunately there
25 *					is a restart syscall nasty there. I
26 *					can't match BSD without hacking the C
27 *					library. Ideas urgently sought!
28 *		Alan Cox	:	Disallow bind() to addresses that are
29 *					not ours - especially broadcast ones!!
30 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32 *					instead they leave that for the DESTROY timer.
33 *		Alan Cox	:	Clean up error flag in accept
34 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35 *					was buggy. Put a remove_sock() in the handler
36 *					for memory when we hit 0. Also altered the timer
37 *					code. The ACK stuff can wait and needs major
38 *					TCP layer surgery.
39 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40 *					and fixed timer/inet_bh race.
41 *		Alan Cox	:	Added zapped flag for TCP
42 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49 *	Pauline Middelink	:	identd support
50 *		Alan Cox	:	Fixed connect() taking signals I think.
51 *		Alan Cox	:	SO_LINGER supported
52 *		Alan Cox	:	Error reporting fixes
53 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54 *		Alan Cox	:	inet sockets don't set sk->type!
55 *		Alan Cox	:	Split socket option code
56 *		Alan Cox	:	Callbacks
57 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58 *		Alex		:	Removed restriction on inet fioctl
59 *		Alan Cox	:	Splitting INET from NET core
60 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62 *		Alan Cox	:	Split IP from generic code
63 *		Alan Cox	:	New kfree_skbmem()
64 *		Alan Cox	:	Make SO_DEBUG superuser only.
65 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66 *					(compatibility fix)
67 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68 *		Alan Cox	:	Allocator for a socket is settable.
69 *		Alan Cox	:	SO_ERROR includes soft errors.
70 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71 *		Alan Cox	: 	Generic socket allocation to make hooks
72 *					easier (suggested by Craig Metz).
73 *		Michael Pall	:	SO_ERROR returns positive errno again
74 *              Steve Whitehouse:       Added default destructor to free
75 *                                      protocol private data.
76 *              Steve Whitehouse:       Added various other default routines
77 *                                      common to several socket families.
78 *              Chris Evans     :       Call suser() check last on F_SETOWN
79 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81 *		Andi Kleen	:	Fix write_space callback
82 *		Chris Evans	:	Security fixes - signedness again
83 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 *		This program is free software; you can redistribute it and/or
89 *		modify it under the terms of the GNU General Public License
90 *		as published by the Free Software Foundation; either version
91 *		2 of the License, or (at your option) any later version.
92 */
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115
116#include <asm/uaccess.h>
117#include <asm/system.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/net_namespace.h>
123#include <net/request_sock.h>
124#include <net/sock.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127
128#include <linux/filter.h>
129
130#ifdef CONFIG_INET
131#include <net/tcp.h>
132#endif
133
134/*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138static struct lock_class_key af_family_keys[AF_MAX];
139static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141#ifdef CONFIG_DEBUG_LOCK_ALLOC
142/*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147static const char *af_family_key_strings[AF_MAX+1] = {
148  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159  "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160};
161static const char *af_family_slock_key_strings[AF_MAX+1] = {
162  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171  "slock-27"       , "slock-28"          , "slock-29"          ,
172  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173  "slock-AF_RXRPC" , "slock-AF_MAX"
174};
175static const char *af_family_clock_key_strings[AF_MAX+1] = {
176  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183  "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185  "clock-27"       , "clock-28"          , "clock-29"          ,
186  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187  "clock-AF_RXRPC" , "clock-AF_MAX"
188};
189#endif
190
191/*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195static struct lock_class_key af_callback_keys[AF_MAX];
196
197/* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms.  This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202#define _SK_MEM_PACKETS		256
203#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207/* Run time adjustable parameters. */
208__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213/* Maximal space eaten by iovec or ancilliary data plus some space */
214int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217{
218	struct timeval tv;
219
220	if (optlen < sizeof(tv))
221		return -EINVAL;
222	if (copy_from_user(&tv, optval, sizeof(tv)))
223		return -EFAULT;
224	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225		return -EDOM;
226
227	if (tv.tv_sec < 0) {
228		static int warned __read_mostly;
229
230		*timeo_p = 0;
231		if (warned < 10 && net_ratelimit())
232			warned++;
233			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234			       "tries to set negative timeout\n",
235				current->comm, task_pid_nr(current));
236		return 0;
237	}
238	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240		return 0;
241	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243	return 0;
244}
245
246static void sock_warn_obsolete_bsdism(const char *name)
247{
248	static int warned;
249	static char warncomm[TASK_COMM_LEN];
250	if (strcmp(warncomm, current->comm) && warned < 5) {
251		strcpy(warncomm,  current->comm);
252		printk(KERN_WARNING "process `%s' is using obsolete "
253		       "%s SO_BSDCOMPAT\n", warncomm, name);
254		warned++;
255	}
256}
257
258static void sock_disable_timestamp(struct sock *sk)
259{
260	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261		sock_reset_flag(sk, SOCK_TIMESTAMP);
262		net_disable_timestamp();
263	}
264}
265
266
267int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268{
269	int err = 0;
270	int skb_len;
271
272	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273	   number of warnings when compiling with -W --ANK
274	 */
275	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276	    (unsigned)sk->sk_rcvbuf) {
277		err = -ENOMEM;
278		goto out;
279	}
280
281	err = sk_filter(sk, skb);
282	if (err)
283		goto out;
284
285	skb->dev = NULL;
286	skb_set_owner_r(skb, sk);
287
288	/* Cache the SKB length before we tack it onto the receive
289	 * queue.  Once it is added it no longer belongs to us and
290	 * may be freed by other threads of control pulling packets
291	 * from the queue.
292	 */
293	skb_len = skb->len;
294
295	skb_queue_tail(&sk->sk_receive_queue, skb);
296
297	if (!sock_flag(sk, SOCK_DEAD))
298		sk->sk_data_ready(sk, skb_len);
299out:
300	return err;
301}
302EXPORT_SYMBOL(sock_queue_rcv_skb);
303
304int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305{
306	int rc = NET_RX_SUCCESS;
307
308	if (sk_filter(sk, skb))
309		goto discard_and_relse;
310
311	skb->dev = NULL;
312
313	if (nested)
314		bh_lock_sock_nested(sk);
315	else
316		bh_lock_sock(sk);
317	if (!sock_owned_by_user(sk)) {
318		/*
319		 * trylock + unlock semantics:
320		 */
321		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322
323		rc = sk->sk_backlog_rcv(sk, skb);
324
325		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326	} else
327		sk_add_backlog(sk, skb);
328	bh_unlock_sock(sk);
329out:
330	sock_put(sk);
331	return rc;
332discard_and_relse:
333	kfree_skb(skb);
334	goto out;
335}
336EXPORT_SYMBOL(sk_receive_skb);
337
338struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339{
340	struct dst_entry *dst = sk->sk_dst_cache;
341
342	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343		sk->sk_dst_cache = NULL;
344		dst_release(dst);
345		return NULL;
346	}
347
348	return dst;
349}
350EXPORT_SYMBOL(__sk_dst_check);
351
352struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353{
354	struct dst_entry *dst = sk_dst_get(sk);
355
356	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357		sk_dst_reset(sk);
358		dst_release(dst);
359		return NULL;
360	}
361
362	return dst;
363}
364EXPORT_SYMBOL(sk_dst_check);
365
366static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367{
368	int ret = -ENOPROTOOPT;
369#ifdef CONFIG_NETDEVICES
370	struct net *net = sk->sk_net;
371	char devname[IFNAMSIZ];
372	int index;
373
374	/* Sorry... */
375	ret = -EPERM;
376	if (!capable(CAP_NET_RAW))
377		goto out;
378
379	ret = -EINVAL;
380	if (optlen < 0)
381		goto out;
382
383	/* Bind this socket to a particular device like "eth0",
384	 * as specified in the passed interface name. If the
385	 * name is "" or the option length is zero the socket
386	 * is not bound.
387	 */
388	if (optlen > IFNAMSIZ - 1)
389		optlen = IFNAMSIZ - 1;
390	memset(devname, 0, sizeof(devname));
391
392	ret = -EFAULT;
393	if (copy_from_user(devname, optval, optlen))
394		goto out;
395
396	if (devname[0] == '\0') {
397		index = 0;
398	} else {
399		struct net_device *dev = dev_get_by_name(net, devname);
400
401		ret = -ENODEV;
402		if (!dev)
403			goto out;
404
405		index = dev->ifindex;
406		dev_put(dev);
407	}
408
409	lock_sock(sk);
410	sk->sk_bound_dev_if = index;
411	sk_dst_reset(sk);
412	release_sock(sk);
413
414	ret = 0;
415
416out:
417#endif
418
419	return ret;
420}
421
422/*
423 *	This is meant for all protocols to use and covers goings on
424 *	at the socket level. Everything here is generic.
425 */
426
427int sock_setsockopt(struct socket *sock, int level, int optname,
428		    char __user *optval, int optlen)
429{
430	struct sock *sk=sock->sk;
431	int val;
432	int valbool;
433	struct linger ling;
434	int ret = 0;
435
436	/*
437	 *	Options without arguments
438	 */
439
440#ifdef SO_DONTLINGER		/* Compatibility item... */
441	if (optname == SO_DONTLINGER) {
442		lock_sock(sk);
443		sock_reset_flag(sk, SOCK_LINGER);
444		release_sock(sk);
445		return 0;
446	}
447#endif
448
449	if (optname == SO_BINDTODEVICE)
450		return sock_bindtodevice(sk, optval, optlen);
451
452	if (optlen < sizeof(int))
453		return -EINVAL;
454
455	if (get_user(val, (int __user *)optval))
456		return -EFAULT;
457
458	valbool = val?1:0;
459
460	lock_sock(sk);
461
462	switch(optname) {
463	case SO_DEBUG:
464		if (val && !capable(CAP_NET_ADMIN)) {
465			ret = -EACCES;
466		}
467		else if (valbool)
468			sock_set_flag(sk, SOCK_DBG);
469		else
470			sock_reset_flag(sk, SOCK_DBG);
471		break;
472	case SO_REUSEADDR:
473		sk->sk_reuse = valbool;
474		break;
475	case SO_TYPE:
476	case SO_ERROR:
477		ret = -ENOPROTOOPT;
478		break;
479	case SO_DONTROUTE:
480		if (valbool)
481			sock_set_flag(sk, SOCK_LOCALROUTE);
482		else
483			sock_reset_flag(sk, SOCK_LOCALROUTE);
484		break;
485	case SO_BROADCAST:
486		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487		break;
488	case SO_SNDBUF:
489		/* Don't error on this BSD doesn't and if you think
490		   about it this is right. Otherwise apps have to
491		   play 'guess the biggest size' games. RCVBUF/SNDBUF
492		   are treated in BSD as hints */
493
494		if (val > sysctl_wmem_max)
495			val = sysctl_wmem_max;
496set_sndbuf:
497		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498		if ((val * 2) < SOCK_MIN_SNDBUF)
499			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500		else
501			sk->sk_sndbuf = val * 2;
502
503		/*
504		 *	Wake up sending tasks if we
505		 *	upped the value.
506		 */
507		sk->sk_write_space(sk);
508		break;
509
510	case SO_SNDBUFFORCE:
511		if (!capable(CAP_NET_ADMIN)) {
512			ret = -EPERM;
513			break;
514		}
515		goto set_sndbuf;
516
517	case SO_RCVBUF:
518		/* Don't error on this BSD doesn't and if you think
519		   about it this is right. Otherwise apps have to
520		   play 'guess the biggest size' games. RCVBUF/SNDBUF
521		   are treated in BSD as hints */
522
523		if (val > sysctl_rmem_max)
524			val = sysctl_rmem_max;
525set_rcvbuf:
526		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527		/*
528		 * We double it on the way in to account for
529		 * "struct sk_buff" etc. overhead.   Applications
530		 * assume that the SO_RCVBUF setting they make will
531		 * allow that much actual data to be received on that
532		 * socket.
533		 *
534		 * Applications are unaware that "struct sk_buff" and
535		 * other overheads allocate from the receive buffer
536		 * during socket buffer allocation.
537		 *
538		 * And after considering the possible alternatives,
539		 * returning the value we actually used in getsockopt
540		 * is the most desirable behavior.
541		 */
542		if ((val * 2) < SOCK_MIN_RCVBUF)
543			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544		else
545			sk->sk_rcvbuf = val * 2;
546		break;
547
548	case SO_RCVBUFFORCE:
549		if (!capable(CAP_NET_ADMIN)) {
550			ret = -EPERM;
551			break;
552		}
553		goto set_rcvbuf;
554
555	case SO_KEEPALIVE:
556#ifdef CONFIG_INET
557		if (sk->sk_protocol == IPPROTO_TCP)
558			tcp_set_keepalive(sk, valbool);
559#endif
560		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561		break;
562
563	case SO_OOBINLINE:
564		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565		break;
566
567	case SO_NO_CHECK:
568		sk->sk_no_check = valbool;
569		break;
570
571	case SO_PRIORITY:
572		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573			sk->sk_priority = val;
574		else
575			ret = -EPERM;
576		break;
577
578	case SO_LINGER:
579		if (optlen < sizeof(ling)) {
580			ret = -EINVAL;	/* 1003.1g */
581			break;
582		}
583		if (copy_from_user(&ling,optval,sizeof(ling))) {
584			ret = -EFAULT;
585			break;
586		}
587		if (!ling.l_onoff)
588			sock_reset_flag(sk, SOCK_LINGER);
589		else {
590#if (BITS_PER_LONG == 32)
591			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593			else
594#endif
595				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596			sock_set_flag(sk, SOCK_LINGER);
597		}
598		break;
599
600	case SO_BSDCOMPAT:
601		sock_warn_obsolete_bsdism("setsockopt");
602		break;
603
604	case SO_PASSCRED:
605		if (valbool)
606			set_bit(SOCK_PASSCRED, &sock->flags);
607		else
608			clear_bit(SOCK_PASSCRED, &sock->flags);
609		break;
610
611	case SO_TIMESTAMP:
612	case SO_TIMESTAMPNS:
613		if (valbool)  {
614			if (optname == SO_TIMESTAMP)
615				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616			else
617				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618			sock_set_flag(sk, SOCK_RCVTSTAMP);
619			sock_enable_timestamp(sk);
620		} else {
621			sock_reset_flag(sk, SOCK_RCVTSTAMP);
622			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623		}
624		break;
625
626	case SO_RCVLOWAT:
627		if (val < 0)
628			val = INT_MAX;
629		sk->sk_rcvlowat = val ? : 1;
630		break;
631
632	case SO_RCVTIMEO:
633		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634		break;
635
636	case SO_SNDTIMEO:
637		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638		break;
639
640	case SO_ATTACH_FILTER:
641		ret = -EINVAL;
642		if (optlen == sizeof(struct sock_fprog)) {
643			struct sock_fprog fprog;
644
645			ret = -EFAULT;
646			if (copy_from_user(&fprog, optval, sizeof(fprog)))
647				break;
648
649			ret = sk_attach_filter(&fprog, sk);
650		}
651		break;
652
653	case SO_DETACH_FILTER:
654		ret = sk_detach_filter(sk);
655		break;
656
657	case SO_PASSSEC:
658		if (valbool)
659			set_bit(SOCK_PASSSEC, &sock->flags);
660		else
661			clear_bit(SOCK_PASSSEC, &sock->flags);
662		break;
663
664		/* We implement the SO_SNDLOWAT etc to
665		   not be settable (1003.1g 5.3) */
666	default:
667		ret = -ENOPROTOOPT;
668		break;
669	}
670	release_sock(sk);
671	return ret;
672}
673
674
675int sock_getsockopt(struct socket *sock, int level, int optname,
676		    char __user *optval, int __user *optlen)
677{
678	struct sock *sk = sock->sk;
679
680	union {
681		int val;
682		struct linger ling;
683		struct timeval tm;
684	} v;
685
686	unsigned int lv = sizeof(int);
687	int len;
688
689	if (get_user(len, optlen))
690		return -EFAULT;
691	if (len < 0)
692		return -EINVAL;
693
694	switch(optname) {
695	case SO_DEBUG:
696		v.val = sock_flag(sk, SOCK_DBG);
697		break;
698
699	case SO_DONTROUTE:
700		v.val = sock_flag(sk, SOCK_LOCALROUTE);
701		break;
702
703	case SO_BROADCAST:
704		v.val = !!sock_flag(sk, SOCK_BROADCAST);
705		break;
706
707	case SO_SNDBUF:
708		v.val = sk->sk_sndbuf;
709		break;
710
711	case SO_RCVBUF:
712		v.val = sk->sk_rcvbuf;
713		break;
714
715	case SO_REUSEADDR:
716		v.val = sk->sk_reuse;
717		break;
718
719	case SO_KEEPALIVE:
720		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
721		break;
722
723	case SO_TYPE:
724		v.val = sk->sk_type;
725		break;
726
727	case SO_ERROR:
728		v.val = -sock_error(sk);
729		if (v.val==0)
730			v.val = xchg(&sk->sk_err_soft, 0);
731		break;
732
733	case SO_OOBINLINE:
734		v.val = !!sock_flag(sk, SOCK_URGINLINE);
735		break;
736
737	case SO_NO_CHECK:
738		v.val = sk->sk_no_check;
739		break;
740
741	case SO_PRIORITY:
742		v.val = sk->sk_priority;
743		break;
744
745	case SO_LINGER:
746		lv		= sizeof(v.ling);
747		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
748		v.ling.l_linger	= sk->sk_lingertime / HZ;
749		break;
750
751	case SO_BSDCOMPAT:
752		sock_warn_obsolete_bsdism("getsockopt");
753		break;
754
755	case SO_TIMESTAMP:
756		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
757				!sock_flag(sk, SOCK_RCVTSTAMPNS);
758		break;
759
760	case SO_TIMESTAMPNS:
761		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
762		break;
763
764	case SO_RCVTIMEO:
765		lv=sizeof(struct timeval);
766		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
767			v.tm.tv_sec = 0;
768			v.tm.tv_usec = 0;
769		} else {
770			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
771			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
772		}
773		break;
774
775	case SO_SNDTIMEO:
776		lv=sizeof(struct timeval);
777		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
778			v.tm.tv_sec = 0;
779			v.tm.tv_usec = 0;
780		} else {
781			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
782			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
783		}
784		break;
785
786	case SO_RCVLOWAT:
787		v.val = sk->sk_rcvlowat;
788		break;
789
790	case SO_SNDLOWAT:
791		v.val=1;
792		break;
793
794	case SO_PASSCRED:
795		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
796		break;
797
798	case SO_PEERCRED:
799		if (len > sizeof(sk->sk_peercred))
800			len = sizeof(sk->sk_peercred);
801		if (copy_to_user(optval, &sk->sk_peercred, len))
802			return -EFAULT;
803		goto lenout;
804
805	case SO_PEERNAME:
806	{
807		char address[128];
808
809		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
810			return -ENOTCONN;
811		if (lv < len)
812			return -EINVAL;
813		if (copy_to_user(optval, address, len))
814			return -EFAULT;
815		goto lenout;
816	}
817
818	/* Dubious BSD thing... Probably nobody even uses it, but
819	 * the UNIX standard wants it for whatever reason... -DaveM
820	 */
821	case SO_ACCEPTCONN:
822		v.val = sk->sk_state == TCP_LISTEN;
823		break;
824
825	case SO_PASSSEC:
826		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
827		break;
828
829	case SO_PEERSEC:
830		return security_socket_getpeersec_stream(sock, optval, optlen, len);
831
832	default:
833		return -ENOPROTOOPT;
834	}
835
836	if (len > lv)
837		len = lv;
838	if (copy_to_user(optval, &v, len))
839		return -EFAULT;
840lenout:
841	if (put_user(len, optlen))
842		return -EFAULT;
843	return 0;
844}
845
846/*
847 * Initialize an sk_lock.
848 *
849 * (We also register the sk_lock with the lock validator.)
850 */
851static inline void sock_lock_init(struct sock *sk)
852{
853	sock_lock_init_class_and_name(sk,
854			af_family_slock_key_strings[sk->sk_family],
855			af_family_slock_keys + sk->sk_family,
856			af_family_key_strings[sk->sk_family],
857			af_family_keys + sk->sk_family);
858}
859
860static void sock_copy(struct sock *nsk, const struct sock *osk)
861{
862#ifdef CONFIG_SECURITY_NETWORK
863	void *sptr = nsk->sk_security;
864#endif
865
866	memcpy(nsk, osk, osk->sk_prot->obj_size);
867#ifdef CONFIG_SECURITY_NETWORK
868	nsk->sk_security = sptr;
869	security_sk_clone(osk, nsk);
870#endif
871}
872
873static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority)
874{
875	struct sock *sk;
876	struct kmem_cache *slab;
877
878	slab = prot->slab;
879	if (slab != NULL)
880		sk = kmem_cache_alloc(slab, priority);
881	else
882		sk = kmalloc(prot->obj_size, priority);
883
884	return sk;
885}
886
887static void sk_prot_free(struct proto *prot, struct sock *sk)
888{
889	struct kmem_cache *slab;
890
891	slab = prot->slab;
892	if (slab != NULL)
893		kmem_cache_free(slab, sk);
894	else
895		kfree(sk);
896}
897
898/**
899 *	sk_alloc - All socket objects are allocated here
900 *	@net: the applicable net namespace
901 *	@family: protocol family
902 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
903 *	@prot: struct proto associated with this new sock instance
904 *	@zero_it: if we should zero the newly allocated sock
905 */
906struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
907		      struct proto *prot, int zero_it)
908{
909	struct sock *sk;
910
911	if (zero_it)
912		priority |= __GFP_ZERO;
913
914	sk = sk_prot_alloc(prot, priority);
915	if (sk) {
916		if (zero_it) {
917			sk->sk_family = family;
918			/*
919			 * See comment in struct sock definition to understand
920			 * why we need sk_prot_creator -acme
921			 */
922			sk->sk_prot = sk->sk_prot_creator = prot;
923			sock_lock_init(sk);
924			sk->sk_net = get_net(net);
925		}
926
927		if (security_sk_alloc(sk, family, priority))
928			goto out_free;
929
930		if (!try_module_get(prot->owner))
931			goto out_free;
932	}
933	return sk;
934
935out_free:
936	sk_prot_free(prot, sk);
937	return NULL;
938}
939
940void sk_free(struct sock *sk)
941{
942	struct sk_filter *filter;
943	struct module *owner = sk->sk_prot_creator->owner;
944
945	if (sk->sk_destruct)
946		sk->sk_destruct(sk);
947
948	filter = rcu_dereference(sk->sk_filter);
949	if (filter) {
950		sk_filter_uncharge(sk, filter);
951		rcu_assign_pointer(sk->sk_filter, NULL);
952	}
953
954	sock_disable_timestamp(sk);
955
956	if (atomic_read(&sk->sk_omem_alloc))
957		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
958		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
959
960	security_sk_free(sk);
961	put_net(sk->sk_net);
962	sk_prot_free(sk->sk_prot_creator, sk);
963	module_put(owner);
964}
965
966struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
967{
968	struct sock *newsk = sk_alloc(sk->sk_net, sk->sk_family, priority, sk->sk_prot, 0);
969
970	if (newsk != NULL) {
971		struct sk_filter *filter;
972
973		sock_copy(newsk, sk);
974
975		/* SANITY */
976		get_net(newsk->sk_net);
977		sk_node_init(&newsk->sk_node);
978		sock_lock_init(newsk);
979		bh_lock_sock(newsk);
980		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
981
982		atomic_set(&newsk->sk_rmem_alloc, 0);
983		atomic_set(&newsk->sk_wmem_alloc, 0);
984		atomic_set(&newsk->sk_omem_alloc, 0);
985		skb_queue_head_init(&newsk->sk_receive_queue);
986		skb_queue_head_init(&newsk->sk_write_queue);
987#ifdef CONFIG_NET_DMA
988		skb_queue_head_init(&newsk->sk_async_wait_queue);
989#endif
990
991		rwlock_init(&newsk->sk_dst_lock);
992		rwlock_init(&newsk->sk_callback_lock);
993		lockdep_set_class_and_name(&newsk->sk_callback_lock,
994				af_callback_keys + newsk->sk_family,
995				af_family_clock_key_strings[newsk->sk_family]);
996
997		newsk->sk_dst_cache	= NULL;
998		newsk->sk_wmem_queued	= 0;
999		newsk->sk_forward_alloc = 0;
1000		newsk->sk_send_head	= NULL;
1001		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1002
1003		sock_reset_flag(newsk, SOCK_DONE);
1004		skb_queue_head_init(&newsk->sk_error_queue);
1005
1006		filter = newsk->sk_filter;
1007		if (filter != NULL)
1008			sk_filter_charge(newsk, filter);
1009
1010		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1011			/* It is still raw copy of parent, so invalidate
1012			 * destructor and make plain sk_free() */
1013			newsk->sk_destruct = NULL;
1014			sk_free(newsk);
1015			newsk = NULL;
1016			goto out;
1017		}
1018
1019		newsk->sk_err	   = 0;
1020		newsk->sk_priority = 0;
1021		atomic_set(&newsk->sk_refcnt, 2);
1022
1023		/*
1024		 * Increment the counter in the same struct proto as the master
1025		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1026		 * is the same as sk->sk_prot->socks, as this field was copied
1027		 * with memcpy).
1028		 *
1029		 * This _changes_ the previous behaviour, where
1030		 * tcp_create_openreq_child always was incrementing the
1031		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1032		 * to be taken into account in all callers. -acme
1033		 */
1034		sk_refcnt_debug_inc(newsk);
1035		newsk->sk_socket = NULL;
1036		newsk->sk_sleep	 = NULL;
1037
1038		if (newsk->sk_prot->sockets_allocated)
1039			atomic_inc(newsk->sk_prot->sockets_allocated);
1040	}
1041out:
1042	return newsk;
1043}
1044
1045EXPORT_SYMBOL_GPL(sk_clone);
1046
1047void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1048{
1049	__sk_dst_set(sk, dst);
1050	sk->sk_route_caps = dst->dev->features;
1051	if (sk->sk_route_caps & NETIF_F_GSO)
1052		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1053	if (sk_can_gso(sk)) {
1054		if (dst->header_len)
1055			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1056		else
1057			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1058	}
1059}
1060EXPORT_SYMBOL_GPL(sk_setup_caps);
1061
1062void __init sk_init(void)
1063{
1064	if (num_physpages <= 4096) {
1065		sysctl_wmem_max = 32767;
1066		sysctl_rmem_max = 32767;
1067		sysctl_wmem_default = 32767;
1068		sysctl_rmem_default = 32767;
1069	} else if (num_physpages >= 131072) {
1070		sysctl_wmem_max = 131071;
1071		sysctl_rmem_max = 131071;
1072	}
1073}
1074
1075/*
1076 *	Simple resource managers for sockets.
1077 */
1078
1079
1080/*
1081 * Write buffer destructor automatically called from kfree_skb.
1082 */
1083void sock_wfree(struct sk_buff *skb)
1084{
1085	struct sock *sk = skb->sk;
1086
1087	/* In case it might be waiting for more memory. */
1088	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1089	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1090		sk->sk_write_space(sk);
1091	sock_put(sk);
1092}
1093
1094/*
1095 * Read buffer destructor automatically called from kfree_skb.
1096 */
1097void sock_rfree(struct sk_buff *skb)
1098{
1099	struct sock *sk = skb->sk;
1100
1101	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1102}
1103
1104
1105int sock_i_uid(struct sock *sk)
1106{
1107	int uid;
1108
1109	read_lock(&sk->sk_callback_lock);
1110	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1111	read_unlock(&sk->sk_callback_lock);
1112	return uid;
1113}
1114
1115unsigned long sock_i_ino(struct sock *sk)
1116{
1117	unsigned long ino;
1118
1119	read_lock(&sk->sk_callback_lock);
1120	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1121	read_unlock(&sk->sk_callback_lock);
1122	return ino;
1123}
1124
1125/*
1126 * Allocate a skb from the socket's send buffer.
1127 */
1128struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1129			     gfp_t priority)
1130{
1131	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1132		struct sk_buff * skb = alloc_skb(size, priority);
1133		if (skb) {
1134			skb_set_owner_w(skb, sk);
1135			return skb;
1136		}
1137	}
1138	return NULL;
1139}
1140
1141/*
1142 * Allocate a skb from the socket's receive buffer.
1143 */
1144struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1145			     gfp_t priority)
1146{
1147	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1148		struct sk_buff *skb = alloc_skb(size, priority);
1149		if (skb) {
1150			skb_set_owner_r(skb, sk);
1151			return skb;
1152		}
1153	}
1154	return NULL;
1155}
1156
1157/*
1158 * Allocate a memory block from the socket's option memory buffer.
1159 */
1160void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1161{
1162	if ((unsigned)size <= sysctl_optmem_max &&
1163	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1164		void *mem;
1165		/* First do the add, to avoid the race if kmalloc
1166		 * might sleep.
1167		 */
1168		atomic_add(size, &sk->sk_omem_alloc);
1169		mem = kmalloc(size, priority);
1170		if (mem)
1171			return mem;
1172		atomic_sub(size, &sk->sk_omem_alloc);
1173	}
1174	return NULL;
1175}
1176
1177/*
1178 * Free an option memory block.
1179 */
1180void sock_kfree_s(struct sock *sk, void *mem, int size)
1181{
1182	kfree(mem);
1183	atomic_sub(size, &sk->sk_omem_alloc);
1184}
1185
1186/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1187   I think, these locks should be removed for datagram sockets.
1188 */
1189static long sock_wait_for_wmem(struct sock * sk, long timeo)
1190{
1191	DEFINE_WAIT(wait);
1192
1193	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1194	for (;;) {
1195		if (!timeo)
1196			break;
1197		if (signal_pending(current))
1198			break;
1199		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1200		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1201		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1202			break;
1203		if (sk->sk_shutdown & SEND_SHUTDOWN)
1204			break;
1205		if (sk->sk_err)
1206			break;
1207		timeo = schedule_timeout(timeo);
1208	}
1209	finish_wait(sk->sk_sleep, &wait);
1210	return timeo;
1211}
1212
1213
1214/*
1215 *	Generic send/receive buffer handlers
1216 */
1217
1218static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1219					    unsigned long header_len,
1220					    unsigned long data_len,
1221					    int noblock, int *errcode)
1222{
1223	struct sk_buff *skb;
1224	gfp_t gfp_mask;
1225	long timeo;
1226	int err;
1227
1228	gfp_mask = sk->sk_allocation;
1229	if (gfp_mask & __GFP_WAIT)
1230		gfp_mask |= __GFP_REPEAT;
1231
1232	timeo = sock_sndtimeo(sk, noblock);
1233	while (1) {
1234		err = sock_error(sk);
1235		if (err != 0)
1236			goto failure;
1237
1238		err = -EPIPE;
1239		if (sk->sk_shutdown & SEND_SHUTDOWN)
1240			goto failure;
1241
1242		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1243			skb = alloc_skb(header_len, gfp_mask);
1244			if (skb) {
1245				int npages;
1246				int i;
1247
1248				/* No pages, we're done... */
1249				if (!data_len)
1250					break;
1251
1252				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1253				skb->truesize += data_len;
1254				skb_shinfo(skb)->nr_frags = npages;
1255				for (i = 0; i < npages; i++) {
1256					struct page *page;
1257					skb_frag_t *frag;
1258
1259					page = alloc_pages(sk->sk_allocation, 0);
1260					if (!page) {
1261						err = -ENOBUFS;
1262						skb_shinfo(skb)->nr_frags = i;
1263						kfree_skb(skb);
1264						goto failure;
1265					}
1266
1267					frag = &skb_shinfo(skb)->frags[i];
1268					frag->page = page;
1269					frag->page_offset = 0;
1270					frag->size = (data_len >= PAGE_SIZE ?
1271						      PAGE_SIZE :
1272						      data_len);
1273					data_len -= PAGE_SIZE;
1274				}
1275
1276				/* Full success... */
1277				break;
1278			}
1279			err = -ENOBUFS;
1280			goto failure;
1281		}
1282		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1283		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1284		err = -EAGAIN;
1285		if (!timeo)
1286			goto failure;
1287		if (signal_pending(current))
1288			goto interrupted;
1289		timeo = sock_wait_for_wmem(sk, timeo);
1290	}
1291
1292	skb_set_owner_w(skb, sk);
1293	return skb;
1294
1295interrupted:
1296	err = sock_intr_errno(timeo);
1297failure:
1298	*errcode = err;
1299	return NULL;
1300}
1301
1302struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1303				    int noblock, int *errcode)
1304{
1305	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1306}
1307
1308static void __lock_sock(struct sock *sk)
1309{
1310	DEFINE_WAIT(wait);
1311
1312	for (;;) {
1313		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1314					TASK_UNINTERRUPTIBLE);
1315		spin_unlock_bh(&sk->sk_lock.slock);
1316		schedule();
1317		spin_lock_bh(&sk->sk_lock.slock);
1318		if (!sock_owned_by_user(sk))
1319			break;
1320	}
1321	finish_wait(&sk->sk_lock.wq, &wait);
1322}
1323
1324static void __release_sock(struct sock *sk)
1325{
1326	struct sk_buff *skb = sk->sk_backlog.head;
1327
1328	do {
1329		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1330		bh_unlock_sock(sk);
1331
1332		do {
1333			struct sk_buff *next = skb->next;
1334
1335			skb->next = NULL;
1336			sk->sk_backlog_rcv(sk, skb);
1337
1338			/*
1339			 * We are in process context here with softirqs
1340			 * disabled, use cond_resched_softirq() to preempt.
1341			 * This is safe to do because we've taken the backlog
1342			 * queue private:
1343			 */
1344			cond_resched_softirq();
1345
1346			skb = next;
1347		} while (skb != NULL);
1348
1349		bh_lock_sock(sk);
1350	} while ((skb = sk->sk_backlog.head) != NULL);
1351}
1352
1353/**
1354 * sk_wait_data - wait for data to arrive at sk_receive_queue
1355 * @sk:    sock to wait on
1356 * @timeo: for how long
1357 *
1358 * Now socket state including sk->sk_err is changed only under lock,
1359 * hence we may omit checks after joining wait queue.
1360 * We check receive queue before schedule() only as optimization;
1361 * it is very likely that release_sock() added new data.
1362 */
1363int sk_wait_data(struct sock *sk, long *timeo)
1364{
1365	int rc;
1366	DEFINE_WAIT(wait);
1367
1368	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1369	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1370	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1371	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1372	finish_wait(sk->sk_sleep, &wait);
1373	return rc;
1374}
1375
1376EXPORT_SYMBOL(sk_wait_data);
1377
1378/*
1379 * Set of default routines for initialising struct proto_ops when
1380 * the protocol does not support a particular function. In certain
1381 * cases where it makes no sense for a protocol to have a "do nothing"
1382 * function, some default processing is provided.
1383 */
1384
1385int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1386{
1387	return -EOPNOTSUPP;
1388}
1389
1390int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1391		    int len, int flags)
1392{
1393	return -EOPNOTSUPP;
1394}
1395
1396int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1397{
1398	return -EOPNOTSUPP;
1399}
1400
1401int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1402{
1403	return -EOPNOTSUPP;
1404}
1405
1406int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1407		    int *len, int peer)
1408{
1409	return -EOPNOTSUPP;
1410}
1411
1412unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1413{
1414	return 0;
1415}
1416
1417int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1418{
1419	return -EOPNOTSUPP;
1420}
1421
1422int sock_no_listen(struct socket *sock, int backlog)
1423{
1424	return -EOPNOTSUPP;
1425}
1426
1427int sock_no_shutdown(struct socket *sock, int how)
1428{
1429	return -EOPNOTSUPP;
1430}
1431
1432int sock_no_setsockopt(struct socket *sock, int level, int optname,
1433		    char __user *optval, int optlen)
1434{
1435	return -EOPNOTSUPP;
1436}
1437
1438int sock_no_getsockopt(struct socket *sock, int level, int optname,
1439		    char __user *optval, int __user *optlen)
1440{
1441	return -EOPNOTSUPP;
1442}
1443
1444int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1445		    size_t len)
1446{
1447	return -EOPNOTSUPP;
1448}
1449
1450int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1451		    size_t len, int flags)
1452{
1453	return -EOPNOTSUPP;
1454}
1455
1456int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1457{
1458	/* Mirror missing mmap method error code */
1459	return -ENODEV;
1460}
1461
1462ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1463{
1464	ssize_t res;
1465	struct msghdr msg = {.msg_flags = flags};
1466	struct kvec iov;
1467	char *kaddr = kmap(page);
1468	iov.iov_base = kaddr + offset;
1469	iov.iov_len = size;
1470	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1471	kunmap(page);
1472	return res;
1473}
1474
1475/*
1476 *	Default Socket Callbacks
1477 */
1478
1479static void sock_def_wakeup(struct sock *sk)
1480{
1481	read_lock(&sk->sk_callback_lock);
1482	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1483		wake_up_interruptible_all(sk->sk_sleep);
1484	read_unlock(&sk->sk_callback_lock);
1485}
1486
1487static void sock_def_error_report(struct sock *sk)
1488{
1489	read_lock(&sk->sk_callback_lock);
1490	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1491		wake_up_interruptible(sk->sk_sleep);
1492	sk_wake_async(sk,0,POLL_ERR);
1493	read_unlock(&sk->sk_callback_lock);
1494}
1495
1496static void sock_def_readable(struct sock *sk, int len)
1497{
1498	read_lock(&sk->sk_callback_lock);
1499	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1500		wake_up_interruptible(sk->sk_sleep);
1501	sk_wake_async(sk,1,POLL_IN);
1502	read_unlock(&sk->sk_callback_lock);
1503}
1504
1505static void sock_def_write_space(struct sock *sk)
1506{
1507	read_lock(&sk->sk_callback_lock);
1508
1509	/* Do not wake up a writer until he can make "significant"
1510	 * progress.  --DaveM
1511	 */
1512	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1513		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1514			wake_up_interruptible(sk->sk_sleep);
1515
1516		/* Should agree with poll, otherwise some programs break */
1517		if (sock_writeable(sk))
1518			sk_wake_async(sk, 2, POLL_OUT);
1519	}
1520
1521	read_unlock(&sk->sk_callback_lock);
1522}
1523
1524static void sock_def_destruct(struct sock *sk)
1525{
1526	kfree(sk->sk_protinfo);
1527}
1528
1529void sk_send_sigurg(struct sock *sk)
1530{
1531	if (sk->sk_socket && sk->sk_socket->file)
1532		if (send_sigurg(&sk->sk_socket->file->f_owner))
1533			sk_wake_async(sk, 3, POLL_PRI);
1534}
1535
1536void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1537		    unsigned long expires)
1538{
1539	if (!mod_timer(timer, expires))
1540		sock_hold(sk);
1541}
1542
1543EXPORT_SYMBOL(sk_reset_timer);
1544
1545void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1546{
1547	if (timer_pending(timer) && del_timer(timer))
1548		__sock_put(sk);
1549}
1550
1551EXPORT_SYMBOL(sk_stop_timer);
1552
1553void sock_init_data(struct socket *sock, struct sock *sk)
1554{
1555	skb_queue_head_init(&sk->sk_receive_queue);
1556	skb_queue_head_init(&sk->sk_write_queue);
1557	skb_queue_head_init(&sk->sk_error_queue);
1558#ifdef CONFIG_NET_DMA
1559	skb_queue_head_init(&sk->sk_async_wait_queue);
1560#endif
1561
1562	sk->sk_send_head	=	NULL;
1563
1564	init_timer(&sk->sk_timer);
1565
1566	sk->sk_allocation	=	GFP_KERNEL;
1567	sk->sk_rcvbuf		=	sysctl_rmem_default;
1568	sk->sk_sndbuf		=	sysctl_wmem_default;
1569	sk->sk_state		=	TCP_CLOSE;
1570	sk->sk_socket		=	sock;
1571
1572	sock_set_flag(sk, SOCK_ZAPPED);
1573
1574	if (sock) {
1575		sk->sk_type	=	sock->type;
1576		sk->sk_sleep	=	&sock->wait;
1577		sock->sk	=	sk;
1578	} else
1579		sk->sk_sleep	=	NULL;
1580
1581	rwlock_init(&sk->sk_dst_lock);
1582	rwlock_init(&sk->sk_callback_lock);
1583	lockdep_set_class_and_name(&sk->sk_callback_lock,
1584			af_callback_keys + sk->sk_family,
1585			af_family_clock_key_strings[sk->sk_family]);
1586
1587	sk->sk_state_change	=	sock_def_wakeup;
1588	sk->sk_data_ready	=	sock_def_readable;
1589	sk->sk_write_space	=	sock_def_write_space;
1590	sk->sk_error_report	=	sock_def_error_report;
1591	sk->sk_destruct		=	sock_def_destruct;
1592
1593	sk->sk_sndmsg_page	=	NULL;
1594	sk->sk_sndmsg_off	=	0;
1595
1596	sk->sk_peercred.pid 	=	0;
1597	sk->sk_peercred.uid	=	-1;
1598	sk->sk_peercred.gid	=	-1;
1599	sk->sk_write_pending	=	0;
1600	sk->sk_rcvlowat		=	1;
1601	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1602	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1603
1604	sk->sk_stamp = ktime_set(-1L, -1L);
1605
1606	atomic_set(&sk->sk_refcnt, 1);
1607}
1608
1609void fastcall lock_sock_nested(struct sock *sk, int subclass)
1610{
1611	might_sleep();
1612	spin_lock_bh(&sk->sk_lock.slock);
1613	if (sk->sk_lock.owned)
1614		__lock_sock(sk);
1615	sk->sk_lock.owned = 1;
1616	spin_unlock(&sk->sk_lock.slock);
1617	/*
1618	 * The sk_lock has mutex_lock() semantics here:
1619	 */
1620	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1621	local_bh_enable();
1622}
1623
1624EXPORT_SYMBOL(lock_sock_nested);
1625
1626void fastcall release_sock(struct sock *sk)
1627{
1628	/*
1629	 * The sk_lock has mutex_unlock() semantics:
1630	 */
1631	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1632
1633	spin_lock_bh(&sk->sk_lock.slock);
1634	if (sk->sk_backlog.tail)
1635		__release_sock(sk);
1636	sk->sk_lock.owned = 0;
1637	if (waitqueue_active(&sk->sk_lock.wq))
1638		wake_up(&sk->sk_lock.wq);
1639	spin_unlock_bh(&sk->sk_lock.slock);
1640}
1641EXPORT_SYMBOL(release_sock);
1642
1643int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1644{
1645	struct timeval tv;
1646	if (!sock_flag(sk, SOCK_TIMESTAMP))
1647		sock_enable_timestamp(sk);
1648	tv = ktime_to_timeval(sk->sk_stamp);
1649	if (tv.tv_sec == -1)
1650		return -ENOENT;
1651	if (tv.tv_sec == 0) {
1652		sk->sk_stamp = ktime_get_real();
1653		tv = ktime_to_timeval(sk->sk_stamp);
1654	}
1655	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1656}
1657EXPORT_SYMBOL(sock_get_timestamp);
1658
1659int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1660{
1661	struct timespec ts;
1662	if (!sock_flag(sk, SOCK_TIMESTAMP))
1663		sock_enable_timestamp(sk);
1664	ts = ktime_to_timespec(sk->sk_stamp);
1665	if (ts.tv_sec == -1)
1666		return -ENOENT;
1667	if (ts.tv_sec == 0) {
1668		sk->sk_stamp = ktime_get_real();
1669		ts = ktime_to_timespec(sk->sk_stamp);
1670	}
1671	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1672}
1673EXPORT_SYMBOL(sock_get_timestampns);
1674
1675void sock_enable_timestamp(struct sock *sk)
1676{
1677	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1678		sock_set_flag(sk, SOCK_TIMESTAMP);
1679		net_enable_timestamp();
1680	}
1681}
1682
1683/*
1684 *	Get a socket option on an socket.
1685 *
1686 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1687 *	asynchronous errors should be reported by getsockopt. We assume
1688 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1689 */
1690int sock_common_getsockopt(struct socket *sock, int level, int optname,
1691			   char __user *optval, int __user *optlen)
1692{
1693	struct sock *sk = sock->sk;
1694
1695	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1696}
1697
1698EXPORT_SYMBOL(sock_common_getsockopt);
1699
1700#ifdef CONFIG_COMPAT
1701int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1702				  char __user *optval, int __user *optlen)
1703{
1704	struct sock *sk = sock->sk;
1705
1706	if (sk->sk_prot->compat_getsockopt != NULL)
1707		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1708						      optval, optlen);
1709	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1710}
1711EXPORT_SYMBOL(compat_sock_common_getsockopt);
1712#endif
1713
1714int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1715			struct msghdr *msg, size_t size, int flags)
1716{
1717	struct sock *sk = sock->sk;
1718	int addr_len = 0;
1719	int err;
1720
1721	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1722				   flags & ~MSG_DONTWAIT, &addr_len);
1723	if (err >= 0)
1724		msg->msg_namelen = addr_len;
1725	return err;
1726}
1727
1728EXPORT_SYMBOL(sock_common_recvmsg);
1729
1730/*
1731 *	Set socket options on an inet socket.
1732 */
1733int sock_common_setsockopt(struct socket *sock, int level, int optname,
1734			   char __user *optval, int optlen)
1735{
1736	struct sock *sk = sock->sk;
1737
1738	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1739}
1740
1741EXPORT_SYMBOL(sock_common_setsockopt);
1742
1743#ifdef CONFIG_COMPAT
1744int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1745				  char __user *optval, int optlen)
1746{
1747	struct sock *sk = sock->sk;
1748
1749	if (sk->sk_prot->compat_setsockopt != NULL)
1750		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1751						      optval, optlen);
1752	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1753}
1754EXPORT_SYMBOL(compat_sock_common_setsockopt);
1755#endif
1756
1757void sk_common_release(struct sock *sk)
1758{
1759	if (sk->sk_prot->destroy)
1760		sk->sk_prot->destroy(sk);
1761
1762	/*
1763	 * Observation: when sock_common_release is called, processes have
1764	 * no access to socket. But net still has.
1765	 * Step one, detach it from networking:
1766	 *
1767	 * A. Remove from hash tables.
1768	 */
1769
1770	sk->sk_prot->unhash(sk);
1771
1772	/*
1773	 * In this point socket cannot receive new packets, but it is possible
1774	 * that some packets are in flight because some CPU runs receiver and
1775	 * did hash table lookup before we unhashed socket. They will achieve
1776	 * receive queue and will be purged by socket destructor.
1777	 *
1778	 * Also we still have packets pending on receive queue and probably,
1779	 * our own packets waiting in device queues. sock_destroy will drain
1780	 * receive queue, but transmitted packets will delay socket destruction
1781	 * until the last reference will be released.
1782	 */
1783
1784	sock_orphan(sk);
1785
1786	xfrm_sk_free_policy(sk);
1787
1788	sk_refcnt_debug_release(sk);
1789	sock_put(sk);
1790}
1791
1792EXPORT_SYMBOL(sk_common_release);
1793
1794static DEFINE_RWLOCK(proto_list_lock);
1795static LIST_HEAD(proto_list);
1796
1797int proto_register(struct proto *prot, int alloc_slab)
1798{
1799	char *request_sock_slab_name = NULL;
1800	char *timewait_sock_slab_name;
1801	int rc = -ENOBUFS;
1802
1803	if (alloc_slab) {
1804		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1805					       SLAB_HWCACHE_ALIGN, NULL);
1806
1807		if (prot->slab == NULL) {
1808			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1809			       prot->name);
1810			goto out;
1811		}
1812
1813		if (prot->rsk_prot != NULL) {
1814			static const char mask[] = "request_sock_%s";
1815
1816			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1817			if (request_sock_slab_name == NULL)
1818				goto out_free_sock_slab;
1819
1820			sprintf(request_sock_slab_name, mask, prot->name);
1821			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1822								 prot->rsk_prot->obj_size, 0,
1823								 SLAB_HWCACHE_ALIGN, NULL);
1824
1825			if (prot->rsk_prot->slab == NULL) {
1826				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1827				       prot->name);
1828				goto out_free_request_sock_slab_name;
1829			}
1830		}
1831
1832		if (prot->twsk_prot != NULL) {
1833			static const char mask[] = "tw_sock_%s";
1834
1835			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1836
1837			if (timewait_sock_slab_name == NULL)
1838				goto out_free_request_sock_slab;
1839
1840			sprintf(timewait_sock_slab_name, mask, prot->name);
1841			prot->twsk_prot->twsk_slab =
1842				kmem_cache_create(timewait_sock_slab_name,
1843						  prot->twsk_prot->twsk_obj_size,
1844						  0, SLAB_HWCACHE_ALIGN,
1845						  NULL);
1846			if (prot->twsk_prot->twsk_slab == NULL)
1847				goto out_free_timewait_sock_slab_name;
1848		}
1849	}
1850
1851	write_lock(&proto_list_lock);
1852	list_add(&prot->node, &proto_list);
1853	write_unlock(&proto_list_lock);
1854	rc = 0;
1855out:
1856	return rc;
1857out_free_timewait_sock_slab_name:
1858	kfree(timewait_sock_slab_name);
1859out_free_request_sock_slab:
1860	if (prot->rsk_prot && prot->rsk_prot->slab) {
1861		kmem_cache_destroy(prot->rsk_prot->slab);
1862		prot->rsk_prot->slab = NULL;
1863	}
1864out_free_request_sock_slab_name:
1865	kfree(request_sock_slab_name);
1866out_free_sock_slab:
1867	kmem_cache_destroy(prot->slab);
1868	prot->slab = NULL;
1869	goto out;
1870}
1871
1872EXPORT_SYMBOL(proto_register);
1873
1874void proto_unregister(struct proto *prot)
1875{
1876	write_lock(&proto_list_lock);
1877	list_del(&prot->node);
1878	write_unlock(&proto_list_lock);
1879
1880	if (prot->slab != NULL) {
1881		kmem_cache_destroy(prot->slab);
1882		prot->slab = NULL;
1883	}
1884
1885	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1886		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1887
1888		kmem_cache_destroy(prot->rsk_prot->slab);
1889		kfree(name);
1890		prot->rsk_prot->slab = NULL;
1891	}
1892
1893	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1894		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1895
1896		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1897		kfree(name);
1898		prot->twsk_prot->twsk_slab = NULL;
1899	}
1900}
1901
1902EXPORT_SYMBOL(proto_unregister);
1903
1904#ifdef CONFIG_PROC_FS
1905static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1906{
1907	read_lock(&proto_list_lock);
1908	return seq_list_start_head(&proto_list, *pos);
1909}
1910
1911static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1912{
1913	return seq_list_next(v, &proto_list, pos);
1914}
1915
1916static void proto_seq_stop(struct seq_file *seq, void *v)
1917{
1918	read_unlock(&proto_list_lock);
1919}
1920
1921static char proto_method_implemented(const void *method)
1922{
1923	return method == NULL ? 'n' : 'y';
1924}
1925
1926static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1927{
1928	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1929			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1930		   proto->name,
1931		   proto->obj_size,
1932		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1933		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1934		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1935		   proto->max_header,
1936		   proto->slab == NULL ? "no" : "yes",
1937		   module_name(proto->owner),
1938		   proto_method_implemented(proto->close),
1939		   proto_method_implemented(proto->connect),
1940		   proto_method_implemented(proto->disconnect),
1941		   proto_method_implemented(proto->accept),
1942		   proto_method_implemented(proto->ioctl),
1943		   proto_method_implemented(proto->init),
1944		   proto_method_implemented(proto->destroy),
1945		   proto_method_implemented(proto->shutdown),
1946		   proto_method_implemented(proto->setsockopt),
1947		   proto_method_implemented(proto->getsockopt),
1948		   proto_method_implemented(proto->sendmsg),
1949		   proto_method_implemented(proto->recvmsg),
1950		   proto_method_implemented(proto->sendpage),
1951		   proto_method_implemented(proto->bind),
1952		   proto_method_implemented(proto->backlog_rcv),
1953		   proto_method_implemented(proto->hash),
1954		   proto_method_implemented(proto->unhash),
1955		   proto_method_implemented(proto->get_port),
1956		   proto_method_implemented(proto->enter_memory_pressure));
1957}
1958
1959static int proto_seq_show(struct seq_file *seq, void *v)
1960{
1961	if (v == &proto_list)
1962		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1963			   "protocol",
1964			   "size",
1965			   "sockets",
1966			   "memory",
1967			   "press",
1968			   "maxhdr",
1969			   "slab",
1970			   "module",
1971			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1972	else
1973		proto_seq_printf(seq, list_entry(v, struct proto, node));
1974	return 0;
1975}
1976
1977static const struct seq_operations proto_seq_ops = {
1978	.start  = proto_seq_start,
1979	.next   = proto_seq_next,
1980	.stop   = proto_seq_stop,
1981	.show   = proto_seq_show,
1982};
1983
1984static int proto_seq_open(struct inode *inode, struct file *file)
1985{
1986	return seq_open(file, &proto_seq_ops);
1987}
1988
1989static const struct file_operations proto_seq_fops = {
1990	.owner		= THIS_MODULE,
1991	.open		= proto_seq_open,
1992	.read		= seq_read,
1993	.llseek		= seq_lseek,
1994	.release	= seq_release,
1995};
1996
1997static int __init proto_init(void)
1998{
1999	/* register /proc/net/protocols */
2000	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2001}
2002
2003subsys_initcall(proto_init);
2004
2005#endif /* PROC_FS */
2006
2007EXPORT_SYMBOL(sk_alloc);
2008EXPORT_SYMBOL(sk_free);
2009EXPORT_SYMBOL(sk_send_sigurg);
2010EXPORT_SYMBOL(sock_alloc_send_skb);
2011EXPORT_SYMBOL(sock_init_data);
2012EXPORT_SYMBOL(sock_kfree_s);
2013EXPORT_SYMBOL(sock_kmalloc);
2014EXPORT_SYMBOL(sock_no_accept);
2015EXPORT_SYMBOL(sock_no_bind);
2016EXPORT_SYMBOL(sock_no_connect);
2017EXPORT_SYMBOL(sock_no_getname);
2018EXPORT_SYMBOL(sock_no_getsockopt);
2019EXPORT_SYMBOL(sock_no_ioctl);
2020EXPORT_SYMBOL(sock_no_listen);
2021EXPORT_SYMBOL(sock_no_mmap);
2022EXPORT_SYMBOL(sock_no_poll);
2023EXPORT_SYMBOL(sock_no_recvmsg);
2024EXPORT_SYMBOL(sock_no_sendmsg);
2025EXPORT_SYMBOL(sock_no_sendpage);
2026EXPORT_SYMBOL(sock_no_setsockopt);
2027EXPORT_SYMBOL(sock_no_shutdown);
2028EXPORT_SYMBOL(sock_no_socketpair);
2029EXPORT_SYMBOL(sock_rfree);
2030EXPORT_SYMBOL(sock_setsockopt);
2031EXPORT_SYMBOL(sock_wfree);
2032EXPORT_SYMBOL(sock_wmalloc);
2033EXPORT_SYMBOL(sock_i_uid);
2034EXPORT_SYMBOL(sock_i_ino);
2035EXPORT_SYMBOL(sysctl_optmem_max);
2036#ifdef CONFIG_SYSCTL
2037EXPORT_SYMBOL(sysctl_rmem_max);
2038EXPORT_SYMBOL(sysctl_wmem_max);
2039#endif
2040