sock.c revision 676d23690fb62b5d51ba5d659935e9f7d9da9f8e
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/errqueue.h>
97#include <linux/types.h>
98#include <linux/socket.h>
99#include <linux/in.h>
100#include <linux/kernel.h>
101#include <linux/module.h>
102#include <linux/proc_fs.h>
103#include <linux/seq_file.h>
104#include <linux/sched.h>
105#include <linux/timer.h>
106#include <linux/string.h>
107#include <linux/sockios.h>
108#include <linux/net.h>
109#include <linux/mm.h>
110#include <linux/slab.h>
111#include <linux/interrupt.h>
112#include <linux/poll.h>
113#include <linux/tcp.h>
114#include <linux/init.h>
115#include <linux/highmem.h>
116#include <linux/user_namespace.h>
117#include <linux/static_key.h>
118#include <linux/memcontrol.h>
119#include <linux/prefetch.h>
120
121#include <asm/uaccess.h>
122
123#include <linux/netdevice.h>
124#include <net/protocol.h>
125#include <linux/skbuff.h>
126#include <net/net_namespace.h>
127#include <net/request_sock.h>
128#include <net/sock.h>
129#include <linux/net_tstamp.h>
130#include <net/xfrm.h>
131#include <linux/ipsec.h>
132#include <net/cls_cgroup.h>
133#include <net/netprio_cgroup.h>
134
135#include <linux/filter.h>
136
137#include <trace/events/sock.h>
138
139#ifdef CONFIG_INET
140#include <net/tcp.h>
141#endif
142
143#include <net/busy_poll.h>
144
145static DEFINE_MUTEX(proto_list_mutex);
146static LIST_HEAD(proto_list);
147
148#ifdef CONFIG_MEMCG_KMEM
149int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
150{
151	struct proto *proto;
152	int ret = 0;
153
154	mutex_lock(&proto_list_mutex);
155	list_for_each_entry(proto, &proto_list, node) {
156		if (proto->init_cgroup) {
157			ret = proto->init_cgroup(memcg, ss);
158			if (ret)
159				goto out;
160		}
161	}
162
163	mutex_unlock(&proto_list_mutex);
164	return ret;
165out:
166	list_for_each_entry_continue_reverse(proto, &proto_list, node)
167		if (proto->destroy_cgroup)
168			proto->destroy_cgroup(memcg);
169	mutex_unlock(&proto_list_mutex);
170	return ret;
171}
172
173void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
174{
175	struct proto *proto;
176
177	mutex_lock(&proto_list_mutex);
178	list_for_each_entry_reverse(proto, &proto_list, node)
179		if (proto->destroy_cgroup)
180			proto->destroy_cgroup(memcg);
181	mutex_unlock(&proto_list_mutex);
182}
183#endif
184
185/*
186 * Each address family might have different locking rules, so we have
187 * one slock key per address family:
188 */
189static struct lock_class_key af_family_keys[AF_MAX];
190static struct lock_class_key af_family_slock_keys[AF_MAX];
191
192#if defined(CONFIG_MEMCG_KMEM)
193struct static_key memcg_socket_limit_enabled;
194EXPORT_SYMBOL(memcg_socket_limit_enabled);
195#endif
196
197/*
198 * Make lock validator output more readable. (we pre-construct these
199 * strings build-time, so that runtime initialization of socket
200 * locks is fast):
201 */
202static const char *const af_family_key_strings[AF_MAX+1] = {
203  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
204  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
205  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
206  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
207  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
208  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
209  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
210  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
211  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
212  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
213  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
214  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
215  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
216  "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
217};
218static const char *const af_family_slock_key_strings[AF_MAX+1] = {
219  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
220  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
221  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
222  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
223  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
224  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
225  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
226  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
227  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
228  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
229  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
230  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
231  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
232  "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
233};
234static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
236  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
237  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
238  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
239  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
240  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
241  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
242  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
243  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
244  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
245  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
246  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
247  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
248  "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
249};
250
251/*
252 * sk_callback_lock locking rules are per-address-family,
253 * so split the lock classes by using a per-AF key:
254 */
255static struct lock_class_key af_callback_keys[AF_MAX];
256
257/* Take into consideration the size of the struct sk_buff overhead in the
258 * determination of these values, since that is non-constant across
259 * platforms.  This makes socket queueing behavior and performance
260 * not depend upon such differences.
261 */
262#define _SK_MEM_PACKETS		256
263#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
264#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
265#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
266
267/* Run time adjustable parameters. */
268__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269EXPORT_SYMBOL(sysctl_wmem_max);
270__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271EXPORT_SYMBOL(sysctl_rmem_max);
272__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274
275/* Maximal space eaten by iovec or ancillary data plus some space */
276int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277EXPORT_SYMBOL(sysctl_optmem_max);
278
279struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
280EXPORT_SYMBOL_GPL(memalloc_socks);
281
282/**
283 * sk_set_memalloc - sets %SOCK_MEMALLOC
284 * @sk: socket to set it on
285 *
286 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
287 * It's the responsibility of the admin to adjust min_free_kbytes
288 * to meet the requirements
289 */
290void sk_set_memalloc(struct sock *sk)
291{
292	sock_set_flag(sk, SOCK_MEMALLOC);
293	sk->sk_allocation |= __GFP_MEMALLOC;
294	static_key_slow_inc(&memalloc_socks);
295}
296EXPORT_SYMBOL_GPL(sk_set_memalloc);
297
298void sk_clear_memalloc(struct sock *sk)
299{
300	sock_reset_flag(sk, SOCK_MEMALLOC);
301	sk->sk_allocation &= ~__GFP_MEMALLOC;
302	static_key_slow_dec(&memalloc_socks);
303
304	/*
305	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
306	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
307	 * it has rmem allocations there is a risk that the user of the
308	 * socket cannot make forward progress due to exceeding the rmem
309	 * limits. By rights, sk_clear_memalloc() should only be called
310	 * on sockets being torn down but warn and reset the accounting if
311	 * that assumption breaks.
312	 */
313	if (WARN_ON(sk->sk_forward_alloc))
314		sk_mem_reclaim(sk);
315}
316EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317
318int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319{
320	int ret;
321	unsigned long pflags = current->flags;
322
323	/* these should have been dropped before queueing */
324	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325
326	current->flags |= PF_MEMALLOC;
327	ret = sk->sk_backlog_rcv(sk, skb);
328	tsk_restore_flags(current, pflags, PF_MEMALLOC);
329
330	return ret;
331}
332EXPORT_SYMBOL(__sk_backlog_rcv);
333
334static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
335{
336	struct timeval tv;
337
338	if (optlen < sizeof(tv))
339		return -EINVAL;
340	if (copy_from_user(&tv, optval, sizeof(tv)))
341		return -EFAULT;
342	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
343		return -EDOM;
344
345	if (tv.tv_sec < 0) {
346		static int warned __read_mostly;
347
348		*timeo_p = 0;
349		if (warned < 10 && net_ratelimit()) {
350			warned++;
351			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
352				__func__, current->comm, task_pid_nr(current));
353		}
354		return 0;
355	}
356	*timeo_p = MAX_SCHEDULE_TIMEOUT;
357	if (tv.tv_sec == 0 && tv.tv_usec == 0)
358		return 0;
359	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
360		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
361	return 0;
362}
363
364static void sock_warn_obsolete_bsdism(const char *name)
365{
366	static int warned;
367	static char warncomm[TASK_COMM_LEN];
368	if (strcmp(warncomm, current->comm) && warned < 5) {
369		strcpy(warncomm,  current->comm);
370		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
371			warncomm, name);
372		warned++;
373	}
374}
375
376#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
377
378static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
379{
380	if (sk->sk_flags & flags) {
381		sk->sk_flags &= ~flags;
382		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
383			net_disable_timestamp();
384	}
385}
386
387
388int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
389{
390	int err;
391	int skb_len;
392	unsigned long flags;
393	struct sk_buff_head *list = &sk->sk_receive_queue;
394
395	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
396		atomic_inc(&sk->sk_drops);
397		trace_sock_rcvqueue_full(sk, skb);
398		return -ENOMEM;
399	}
400
401	err = sk_filter(sk, skb);
402	if (err)
403		return err;
404
405	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
406		atomic_inc(&sk->sk_drops);
407		return -ENOBUFS;
408	}
409
410	skb->dev = NULL;
411	skb_set_owner_r(skb, sk);
412
413	/* Cache the SKB length before we tack it onto the receive
414	 * queue.  Once it is added it no longer belongs to us and
415	 * may be freed by other threads of control pulling packets
416	 * from the queue.
417	 */
418	skb_len = skb->len;
419
420	/* we escape from rcu protected region, make sure we dont leak
421	 * a norefcounted dst
422	 */
423	skb_dst_force(skb);
424
425	spin_lock_irqsave(&list->lock, flags);
426	skb->dropcount = atomic_read(&sk->sk_drops);
427	__skb_queue_tail(list, skb);
428	spin_unlock_irqrestore(&list->lock, flags);
429
430	if (!sock_flag(sk, SOCK_DEAD))
431		sk->sk_data_ready(sk);
432	return 0;
433}
434EXPORT_SYMBOL(sock_queue_rcv_skb);
435
436int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
437{
438	int rc = NET_RX_SUCCESS;
439
440	if (sk_filter(sk, skb))
441		goto discard_and_relse;
442
443	skb->dev = NULL;
444
445	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
446		atomic_inc(&sk->sk_drops);
447		goto discard_and_relse;
448	}
449	if (nested)
450		bh_lock_sock_nested(sk);
451	else
452		bh_lock_sock(sk);
453	if (!sock_owned_by_user(sk)) {
454		/*
455		 * trylock + unlock semantics:
456		 */
457		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
458
459		rc = sk_backlog_rcv(sk, skb);
460
461		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
462	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
463		bh_unlock_sock(sk);
464		atomic_inc(&sk->sk_drops);
465		goto discard_and_relse;
466	}
467
468	bh_unlock_sock(sk);
469out:
470	sock_put(sk);
471	return rc;
472discard_and_relse:
473	kfree_skb(skb);
474	goto out;
475}
476EXPORT_SYMBOL(sk_receive_skb);
477
478struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
479{
480	struct dst_entry *dst = __sk_dst_get(sk);
481
482	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
483		sk_tx_queue_clear(sk);
484		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
485		dst_release(dst);
486		return NULL;
487	}
488
489	return dst;
490}
491EXPORT_SYMBOL(__sk_dst_check);
492
493struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
494{
495	struct dst_entry *dst = sk_dst_get(sk);
496
497	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
498		sk_dst_reset(sk);
499		dst_release(dst);
500		return NULL;
501	}
502
503	return dst;
504}
505EXPORT_SYMBOL(sk_dst_check);
506
507static int sock_setbindtodevice(struct sock *sk, char __user *optval,
508				int optlen)
509{
510	int ret = -ENOPROTOOPT;
511#ifdef CONFIG_NETDEVICES
512	struct net *net = sock_net(sk);
513	char devname[IFNAMSIZ];
514	int index;
515
516	/* Sorry... */
517	ret = -EPERM;
518	if (!ns_capable(net->user_ns, CAP_NET_RAW))
519		goto out;
520
521	ret = -EINVAL;
522	if (optlen < 0)
523		goto out;
524
525	/* Bind this socket to a particular device like "eth0",
526	 * as specified in the passed interface name. If the
527	 * name is "" or the option length is zero the socket
528	 * is not bound.
529	 */
530	if (optlen > IFNAMSIZ - 1)
531		optlen = IFNAMSIZ - 1;
532	memset(devname, 0, sizeof(devname));
533
534	ret = -EFAULT;
535	if (copy_from_user(devname, optval, optlen))
536		goto out;
537
538	index = 0;
539	if (devname[0] != '\0') {
540		struct net_device *dev;
541
542		rcu_read_lock();
543		dev = dev_get_by_name_rcu(net, devname);
544		if (dev)
545			index = dev->ifindex;
546		rcu_read_unlock();
547		ret = -ENODEV;
548		if (!dev)
549			goto out;
550	}
551
552	lock_sock(sk);
553	sk->sk_bound_dev_if = index;
554	sk_dst_reset(sk);
555	release_sock(sk);
556
557	ret = 0;
558
559out:
560#endif
561
562	return ret;
563}
564
565static int sock_getbindtodevice(struct sock *sk, char __user *optval,
566				int __user *optlen, int len)
567{
568	int ret = -ENOPROTOOPT;
569#ifdef CONFIG_NETDEVICES
570	struct net *net = sock_net(sk);
571	char devname[IFNAMSIZ];
572
573	if (sk->sk_bound_dev_if == 0) {
574		len = 0;
575		goto zero;
576	}
577
578	ret = -EINVAL;
579	if (len < IFNAMSIZ)
580		goto out;
581
582	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
583	if (ret)
584		goto out;
585
586	len = strlen(devname) + 1;
587
588	ret = -EFAULT;
589	if (copy_to_user(optval, devname, len))
590		goto out;
591
592zero:
593	ret = -EFAULT;
594	if (put_user(len, optlen))
595		goto out;
596
597	ret = 0;
598
599out:
600#endif
601
602	return ret;
603}
604
605static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
606{
607	if (valbool)
608		sock_set_flag(sk, bit);
609	else
610		sock_reset_flag(sk, bit);
611}
612
613/*
614 *	This is meant for all protocols to use and covers goings on
615 *	at the socket level. Everything here is generic.
616 */
617
618int sock_setsockopt(struct socket *sock, int level, int optname,
619		    char __user *optval, unsigned int optlen)
620{
621	struct sock *sk = sock->sk;
622	int val;
623	int valbool;
624	struct linger ling;
625	int ret = 0;
626
627	/*
628	 *	Options without arguments
629	 */
630
631	if (optname == SO_BINDTODEVICE)
632		return sock_setbindtodevice(sk, optval, optlen);
633
634	if (optlen < sizeof(int))
635		return -EINVAL;
636
637	if (get_user(val, (int __user *)optval))
638		return -EFAULT;
639
640	valbool = val ? 1 : 0;
641
642	lock_sock(sk);
643
644	switch (optname) {
645	case SO_DEBUG:
646		if (val && !capable(CAP_NET_ADMIN))
647			ret = -EACCES;
648		else
649			sock_valbool_flag(sk, SOCK_DBG, valbool);
650		break;
651	case SO_REUSEADDR:
652		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
653		break;
654	case SO_REUSEPORT:
655		sk->sk_reuseport = valbool;
656		break;
657	case SO_TYPE:
658	case SO_PROTOCOL:
659	case SO_DOMAIN:
660	case SO_ERROR:
661		ret = -ENOPROTOOPT;
662		break;
663	case SO_DONTROUTE:
664		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
665		break;
666	case SO_BROADCAST:
667		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
668		break;
669	case SO_SNDBUF:
670		/* Don't error on this BSD doesn't and if you think
671		 * about it this is right. Otherwise apps have to
672		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
673		 * are treated in BSD as hints
674		 */
675		val = min_t(u32, val, sysctl_wmem_max);
676set_sndbuf:
677		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
678		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
679		/* Wake up sending tasks if we upped the value. */
680		sk->sk_write_space(sk);
681		break;
682
683	case SO_SNDBUFFORCE:
684		if (!capable(CAP_NET_ADMIN)) {
685			ret = -EPERM;
686			break;
687		}
688		goto set_sndbuf;
689
690	case SO_RCVBUF:
691		/* Don't error on this BSD doesn't and if you think
692		 * about it this is right. Otherwise apps have to
693		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
694		 * are treated in BSD as hints
695		 */
696		val = min_t(u32, val, sysctl_rmem_max);
697set_rcvbuf:
698		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
699		/*
700		 * We double it on the way in to account for
701		 * "struct sk_buff" etc. overhead.   Applications
702		 * assume that the SO_RCVBUF setting they make will
703		 * allow that much actual data to be received on that
704		 * socket.
705		 *
706		 * Applications are unaware that "struct sk_buff" and
707		 * other overheads allocate from the receive buffer
708		 * during socket buffer allocation.
709		 *
710		 * And after considering the possible alternatives,
711		 * returning the value we actually used in getsockopt
712		 * is the most desirable behavior.
713		 */
714		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
715		break;
716
717	case SO_RCVBUFFORCE:
718		if (!capable(CAP_NET_ADMIN)) {
719			ret = -EPERM;
720			break;
721		}
722		goto set_rcvbuf;
723
724	case SO_KEEPALIVE:
725#ifdef CONFIG_INET
726		if (sk->sk_protocol == IPPROTO_TCP &&
727		    sk->sk_type == SOCK_STREAM)
728			tcp_set_keepalive(sk, valbool);
729#endif
730		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
731		break;
732
733	case SO_OOBINLINE:
734		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
735		break;
736
737	case SO_NO_CHECK:
738		sk->sk_no_check = valbool;
739		break;
740
741	case SO_PRIORITY:
742		if ((val >= 0 && val <= 6) ||
743		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
744			sk->sk_priority = val;
745		else
746			ret = -EPERM;
747		break;
748
749	case SO_LINGER:
750		if (optlen < sizeof(ling)) {
751			ret = -EINVAL;	/* 1003.1g */
752			break;
753		}
754		if (copy_from_user(&ling, optval, sizeof(ling))) {
755			ret = -EFAULT;
756			break;
757		}
758		if (!ling.l_onoff)
759			sock_reset_flag(sk, SOCK_LINGER);
760		else {
761#if (BITS_PER_LONG == 32)
762			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
763				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
764			else
765#endif
766				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
767			sock_set_flag(sk, SOCK_LINGER);
768		}
769		break;
770
771	case SO_BSDCOMPAT:
772		sock_warn_obsolete_bsdism("setsockopt");
773		break;
774
775	case SO_PASSCRED:
776		if (valbool)
777			set_bit(SOCK_PASSCRED, &sock->flags);
778		else
779			clear_bit(SOCK_PASSCRED, &sock->flags);
780		break;
781
782	case SO_TIMESTAMP:
783	case SO_TIMESTAMPNS:
784		if (valbool)  {
785			if (optname == SO_TIMESTAMP)
786				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
787			else
788				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
789			sock_set_flag(sk, SOCK_RCVTSTAMP);
790			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
791		} else {
792			sock_reset_flag(sk, SOCK_RCVTSTAMP);
793			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
794		}
795		break;
796
797	case SO_TIMESTAMPING:
798		if (val & ~SOF_TIMESTAMPING_MASK) {
799			ret = -EINVAL;
800			break;
801		}
802		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
803				  val & SOF_TIMESTAMPING_TX_HARDWARE);
804		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
805				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
806		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
807				  val & SOF_TIMESTAMPING_RX_HARDWARE);
808		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
809			sock_enable_timestamp(sk,
810					      SOCK_TIMESTAMPING_RX_SOFTWARE);
811		else
812			sock_disable_timestamp(sk,
813					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
814		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
815				  val & SOF_TIMESTAMPING_SOFTWARE);
816		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
817				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
818		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
819				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
820		break;
821
822	case SO_RCVLOWAT:
823		if (val < 0)
824			val = INT_MAX;
825		sk->sk_rcvlowat = val ? : 1;
826		break;
827
828	case SO_RCVTIMEO:
829		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
830		break;
831
832	case SO_SNDTIMEO:
833		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
834		break;
835
836	case SO_ATTACH_FILTER:
837		ret = -EINVAL;
838		if (optlen == sizeof(struct sock_fprog)) {
839			struct sock_fprog fprog;
840
841			ret = -EFAULT;
842			if (copy_from_user(&fprog, optval, sizeof(fprog)))
843				break;
844
845			ret = sk_attach_filter(&fprog, sk);
846		}
847		break;
848
849	case SO_DETACH_FILTER:
850		ret = sk_detach_filter(sk);
851		break;
852
853	case SO_LOCK_FILTER:
854		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
855			ret = -EPERM;
856		else
857			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
858		break;
859
860	case SO_PASSSEC:
861		if (valbool)
862			set_bit(SOCK_PASSSEC, &sock->flags);
863		else
864			clear_bit(SOCK_PASSSEC, &sock->flags);
865		break;
866	case SO_MARK:
867		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
868			ret = -EPERM;
869		else
870			sk->sk_mark = val;
871		break;
872
873		/* We implement the SO_SNDLOWAT etc to
874		   not be settable (1003.1g 5.3) */
875	case SO_RXQ_OVFL:
876		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
877		break;
878
879	case SO_WIFI_STATUS:
880		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
881		break;
882
883	case SO_PEEK_OFF:
884		if (sock->ops->set_peek_off)
885			ret = sock->ops->set_peek_off(sk, val);
886		else
887			ret = -EOPNOTSUPP;
888		break;
889
890	case SO_NOFCS:
891		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
892		break;
893
894	case SO_SELECT_ERR_QUEUE:
895		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
896		break;
897
898#ifdef CONFIG_NET_RX_BUSY_POLL
899	case SO_BUSY_POLL:
900		/* allow unprivileged users to decrease the value */
901		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
902			ret = -EPERM;
903		else {
904			if (val < 0)
905				ret = -EINVAL;
906			else
907				sk->sk_ll_usec = val;
908		}
909		break;
910#endif
911
912	case SO_MAX_PACING_RATE:
913		sk->sk_max_pacing_rate = val;
914		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
915					 sk->sk_max_pacing_rate);
916		break;
917
918	default:
919		ret = -ENOPROTOOPT;
920		break;
921	}
922	release_sock(sk);
923	return ret;
924}
925EXPORT_SYMBOL(sock_setsockopt);
926
927
928static void cred_to_ucred(struct pid *pid, const struct cred *cred,
929			  struct ucred *ucred)
930{
931	ucred->pid = pid_vnr(pid);
932	ucred->uid = ucred->gid = -1;
933	if (cred) {
934		struct user_namespace *current_ns = current_user_ns();
935
936		ucred->uid = from_kuid_munged(current_ns, cred->euid);
937		ucred->gid = from_kgid_munged(current_ns, cred->egid);
938	}
939}
940
941int sock_getsockopt(struct socket *sock, int level, int optname,
942		    char __user *optval, int __user *optlen)
943{
944	struct sock *sk = sock->sk;
945
946	union {
947		int val;
948		struct linger ling;
949		struct timeval tm;
950	} v;
951
952	int lv = sizeof(int);
953	int len;
954
955	if (get_user(len, optlen))
956		return -EFAULT;
957	if (len < 0)
958		return -EINVAL;
959
960	memset(&v, 0, sizeof(v));
961
962	switch (optname) {
963	case SO_DEBUG:
964		v.val = sock_flag(sk, SOCK_DBG);
965		break;
966
967	case SO_DONTROUTE:
968		v.val = sock_flag(sk, SOCK_LOCALROUTE);
969		break;
970
971	case SO_BROADCAST:
972		v.val = sock_flag(sk, SOCK_BROADCAST);
973		break;
974
975	case SO_SNDBUF:
976		v.val = sk->sk_sndbuf;
977		break;
978
979	case SO_RCVBUF:
980		v.val = sk->sk_rcvbuf;
981		break;
982
983	case SO_REUSEADDR:
984		v.val = sk->sk_reuse;
985		break;
986
987	case SO_REUSEPORT:
988		v.val = sk->sk_reuseport;
989		break;
990
991	case SO_KEEPALIVE:
992		v.val = sock_flag(sk, SOCK_KEEPOPEN);
993		break;
994
995	case SO_TYPE:
996		v.val = sk->sk_type;
997		break;
998
999	case SO_PROTOCOL:
1000		v.val = sk->sk_protocol;
1001		break;
1002
1003	case SO_DOMAIN:
1004		v.val = sk->sk_family;
1005		break;
1006
1007	case SO_ERROR:
1008		v.val = -sock_error(sk);
1009		if (v.val == 0)
1010			v.val = xchg(&sk->sk_err_soft, 0);
1011		break;
1012
1013	case SO_OOBINLINE:
1014		v.val = sock_flag(sk, SOCK_URGINLINE);
1015		break;
1016
1017	case SO_NO_CHECK:
1018		v.val = sk->sk_no_check;
1019		break;
1020
1021	case SO_PRIORITY:
1022		v.val = sk->sk_priority;
1023		break;
1024
1025	case SO_LINGER:
1026		lv		= sizeof(v.ling);
1027		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1028		v.ling.l_linger	= sk->sk_lingertime / HZ;
1029		break;
1030
1031	case SO_BSDCOMPAT:
1032		sock_warn_obsolete_bsdism("getsockopt");
1033		break;
1034
1035	case SO_TIMESTAMP:
1036		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1037				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1038		break;
1039
1040	case SO_TIMESTAMPNS:
1041		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1042		break;
1043
1044	case SO_TIMESTAMPING:
1045		v.val = 0;
1046		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1047			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1048		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1049			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1050		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1051			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1052		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1053			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1054		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1055			v.val |= SOF_TIMESTAMPING_SOFTWARE;
1056		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1057			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1058		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1059			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1060		break;
1061
1062	case SO_RCVTIMEO:
1063		lv = sizeof(struct timeval);
1064		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1065			v.tm.tv_sec = 0;
1066			v.tm.tv_usec = 0;
1067		} else {
1068			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1069			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1070		}
1071		break;
1072
1073	case SO_SNDTIMEO:
1074		lv = sizeof(struct timeval);
1075		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1076			v.tm.tv_sec = 0;
1077			v.tm.tv_usec = 0;
1078		} else {
1079			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1080			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1081		}
1082		break;
1083
1084	case SO_RCVLOWAT:
1085		v.val = sk->sk_rcvlowat;
1086		break;
1087
1088	case SO_SNDLOWAT:
1089		v.val = 1;
1090		break;
1091
1092	case SO_PASSCRED:
1093		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1094		break;
1095
1096	case SO_PEERCRED:
1097	{
1098		struct ucred peercred;
1099		if (len > sizeof(peercred))
1100			len = sizeof(peercred);
1101		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1102		if (copy_to_user(optval, &peercred, len))
1103			return -EFAULT;
1104		goto lenout;
1105	}
1106
1107	case SO_PEERNAME:
1108	{
1109		char address[128];
1110
1111		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1112			return -ENOTCONN;
1113		if (lv < len)
1114			return -EINVAL;
1115		if (copy_to_user(optval, address, len))
1116			return -EFAULT;
1117		goto lenout;
1118	}
1119
1120	/* Dubious BSD thing... Probably nobody even uses it, but
1121	 * the UNIX standard wants it for whatever reason... -DaveM
1122	 */
1123	case SO_ACCEPTCONN:
1124		v.val = sk->sk_state == TCP_LISTEN;
1125		break;
1126
1127	case SO_PASSSEC:
1128		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1129		break;
1130
1131	case SO_PEERSEC:
1132		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1133
1134	case SO_MARK:
1135		v.val = sk->sk_mark;
1136		break;
1137
1138	case SO_RXQ_OVFL:
1139		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1140		break;
1141
1142	case SO_WIFI_STATUS:
1143		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1144		break;
1145
1146	case SO_PEEK_OFF:
1147		if (!sock->ops->set_peek_off)
1148			return -EOPNOTSUPP;
1149
1150		v.val = sk->sk_peek_off;
1151		break;
1152	case SO_NOFCS:
1153		v.val = sock_flag(sk, SOCK_NOFCS);
1154		break;
1155
1156	case SO_BINDTODEVICE:
1157		return sock_getbindtodevice(sk, optval, optlen, len);
1158
1159	case SO_GET_FILTER:
1160		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1161		if (len < 0)
1162			return len;
1163
1164		goto lenout;
1165
1166	case SO_LOCK_FILTER:
1167		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1168		break;
1169
1170	case SO_BPF_EXTENSIONS:
1171		v.val = bpf_tell_extensions();
1172		break;
1173
1174	case SO_SELECT_ERR_QUEUE:
1175		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1176		break;
1177
1178#ifdef CONFIG_NET_RX_BUSY_POLL
1179	case SO_BUSY_POLL:
1180		v.val = sk->sk_ll_usec;
1181		break;
1182#endif
1183
1184	case SO_MAX_PACING_RATE:
1185		v.val = sk->sk_max_pacing_rate;
1186		break;
1187
1188	default:
1189		return -ENOPROTOOPT;
1190	}
1191
1192	if (len > lv)
1193		len = lv;
1194	if (copy_to_user(optval, &v, len))
1195		return -EFAULT;
1196lenout:
1197	if (put_user(len, optlen))
1198		return -EFAULT;
1199	return 0;
1200}
1201
1202/*
1203 * Initialize an sk_lock.
1204 *
1205 * (We also register the sk_lock with the lock validator.)
1206 */
1207static inline void sock_lock_init(struct sock *sk)
1208{
1209	sock_lock_init_class_and_name(sk,
1210			af_family_slock_key_strings[sk->sk_family],
1211			af_family_slock_keys + sk->sk_family,
1212			af_family_key_strings[sk->sk_family],
1213			af_family_keys + sk->sk_family);
1214}
1215
1216/*
1217 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1218 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1219 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1220 */
1221static void sock_copy(struct sock *nsk, const struct sock *osk)
1222{
1223#ifdef CONFIG_SECURITY_NETWORK
1224	void *sptr = nsk->sk_security;
1225#endif
1226	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1227
1228	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1229	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1230
1231#ifdef CONFIG_SECURITY_NETWORK
1232	nsk->sk_security = sptr;
1233	security_sk_clone(osk, nsk);
1234#endif
1235}
1236
1237void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1238{
1239	unsigned long nulls1, nulls2;
1240
1241	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1242	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1243	if (nulls1 > nulls2)
1244		swap(nulls1, nulls2);
1245
1246	if (nulls1 != 0)
1247		memset((char *)sk, 0, nulls1);
1248	memset((char *)sk + nulls1 + sizeof(void *), 0,
1249	       nulls2 - nulls1 - sizeof(void *));
1250	memset((char *)sk + nulls2 + sizeof(void *), 0,
1251	       size - nulls2 - sizeof(void *));
1252}
1253EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1254
1255static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1256		int family)
1257{
1258	struct sock *sk;
1259	struct kmem_cache *slab;
1260
1261	slab = prot->slab;
1262	if (slab != NULL) {
1263		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1264		if (!sk)
1265			return sk;
1266		if (priority & __GFP_ZERO) {
1267			if (prot->clear_sk)
1268				prot->clear_sk(sk, prot->obj_size);
1269			else
1270				sk_prot_clear_nulls(sk, prot->obj_size);
1271		}
1272	} else
1273		sk = kmalloc(prot->obj_size, priority);
1274
1275	if (sk != NULL) {
1276		kmemcheck_annotate_bitfield(sk, flags);
1277
1278		if (security_sk_alloc(sk, family, priority))
1279			goto out_free;
1280
1281		if (!try_module_get(prot->owner))
1282			goto out_free_sec;
1283		sk_tx_queue_clear(sk);
1284	}
1285
1286	return sk;
1287
1288out_free_sec:
1289	security_sk_free(sk);
1290out_free:
1291	if (slab != NULL)
1292		kmem_cache_free(slab, sk);
1293	else
1294		kfree(sk);
1295	return NULL;
1296}
1297
1298static void sk_prot_free(struct proto *prot, struct sock *sk)
1299{
1300	struct kmem_cache *slab;
1301	struct module *owner;
1302
1303	owner = prot->owner;
1304	slab = prot->slab;
1305
1306	security_sk_free(sk);
1307	if (slab != NULL)
1308		kmem_cache_free(slab, sk);
1309	else
1310		kfree(sk);
1311	module_put(owner);
1312}
1313
1314#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1315void sock_update_netprioidx(struct sock *sk)
1316{
1317	if (in_interrupt())
1318		return;
1319
1320	sk->sk_cgrp_prioidx = task_netprioidx(current);
1321}
1322EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1323#endif
1324
1325/**
1326 *	sk_alloc - All socket objects are allocated here
1327 *	@net: the applicable net namespace
1328 *	@family: protocol family
1329 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1330 *	@prot: struct proto associated with this new sock instance
1331 */
1332struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1333		      struct proto *prot)
1334{
1335	struct sock *sk;
1336
1337	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1338	if (sk) {
1339		sk->sk_family = family;
1340		/*
1341		 * See comment in struct sock definition to understand
1342		 * why we need sk_prot_creator -acme
1343		 */
1344		sk->sk_prot = sk->sk_prot_creator = prot;
1345		sock_lock_init(sk);
1346		sock_net_set(sk, get_net(net));
1347		atomic_set(&sk->sk_wmem_alloc, 1);
1348
1349		sock_update_classid(sk);
1350		sock_update_netprioidx(sk);
1351	}
1352
1353	return sk;
1354}
1355EXPORT_SYMBOL(sk_alloc);
1356
1357static void __sk_free(struct sock *sk)
1358{
1359	struct sk_filter *filter;
1360
1361	if (sk->sk_destruct)
1362		sk->sk_destruct(sk);
1363
1364	filter = rcu_dereference_check(sk->sk_filter,
1365				       atomic_read(&sk->sk_wmem_alloc) == 0);
1366	if (filter) {
1367		sk_filter_uncharge(sk, filter);
1368		RCU_INIT_POINTER(sk->sk_filter, NULL);
1369	}
1370
1371	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1372
1373	if (atomic_read(&sk->sk_omem_alloc))
1374		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1375			 __func__, atomic_read(&sk->sk_omem_alloc));
1376
1377	if (sk->sk_peer_cred)
1378		put_cred(sk->sk_peer_cred);
1379	put_pid(sk->sk_peer_pid);
1380	put_net(sock_net(sk));
1381	sk_prot_free(sk->sk_prot_creator, sk);
1382}
1383
1384void sk_free(struct sock *sk)
1385{
1386	/*
1387	 * We subtract one from sk_wmem_alloc and can know if
1388	 * some packets are still in some tx queue.
1389	 * If not null, sock_wfree() will call __sk_free(sk) later
1390	 */
1391	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1392		__sk_free(sk);
1393}
1394EXPORT_SYMBOL(sk_free);
1395
1396/*
1397 * Last sock_put should drop reference to sk->sk_net. It has already
1398 * been dropped in sk_change_net. Taking reference to stopping namespace
1399 * is not an option.
1400 * Take reference to a socket to remove it from hash _alive_ and after that
1401 * destroy it in the context of init_net.
1402 */
1403void sk_release_kernel(struct sock *sk)
1404{
1405	if (sk == NULL || sk->sk_socket == NULL)
1406		return;
1407
1408	sock_hold(sk);
1409	sock_release(sk->sk_socket);
1410	release_net(sock_net(sk));
1411	sock_net_set(sk, get_net(&init_net));
1412	sock_put(sk);
1413}
1414EXPORT_SYMBOL(sk_release_kernel);
1415
1416static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1417{
1418	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1419		sock_update_memcg(newsk);
1420}
1421
1422/**
1423 *	sk_clone_lock - clone a socket, and lock its clone
1424 *	@sk: the socket to clone
1425 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1426 *
1427 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1428 */
1429struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1430{
1431	struct sock *newsk;
1432
1433	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1434	if (newsk != NULL) {
1435		struct sk_filter *filter;
1436
1437		sock_copy(newsk, sk);
1438
1439		/* SANITY */
1440		get_net(sock_net(newsk));
1441		sk_node_init(&newsk->sk_node);
1442		sock_lock_init(newsk);
1443		bh_lock_sock(newsk);
1444		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1445		newsk->sk_backlog.len = 0;
1446
1447		atomic_set(&newsk->sk_rmem_alloc, 0);
1448		/*
1449		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1450		 */
1451		atomic_set(&newsk->sk_wmem_alloc, 1);
1452		atomic_set(&newsk->sk_omem_alloc, 0);
1453		skb_queue_head_init(&newsk->sk_receive_queue);
1454		skb_queue_head_init(&newsk->sk_write_queue);
1455#ifdef CONFIG_NET_DMA
1456		skb_queue_head_init(&newsk->sk_async_wait_queue);
1457#endif
1458
1459		spin_lock_init(&newsk->sk_dst_lock);
1460		rwlock_init(&newsk->sk_callback_lock);
1461		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1462				af_callback_keys + newsk->sk_family,
1463				af_family_clock_key_strings[newsk->sk_family]);
1464
1465		newsk->sk_dst_cache	= NULL;
1466		newsk->sk_wmem_queued	= 0;
1467		newsk->sk_forward_alloc = 0;
1468		newsk->sk_send_head	= NULL;
1469		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1470
1471		sock_reset_flag(newsk, SOCK_DONE);
1472		skb_queue_head_init(&newsk->sk_error_queue);
1473
1474		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1475		if (filter != NULL)
1476			sk_filter_charge(newsk, filter);
1477
1478		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1479			/* It is still raw copy of parent, so invalidate
1480			 * destructor and make plain sk_free() */
1481			newsk->sk_destruct = NULL;
1482			bh_unlock_sock(newsk);
1483			sk_free(newsk);
1484			newsk = NULL;
1485			goto out;
1486		}
1487
1488		newsk->sk_err	   = 0;
1489		newsk->sk_priority = 0;
1490		/*
1491		 * Before updating sk_refcnt, we must commit prior changes to memory
1492		 * (Documentation/RCU/rculist_nulls.txt for details)
1493		 */
1494		smp_wmb();
1495		atomic_set(&newsk->sk_refcnt, 2);
1496
1497		/*
1498		 * Increment the counter in the same struct proto as the master
1499		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1500		 * is the same as sk->sk_prot->socks, as this field was copied
1501		 * with memcpy).
1502		 *
1503		 * This _changes_ the previous behaviour, where
1504		 * tcp_create_openreq_child always was incrementing the
1505		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1506		 * to be taken into account in all callers. -acme
1507		 */
1508		sk_refcnt_debug_inc(newsk);
1509		sk_set_socket(newsk, NULL);
1510		newsk->sk_wq = NULL;
1511
1512		sk_update_clone(sk, newsk);
1513
1514		if (newsk->sk_prot->sockets_allocated)
1515			sk_sockets_allocated_inc(newsk);
1516
1517		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1518			net_enable_timestamp();
1519	}
1520out:
1521	return newsk;
1522}
1523EXPORT_SYMBOL_GPL(sk_clone_lock);
1524
1525void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1526{
1527	__sk_dst_set(sk, dst);
1528	sk->sk_route_caps = dst->dev->features;
1529	if (sk->sk_route_caps & NETIF_F_GSO)
1530		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1531	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1532	if (sk_can_gso(sk)) {
1533		if (dst->header_len) {
1534			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1535		} else {
1536			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1537			sk->sk_gso_max_size = dst->dev->gso_max_size;
1538			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1539		}
1540	}
1541}
1542EXPORT_SYMBOL_GPL(sk_setup_caps);
1543
1544/*
1545 *	Simple resource managers for sockets.
1546 */
1547
1548
1549/*
1550 * Write buffer destructor automatically called from kfree_skb.
1551 */
1552void sock_wfree(struct sk_buff *skb)
1553{
1554	struct sock *sk = skb->sk;
1555	unsigned int len = skb->truesize;
1556
1557	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1558		/*
1559		 * Keep a reference on sk_wmem_alloc, this will be released
1560		 * after sk_write_space() call
1561		 */
1562		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1563		sk->sk_write_space(sk);
1564		len = 1;
1565	}
1566	/*
1567	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1568	 * could not do because of in-flight packets
1569	 */
1570	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1571		__sk_free(sk);
1572}
1573EXPORT_SYMBOL(sock_wfree);
1574
1575void skb_orphan_partial(struct sk_buff *skb)
1576{
1577	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1578	 * so we do not completely orphan skb, but transfert all
1579	 * accounted bytes but one, to avoid unexpected reorders.
1580	 */
1581	if (skb->destructor == sock_wfree
1582#ifdef CONFIG_INET
1583	    || skb->destructor == tcp_wfree
1584#endif
1585		) {
1586		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1587		skb->truesize = 1;
1588	} else {
1589		skb_orphan(skb);
1590	}
1591}
1592EXPORT_SYMBOL(skb_orphan_partial);
1593
1594/*
1595 * Read buffer destructor automatically called from kfree_skb.
1596 */
1597void sock_rfree(struct sk_buff *skb)
1598{
1599	struct sock *sk = skb->sk;
1600	unsigned int len = skb->truesize;
1601
1602	atomic_sub(len, &sk->sk_rmem_alloc);
1603	sk_mem_uncharge(sk, len);
1604}
1605EXPORT_SYMBOL(sock_rfree);
1606
1607void sock_edemux(struct sk_buff *skb)
1608{
1609	struct sock *sk = skb->sk;
1610
1611#ifdef CONFIG_INET
1612	if (sk->sk_state == TCP_TIME_WAIT)
1613		inet_twsk_put(inet_twsk(sk));
1614	else
1615#endif
1616		sock_put(sk);
1617}
1618EXPORT_SYMBOL(sock_edemux);
1619
1620kuid_t sock_i_uid(struct sock *sk)
1621{
1622	kuid_t uid;
1623
1624	read_lock_bh(&sk->sk_callback_lock);
1625	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1626	read_unlock_bh(&sk->sk_callback_lock);
1627	return uid;
1628}
1629EXPORT_SYMBOL(sock_i_uid);
1630
1631unsigned long sock_i_ino(struct sock *sk)
1632{
1633	unsigned long ino;
1634
1635	read_lock_bh(&sk->sk_callback_lock);
1636	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1637	read_unlock_bh(&sk->sk_callback_lock);
1638	return ino;
1639}
1640EXPORT_SYMBOL(sock_i_ino);
1641
1642/*
1643 * Allocate a skb from the socket's send buffer.
1644 */
1645struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1646			     gfp_t priority)
1647{
1648	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1649		struct sk_buff *skb = alloc_skb(size, priority);
1650		if (skb) {
1651			skb_set_owner_w(skb, sk);
1652			return skb;
1653		}
1654	}
1655	return NULL;
1656}
1657EXPORT_SYMBOL(sock_wmalloc);
1658
1659/*
1660 * Allocate a memory block from the socket's option memory buffer.
1661 */
1662void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1663{
1664	if ((unsigned int)size <= sysctl_optmem_max &&
1665	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1666		void *mem;
1667		/* First do the add, to avoid the race if kmalloc
1668		 * might sleep.
1669		 */
1670		atomic_add(size, &sk->sk_omem_alloc);
1671		mem = kmalloc(size, priority);
1672		if (mem)
1673			return mem;
1674		atomic_sub(size, &sk->sk_omem_alloc);
1675	}
1676	return NULL;
1677}
1678EXPORT_SYMBOL(sock_kmalloc);
1679
1680/*
1681 * Free an option memory block.
1682 */
1683void sock_kfree_s(struct sock *sk, void *mem, int size)
1684{
1685	kfree(mem);
1686	atomic_sub(size, &sk->sk_omem_alloc);
1687}
1688EXPORT_SYMBOL(sock_kfree_s);
1689
1690/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1691   I think, these locks should be removed for datagram sockets.
1692 */
1693static long sock_wait_for_wmem(struct sock *sk, long timeo)
1694{
1695	DEFINE_WAIT(wait);
1696
1697	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1698	for (;;) {
1699		if (!timeo)
1700			break;
1701		if (signal_pending(current))
1702			break;
1703		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1704		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1705		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1706			break;
1707		if (sk->sk_shutdown & SEND_SHUTDOWN)
1708			break;
1709		if (sk->sk_err)
1710			break;
1711		timeo = schedule_timeout(timeo);
1712	}
1713	finish_wait(sk_sleep(sk), &wait);
1714	return timeo;
1715}
1716
1717
1718/*
1719 *	Generic send/receive buffer handlers
1720 */
1721
1722struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1723				     unsigned long data_len, int noblock,
1724				     int *errcode, int max_page_order)
1725{
1726	struct sk_buff *skb = NULL;
1727	unsigned long chunk;
1728	gfp_t gfp_mask;
1729	long timeo;
1730	int err;
1731	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1732	struct page *page;
1733	int i;
1734
1735	err = -EMSGSIZE;
1736	if (npages > MAX_SKB_FRAGS)
1737		goto failure;
1738
1739	timeo = sock_sndtimeo(sk, noblock);
1740	while (!skb) {
1741		err = sock_error(sk);
1742		if (err != 0)
1743			goto failure;
1744
1745		err = -EPIPE;
1746		if (sk->sk_shutdown & SEND_SHUTDOWN)
1747			goto failure;
1748
1749		if (atomic_read(&sk->sk_wmem_alloc) >= sk->sk_sndbuf) {
1750			set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1751			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1752			err = -EAGAIN;
1753			if (!timeo)
1754				goto failure;
1755			if (signal_pending(current))
1756				goto interrupted;
1757			timeo = sock_wait_for_wmem(sk, timeo);
1758			continue;
1759		}
1760
1761		err = -ENOBUFS;
1762		gfp_mask = sk->sk_allocation;
1763		if (gfp_mask & __GFP_WAIT)
1764			gfp_mask |= __GFP_REPEAT;
1765
1766		skb = alloc_skb(header_len, gfp_mask);
1767		if (!skb)
1768			goto failure;
1769
1770		skb->truesize += data_len;
1771
1772		for (i = 0; npages > 0; i++) {
1773			int order = max_page_order;
1774
1775			while (order) {
1776				if (npages >= 1 << order) {
1777					page = alloc_pages(sk->sk_allocation |
1778							   __GFP_COMP |
1779							   __GFP_NOWARN |
1780							   __GFP_NORETRY,
1781							   order);
1782					if (page)
1783						goto fill_page;
1784				}
1785				order--;
1786			}
1787			page = alloc_page(sk->sk_allocation);
1788			if (!page)
1789				goto failure;
1790fill_page:
1791			chunk = min_t(unsigned long, data_len,
1792				      PAGE_SIZE << order);
1793			skb_fill_page_desc(skb, i, page, 0, chunk);
1794			data_len -= chunk;
1795			npages -= 1 << order;
1796		}
1797	}
1798
1799	skb_set_owner_w(skb, sk);
1800	return skb;
1801
1802interrupted:
1803	err = sock_intr_errno(timeo);
1804failure:
1805	kfree_skb(skb);
1806	*errcode = err;
1807	return NULL;
1808}
1809EXPORT_SYMBOL(sock_alloc_send_pskb);
1810
1811struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1812				    int noblock, int *errcode)
1813{
1814	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1815}
1816EXPORT_SYMBOL(sock_alloc_send_skb);
1817
1818/* On 32bit arches, an skb frag is limited to 2^15 */
1819#define SKB_FRAG_PAGE_ORDER	get_order(32768)
1820
1821/**
1822 * skb_page_frag_refill - check that a page_frag contains enough room
1823 * @sz: minimum size of the fragment we want to get
1824 * @pfrag: pointer to page_frag
1825 * @prio: priority for memory allocation
1826 *
1827 * Note: While this allocator tries to use high order pages, there is
1828 * no guarantee that allocations succeed. Therefore, @sz MUST be
1829 * less or equal than PAGE_SIZE.
1830 */
1831bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio)
1832{
1833	int order;
1834
1835	if (pfrag->page) {
1836		if (atomic_read(&pfrag->page->_count) == 1) {
1837			pfrag->offset = 0;
1838			return true;
1839		}
1840		if (pfrag->offset + sz <= pfrag->size)
1841			return true;
1842		put_page(pfrag->page);
1843	}
1844
1845	order = SKB_FRAG_PAGE_ORDER;
1846	do {
1847		gfp_t gfp = prio;
1848
1849		if (order)
1850			gfp |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY;
1851		pfrag->page = alloc_pages(gfp, order);
1852		if (likely(pfrag->page)) {
1853			pfrag->offset = 0;
1854			pfrag->size = PAGE_SIZE << order;
1855			return true;
1856		}
1857	} while (--order >= 0);
1858
1859	return false;
1860}
1861EXPORT_SYMBOL(skb_page_frag_refill);
1862
1863bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1864{
1865	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1866		return true;
1867
1868	sk_enter_memory_pressure(sk);
1869	sk_stream_moderate_sndbuf(sk);
1870	return false;
1871}
1872EXPORT_SYMBOL(sk_page_frag_refill);
1873
1874static void __lock_sock(struct sock *sk)
1875	__releases(&sk->sk_lock.slock)
1876	__acquires(&sk->sk_lock.slock)
1877{
1878	DEFINE_WAIT(wait);
1879
1880	for (;;) {
1881		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1882					TASK_UNINTERRUPTIBLE);
1883		spin_unlock_bh(&sk->sk_lock.slock);
1884		schedule();
1885		spin_lock_bh(&sk->sk_lock.slock);
1886		if (!sock_owned_by_user(sk))
1887			break;
1888	}
1889	finish_wait(&sk->sk_lock.wq, &wait);
1890}
1891
1892static void __release_sock(struct sock *sk)
1893	__releases(&sk->sk_lock.slock)
1894	__acquires(&sk->sk_lock.slock)
1895{
1896	struct sk_buff *skb = sk->sk_backlog.head;
1897
1898	do {
1899		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1900		bh_unlock_sock(sk);
1901
1902		do {
1903			struct sk_buff *next = skb->next;
1904
1905			prefetch(next);
1906			WARN_ON_ONCE(skb_dst_is_noref(skb));
1907			skb->next = NULL;
1908			sk_backlog_rcv(sk, skb);
1909
1910			/*
1911			 * We are in process context here with softirqs
1912			 * disabled, use cond_resched_softirq() to preempt.
1913			 * This is safe to do because we've taken the backlog
1914			 * queue private:
1915			 */
1916			cond_resched_softirq();
1917
1918			skb = next;
1919		} while (skb != NULL);
1920
1921		bh_lock_sock(sk);
1922	} while ((skb = sk->sk_backlog.head) != NULL);
1923
1924	/*
1925	 * Doing the zeroing here guarantee we can not loop forever
1926	 * while a wild producer attempts to flood us.
1927	 */
1928	sk->sk_backlog.len = 0;
1929}
1930
1931/**
1932 * sk_wait_data - wait for data to arrive at sk_receive_queue
1933 * @sk:    sock to wait on
1934 * @timeo: for how long
1935 *
1936 * Now socket state including sk->sk_err is changed only under lock,
1937 * hence we may omit checks after joining wait queue.
1938 * We check receive queue before schedule() only as optimization;
1939 * it is very likely that release_sock() added new data.
1940 */
1941int sk_wait_data(struct sock *sk, long *timeo)
1942{
1943	int rc;
1944	DEFINE_WAIT(wait);
1945
1946	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1947	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1948	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1949	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1950	finish_wait(sk_sleep(sk), &wait);
1951	return rc;
1952}
1953EXPORT_SYMBOL(sk_wait_data);
1954
1955/**
1956 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1957 *	@sk: socket
1958 *	@size: memory size to allocate
1959 *	@kind: allocation type
1960 *
1961 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1962 *	rmem allocation. This function assumes that protocols which have
1963 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1964 */
1965int __sk_mem_schedule(struct sock *sk, int size, int kind)
1966{
1967	struct proto *prot = sk->sk_prot;
1968	int amt = sk_mem_pages(size);
1969	long allocated;
1970	int parent_status = UNDER_LIMIT;
1971
1972	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1973
1974	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1975
1976	/* Under limit. */
1977	if (parent_status == UNDER_LIMIT &&
1978			allocated <= sk_prot_mem_limits(sk, 0)) {
1979		sk_leave_memory_pressure(sk);
1980		return 1;
1981	}
1982
1983	/* Under pressure. (we or our parents) */
1984	if ((parent_status > SOFT_LIMIT) ||
1985			allocated > sk_prot_mem_limits(sk, 1))
1986		sk_enter_memory_pressure(sk);
1987
1988	/* Over hard limit (we or our parents) */
1989	if ((parent_status == OVER_LIMIT) ||
1990			(allocated > sk_prot_mem_limits(sk, 2)))
1991		goto suppress_allocation;
1992
1993	/* guarantee minimum buffer size under pressure */
1994	if (kind == SK_MEM_RECV) {
1995		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1996			return 1;
1997
1998	} else { /* SK_MEM_SEND */
1999		if (sk->sk_type == SOCK_STREAM) {
2000			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2001				return 1;
2002		} else if (atomic_read(&sk->sk_wmem_alloc) <
2003			   prot->sysctl_wmem[0])
2004				return 1;
2005	}
2006
2007	if (sk_has_memory_pressure(sk)) {
2008		int alloc;
2009
2010		if (!sk_under_memory_pressure(sk))
2011			return 1;
2012		alloc = sk_sockets_allocated_read_positive(sk);
2013		if (sk_prot_mem_limits(sk, 2) > alloc *
2014		    sk_mem_pages(sk->sk_wmem_queued +
2015				 atomic_read(&sk->sk_rmem_alloc) +
2016				 sk->sk_forward_alloc))
2017			return 1;
2018	}
2019
2020suppress_allocation:
2021
2022	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2023		sk_stream_moderate_sndbuf(sk);
2024
2025		/* Fail only if socket is _under_ its sndbuf.
2026		 * In this case we cannot block, so that we have to fail.
2027		 */
2028		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2029			return 1;
2030	}
2031
2032	trace_sock_exceed_buf_limit(sk, prot, allocated);
2033
2034	/* Alas. Undo changes. */
2035	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2036
2037	sk_memory_allocated_sub(sk, amt);
2038
2039	return 0;
2040}
2041EXPORT_SYMBOL(__sk_mem_schedule);
2042
2043/**
2044 *	__sk_reclaim - reclaim memory_allocated
2045 *	@sk: socket
2046 */
2047void __sk_mem_reclaim(struct sock *sk)
2048{
2049	sk_memory_allocated_sub(sk,
2050				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2051	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2052
2053	if (sk_under_memory_pressure(sk) &&
2054	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2055		sk_leave_memory_pressure(sk);
2056}
2057EXPORT_SYMBOL(__sk_mem_reclaim);
2058
2059
2060/*
2061 * Set of default routines for initialising struct proto_ops when
2062 * the protocol does not support a particular function. In certain
2063 * cases where it makes no sense for a protocol to have a "do nothing"
2064 * function, some default processing is provided.
2065 */
2066
2067int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2068{
2069	return -EOPNOTSUPP;
2070}
2071EXPORT_SYMBOL(sock_no_bind);
2072
2073int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2074		    int len, int flags)
2075{
2076	return -EOPNOTSUPP;
2077}
2078EXPORT_SYMBOL(sock_no_connect);
2079
2080int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2081{
2082	return -EOPNOTSUPP;
2083}
2084EXPORT_SYMBOL(sock_no_socketpair);
2085
2086int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2087{
2088	return -EOPNOTSUPP;
2089}
2090EXPORT_SYMBOL(sock_no_accept);
2091
2092int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2093		    int *len, int peer)
2094{
2095	return -EOPNOTSUPP;
2096}
2097EXPORT_SYMBOL(sock_no_getname);
2098
2099unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2100{
2101	return 0;
2102}
2103EXPORT_SYMBOL(sock_no_poll);
2104
2105int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2106{
2107	return -EOPNOTSUPP;
2108}
2109EXPORT_SYMBOL(sock_no_ioctl);
2110
2111int sock_no_listen(struct socket *sock, int backlog)
2112{
2113	return -EOPNOTSUPP;
2114}
2115EXPORT_SYMBOL(sock_no_listen);
2116
2117int sock_no_shutdown(struct socket *sock, int how)
2118{
2119	return -EOPNOTSUPP;
2120}
2121EXPORT_SYMBOL(sock_no_shutdown);
2122
2123int sock_no_setsockopt(struct socket *sock, int level, int optname,
2124		    char __user *optval, unsigned int optlen)
2125{
2126	return -EOPNOTSUPP;
2127}
2128EXPORT_SYMBOL(sock_no_setsockopt);
2129
2130int sock_no_getsockopt(struct socket *sock, int level, int optname,
2131		    char __user *optval, int __user *optlen)
2132{
2133	return -EOPNOTSUPP;
2134}
2135EXPORT_SYMBOL(sock_no_getsockopt);
2136
2137int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2138		    size_t len)
2139{
2140	return -EOPNOTSUPP;
2141}
2142EXPORT_SYMBOL(sock_no_sendmsg);
2143
2144int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2145		    size_t len, int flags)
2146{
2147	return -EOPNOTSUPP;
2148}
2149EXPORT_SYMBOL(sock_no_recvmsg);
2150
2151int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2152{
2153	/* Mirror missing mmap method error code */
2154	return -ENODEV;
2155}
2156EXPORT_SYMBOL(sock_no_mmap);
2157
2158ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2159{
2160	ssize_t res;
2161	struct msghdr msg = {.msg_flags = flags};
2162	struct kvec iov;
2163	char *kaddr = kmap(page);
2164	iov.iov_base = kaddr + offset;
2165	iov.iov_len = size;
2166	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2167	kunmap(page);
2168	return res;
2169}
2170EXPORT_SYMBOL(sock_no_sendpage);
2171
2172/*
2173 *	Default Socket Callbacks
2174 */
2175
2176static void sock_def_wakeup(struct sock *sk)
2177{
2178	struct socket_wq *wq;
2179
2180	rcu_read_lock();
2181	wq = rcu_dereference(sk->sk_wq);
2182	if (wq_has_sleeper(wq))
2183		wake_up_interruptible_all(&wq->wait);
2184	rcu_read_unlock();
2185}
2186
2187static void sock_def_error_report(struct sock *sk)
2188{
2189	struct socket_wq *wq;
2190
2191	rcu_read_lock();
2192	wq = rcu_dereference(sk->sk_wq);
2193	if (wq_has_sleeper(wq))
2194		wake_up_interruptible_poll(&wq->wait, POLLERR);
2195	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2196	rcu_read_unlock();
2197}
2198
2199static void sock_def_readable(struct sock *sk)
2200{
2201	struct socket_wq *wq;
2202
2203	rcu_read_lock();
2204	wq = rcu_dereference(sk->sk_wq);
2205	if (wq_has_sleeper(wq))
2206		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2207						POLLRDNORM | POLLRDBAND);
2208	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2209	rcu_read_unlock();
2210}
2211
2212static void sock_def_write_space(struct sock *sk)
2213{
2214	struct socket_wq *wq;
2215
2216	rcu_read_lock();
2217
2218	/* Do not wake up a writer until he can make "significant"
2219	 * progress.  --DaveM
2220	 */
2221	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2222		wq = rcu_dereference(sk->sk_wq);
2223		if (wq_has_sleeper(wq))
2224			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2225						POLLWRNORM | POLLWRBAND);
2226
2227		/* Should agree with poll, otherwise some programs break */
2228		if (sock_writeable(sk))
2229			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2230	}
2231
2232	rcu_read_unlock();
2233}
2234
2235static void sock_def_destruct(struct sock *sk)
2236{
2237	kfree(sk->sk_protinfo);
2238}
2239
2240void sk_send_sigurg(struct sock *sk)
2241{
2242	if (sk->sk_socket && sk->sk_socket->file)
2243		if (send_sigurg(&sk->sk_socket->file->f_owner))
2244			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2245}
2246EXPORT_SYMBOL(sk_send_sigurg);
2247
2248void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2249		    unsigned long expires)
2250{
2251	if (!mod_timer(timer, expires))
2252		sock_hold(sk);
2253}
2254EXPORT_SYMBOL(sk_reset_timer);
2255
2256void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2257{
2258	if (del_timer(timer))
2259		__sock_put(sk);
2260}
2261EXPORT_SYMBOL(sk_stop_timer);
2262
2263void sock_init_data(struct socket *sock, struct sock *sk)
2264{
2265	skb_queue_head_init(&sk->sk_receive_queue);
2266	skb_queue_head_init(&sk->sk_write_queue);
2267	skb_queue_head_init(&sk->sk_error_queue);
2268#ifdef CONFIG_NET_DMA
2269	skb_queue_head_init(&sk->sk_async_wait_queue);
2270#endif
2271
2272	sk->sk_send_head	=	NULL;
2273
2274	init_timer(&sk->sk_timer);
2275
2276	sk->sk_allocation	=	GFP_KERNEL;
2277	sk->sk_rcvbuf		=	sysctl_rmem_default;
2278	sk->sk_sndbuf		=	sysctl_wmem_default;
2279	sk->sk_state		=	TCP_CLOSE;
2280	sk_set_socket(sk, sock);
2281
2282	sock_set_flag(sk, SOCK_ZAPPED);
2283
2284	if (sock) {
2285		sk->sk_type	=	sock->type;
2286		sk->sk_wq	=	sock->wq;
2287		sock->sk	=	sk;
2288	} else
2289		sk->sk_wq	=	NULL;
2290
2291	spin_lock_init(&sk->sk_dst_lock);
2292	rwlock_init(&sk->sk_callback_lock);
2293	lockdep_set_class_and_name(&sk->sk_callback_lock,
2294			af_callback_keys + sk->sk_family,
2295			af_family_clock_key_strings[sk->sk_family]);
2296
2297	sk->sk_state_change	=	sock_def_wakeup;
2298	sk->sk_data_ready	=	sock_def_readable;
2299	sk->sk_write_space	=	sock_def_write_space;
2300	sk->sk_error_report	=	sock_def_error_report;
2301	sk->sk_destruct		=	sock_def_destruct;
2302
2303	sk->sk_frag.page	=	NULL;
2304	sk->sk_frag.offset	=	0;
2305	sk->sk_peek_off		=	-1;
2306
2307	sk->sk_peer_pid 	=	NULL;
2308	sk->sk_peer_cred	=	NULL;
2309	sk->sk_write_pending	=	0;
2310	sk->sk_rcvlowat		=	1;
2311	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2312	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2313
2314	sk->sk_stamp = ktime_set(-1L, 0);
2315
2316#ifdef CONFIG_NET_RX_BUSY_POLL
2317	sk->sk_napi_id		=	0;
2318	sk->sk_ll_usec		=	sysctl_net_busy_read;
2319#endif
2320
2321	sk->sk_max_pacing_rate = ~0U;
2322	sk->sk_pacing_rate = ~0U;
2323	/*
2324	 * Before updating sk_refcnt, we must commit prior changes to memory
2325	 * (Documentation/RCU/rculist_nulls.txt for details)
2326	 */
2327	smp_wmb();
2328	atomic_set(&sk->sk_refcnt, 1);
2329	atomic_set(&sk->sk_drops, 0);
2330}
2331EXPORT_SYMBOL(sock_init_data);
2332
2333void lock_sock_nested(struct sock *sk, int subclass)
2334{
2335	might_sleep();
2336	spin_lock_bh(&sk->sk_lock.slock);
2337	if (sk->sk_lock.owned)
2338		__lock_sock(sk);
2339	sk->sk_lock.owned = 1;
2340	spin_unlock(&sk->sk_lock.slock);
2341	/*
2342	 * The sk_lock has mutex_lock() semantics here:
2343	 */
2344	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2345	local_bh_enable();
2346}
2347EXPORT_SYMBOL(lock_sock_nested);
2348
2349void release_sock(struct sock *sk)
2350{
2351	/*
2352	 * The sk_lock has mutex_unlock() semantics:
2353	 */
2354	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2355
2356	spin_lock_bh(&sk->sk_lock.slock);
2357	if (sk->sk_backlog.tail)
2358		__release_sock(sk);
2359
2360	/* Warning : release_cb() might need to release sk ownership,
2361	 * ie call sock_release_ownership(sk) before us.
2362	 */
2363	if (sk->sk_prot->release_cb)
2364		sk->sk_prot->release_cb(sk);
2365
2366	sock_release_ownership(sk);
2367	if (waitqueue_active(&sk->sk_lock.wq))
2368		wake_up(&sk->sk_lock.wq);
2369	spin_unlock_bh(&sk->sk_lock.slock);
2370}
2371EXPORT_SYMBOL(release_sock);
2372
2373/**
2374 * lock_sock_fast - fast version of lock_sock
2375 * @sk: socket
2376 *
2377 * This version should be used for very small section, where process wont block
2378 * return false if fast path is taken
2379 *   sk_lock.slock locked, owned = 0, BH disabled
2380 * return true if slow path is taken
2381 *   sk_lock.slock unlocked, owned = 1, BH enabled
2382 */
2383bool lock_sock_fast(struct sock *sk)
2384{
2385	might_sleep();
2386	spin_lock_bh(&sk->sk_lock.slock);
2387
2388	if (!sk->sk_lock.owned)
2389		/*
2390		 * Note : We must disable BH
2391		 */
2392		return false;
2393
2394	__lock_sock(sk);
2395	sk->sk_lock.owned = 1;
2396	spin_unlock(&sk->sk_lock.slock);
2397	/*
2398	 * The sk_lock has mutex_lock() semantics here:
2399	 */
2400	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2401	local_bh_enable();
2402	return true;
2403}
2404EXPORT_SYMBOL(lock_sock_fast);
2405
2406int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2407{
2408	struct timeval tv;
2409	if (!sock_flag(sk, SOCK_TIMESTAMP))
2410		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2411	tv = ktime_to_timeval(sk->sk_stamp);
2412	if (tv.tv_sec == -1)
2413		return -ENOENT;
2414	if (tv.tv_sec == 0) {
2415		sk->sk_stamp = ktime_get_real();
2416		tv = ktime_to_timeval(sk->sk_stamp);
2417	}
2418	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2419}
2420EXPORT_SYMBOL(sock_get_timestamp);
2421
2422int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2423{
2424	struct timespec ts;
2425	if (!sock_flag(sk, SOCK_TIMESTAMP))
2426		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2427	ts = ktime_to_timespec(sk->sk_stamp);
2428	if (ts.tv_sec == -1)
2429		return -ENOENT;
2430	if (ts.tv_sec == 0) {
2431		sk->sk_stamp = ktime_get_real();
2432		ts = ktime_to_timespec(sk->sk_stamp);
2433	}
2434	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2435}
2436EXPORT_SYMBOL(sock_get_timestampns);
2437
2438void sock_enable_timestamp(struct sock *sk, int flag)
2439{
2440	if (!sock_flag(sk, flag)) {
2441		unsigned long previous_flags = sk->sk_flags;
2442
2443		sock_set_flag(sk, flag);
2444		/*
2445		 * we just set one of the two flags which require net
2446		 * time stamping, but time stamping might have been on
2447		 * already because of the other one
2448		 */
2449		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2450			net_enable_timestamp();
2451	}
2452}
2453
2454int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2455		       int level, int type)
2456{
2457	struct sock_exterr_skb *serr;
2458	struct sk_buff *skb, *skb2;
2459	int copied, err;
2460
2461	err = -EAGAIN;
2462	skb = skb_dequeue(&sk->sk_error_queue);
2463	if (skb == NULL)
2464		goto out;
2465
2466	copied = skb->len;
2467	if (copied > len) {
2468		msg->msg_flags |= MSG_TRUNC;
2469		copied = len;
2470	}
2471	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2472	if (err)
2473		goto out_free_skb;
2474
2475	sock_recv_timestamp(msg, sk, skb);
2476
2477	serr = SKB_EXT_ERR(skb);
2478	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2479
2480	msg->msg_flags |= MSG_ERRQUEUE;
2481	err = copied;
2482
2483	/* Reset and regenerate socket error */
2484	spin_lock_bh(&sk->sk_error_queue.lock);
2485	sk->sk_err = 0;
2486	if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2487		sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2488		spin_unlock_bh(&sk->sk_error_queue.lock);
2489		sk->sk_error_report(sk);
2490	} else
2491		spin_unlock_bh(&sk->sk_error_queue.lock);
2492
2493out_free_skb:
2494	kfree_skb(skb);
2495out:
2496	return err;
2497}
2498EXPORT_SYMBOL(sock_recv_errqueue);
2499
2500/*
2501 *	Get a socket option on an socket.
2502 *
2503 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2504 *	asynchronous errors should be reported by getsockopt. We assume
2505 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2506 */
2507int sock_common_getsockopt(struct socket *sock, int level, int optname,
2508			   char __user *optval, int __user *optlen)
2509{
2510	struct sock *sk = sock->sk;
2511
2512	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2513}
2514EXPORT_SYMBOL(sock_common_getsockopt);
2515
2516#ifdef CONFIG_COMPAT
2517int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2518				  char __user *optval, int __user *optlen)
2519{
2520	struct sock *sk = sock->sk;
2521
2522	if (sk->sk_prot->compat_getsockopt != NULL)
2523		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2524						      optval, optlen);
2525	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2526}
2527EXPORT_SYMBOL(compat_sock_common_getsockopt);
2528#endif
2529
2530int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2531			struct msghdr *msg, size_t size, int flags)
2532{
2533	struct sock *sk = sock->sk;
2534	int addr_len = 0;
2535	int err;
2536
2537	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2538				   flags & ~MSG_DONTWAIT, &addr_len);
2539	if (err >= 0)
2540		msg->msg_namelen = addr_len;
2541	return err;
2542}
2543EXPORT_SYMBOL(sock_common_recvmsg);
2544
2545/*
2546 *	Set socket options on an inet socket.
2547 */
2548int sock_common_setsockopt(struct socket *sock, int level, int optname,
2549			   char __user *optval, unsigned int optlen)
2550{
2551	struct sock *sk = sock->sk;
2552
2553	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2554}
2555EXPORT_SYMBOL(sock_common_setsockopt);
2556
2557#ifdef CONFIG_COMPAT
2558int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2559				  char __user *optval, unsigned int optlen)
2560{
2561	struct sock *sk = sock->sk;
2562
2563	if (sk->sk_prot->compat_setsockopt != NULL)
2564		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2565						      optval, optlen);
2566	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2567}
2568EXPORT_SYMBOL(compat_sock_common_setsockopt);
2569#endif
2570
2571void sk_common_release(struct sock *sk)
2572{
2573	if (sk->sk_prot->destroy)
2574		sk->sk_prot->destroy(sk);
2575
2576	/*
2577	 * Observation: when sock_common_release is called, processes have
2578	 * no access to socket. But net still has.
2579	 * Step one, detach it from networking:
2580	 *
2581	 * A. Remove from hash tables.
2582	 */
2583
2584	sk->sk_prot->unhash(sk);
2585
2586	/*
2587	 * In this point socket cannot receive new packets, but it is possible
2588	 * that some packets are in flight because some CPU runs receiver and
2589	 * did hash table lookup before we unhashed socket. They will achieve
2590	 * receive queue and will be purged by socket destructor.
2591	 *
2592	 * Also we still have packets pending on receive queue and probably,
2593	 * our own packets waiting in device queues. sock_destroy will drain
2594	 * receive queue, but transmitted packets will delay socket destruction
2595	 * until the last reference will be released.
2596	 */
2597
2598	sock_orphan(sk);
2599
2600	xfrm_sk_free_policy(sk);
2601
2602	sk_refcnt_debug_release(sk);
2603
2604	if (sk->sk_frag.page) {
2605		put_page(sk->sk_frag.page);
2606		sk->sk_frag.page = NULL;
2607	}
2608
2609	sock_put(sk);
2610}
2611EXPORT_SYMBOL(sk_common_release);
2612
2613#ifdef CONFIG_PROC_FS
2614#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2615struct prot_inuse {
2616	int val[PROTO_INUSE_NR];
2617};
2618
2619static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2620
2621#ifdef CONFIG_NET_NS
2622void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2623{
2624	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2625}
2626EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2627
2628int sock_prot_inuse_get(struct net *net, struct proto *prot)
2629{
2630	int cpu, idx = prot->inuse_idx;
2631	int res = 0;
2632
2633	for_each_possible_cpu(cpu)
2634		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2635
2636	return res >= 0 ? res : 0;
2637}
2638EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2639
2640static int __net_init sock_inuse_init_net(struct net *net)
2641{
2642	net->core.inuse = alloc_percpu(struct prot_inuse);
2643	return net->core.inuse ? 0 : -ENOMEM;
2644}
2645
2646static void __net_exit sock_inuse_exit_net(struct net *net)
2647{
2648	free_percpu(net->core.inuse);
2649}
2650
2651static struct pernet_operations net_inuse_ops = {
2652	.init = sock_inuse_init_net,
2653	.exit = sock_inuse_exit_net,
2654};
2655
2656static __init int net_inuse_init(void)
2657{
2658	if (register_pernet_subsys(&net_inuse_ops))
2659		panic("Cannot initialize net inuse counters");
2660
2661	return 0;
2662}
2663
2664core_initcall(net_inuse_init);
2665#else
2666static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2667
2668void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2669{
2670	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2671}
2672EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2673
2674int sock_prot_inuse_get(struct net *net, struct proto *prot)
2675{
2676	int cpu, idx = prot->inuse_idx;
2677	int res = 0;
2678
2679	for_each_possible_cpu(cpu)
2680		res += per_cpu(prot_inuse, cpu).val[idx];
2681
2682	return res >= 0 ? res : 0;
2683}
2684EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2685#endif
2686
2687static void assign_proto_idx(struct proto *prot)
2688{
2689	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2690
2691	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2692		pr_err("PROTO_INUSE_NR exhausted\n");
2693		return;
2694	}
2695
2696	set_bit(prot->inuse_idx, proto_inuse_idx);
2697}
2698
2699static void release_proto_idx(struct proto *prot)
2700{
2701	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2702		clear_bit(prot->inuse_idx, proto_inuse_idx);
2703}
2704#else
2705static inline void assign_proto_idx(struct proto *prot)
2706{
2707}
2708
2709static inline void release_proto_idx(struct proto *prot)
2710{
2711}
2712#endif
2713
2714int proto_register(struct proto *prot, int alloc_slab)
2715{
2716	if (alloc_slab) {
2717		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2718					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2719					NULL);
2720
2721		if (prot->slab == NULL) {
2722			pr_crit("%s: Can't create sock SLAB cache!\n",
2723				prot->name);
2724			goto out;
2725		}
2726
2727		if (prot->rsk_prot != NULL) {
2728			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2729			if (prot->rsk_prot->slab_name == NULL)
2730				goto out_free_sock_slab;
2731
2732			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2733								 prot->rsk_prot->obj_size, 0,
2734								 SLAB_HWCACHE_ALIGN, NULL);
2735
2736			if (prot->rsk_prot->slab == NULL) {
2737				pr_crit("%s: Can't create request sock SLAB cache!\n",
2738					prot->name);
2739				goto out_free_request_sock_slab_name;
2740			}
2741		}
2742
2743		if (prot->twsk_prot != NULL) {
2744			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2745
2746			if (prot->twsk_prot->twsk_slab_name == NULL)
2747				goto out_free_request_sock_slab;
2748
2749			prot->twsk_prot->twsk_slab =
2750				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2751						  prot->twsk_prot->twsk_obj_size,
2752						  0,
2753						  SLAB_HWCACHE_ALIGN |
2754							prot->slab_flags,
2755						  NULL);
2756			if (prot->twsk_prot->twsk_slab == NULL)
2757				goto out_free_timewait_sock_slab_name;
2758		}
2759	}
2760
2761	mutex_lock(&proto_list_mutex);
2762	list_add(&prot->node, &proto_list);
2763	assign_proto_idx(prot);
2764	mutex_unlock(&proto_list_mutex);
2765	return 0;
2766
2767out_free_timewait_sock_slab_name:
2768	kfree(prot->twsk_prot->twsk_slab_name);
2769out_free_request_sock_slab:
2770	if (prot->rsk_prot && prot->rsk_prot->slab) {
2771		kmem_cache_destroy(prot->rsk_prot->slab);
2772		prot->rsk_prot->slab = NULL;
2773	}
2774out_free_request_sock_slab_name:
2775	if (prot->rsk_prot)
2776		kfree(prot->rsk_prot->slab_name);
2777out_free_sock_slab:
2778	kmem_cache_destroy(prot->slab);
2779	prot->slab = NULL;
2780out:
2781	return -ENOBUFS;
2782}
2783EXPORT_SYMBOL(proto_register);
2784
2785void proto_unregister(struct proto *prot)
2786{
2787	mutex_lock(&proto_list_mutex);
2788	release_proto_idx(prot);
2789	list_del(&prot->node);
2790	mutex_unlock(&proto_list_mutex);
2791
2792	if (prot->slab != NULL) {
2793		kmem_cache_destroy(prot->slab);
2794		prot->slab = NULL;
2795	}
2796
2797	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2798		kmem_cache_destroy(prot->rsk_prot->slab);
2799		kfree(prot->rsk_prot->slab_name);
2800		prot->rsk_prot->slab = NULL;
2801	}
2802
2803	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2804		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2805		kfree(prot->twsk_prot->twsk_slab_name);
2806		prot->twsk_prot->twsk_slab = NULL;
2807	}
2808}
2809EXPORT_SYMBOL(proto_unregister);
2810
2811#ifdef CONFIG_PROC_FS
2812static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2813	__acquires(proto_list_mutex)
2814{
2815	mutex_lock(&proto_list_mutex);
2816	return seq_list_start_head(&proto_list, *pos);
2817}
2818
2819static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2820{
2821	return seq_list_next(v, &proto_list, pos);
2822}
2823
2824static void proto_seq_stop(struct seq_file *seq, void *v)
2825	__releases(proto_list_mutex)
2826{
2827	mutex_unlock(&proto_list_mutex);
2828}
2829
2830static char proto_method_implemented(const void *method)
2831{
2832	return method == NULL ? 'n' : 'y';
2833}
2834static long sock_prot_memory_allocated(struct proto *proto)
2835{
2836	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2837}
2838
2839static char *sock_prot_memory_pressure(struct proto *proto)
2840{
2841	return proto->memory_pressure != NULL ?
2842	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2843}
2844
2845static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2846{
2847
2848	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2849			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2850		   proto->name,
2851		   proto->obj_size,
2852		   sock_prot_inuse_get(seq_file_net(seq), proto),
2853		   sock_prot_memory_allocated(proto),
2854		   sock_prot_memory_pressure(proto),
2855		   proto->max_header,
2856		   proto->slab == NULL ? "no" : "yes",
2857		   module_name(proto->owner),
2858		   proto_method_implemented(proto->close),
2859		   proto_method_implemented(proto->connect),
2860		   proto_method_implemented(proto->disconnect),
2861		   proto_method_implemented(proto->accept),
2862		   proto_method_implemented(proto->ioctl),
2863		   proto_method_implemented(proto->init),
2864		   proto_method_implemented(proto->destroy),
2865		   proto_method_implemented(proto->shutdown),
2866		   proto_method_implemented(proto->setsockopt),
2867		   proto_method_implemented(proto->getsockopt),
2868		   proto_method_implemented(proto->sendmsg),
2869		   proto_method_implemented(proto->recvmsg),
2870		   proto_method_implemented(proto->sendpage),
2871		   proto_method_implemented(proto->bind),
2872		   proto_method_implemented(proto->backlog_rcv),
2873		   proto_method_implemented(proto->hash),
2874		   proto_method_implemented(proto->unhash),
2875		   proto_method_implemented(proto->get_port),
2876		   proto_method_implemented(proto->enter_memory_pressure));
2877}
2878
2879static int proto_seq_show(struct seq_file *seq, void *v)
2880{
2881	if (v == &proto_list)
2882		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2883			   "protocol",
2884			   "size",
2885			   "sockets",
2886			   "memory",
2887			   "press",
2888			   "maxhdr",
2889			   "slab",
2890			   "module",
2891			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2892	else
2893		proto_seq_printf(seq, list_entry(v, struct proto, node));
2894	return 0;
2895}
2896
2897static const struct seq_operations proto_seq_ops = {
2898	.start  = proto_seq_start,
2899	.next   = proto_seq_next,
2900	.stop   = proto_seq_stop,
2901	.show   = proto_seq_show,
2902};
2903
2904static int proto_seq_open(struct inode *inode, struct file *file)
2905{
2906	return seq_open_net(inode, file, &proto_seq_ops,
2907			    sizeof(struct seq_net_private));
2908}
2909
2910static const struct file_operations proto_seq_fops = {
2911	.owner		= THIS_MODULE,
2912	.open		= proto_seq_open,
2913	.read		= seq_read,
2914	.llseek		= seq_lseek,
2915	.release	= seq_release_net,
2916};
2917
2918static __net_init int proto_init_net(struct net *net)
2919{
2920	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2921		return -ENOMEM;
2922
2923	return 0;
2924}
2925
2926static __net_exit void proto_exit_net(struct net *net)
2927{
2928	remove_proc_entry("protocols", net->proc_net);
2929}
2930
2931
2932static __net_initdata struct pernet_operations proto_net_ops = {
2933	.init = proto_init_net,
2934	.exit = proto_exit_net,
2935};
2936
2937static int __init proto_init(void)
2938{
2939	return register_pernet_subsys(&proto_net_ops);
2940}
2941
2942subsys_initcall(proto_init);
2943
2944#endif /* PROC_FS */
2945