sock.c revision 68835aba4d9b74e2f94106d13b6a4bddc447c4c8
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114
115#include <asm/uaccess.h>
116#include <asm/system.h>
117
118#include <linux/netdevice.h>
119#include <net/protocol.h>
120#include <linux/skbuff.h>
121#include <net/net_namespace.h>
122#include <net/request_sock.h>
123#include <net/sock.h>
124#include <linux/net_tstamp.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127#include <net/cls_cgroup.h>
128
129#include <linux/filter.h>
130
131#ifdef CONFIG_INET
132#include <net/tcp.h>
133#endif
134
135/*
136 * Each address family might have different locking rules, so we have
137 * one slock key per address family:
138 */
139static struct lock_class_key af_family_keys[AF_MAX];
140static struct lock_class_key af_family_slock_keys[AF_MAX];
141
142/*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147static const char *const af_family_key_strings[AF_MAX+1] = {
148  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
158  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
160  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" ,
161  "sk_lock-AF_MAX"
162};
163static const char *const af_family_slock_key_strings[AF_MAX+1] = {
164  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
165  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
166  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
167  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
168  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
169  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
170  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
171  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
172  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
173  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
174  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
175  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
176  "slock-AF_IEEE802154", "slock-AF_CAIF" ,
177  "slock-AF_MAX"
178};
179static const char *const af_family_clock_key_strings[AF_MAX+1] = {
180  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
181  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
182  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
183  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
184  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
185  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
186  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
187  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
188  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
189  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
190  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
191  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
192  "clock-AF_IEEE802154", "clock-AF_CAIF" ,
193  "clock-AF_MAX"
194};
195
196/*
197 * sk_callback_lock locking rules are per-address-family,
198 * so split the lock classes by using a per-AF key:
199 */
200static struct lock_class_key af_callback_keys[AF_MAX];
201
202/* Take into consideration the size of the struct sk_buff overhead in the
203 * determination of these values, since that is non-constant across
204 * platforms.  This makes socket queueing behavior and performance
205 * not depend upon such differences.
206 */
207#define _SK_MEM_PACKETS		256
208#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
209#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
211
212/* Run time adjustable parameters. */
213__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
214__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
215__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
216__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
217
218/* Maximal space eaten by iovec or ancilliary data plus some space */
219int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
220EXPORT_SYMBOL(sysctl_optmem_max);
221
222#if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
223int net_cls_subsys_id = -1;
224EXPORT_SYMBOL_GPL(net_cls_subsys_id);
225#endif
226
227static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
228{
229	struct timeval tv;
230
231	if (optlen < sizeof(tv))
232		return -EINVAL;
233	if (copy_from_user(&tv, optval, sizeof(tv)))
234		return -EFAULT;
235	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
236		return -EDOM;
237
238	if (tv.tv_sec < 0) {
239		static int warned __read_mostly;
240
241		*timeo_p = 0;
242		if (warned < 10 && net_ratelimit()) {
243			warned++;
244			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
245			       "tries to set negative timeout\n",
246				current->comm, task_pid_nr(current));
247		}
248		return 0;
249	}
250	*timeo_p = MAX_SCHEDULE_TIMEOUT;
251	if (tv.tv_sec == 0 && tv.tv_usec == 0)
252		return 0;
253	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
254		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
255	return 0;
256}
257
258static void sock_warn_obsolete_bsdism(const char *name)
259{
260	static int warned;
261	static char warncomm[TASK_COMM_LEN];
262	if (strcmp(warncomm, current->comm) && warned < 5) {
263		strcpy(warncomm,  current->comm);
264		printk(KERN_WARNING "process `%s' is using obsolete "
265		       "%s SO_BSDCOMPAT\n", warncomm, name);
266		warned++;
267	}
268}
269
270static void sock_disable_timestamp(struct sock *sk, int flag)
271{
272	if (sock_flag(sk, flag)) {
273		sock_reset_flag(sk, flag);
274		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
275		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
276			net_disable_timestamp();
277		}
278	}
279}
280
281
282int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
283{
284	int err;
285	int skb_len;
286	unsigned long flags;
287	struct sk_buff_head *list = &sk->sk_receive_queue;
288
289	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
290	   number of warnings when compiling with -W --ANK
291	 */
292	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
293	    (unsigned)sk->sk_rcvbuf) {
294		atomic_inc(&sk->sk_drops);
295		return -ENOMEM;
296	}
297
298	err = sk_filter(sk, skb);
299	if (err)
300		return err;
301
302	if (!sk_rmem_schedule(sk, skb->truesize)) {
303		atomic_inc(&sk->sk_drops);
304		return -ENOBUFS;
305	}
306
307	skb->dev = NULL;
308	skb_set_owner_r(skb, sk);
309
310	/* Cache the SKB length before we tack it onto the receive
311	 * queue.  Once it is added it no longer belongs to us and
312	 * may be freed by other threads of control pulling packets
313	 * from the queue.
314	 */
315	skb_len = skb->len;
316
317	/* we escape from rcu protected region, make sure we dont leak
318	 * a norefcounted dst
319	 */
320	skb_dst_force(skb);
321
322	spin_lock_irqsave(&list->lock, flags);
323	skb->dropcount = atomic_read(&sk->sk_drops);
324	__skb_queue_tail(list, skb);
325	spin_unlock_irqrestore(&list->lock, flags);
326
327	if (!sock_flag(sk, SOCK_DEAD))
328		sk->sk_data_ready(sk, skb_len);
329	return 0;
330}
331EXPORT_SYMBOL(sock_queue_rcv_skb);
332
333int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
334{
335	int rc = NET_RX_SUCCESS;
336
337	if (sk_filter(sk, skb))
338		goto discard_and_relse;
339
340	skb->dev = NULL;
341
342	if (sk_rcvqueues_full(sk, skb)) {
343		atomic_inc(&sk->sk_drops);
344		goto discard_and_relse;
345	}
346	if (nested)
347		bh_lock_sock_nested(sk);
348	else
349		bh_lock_sock(sk);
350	if (!sock_owned_by_user(sk)) {
351		/*
352		 * trylock + unlock semantics:
353		 */
354		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
355
356		rc = sk_backlog_rcv(sk, skb);
357
358		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
359	} else if (sk_add_backlog(sk, skb)) {
360		bh_unlock_sock(sk);
361		atomic_inc(&sk->sk_drops);
362		goto discard_and_relse;
363	}
364
365	bh_unlock_sock(sk);
366out:
367	sock_put(sk);
368	return rc;
369discard_and_relse:
370	kfree_skb(skb);
371	goto out;
372}
373EXPORT_SYMBOL(sk_receive_skb);
374
375void sk_reset_txq(struct sock *sk)
376{
377	sk_tx_queue_clear(sk);
378}
379EXPORT_SYMBOL(sk_reset_txq);
380
381struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
382{
383	struct dst_entry *dst = __sk_dst_get(sk);
384
385	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
386		sk_tx_queue_clear(sk);
387		rcu_assign_pointer(sk->sk_dst_cache, NULL);
388		dst_release(dst);
389		return NULL;
390	}
391
392	return dst;
393}
394EXPORT_SYMBOL(__sk_dst_check);
395
396struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
397{
398	struct dst_entry *dst = sk_dst_get(sk);
399
400	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
401		sk_dst_reset(sk);
402		dst_release(dst);
403		return NULL;
404	}
405
406	return dst;
407}
408EXPORT_SYMBOL(sk_dst_check);
409
410static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
411{
412	int ret = -ENOPROTOOPT;
413#ifdef CONFIG_NETDEVICES
414	struct net *net = sock_net(sk);
415	char devname[IFNAMSIZ];
416	int index;
417
418	/* Sorry... */
419	ret = -EPERM;
420	if (!capable(CAP_NET_RAW))
421		goto out;
422
423	ret = -EINVAL;
424	if (optlen < 0)
425		goto out;
426
427	/* Bind this socket to a particular device like "eth0",
428	 * as specified in the passed interface name. If the
429	 * name is "" or the option length is zero the socket
430	 * is not bound.
431	 */
432	if (optlen > IFNAMSIZ - 1)
433		optlen = IFNAMSIZ - 1;
434	memset(devname, 0, sizeof(devname));
435
436	ret = -EFAULT;
437	if (copy_from_user(devname, optval, optlen))
438		goto out;
439
440	index = 0;
441	if (devname[0] != '\0') {
442		struct net_device *dev;
443
444		rcu_read_lock();
445		dev = dev_get_by_name_rcu(net, devname);
446		if (dev)
447			index = dev->ifindex;
448		rcu_read_unlock();
449		ret = -ENODEV;
450		if (!dev)
451			goto out;
452	}
453
454	lock_sock(sk);
455	sk->sk_bound_dev_if = index;
456	sk_dst_reset(sk);
457	release_sock(sk);
458
459	ret = 0;
460
461out:
462#endif
463
464	return ret;
465}
466
467static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
468{
469	if (valbool)
470		sock_set_flag(sk, bit);
471	else
472		sock_reset_flag(sk, bit);
473}
474
475/*
476 *	This is meant for all protocols to use and covers goings on
477 *	at the socket level. Everything here is generic.
478 */
479
480int sock_setsockopt(struct socket *sock, int level, int optname,
481		    char __user *optval, unsigned int optlen)
482{
483	struct sock *sk = sock->sk;
484	int val;
485	int valbool;
486	struct linger ling;
487	int ret = 0;
488
489	/*
490	 *	Options without arguments
491	 */
492
493	if (optname == SO_BINDTODEVICE)
494		return sock_bindtodevice(sk, optval, optlen);
495
496	if (optlen < sizeof(int))
497		return -EINVAL;
498
499	if (get_user(val, (int __user *)optval))
500		return -EFAULT;
501
502	valbool = val ? 1 : 0;
503
504	lock_sock(sk);
505
506	switch (optname) {
507	case SO_DEBUG:
508		if (val && !capable(CAP_NET_ADMIN))
509			ret = -EACCES;
510		else
511			sock_valbool_flag(sk, SOCK_DBG, valbool);
512		break;
513	case SO_REUSEADDR:
514		sk->sk_reuse = valbool;
515		break;
516	case SO_TYPE:
517	case SO_PROTOCOL:
518	case SO_DOMAIN:
519	case SO_ERROR:
520		ret = -ENOPROTOOPT;
521		break;
522	case SO_DONTROUTE:
523		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
524		break;
525	case SO_BROADCAST:
526		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
527		break;
528	case SO_SNDBUF:
529		/* Don't error on this BSD doesn't and if you think
530		   about it this is right. Otherwise apps have to
531		   play 'guess the biggest size' games. RCVBUF/SNDBUF
532		   are treated in BSD as hints */
533
534		if (val > sysctl_wmem_max)
535			val = sysctl_wmem_max;
536set_sndbuf:
537		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
538		if ((val * 2) < SOCK_MIN_SNDBUF)
539			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
540		else
541			sk->sk_sndbuf = val * 2;
542
543		/*
544		 *	Wake up sending tasks if we
545		 *	upped the value.
546		 */
547		sk->sk_write_space(sk);
548		break;
549
550	case SO_SNDBUFFORCE:
551		if (!capable(CAP_NET_ADMIN)) {
552			ret = -EPERM;
553			break;
554		}
555		goto set_sndbuf;
556
557	case SO_RCVBUF:
558		/* Don't error on this BSD doesn't and if you think
559		   about it this is right. Otherwise apps have to
560		   play 'guess the biggest size' games. RCVBUF/SNDBUF
561		   are treated in BSD as hints */
562
563		if (val > sysctl_rmem_max)
564			val = sysctl_rmem_max;
565set_rcvbuf:
566		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
567		/*
568		 * We double it on the way in to account for
569		 * "struct sk_buff" etc. overhead.   Applications
570		 * assume that the SO_RCVBUF setting they make will
571		 * allow that much actual data to be received on that
572		 * socket.
573		 *
574		 * Applications are unaware that "struct sk_buff" and
575		 * other overheads allocate from the receive buffer
576		 * during socket buffer allocation.
577		 *
578		 * And after considering the possible alternatives,
579		 * returning the value we actually used in getsockopt
580		 * is the most desirable behavior.
581		 */
582		if ((val * 2) < SOCK_MIN_RCVBUF)
583			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
584		else
585			sk->sk_rcvbuf = val * 2;
586		break;
587
588	case SO_RCVBUFFORCE:
589		if (!capable(CAP_NET_ADMIN)) {
590			ret = -EPERM;
591			break;
592		}
593		goto set_rcvbuf;
594
595	case SO_KEEPALIVE:
596#ifdef CONFIG_INET
597		if (sk->sk_protocol == IPPROTO_TCP)
598			tcp_set_keepalive(sk, valbool);
599#endif
600		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
601		break;
602
603	case SO_OOBINLINE:
604		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
605		break;
606
607	case SO_NO_CHECK:
608		sk->sk_no_check = valbool;
609		break;
610
611	case SO_PRIORITY:
612		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
613			sk->sk_priority = val;
614		else
615			ret = -EPERM;
616		break;
617
618	case SO_LINGER:
619		if (optlen < sizeof(ling)) {
620			ret = -EINVAL;	/* 1003.1g */
621			break;
622		}
623		if (copy_from_user(&ling, optval, sizeof(ling))) {
624			ret = -EFAULT;
625			break;
626		}
627		if (!ling.l_onoff)
628			sock_reset_flag(sk, SOCK_LINGER);
629		else {
630#if (BITS_PER_LONG == 32)
631			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
632				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
633			else
634#endif
635				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
636			sock_set_flag(sk, SOCK_LINGER);
637		}
638		break;
639
640	case SO_BSDCOMPAT:
641		sock_warn_obsolete_bsdism("setsockopt");
642		break;
643
644	case SO_PASSCRED:
645		if (valbool)
646			set_bit(SOCK_PASSCRED, &sock->flags);
647		else
648			clear_bit(SOCK_PASSCRED, &sock->flags);
649		break;
650
651	case SO_TIMESTAMP:
652	case SO_TIMESTAMPNS:
653		if (valbool)  {
654			if (optname == SO_TIMESTAMP)
655				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
656			else
657				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
658			sock_set_flag(sk, SOCK_RCVTSTAMP);
659			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
660		} else {
661			sock_reset_flag(sk, SOCK_RCVTSTAMP);
662			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
663		}
664		break;
665
666	case SO_TIMESTAMPING:
667		if (val & ~SOF_TIMESTAMPING_MASK) {
668			ret = -EINVAL;
669			break;
670		}
671		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
672				  val & SOF_TIMESTAMPING_TX_HARDWARE);
673		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
674				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
675		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
676				  val & SOF_TIMESTAMPING_RX_HARDWARE);
677		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
678			sock_enable_timestamp(sk,
679					      SOCK_TIMESTAMPING_RX_SOFTWARE);
680		else
681			sock_disable_timestamp(sk,
682					       SOCK_TIMESTAMPING_RX_SOFTWARE);
683		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
684				  val & SOF_TIMESTAMPING_SOFTWARE);
685		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
686				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
687		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
688				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
689		break;
690
691	case SO_RCVLOWAT:
692		if (val < 0)
693			val = INT_MAX;
694		sk->sk_rcvlowat = val ? : 1;
695		break;
696
697	case SO_RCVTIMEO:
698		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
699		break;
700
701	case SO_SNDTIMEO:
702		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
703		break;
704
705	case SO_ATTACH_FILTER:
706		ret = -EINVAL;
707		if (optlen == sizeof(struct sock_fprog)) {
708			struct sock_fprog fprog;
709
710			ret = -EFAULT;
711			if (copy_from_user(&fprog, optval, sizeof(fprog)))
712				break;
713
714			ret = sk_attach_filter(&fprog, sk);
715		}
716		break;
717
718	case SO_DETACH_FILTER:
719		ret = sk_detach_filter(sk);
720		break;
721
722	case SO_PASSSEC:
723		if (valbool)
724			set_bit(SOCK_PASSSEC, &sock->flags);
725		else
726			clear_bit(SOCK_PASSSEC, &sock->flags);
727		break;
728	case SO_MARK:
729		if (!capable(CAP_NET_ADMIN))
730			ret = -EPERM;
731		else
732			sk->sk_mark = val;
733		break;
734
735		/* We implement the SO_SNDLOWAT etc to
736		   not be settable (1003.1g 5.3) */
737	case SO_RXQ_OVFL:
738		if (valbool)
739			sock_set_flag(sk, SOCK_RXQ_OVFL);
740		else
741			sock_reset_flag(sk, SOCK_RXQ_OVFL);
742		break;
743	default:
744		ret = -ENOPROTOOPT;
745		break;
746	}
747	release_sock(sk);
748	return ret;
749}
750EXPORT_SYMBOL(sock_setsockopt);
751
752
753void cred_to_ucred(struct pid *pid, const struct cred *cred,
754		   struct ucred *ucred)
755{
756	ucred->pid = pid_vnr(pid);
757	ucred->uid = ucred->gid = -1;
758	if (cred) {
759		struct user_namespace *current_ns = current_user_ns();
760
761		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
762		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
763	}
764}
765EXPORT_SYMBOL_GPL(cred_to_ucred);
766
767int sock_getsockopt(struct socket *sock, int level, int optname,
768		    char __user *optval, int __user *optlen)
769{
770	struct sock *sk = sock->sk;
771
772	union {
773		int val;
774		struct linger ling;
775		struct timeval tm;
776	} v;
777
778	int lv = sizeof(int);
779	int len;
780
781	if (get_user(len, optlen))
782		return -EFAULT;
783	if (len < 0)
784		return -EINVAL;
785
786	memset(&v, 0, sizeof(v));
787
788	switch (optname) {
789	case SO_DEBUG:
790		v.val = sock_flag(sk, SOCK_DBG);
791		break;
792
793	case SO_DONTROUTE:
794		v.val = sock_flag(sk, SOCK_LOCALROUTE);
795		break;
796
797	case SO_BROADCAST:
798		v.val = !!sock_flag(sk, SOCK_BROADCAST);
799		break;
800
801	case SO_SNDBUF:
802		v.val = sk->sk_sndbuf;
803		break;
804
805	case SO_RCVBUF:
806		v.val = sk->sk_rcvbuf;
807		break;
808
809	case SO_REUSEADDR:
810		v.val = sk->sk_reuse;
811		break;
812
813	case SO_KEEPALIVE:
814		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
815		break;
816
817	case SO_TYPE:
818		v.val = sk->sk_type;
819		break;
820
821	case SO_PROTOCOL:
822		v.val = sk->sk_protocol;
823		break;
824
825	case SO_DOMAIN:
826		v.val = sk->sk_family;
827		break;
828
829	case SO_ERROR:
830		v.val = -sock_error(sk);
831		if (v.val == 0)
832			v.val = xchg(&sk->sk_err_soft, 0);
833		break;
834
835	case SO_OOBINLINE:
836		v.val = !!sock_flag(sk, SOCK_URGINLINE);
837		break;
838
839	case SO_NO_CHECK:
840		v.val = sk->sk_no_check;
841		break;
842
843	case SO_PRIORITY:
844		v.val = sk->sk_priority;
845		break;
846
847	case SO_LINGER:
848		lv		= sizeof(v.ling);
849		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
850		v.ling.l_linger	= sk->sk_lingertime / HZ;
851		break;
852
853	case SO_BSDCOMPAT:
854		sock_warn_obsolete_bsdism("getsockopt");
855		break;
856
857	case SO_TIMESTAMP:
858		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
859				!sock_flag(sk, SOCK_RCVTSTAMPNS);
860		break;
861
862	case SO_TIMESTAMPNS:
863		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
864		break;
865
866	case SO_TIMESTAMPING:
867		v.val = 0;
868		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
869			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
870		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
871			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
872		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
873			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
874		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
875			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
876		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
877			v.val |= SOF_TIMESTAMPING_SOFTWARE;
878		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
879			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
880		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
881			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
882		break;
883
884	case SO_RCVTIMEO:
885		lv = sizeof(struct timeval);
886		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
887			v.tm.tv_sec = 0;
888			v.tm.tv_usec = 0;
889		} else {
890			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
891			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
892		}
893		break;
894
895	case SO_SNDTIMEO:
896		lv = sizeof(struct timeval);
897		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
898			v.tm.tv_sec = 0;
899			v.tm.tv_usec = 0;
900		} else {
901			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
902			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
903		}
904		break;
905
906	case SO_RCVLOWAT:
907		v.val = sk->sk_rcvlowat;
908		break;
909
910	case SO_SNDLOWAT:
911		v.val = 1;
912		break;
913
914	case SO_PASSCRED:
915		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
916		break;
917
918	case SO_PEERCRED:
919	{
920		struct ucred peercred;
921		if (len > sizeof(peercred))
922			len = sizeof(peercred);
923		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
924		if (copy_to_user(optval, &peercred, len))
925			return -EFAULT;
926		goto lenout;
927	}
928
929	case SO_PEERNAME:
930	{
931		char address[128];
932
933		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
934			return -ENOTCONN;
935		if (lv < len)
936			return -EINVAL;
937		if (copy_to_user(optval, address, len))
938			return -EFAULT;
939		goto lenout;
940	}
941
942	/* Dubious BSD thing... Probably nobody even uses it, but
943	 * the UNIX standard wants it for whatever reason... -DaveM
944	 */
945	case SO_ACCEPTCONN:
946		v.val = sk->sk_state == TCP_LISTEN;
947		break;
948
949	case SO_PASSSEC:
950		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
951		break;
952
953	case SO_PEERSEC:
954		return security_socket_getpeersec_stream(sock, optval, optlen, len);
955
956	case SO_MARK:
957		v.val = sk->sk_mark;
958		break;
959
960	case SO_RXQ_OVFL:
961		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
962		break;
963
964	default:
965		return -ENOPROTOOPT;
966	}
967
968	if (len > lv)
969		len = lv;
970	if (copy_to_user(optval, &v, len))
971		return -EFAULT;
972lenout:
973	if (put_user(len, optlen))
974		return -EFAULT;
975	return 0;
976}
977
978/*
979 * Initialize an sk_lock.
980 *
981 * (We also register the sk_lock with the lock validator.)
982 */
983static inline void sock_lock_init(struct sock *sk)
984{
985	sock_lock_init_class_and_name(sk,
986			af_family_slock_key_strings[sk->sk_family],
987			af_family_slock_keys + sk->sk_family,
988			af_family_key_strings[sk->sk_family],
989			af_family_keys + sk->sk_family);
990}
991
992/*
993 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
994 * even temporarly, because of RCU lookups. sk_node should also be left as is.
995 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
996 */
997static void sock_copy(struct sock *nsk, const struct sock *osk)
998{
999#ifdef CONFIG_SECURITY_NETWORK
1000	void *sptr = nsk->sk_security;
1001#endif
1002	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1003
1004	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1005	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1006
1007#ifdef CONFIG_SECURITY_NETWORK
1008	nsk->sk_security = sptr;
1009	security_sk_clone(osk, nsk);
1010#endif
1011}
1012
1013static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1014		int family)
1015{
1016	struct sock *sk;
1017	struct kmem_cache *slab;
1018
1019	slab = prot->slab;
1020	if (slab != NULL) {
1021		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1022		if (!sk)
1023			return sk;
1024		if (priority & __GFP_ZERO) {
1025			/*
1026			 * caches using SLAB_DESTROY_BY_RCU should let
1027			 * sk_node.next un-modified. Special care is taken
1028			 * when initializing object to zero.
1029			 */
1030			if (offsetof(struct sock, sk_node.next) != 0)
1031				memset(sk, 0, offsetof(struct sock, sk_node.next));
1032			memset(&sk->sk_node.pprev, 0,
1033			       prot->obj_size - offsetof(struct sock,
1034							 sk_node.pprev));
1035		}
1036	}
1037	else
1038		sk = kmalloc(prot->obj_size, priority);
1039
1040	if (sk != NULL) {
1041		kmemcheck_annotate_bitfield(sk, flags);
1042
1043		if (security_sk_alloc(sk, family, priority))
1044			goto out_free;
1045
1046		if (!try_module_get(prot->owner))
1047			goto out_free_sec;
1048		sk_tx_queue_clear(sk);
1049	}
1050
1051	return sk;
1052
1053out_free_sec:
1054	security_sk_free(sk);
1055out_free:
1056	if (slab != NULL)
1057		kmem_cache_free(slab, sk);
1058	else
1059		kfree(sk);
1060	return NULL;
1061}
1062
1063static void sk_prot_free(struct proto *prot, struct sock *sk)
1064{
1065	struct kmem_cache *slab;
1066	struct module *owner;
1067
1068	owner = prot->owner;
1069	slab = prot->slab;
1070
1071	security_sk_free(sk);
1072	if (slab != NULL)
1073		kmem_cache_free(slab, sk);
1074	else
1075		kfree(sk);
1076	module_put(owner);
1077}
1078
1079#ifdef CONFIG_CGROUPS
1080void sock_update_classid(struct sock *sk)
1081{
1082	u32 classid;
1083
1084	rcu_read_lock();  /* doing current task, which cannot vanish. */
1085	classid = task_cls_classid(current);
1086	rcu_read_unlock();
1087	if (classid && classid != sk->sk_classid)
1088		sk->sk_classid = classid;
1089}
1090EXPORT_SYMBOL(sock_update_classid);
1091#endif
1092
1093/**
1094 *	sk_alloc - All socket objects are allocated here
1095 *	@net: the applicable net namespace
1096 *	@family: protocol family
1097 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1098 *	@prot: struct proto associated with this new sock instance
1099 */
1100struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1101		      struct proto *prot)
1102{
1103	struct sock *sk;
1104
1105	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1106	if (sk) {
1107		sk->sk_family = family;
1108		/*
1109		 * See comment in struct sock definition to understand
1110		 * why we need sk_prot_creator -acme
1111		 */
1112		sk->sk_prot = sk->sk_prot_creator = prot;
1113		sock_lock_init(sk);
1114		sock_net_set(sk, get_net(net));
1115		atomic_set(&sk->sk_wmem_alloc, 1);
1116
1117		sock_update_classid(sk);
1118	}
1119
1120	return sk;
1121}
1122EXPORT_SYMBOL(sk_alloc);
1123
1124static void __sk_free(struct sock *sk)
1125{
1126	struct sk_filter *filter;
1127
1128	if (sk->sk_destruct)
1129		sk->sk_destruct(sk);
1130
1131	filter = rcu_dereference_check(sk->sk_filter,
1132				       atomic_read(&sk->sk_wmem_alloc) == 0);
1133	if (filter) {
1134		sk_filter_uncharge(sk, filter);
1135		rcu_assign_pointer(sk->sk_filter, NULL);
1136	}
1137
1138	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1139	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1140
1141	if (atomic_read(&sk->sk_omem_alloc))
1142		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1143		       __func__, atomic_read(&sk->sk_omem_alloc));
1144
1145	if (sk->sk_peer_cred)
1146		put_cred(sk->sk_peer_cred);
1147	put_pid(sk->sk_peer_pid);
1148	put_net(sock_net(sk));
1149	sk_prot_free(sk->sk_prot_creator, sk);
1150}
1151
1152void sk_free(struct sock *sk)
1153{
1154	/*
1155	 * We substract one from sk_wmem_alloc and can know if
1156	 * some packets are still in some tx queue.
1157	 * If not null, sock_wfree() will call __sk_free(sk) later
1158	 */
1159	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1160		__sk_free(sk);
1161}
1162EXPORT_SYMBOL(sk_free);
1163
1164/*
1165 * Last sock_put should drop referrence to sk->sk_net. It has already
1166 * been dropped in sk_change_net. Taking referrence to stopping namespace
1167 * is not an option.
1168 * Take referrence to a socket to remove it from hash _alive_ and after that
1169 * destroy it in the context of init_net.
1170 */
1171void sk_release_kernel(struct sock *sk)
1172{
1173	if (sk == NULL || sk->sk_socket == NULL)
1174		return;
1175
1176	sock_hold(sk);
1177	sock_release(sk->sk_socket);
1178	release_net(sock_net(sk));
1179	sock_net_set(sk, get_net(&init_net));
1180	sock_put(sk);
1181}
1182EXPORT_SYMBOL(sk_release_kernel);
1183
1184struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1185{
1186	struct sock *newsk;
1187
1188	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1189	if (newsk != NULL) {
1190		struct sk_filter *filter;
1191
1192		sock_copy(newsk, sk);
1193
1194		/* SANITY */
1195		get_net(sock_net(newsk));
1196		sk_node_init(&newsk->sk_node);
1197		sock_lock_init(newsk);
1198		bh_lock_sock(newsk);
1199		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1200		newsk->sk_backlog.len = 0;
1201
1202		atomic_set(&newsk->sk_rmem_alloc, 0);
1203		/*
1204		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1205		 */
1206		atomic_set(&newsk->sk_wmem_alloc, 1);
1207		atomic_set(&newsk->sk_omem_alloc, 0);
1208		skb_queue_head_init(&newsk->sk_receive_queue);
1209		skb_queue_head_init(&newsk->sk_write_queue);
1210#ifdef CONFIG_NET_DMA
1211		skb_queue_head_init(&newsk->sk_async_wait_queue);
1212#endif
1213
1214		spin_lock_init(&newsk->sk_dst_lock);
1215		rwlock_init(&newsk->sk_callback_lock);
1216		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1217				af_callback_keys + newsk->sk_family,
1218				af_family_clock_key_strings[newsk->sk_family]);
1219
1220		newsk->sk_dst_cache	= NULL;
1221		newsk->sk_wmem_queued	= 0;
1222		newsk->sk_forward_alloc = 0;
1223		newsk->sk_send_head	= NULL;
1224		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1225
1226		sock_reset_flag(newsk, SOCK_DONE);
1227		skb_queue_head_init(&newsk->sk_error_queue);
1228
1229		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1230		if (filter != NULL)
1231			sk_filter_charge(newsk, filter);
1232
1233		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1234			/* It is still raw copy of parent, so invalidate
1235			 * destructor and make plain sk_free() */
1236			newsk->sk_destruct = NULL;
1237			sk_free(newsk);
1238			newsk = NULL;
1239			goto out;
1240		}
1241
1242		newsk->sk_err	   = 0;
1243		newsk->sk_priority = 0;
1244		/*
1245		 * Before updating sk_refcnt, we must commit prior changes to memory
1246		 * (Documentation/RCU/rculist_nulls.txt for details)
1247		 */
1248		smp_wmb();
1249		atomic_set(&newsk->sk_refcnt, 2);
1250
1251		/*
1252		 * Increment the counter in the same struct proto as the master
1253		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1254		 * is the same as sk->sk_prot->socks, as this field was copied
1255		 * with memcpy).
1256		 *
1257		 * This _changes_ the previous behaviour, where
1258		 * tcp_create_openreq_child always was incrementing the
1259		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1260		 * to be taken into account in all callers. -acme
1261		 */
1262		sk_refcnt_debug_inc(newsk);
1263		sk_set_socket(newsk, NULL);
1264		newsk->sk_wq = NULL;
1265
1266		if (newsk->sk_prot->sockets_allocated)
1267			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1268
1269		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1270		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1271			net_enable_timestamp();
1272	}
1273out:
1274	return newsk;
1275}
1276EXPORT_SYMBOL_GPL(sk_clone);
1277
1278void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1279{
1280	__sk_dst_set(sk, dst);
1281	sk->sk_route_caps = dst->dev->features;
1282	if (sk->sk_route_caps & NETIF_F_GSO)
1283		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1284	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1285	if (sk_can_gso(sk)) {
1286		if (dst->header_len) {
1287			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1288		} else {
1289			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1290			sk->sk_gso_max_size = dst->dev->gso_max_size;
1291		}
1292	}
1293}
1294EXPORT_SYMBOL_GPL(sk_setup_caps);
1295
1296void __init sk_init(void)
1297{
1298	if (totalram_pages <= 4096) {
1299		sysctl_wmem_max = 32767;
1300		sysctl_rmem_max = 32767;
1301		sysctl_wmem_default = 32767;
1302		sysctl_rmem_default = 32767;
1303	} else if (totalram_pages >= 131072) {
1304		sysctl_wmem_max = 131071;
1305		sysctl_rmem_max = 131071;
1306	}
1307}
1308
1309/*
1310 *	Simple resource managers for sockets.
1311 */
1312
1313
1314/*
1315 * Write buffer destructor automatically called from kfree_skb.
1316 */
1317void sock_wfree(struct sk_buff *skb)
1318{
1319	struct sock *sk = skb->sk;
1320	unsigned int len = skb->truesize;
1321
1322	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1323		/*
1324		 * Keep a reference on sk_wmem_alloc, this will be released
1325		 * after sk_write_space() call
1326		 */
1327		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1328		sk->sk_write_space(sk);
1329		len = 1;
1330	}
1331	/*
1332	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1333	 * could not do because of in-flight packets
1334	 */
1335	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1336		__sk_free(sk);
1337}
1338EXPORT_SYMBOL(sock_wfree);
1339
1340/*
1341 * Read buffer destructor automatically called from kfree_skb.
1342 */
1343void sock_rfree(struct sk_buff *skb)
1344{
1345	struct sock *sk = skb->sk;
1346	unsigned int len = skb->truesize;
1347
1348	atomic_sub(len, &sk->sk_rmem_alloc);
1349	sk_mem_uncharge(sk, len);
1350}
1351EXPORT_SYMBOL(sock_rfree);
1352
1353
1354int sock_i_uid(struct sock *sk)
1355{
1356	int uid;
1357
1358	read_lock_bh(&sk->sk_callback_lock);
1359	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1360	read_unlock_bh(&sk->sk_callback_lock);
1361	return uid;
1362}
1363EXPORT_SYMBOL(sock_i_uid);
1364
1365unsigned long sock_i_ino(struct sock *sk)
1366{
1367	unsigned long ino;
1368
1369	read_lock_bh(&sk->sk_callback_lock);
1370	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1371	read_unlock_bh(&sk->sk_callback_lock);
1372	return ino;
1373}
1374EXPORT_SYMBOL(sock_i_ino);
1375
1376/*
1377 * Allocate a skb from the socket's send buffer.
1378 */
1379struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1380			     gfp_t priority)
1381{
1382	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1383		struct sk_buff *skb = alloc_skb(size, priority);
1384		if (skb) {
1385			skb_set_owner_w(skb, sk);
1386			return skb;
1387		}
1388	}
1389	return NULL;
1390}
1391EXPORT_SYMBOL(sock_wmalloc);
1392
1393/*
1394 * Allocate a skb from the socket's receive buffer.
1395 */
1396struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1397			     gfp_t priority)
1398{
1399	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1400		struct sk_buff *skb = alloc_skb(size, priority);
1401		if (skb) {
1402			skb_set_owner_r(skb, sk);
1403			return skb;
1404		}
1405	}
1406	return NULL;
1407}
1408
1409/*
1410 * Allocate a memory block from the socket's option memory buffer.
1411 */
1412void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1413{
1414	if ((unsigned)size <= sysctl_optmem_max &&
1415	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1416		void *mem;
1417		/* First do the add, to avoid the race if kmalloc
1418		 * might sleep.
1419		 */
1420		atomic_add(size, &sk->sk_omem_alloc);
1421		mem = kmalloc(size, priority);
1422		if (mem)
1423			return mem;
1424		atomic_sub(size, &sk->sk_omem_alloc);
1425	}
1426	return NULL;
1427}
1428EXPORT_SYMBOL(sock_kmalloc);
1429
1430/*
1431 * Free an option memory block.
1432 */
1433void sock_kfree_s(struct sock *sk, void *mem, int size)
1434{
1435	kfree(mem);
1436	atomic_sub(size, &sk->sk_omem_alloc);
1437}
1438EXPORT_SYMBOL(sock_kfree_s);
1439
1440/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1441   I think, these locks should be removed for datagram sockets.
1442 */
1443static long sock_wait_for_wmem(struct sock *sk, long timeo)
1444{
1445	DEFINE_WAIT(wait);
1446
1447	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1448	for (;;) {
1449		if (!timeo)
1450			break;
1451		if (signal_pending(current))
1452			break;
1453		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1454		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1455		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1456			break;
1457		if (sk->sk_shutdown & SEND_SHUTDOWN)
1458			break;
1459		if (sk->sk_err)
1460			break;
1461		timeo = schedule_timeout(timeo);
1462	}
1463	finish_wait(sk_sleep(sk), &wait);
1464	return timeo;
1465}
1466
1467
1468/*
1469 *	Generic send/receive buffer handlers
1470 */
1471
1472struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1473				     unsigned long data_len, int noblock,
1474				     int *errcode)
1475{
1476	struct sk_buff *skb;
1477	gfp_t gfp_mask;
1478	long timeo;
1479	int err;
1480
1481	gfp_mask = sk->sk_allocation;
1482	if (gfp_mask & __GFP_WAIT)
1483		gfp_mask |= __GFP_REPEAT;
1484
1485	timeo = sock_sndtimeo(sk, noblock);
1486	while (1) {
1487		err = sock_error(sk);
1488		if (err != 0)
1489			goto failure;
1490
1491		err = -EPIPE;
1492		if (sk->sk_shutdown & SEND_SHUTDOWN)
1493			goto failure;
1494
1495		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1496			skb = alloc_skb(header_len, gfp_mask);
1497			if (skb) {
1498				int npages;
1499				int i;
1500
1501				/* No pages, we're done... */
1502				if (!data_len)
1503					break;
1504
1505				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1506				skb->truesize += data_len;
1507				skb_shinfo(skb)->nr_frags = npages;
1508				for (i = 0; i < npages; i++) {
1509					struct page *page;
1510					skb_frag_t *frag;
1511
1512					page = alloc_pages(sk->sk_allocation, 0);
1513					if (!page) {
1514						err = -ENOBUFS;
1515						skb_shinfo(skb)->nr_frags = i;
1516						kfree_skb(skb);
1517						goto failure;
1518					}
1519
1520					frag = &skb_shinfo(skb)->frags[i];
1521					frag->page = page;
1522					frag->page_offset = 0;
1523					frag->size = (data_len >= PAGE_SIZE ?
1524						      PAGE_SIZE :
1525						      data_len);
1526					data_len -= PAGE_SIZE;
1527				}
1528
1529				/* Full success... */
1530				break;
1531			}
1532			err = -ENOBUFS;
1533			goto failure;
1534		}
1535		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1536		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1537		err = -EAGAIN;
1538		if (!timeo)
1539			goto failure;
1540		if (signal_pending(current))
1541			goto interrupted;
1542		timeo = sock_wait_for_wmem(sk, timeo);
1543	}
1544
1545	skb_set_owner_w(skb, sk);
1546	return skb;
1547
1548interrupted:
1549	err = sock_intr_errno(timeo);
1550failure:
1551	*errcode = err;
1552	return NULL;
1553}
1554EXPORT_SYMBOL(sock_alloc_send_pskb);
1555
1556struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1557				    int noblock, int *errcode)
1558{
1559	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1560}
1561EXPORT_SYMBOL(sock_alloc_send_skb);
1562
1563static void __lock_sock(struct sock *sk)
1564	__releases(&sk->sk_lock.slock)
1565	__acquires(&sk->sk_lock.slock)
1566{
1567	DEFINE_WAIT(wait);
1568
1569	for (;;) {
1570		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1571					TASK_UNINTERRUPTIBLE);
1572		spin_unlock_bh(&sk->sk_lock.slock);
1573		schedule();
1574		spin_lock_bh(&sk->sk_lock.slock);
1575		if (!sock_owned_by_user(sk))
1576			break;
1577	}
1578	finish_wait(&sk->sk_lock.wq, &wait);
1579}
1580
1581static void __release_sock(struct sock *sk)
1582	__releases(&sk->sk_lock.slock)
1583	__acquires(&sk->sk_lock.slock)
1584{
1585	struct sk_buff *skb = sk->sk_backlog.head;
1586
1587	do {
1588		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1589		bh_unlock_sock(sk);
1590
1591		do {
1592			struct sk_buff *next = skb->next;
1593
1594			WARN_ON_ONCE(skb_dst_is_noref(skb));
1595			skb->next = NULL;
1596			sk_backlog_rcv(sk, skb);
1597
1598			/*
1599			 * We are in process context here with softirqs
1600			 * disabled, use cond_resched_softirq() to preempt.
1601			 * This is safe to do because we've taken the backlog
1602			 * queue private:
1603			 */
1604			cond_resched_softirq();
1605
1606			skb = next;
1607		} while (skb != NULL);
1608
1609		bh_lock_sock(sk);
1610	} while ((skb = sk->sk_backlog.head) != NULL);
1611
1612	/*
1613	 * Doing the zeroing here guarantee we can not loop forever
1614	 * while a wild producer attempts to flood us.
1615	 */
1616	sk->sk_backlog.len = 0;
1617}
1618
1619/**
1620 * sk_wait_data - wait for data to arrive at sk_receive_queue
1621 * @sk:    sock to wait on
1622 * @timeo: for how long
1623 *
1624 * Now socket state including sk->sk_err is changed only under lock,
1625 * hence we may omit checks after joining wait queue.
1626 * We check receive queue before schedule() only as optimization;
1627 * it is very likely that release_sock() added new data.
1628 */
1629int sk_wait_data(struct sock *sk, long *timeo)
1630{
1631	int rc;
1632	DEFINE_WAIT(wait);
1633
1634	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1635	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1636	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1637	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1638	finish_wait(sk_sleep(sk), &wait);
1639	return rc;
1640}
1641EXPORT_SYMBOL(sk_wait_data);
1642
1643/**
1644 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1645 *	@sk: socket
1646 *	@size: memory size to allocate
1647 *	@kind: allocation type
1648 *
1649 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1650 *	rmem allocation. This function assumes that protocols which have
1651 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1652 */
1653int __sk_mem_schedule(struct sock *sk, int size, int kind)
1654{
1655	struct proto *prot = sk->sk_prot;
1656	int amt = sk_mem_pages(size);
1657	long allocated;
1658
1659	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1660	allocated = atomic_long_add_return(amt, prot->memory_allocated);
1661
1662	/* Under limit. */
1663	if (allocated <= prot->sysctl_mem[0]) {
1664		if (prot->memory_pressure && *prot->memory_pressure)
1665			*prot->memory_pressure = 0;
1666		return 1;
1667	}
1668
1669	/* Under pressure. */
1670	if (allocated > prot->sysctl_mem[1])
1671		if (prot->enter_memory_pressure)
1672			prot->enter_memory_pressure(sk);
1673
1674	/* Over hard limit. */
1675	if (allocated > prot->sysctl_mem[2])
1676		goto suppress_allocation;
1677
1678	/* guarantee minimum buffer size under pressure */
1679	if (kind == SK_MEM_RECV) {
1680		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1681			return 1;
1682	} else { /* SK_MEM_SEND */
1683		if (sk->sk_type == SOCK_STREAM) {
1684			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1685				return 1;
1686		} else if (atomic_read(&sk->sk_wmem_alloc) <
1687			   prot->sysctl_wmem[0])
1688				return 1;
1689	}
1690
1691	if (prot->memory_pressure) {
1692		int alloc;
1693
1694		if (!*prot->memory_pressure)
1695			return 1;
1696		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1697		if (prot->sysctl_mem[2] > alloc *
1698		    sk_mem_pages(sk->sk_wmem_queued +
1699				 atomic_read(&sk->sk_rmem_alloc) +
1700				 sk->sk_forward_alloc))
1701			return 1;
1702	}
1703
1704suppress_allocation:
1705
1706	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1707		sk_stream_moderate_sndbuf(sk);
1708
1709		/* Fail only if socket is _under_ its sndbuf.
1710		 * In this case we cannot block, so that we have to fail.
1711		 */
1712		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1713			return 1;
1714	}
1715
1716	/* Alas. Undo changes. */
1717	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1718	atomic_long_sub(amt, prot->memory_allocated);
1719	return 0;
1720}
1721EXPORT_SYMBOL(__sk_mem_schedule);
1722
1723/**
1724 *	__sk_reclaim - reclaim memory_allocated
1725 *	@sk: socket
1726 */
1727void __sk_mem_reclaim(struct sock *sk)
1728{
1729	struct proto *prot = sk->sk_prot;
1730
1731	atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1732		   prot->memory_allocated);
1733	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1734
1735	if (prot->memory_pressure && *prot->memory_pressure &&
1736	    (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1737		*prot->memory_pressure = 0;
1738}
1739EXPORT_SYMBOL(__sk_mem_reclaim);
1740
1741
1742/*
1743 * Set of default routines for initialising struct proto_ops when
1744 * the protocol does not support a particular function. In certain
1745 * cases where it makes no sense for a protocol to have a "do nothing"
1746 * function, some default processing is provided.
1747 */
1748
1749int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1750{
1751	return -EOPNOTSUPP;
1752}
1753EXPORT_SYMBOL(sock_no_bind);
1754
1755int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1756		    int len, int flags)
1757{
1758	return -EOPNOTSUPP;
1759}
1760EXPORT_SYMBOL(sock_no_connect);
1761
1762int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1763{
1764	return -EOPNOTSUPP;
1765}
1766EXPORT_SYMBOL(sock_no_socketpair);
1767
1768int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1769{
1770	return -EOPNOTSUPP;
1771}
1772EXPORT_SYMBOL(sock_no_accept);
1773
1774int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1775		    int *len, int peer)
1776{
1777	return -EOPNOTSUPP;
1778}
1779EXPORT_SYMBOL(sock_no_getname);
1780
1781unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1782{
1783	return 0;
1784}
1785EXPORT_SYMBOL(sock_no_poll);
1786
1787int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1788{
1789	return -EOPNOTSUPP;
1790}
1791EXPORT_SYMBOL(sock_no_ioctl);
1792
1793int sock_no_listen(struct socket *sock, int backlog)
1794{
1795	return -EOPNOTSUPP;
1796}
1797EXPORT_SYMBOL(sock_no_listen);
1798
1799int sock_no_shutdown(struct socket *sock, int how)
1800{
1801	return -EOPNOTSUPP;
1802}
1803EXPORT_SYMBOL(sock_no_shutdown);
1804
1805int sock_no_setsockopt(struct socket *sock, int level, int optname,
1806		    char __user *optval, unsigned int optlen)
1807{
1808	return -EOPNOTSUPP;
1809}
1810EXPORT_SYMBOL(sock_no_setsockopt);
1811
1812int sock_no_getsockopt(struct socket *sock, int level, int optname,
1813		    char __user *optval, int __user *optlen)
1814{
1815	return -EOPNOTSUPP;
1816}
1817EXPORT_SYMBOL(sock_no_getsockopt);
1818
1819int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1820		    size_t len)
1821{
1822	return -EOPNOTSUPP;
1823}
1824EXPORT_SYMBOL(sock_no_sendmsg);
1825
1826int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1827		    size_t len, int flags)
1828{
1829	return -EOPNOTSUPP;
1830}
1831EXPORT_SYMBOL(sock_no_recvmsg);
1832
1833int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1834{
1835	/* Mirror missing mmap method error code */
1836	return -ENODEV;
1837}
1838EXPORT_SYMBOL(sock_no_mmap);
1839
1840ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1841{
1842	ssize_t res;
1843	struct msghdr msg = {.msg_flags = flags};
1844	struct kvec iov;
1845	char *kaddr = kmap(page);
1846	iov.iov_base = kaddr + offset;
1847	iov.iov_len = size;
1848	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1849	kunmap(page);
1850	return res;
1851}
1852EXPORT_SYMBOL(sock_no_sendpage);
1853
1854/*
1855 *	Default Socket Callbacks
1856 */
1857
1858static void sock_def_wakeup(struct sock *sk)
1859{
1860	struct socket_wq *wq;
1861
1862	rcu_read_lock();
1863	wq = rcu_dereference(sk->sk_wq);
1864	if (wq_has_sleeper(wq))
1865		wake_up_interruptible_all(&wq->wait);
1866	rcu_read_unlock();
1867}
1868
1869static void sock_def_error_report(struct sock *sk)
1870{
1871	struct socket_wq *wq;
1872
1873	rcu_read_lock();
1874	wq = rcu_dereference(sk->sk_wq);
1875	if (wq_has_sleeper(wq))
1876		wake_up_interruptible_poll(&wq->wait, POLLERR);
1877	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1878	rcu_read_unlock();
1879}
1880
1881static void sock_def_readable(struct sock *sk, int len)
1882{
1883	struct socket_wq *wq;
1884
1885	rcu_read_lock();
1886	wq = rcu_dereference(sk->sk_wq);
1887	if (wq_has_sleeper(wq))
1888		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1889						POLLRDNORM | POLLRDBAND);
1890	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1891	rcu_read_unlock();
1892}
1893
1894static void sock_def_write_space(struct sock *sk)
1895{
1896	struct socket_wq *wq;
1897
1898	rcu_read_lock();
1899
1900	/* Do not wake up a writer until he can make "significant"
1901	 * progress.  --DaveM
1902	 */
1903	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1904		wq = rcu_dereference(sk->sk_wq);
1905		if (wq_has_sleeper(wq))
1906			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1907						POLLWRNORM | POLLWRBAND);
1908
1909		/* Should agree with poll, otherwise some programs break */
1910		if (sock_writeable(sk))
1911			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1912	}
1913
1914	rcu_read_unlock();
1915}
1916
1917static void sock_def_destruct(struct sock *sk)
1918{
1919	kfree(sk->sk_protinfo);
1920}
1921
1922void sk_send_sigurg(struct sock *sk)
1923{
1924	if (sk->sk_socket && sk->sk_socket->file)
1925		if (send_sigurg(&sk->sk_socket->file->f_owner))
1926			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1927}
1928EXPORT_SYMBOL(sk_send_sigurg);
1929
1930void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1931		    unsigned long expires)
1932{
1933	if (!mod_timer(timer, expires))
1934		sock_hold(sk);
1935}
1936EXPORT_SYMBOL(sk_reset_timer);
1937
1938void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1939{
1940	if (timer_pending(timer) && del_timer(timer))
1941		__sock_put(sk);
1942}
1943EXPORT_SYMBOL(sk_stop_timer);
1944
1945void sock_init_data(struct socket *sock, struct sock *sk)
1946{
1947	skb_queue_head_init(&sk->sk_receive_queue);
1948	skb_queue_head_init(&sk->sk_write_queue);
1949	skb_queue_head_init(&sk->sk_error_queue);
1950#ifdef CONFIG_NET_DMA
1951	skb_queue_head_init(&sk->sk_async_wait_queue);
1952#endif
1953
1954	sk->sk_send_head	=	NULL;
1955
1956	init_timer(&sk->sk_timer);
1957
1958	sk->sk_allocation	=	GFP_KERNEL;
1959	sk->sk_rcvbuf		=	sysctl_rmem_default;
1960	sk->sk_sndbuf		=	sysctl_wmem_default;
1961	sk->sk_state		=	TCP_CLOSE;
1962	sk_set_socket(sk, sock);
1963
1964	sock_set_flag(sk, SOCK_ZAPPED);
1965
1966	if (sock) {
1967		sk->sk_type	=	sock->type;
1968		sk->sk_wq	=	sock->wq;
1969		sock->sk	=	sk;
1970	} else
1971		sk->sk_wq	=	NULL;
1972
1973	spin_lock_init(&sk->sk_dst_lock);
1974	rwlock_init(&sk->sk_callback_lock);
1975	lockdep_set_class_and_name(&sk->sk_callback_lock,
1976			af_callback_keys + sk->sk_family,
1977			af_family_clock_key_strings[sk->sk_family]);
1978
1979	sk->sk_state_change	=	sock_def_wakeup;
1980	sk->sk_data_ready	=	sock_def_readable;
1981	sk->sk_write_space	=	sock_def_write_space;
1982	sk->sk_error_report	=	sock_def_error_report;
1983	sk->sk_destruct		=	sock_def_destruct;
1984
1985	sk->sk_sndmsg_page	=	NULL;
1986	sk->sk_sndmsg_off	=	0;
1987
1988	sk->sk_peer_pid 	=	NULL;
1989	sk->sk_peer_cred	=	NULL;
1990	sk->sk_write_pending	=	0;
1991	sk->sk_rcvlowat		=	1;
1992	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1993	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1994
1995	sk->sk_stamp = ktime_set(-1L, 0);
1996
1997	/*
1998	 * Before updating sk_refcnt, we must commit prior changes to memory
1999	 * (Documentation/RCU/rculist_nulls.txt for details)
2000	 */
2001	smp_wmb();
2002	atomic_set(&sk->sk_refcnt, 1);
2003	atomic_set(&sk->sk_drops, 0);
2004}
2005EXPORT_SYMBOL(sock_init_data);
2006
2007void lock_sock_nested(struct sock *sk, int subclass)
2008{
2009	might_sleep();
2010	spin_lock_bh(&sk->sk_lock.slock);
2011	if (sk->sk_lock.owned)
2012		__lock_sock(sk);
2013	sk->sk_lock.owned = 1;
2014	spin_unlock(&sk->sk_lock.slock);
2015	/*
2016	 * The sk_lock has mutex_lock() semantics here:
2017	 */
2018	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2019	local_bh_enable();
2020}
2021EXPORT_SYMBOL(lock_sock_nested);
2022
2023void release_sock(struct sock *sk)
2024{
2025	/*
2026	 * The sk_lock has mutex_unlock() semantics:
2027	 */
2028	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2029
2030	spin_lock_bh(&sk->sk_lock.slock);
2031	if (sk->sk_backlog.tail)
2032		__release_sock(sk);
2033	sk->sk_lock.owned = 0;
2034	if (waitqueue_active(&sk->sk_lock.wq))
2035		wake_up(&sk->sk_lock.wq);
2036	spin_unlock_bh(&sk->sk_lock.slock);
2037}
2038EXPORT_SYMBOL(release_sock);
2039
2040/**
2041 * lock_sock_fast - fast version of lock_sock
2042 * @sk: socket
2043 *
2044 * This version should be used for very small section, where process wont block
2045 * return false if fast path is taken
2046 *   sk_lock.slock locked, owned = 0, BH disabled
2047 * return true if slow path is taken
2048 *   sk_lock.slock unlocked, owned = 1, BH enabled
2049 */
2050bool lock_sock_fast(struct sock *sk)
2051{
2052	might_sleep();
2053	spin_lock_bh(&sk->sk_lock.slock);
2054
2055	if (!sk->sk_lock.owned)
2056		/*
2057		 * Note : We must disable BH
2058		 */
2059		return false;
2060
2061	__lock_sock(sk);
2062	sk->sk_lock.owned = 1;
2063	spin_unlock(&sk->sk_lock.slock);
2064	/*
2065	 * The sk_lock has mutex_lock() semantics here:
2066	 */
2067	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2068	local_bh_enable();
2069	return true;
2070}
2071EXPORT_SYMBOL(lock_sock_fast);
2072
2073int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2074{
2075	struct timeval tv;
2076	if (!sock_flag(sk, SOCK_TIMESTAMP))
2077		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2078	tv = ktime_to_timeval(sk->sk_stamp);
2079	if (tv.tv_sec == -1)
2080		return -ENOENT;
2081	if (tv.tv_sec == 0) {
2082		sk->sk_stamp = ktime_get_real();
2083		tv = ktime_to_timeval(sk->sk_stamp);
2084	}
2085	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2086}
2087EXPORT_SYMBOL(sock_get_timestamp);
2088
2089int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2090{
2091	struct timespec ts;
2092	if (!sock_flag(sk, SOCK_TIMESTAMP))
2093		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2094	ts = ktime_to_timespec(sk->sk_stamp);
2095	if (ts.tv_sec == -1)
2096		return -ENOENT;
2097	if (ts.tv_sec == 0) {
2098		sk->sk_stamp = ktime_get_real();
2099		ts = ktime_to_timespec(sk->sk_stamp);
2100	}
2101	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2102}
2103EXPORT_SYMBOL(sock_get_timestampns);
2104
2105void sock_enable_timestamp(struct sock *sk, int flag)
2106{
2107	if (!sock_flag(sk, flag)) {
2108		sock_set_flag(sk, flag);
2109		/*
2110		 * we just set one of the two flags which require net
2111		 * time stamping, but time stamping might have been on
2112		 * already because of the other one
2113		 */
2114		if (!sock_flag(sk,
2115				flag == SOCK_TIMESTAMP ?
2116				SOCK_TIMESTAMPING_RX_SOFTWARE :
2117				SOCK_TIMESTAMP))
2118			net_enable_timestamp();
2119	}
2120}
2121
2122/*
2123 *	Get a socket option on an socket.
2124 *
2125 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2126 *	asynchronous errors should be reported by getsockopt. We assume
2127 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2128 */
2129int sock_common_getsockopt(struct socket *sock, int level, int optname,
2130			   char __user *optval, int __user *optlen)
2131{
2132	struct sock *sk = sock->sk;
2133
2134	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2135}
2136EXPORT_SYMBOL(sock_common_getsockopt);
2137
2138#ifdef CONFIG_COMPAT
2139int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2140				  char __user *optval, int __user *optlen)
2141{
2142	struct sock *sk = sock->sk;
2143
2144	if (sk->sk_prot->compat_getsockopt != NULL)
2145		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2146						      optval, optlen);
2147	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2148}
2149EXPORT_SYMBOL(compat_sock_common_getsockopt);
2150#endif
2151
2152int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2153			struct msghdr *msg, size_t size, int flags)
2154{
2155	struct sock *sk = sock->sk;
2156	int addr_len = 0;
2157	int err;
2158
2159	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2160				   flags & ~MSG_DONTWAIT, &addr_len);
2161	if (err >= 0)
2162		msg->msg_namelen = addr_len;
2163	return err;
2164}
2165EXPORT_SYMBOL(sock_common_recvmsg);
2166
2167/*
2168 *	Set socket options on an inet socket.
2169 */
2170int sock_common_setsockopt(struct socket *sock, int level, int optname,
2171			   char __user *optval, unsigned int optlen)
2172{
2173	struct sock *sk = sock->sk;
2174
2175	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2176}
2177EXPORT_SYMBOL(sock_common_setsockopt);
2178
2179#ifdef CONFIG_COMPAT
2180int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2181				  char __user *optval, unsigned int optlen)
2182{
2183	struct sock *sk = sock->sk;
2184
2185	if (sk->sk_prot->compat_setsockopt != NULL)
2186		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2187						      optval, optlen);
2188	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2189}
2190EXPORT_SYMBOL(compat_sock_common_setsockopt);
2191#endif
2192
2193void sk_common_release(struct sock *sk)
2194{
2195	if (sk->sk_prot->destroy)
2196		sk->sk_prot->destroy(sk);
2197
2198	/*
2199	 * Observation: when sock_common_release is called, processes have
2200	 * no access to socket. But net still has.
2201	 * Step one, detach it from networking:
2202	 *
2203	 * A. Remove from hash tables.
2204	 */
2205
2206	sk->sk_prot->unhash(sk);
2207
2208	/*
2209	 * In this point socket cannot receive new packets, but it is possible
2210	 * that some packets are in flight because some CPU runs receiver and
2211	 * did hash table lookup before we unhashed socket. They will achieve
2212	 * receive queue and will be purged by socket destructor.
2213	 *
2214	 * Also we still have packets pending on receive queue and probably,
2215	 * our own packets waiting in device queues. sock_destroy will drain
2216	 * receive queue, but transmitted packets will delay socket destruction
2217	 * until the last reference will be released.
2218	 */
2219
2220	sock_orphan(sk);
2221
2222	xfrm_sk_free_policy(sk);
2223
2224	sk_refcnt_debug_release(sk);
2225	sock_put(sk);
2226}
2227EXPORT_SYMBOL(sk_common_release);
2228
2229static DEFINE_RWLOCK(proto_list_lock);
2230static LIST_HEAD(proto_list);
2231
2232#ifdef CONFIG_PROC_FS
2233#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2234struct prot_inuse {
2235	int val[PROTO_INUSE_NR];
2236};
2237
2238static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2239
2240#ifdef CONFIG_NET_NS
2241void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2242{
2243	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2244}
2245EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2246
2247int sock_prot_inuse_get(struct net *net, struct proto *prot)
2248{
2249	int cpu, idx = prot->inuse_idx;
2250	int res = 0;
2251
2252	for_each_possible_cpu(cpu)
2253		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2254
2255	return res >= 0 ? res : 0;
2256}
2257EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2258
2259static int __net_init sock_inuse_init_net(struct net *net)
2260{
2261	net->core.inuse = alloc_percpu(struct prot_inuse);
2262	return net->core.inuse ? 0 : -ENOMEM;
2263}
2264
2265static void __net_exit sock_inuse_exit_net(struct net *net)
2266{
2267	free_percpu(net->core.inuse);
2268}
2269
2270static struct pernet_operations net_inuse_ops = {
2271	.init = sock_inuse_init_net,
2272	.exit = sock_inuse_exit_net,
2273};
2274
2275static __init int net_inuse_init(void)
2276{
2277	if (register_pernet_subsys(&net_inuse_ops))
2278		panic("Cannot initialize net inuse counters");
2279
2280	return 0;
2281}
2282
2283core_initcall(net_inuse_init);
2284#else
2285static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2286
2287void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2288{
2289	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2290}
2291EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2292
2293int sock_prot_inuse_get(struct net *net, struct proto *prot)
2294{
2295	int cpu, idx = prot->inuse_idx;
2296	int res = 0;
2297
2298	for_each_possible_cpu(cpu)
2299		res += per_cpu(prot_inuse, cpu).val[idx];
2300
2301	return res >= 0 ? res : 0;
2302}
2303EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2304#endif
2305
2306static void assign_proto_idx(struct proto *prot)
2307{
2308	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2309
2310	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2311		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2312		return;
2313	}
2314
2315	set_bit(prot->inuse_idx, proto_inuse_idx);
2316}
2317
2318static void release_proto_idx(struct proto *prot)
2319{
2320	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2321		clear_bit(prot->inuse_idx, proto_inuse_idx);
2322}
2323#else
2324static inline void assign_proto_idx(struct proto *prot)
2325{
2326}
2327
2328static inline void release_proto_idx(struct proto *prot)
2329{
2330}
2331#endif
2332
2333int proto_register(struct proto *prot, int alloc_slab)
2334{
2335	if (alloc_slab) {
2336		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2337					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2338					NULL);
2339
2340		if (prot->slab == NULL) {
2341			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2342			       prot->name);
2343			goto out;
2344		}
2345
2346		if (prot->rsk_prot != NULL) {
2347			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2348			if (prot->rsk_prot->slab_name == NULL)
2349				goto out_free_sock_slab;
2350
2351			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2352								 prot->rsk_prot->obj_size, 0,
2353								 SLAB_HWCACHE_ALIGN, NULL);
2354
2355			if (prot->rsk_prot->slab == NULL) {
2356				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2357				       prot->name);
2358				goto out_free_request_sock_slab_name;
2359			}
2360		}
2361
2362		if (prot->twsk_prot != NULL) {
2363			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2364
2365			if (prot->twsk_prot->twsk_slab_name == NULL)
2366				goto out_free_request_sock_slab;
2367
2368			prot->twsk_prot->twsk_slab =
2369				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2370						  prot->twsk_prot->twsk_obj_size,
2371						  0,
2372						  SLAB_HWCACHE_ALIGN |
2373							prot->slab_flags,
2374						  NULL);
2375			if (prot->twsk_prot->twsk_slab == NULL)
2376				goto out_free_timewait_sock_slab_name;
2377		}
2378	}
2379
2380	write_lock(&proto_list_lock);
2381	list_add(&prot->node, &proto_list);
2382	assign_proto_idx(prot);
2383	write_unlock(&proto_list_lock);
2384	return 0;
2385
2386out_free_timewait_sock_slab_name:
2387	kfree(prot->twsk_prot->twsk_slab_name);
2388out_free_request_sock_slab:
2389	if (prot->rsk_prot && prot->rsk_prot->slab) {
2390		kmem_cache_destroy(prot->rsk_prot->slab);
2391		prot->rsk_prot->slab = NULL;
2392	}
2393out_free_request_sock_slab_name:
2394	if (prot->rsk_prot)
2395		kfree(prot->rsk_prot->slab_name);
2396out_free_sock_slab:
2397	kmem_cache_destroy(prot->slab);
2398	prot->slab = NULL;
2399out:
2400	return -ENOBUFS;
2401}
2402EXPORT_SYMBOL(proto_register);
2403
2404void proto_unregister(struct proto *prot)
2405{
2406	write_lock(&proto_list_lock);
2407	release_proto_idx(prot);
2408	list_del(&prot->node);
2409	write_unlock(&proto_list_lock);
2410
2411	if (prot->slab != NULL) {
2412		kmem_cache_destroy(prot->slab);
2413		prot->slab = NULL;
2414	}
2415
2416	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2417		kmem_cache_destroy(prot->rsk_prot->slab);
2418		kfree(prot->rsk_prot->slab_name);
2419		prot->rsk_prot->slab = NULL;
2420	}
2421
2422	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2423		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2424		kfree(prot->twsk_prot->twsk_slab_name);
2425		prot->twsk_prot->twsk_slab = NULL;
2426	}
2427}
2428EXPORT_SYMBOL(proto_unregister);
2429
2430#ifdef CONFIG_PROC_FS
2431static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2432	__acquires(proto_list_lock)
2433{
2434	read_lock(&proto_list_lock);
2435	return seq_list_start_head(&proto_list, *pos);
2436}
2437
2438static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2439{
2440	return seq_list_next(v, &proto_list, pos);
2441}
2442
2443static void proto_seq_stop(struct seq_file *seq, void *v)
2444	__releases(proto_list_lock)
2445{
2446	read_unlock(&proto_list_lock);
2447}
2448
2449static char proto_method_implemented(const void *method)
2450{
2451	return method == NULL ? 'n' : 'y';
2452}
2453
2454static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2455{
2456	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2457			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2458		   proto->name,
2459		   proto->obj_size,
2460		   sock_prot_inuse_get(seq_file_net(seq), proto),
2461		   proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2462		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2463		   proto->max_header,
2464		   proto->slab == NULL ? "no" : "yes",
2465		   module_name(proto->owner),
2466		   proto_method_implemented(proto->close),
2467		   proto_method_implemented(proto->connect),
2468		   proto_method_implemented(proto->disconnect),
2469		   proto_method_implemented(proto->accept),
2470		   proto_method_implemented(proto->ioctl),
2471		   proto_method_implemented(proto->init),
2472		   proto_method_implemented(proto->destroy),
2473		   proto_method_implemented(proto->shutdown),
2474		   proto_method_implemented(proto->setsockopt),
2475		   proto_method_implemented(proto->getsockopt),
2476		   proto_method_implemented(proto->sendmsg),
2477		   proto_method_implemented(proto->recvmsg),
2478		   proto_method_implemented(proto->sendpage),
2479		   proto_method_implemented(proto->bind),
2480		   proto_method_implemented(proto->backlog_rcv),
2481		   proto_method_implemented(proto->hash),
2482		   proto_method_implemented(proto->unhash),
2483		   proto_method_implemented(proto->get_port),
2484		   proto_method_implemented(proto->enter_memory_pressure));
2485}
2486
2487static int proto_seq_show(struct seq_file *seq, void *v)
2488{
2489	if (v == &proto_list)
2490		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2491			   "protocol",
2492			   "size",
2493			   "sockets",
2494			   "memory",
2495			   "press",
2496			   "maxhdr",
2497			   "slab",
2498			   "module",
2499			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2500	else
2501		proto_seq_printf(seq, list_entry(v, struct proto, node));
2502	return 0;
2503}
2504
2505static const struct seq_operations proto_seq_ops = {
2506	.start  = proto_seq_start,
2507	.next   = proto_seq_next,
2508	.stop   = proto_seq_stop,
2509	.show   = proto_seq_show,
2510};
2511
2512static int proto_seq_open(struct inode *inode, struct file *file)
2513{
2514	return seq_open_net(inode, file, &proto_seq_ops,
2515			    sizeof(struct seq_net_private));
2516}
2517
2518static const struct file_operations proto_seq_fops = {
2519	.owner		= THIS_MODULE,
2520	.open		= proto_seq_open,
2521	.read		= seq_read,
2522	.llseek		= seq_lseek,
2523	.release	= seq_release_net,
2524};
2525
2526static __net_init int proto_init_net(struct net *net)
2527{
2528	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2529		return -ENOMEM;
2530
2531	return 0;
2532}
2533
2534static __net_exit void proto_exit_net(struct net *net)
2535{
2536	proc_net_remove(net, "protocols");
2537}
2538
2539
2540static __net_initdata struct pernet_operations proto_net_ops = {
2541	.init = proto_init_net,
2542	.exit = proto_exit_net,
2543};
2544
2545static int __init proto_init(void)
2546{
2547	return register_pernet_subsys(&proto_net_ops);
2548}
2549
2550subsys_initcall(proto_init);
2551
2552#endif /* PROC_FS */
2553