sock.c revision 761b3ef50e1c2649cffbfa67a4dcb2dcdb7982ed
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114#include <linux/jump_label.h>
115#include <linux/memcontrol.h>
116
117#include <asm/uaccess.h>
118#include <asm/system.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131
132#include <linux/filter.h>
133
134#include <trace/events/sock.h>
135
136#ifdef CONFIG_INET
137#include <net/tcp.h>
138#endif
139
140static DEFINE_MUTEX(proto_list_mutex);
141static LIST_HEAD(proto_list);
142
143#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
144int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
145{
146	struct proto *proto;
147	int ret = 0;
148
149	mutex_lock(&proto_list_mutex);
150	list_for_each_entry(proto, &proto_list, node) {
151		if (proto->init_cgroup) {
152			ret = proto->init_cgroup(cgrp, ss);
153			if (ret)
154				goto out;
155		}
156	}
157
158	mutex_unlock(&proto_list_mutex);
159	return ret;
160out:
161	list_for_each_entry_continue_reverse(proto, &proto_list, node)
162		if (proto->destroy_cgroup)
163			proto->destroy_cgroup(cgrp);
164	mutex_unlock(&proto_list_mutex);
165	return ret;
166}
167
168void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
169{
170	struct proto *proto;
171
172	mutex_lock(&proto_list_mutex);
173	list_for_each_entry_reverse(proto, &proto_list, node)
174		if (proto->destroy_cgroup)
175			proto->destroy_cgroup(cgrp);
176	mutex_unlock(&proto_list_mutex);
177}
178#endif
179
180/*
181 * Each address family might have different locking rules, so we have
182 * one slock key per address family:
183 */
184static struct lock_class_key af_family_keys[AF_MAX];
185static struct lock_class_key af_family_slock_keys[AF_MAX];
186
187struct jump_label_key memcg_socket_limit_enabled;
188EXPORT_SYMBOL(memcg_socket_limit_enabled);
189
190/*
191 * Make lock validator output more readable. (we pre-construct these
192 * strings build-time, so that runtime initialization of socket
193 * locks is fast):
194 */
195static const char *const af_family_key_strings[AF_MAX+1] = {
196  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
197  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
198  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
199  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
200  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
201  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
202  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
203  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
204  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
205  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
206  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
207  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
208  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
209  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
210};
211static const char *const af_family_slock_key_strings[AF_MAX+1] = {
212  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
213  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
214  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
215  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
216  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
217  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
218  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
219  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
220  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
221  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
222  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
223  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
224  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
225  "slock-AF_NFC"   , "slock-AF_MAX"
226};
227static const char *const af_family_clock_key_strings[AF_MAX+1] = {
228  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
229  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
230  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
231  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
232  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
233  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
234  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
235  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
236  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
237  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
238  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
239  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
240  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
241  "clock-AF_NFC"   , "clock-AF_MAX"
242};
243
244/*
245 * sk_callback_lock locking rules are per-address-family,
246 * so split the lock classes by using a per-AF key:
247 */
248static struct lock_class_key af_callback_keys[AF_MAX];
249
250/* Take into consideration the size of the struct sk_buff overhead in the
251 * determination of these values, since that is non-constant across
252 * platforms.  This makes socket queueing behavior and performance
253 * not depend upon such differences.
254 */
255#define _SK_MEM_PACKETS		256
256#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
257#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
259
260/* Run time adjustable parameters. */
261__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
262__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
263__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
264__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
265
266/* Maximal space eaten by iovec or ancillary data plus some space */
267int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
268EXPORT_SYMBOL(sysctl_optmem_max);
269
270#if defined(CONFIG_CGROUPS)
271#if !defined(CONFIG_NET_CLS_CGROUP)
272int net_cls_subsys_id = -1;
273EXPORT_SYMBOL_GPL(net_cls_subsys_id);
274#endif
275#if !defined(CONFIG_NETPRIO_CGROUP)
276int net_prio_subsys_id = -1;
277EXPORT_SYMBOL_GPL(net_prio_subsys_id);
278#endif
279#endif
280
281static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
282{
283	struct timeval tv;
284
285	if (optlen < sizeof(tv))
286		return -EINVAL;
287	if (copy_from_user(&tv, optval, sizeof(tv)))
288		return -EFAULT;
289	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
290		return -EDOM;
291
292	if (tv.tv_sec < 0) {
293		static int warned __read_mostly;
294
295		*timeo_p = 0;
296		if (warned < 10 && net_ratelimit()) {
297			warned++;
298			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
299			       "tries to set negative timeout\n",
300				current->comm, task_pid_nr(current));
301		}
302		return 0;
303	}
304	*timeo_p = MAX_SCHEDULE_TIMEOUT;
305	if (tv.tv_sec == 0 && tv.tv_usec == 0)
306		return 0;
307	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
308		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
309	return 0;
310}
311
312static void sock_warn_obsolete_bsdism(const char *name)
313{
314	static int warned;
315	static char warncomm[TASK_COMM_LEN];
316	if (strcmp(warncomm, current->comm) && warned < 5) {
317		strcpy(warncomm,  current->comm);
318		printk(KERN_WARNING "process `%s' is using obsolete "
319		       "%s SO_BSDCOMPAT\n", warncomm, name);
320		warned++;
321	}
322}
323
324#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
325
326static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
327{
328	if (sk->sk_flags & flags) {
329		sk->sk_flags &= ~flags;
330		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
331			net_disable_timestamp();
332	}
333}
334
335
336int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
337{
338	int err;
339	int skb_len;
340	unsigned long flags;
341	struct sk_buff_head *list = &sk->sk_receive_queue;
342
343	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
344		atomic_inc(&sk->sk_drops);
345		trace_sock_rcvqueue_full(sk, skb);
346		return -ENOMEM;
347	}
348
349	err = sk_filter(sk, skb);
350	if (err)
351		return err;
352
353	if (!sk_rmem_schedule(sk, skb->truesize)) {
354		atomic_inc(&sk->sk_drops);
355		return -ENOBUFS;
356	}
357
358	skb->dev = NULL;
359	skb_set_owner_r(skb, sk);
360
361	/* Cache the SKB length before we tack it onto the receive
362	 * queue.  Once it is added it no longer belongs to us and
363	 * may be freed by other threads of control pulling packets
364	 * from the queue.
365	 */
366	skb_len = skb->len;
367
368	/* we escape from rcu protected region, make sure we dont leak
369	 * a norefcounted dst
370	 */
371	skb_dst_force(skb);
372
373	spin_lock_irqsave(&list->lock, flags);
374	skb->dropcount = atomic_read(&sk->sk_drops);
375	__skb_queue_tail(list, skb);
376	spin_unlock_irqrestore(&list->lock, flags);
377
378	if (!sock_flag(sk, SOCK_DEAD))
379		sk->sk_data_ready(sk, skb_len);
380	return 0;
381}
382EXPORT_SYMBOL(sock_queue_rcv_skb);
383
384int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
385{
386	int rc = NET_RX_SUCCESS;
387
388	if (sk_filter(sk, skb))
389		goto discard_and_relse;
390
391	skb->dev = NULL;
392
393	if (sk_rcvqueues_full(sk, skb)) {
394		atomic_inc(&sk->sk_drops);
395		goto discard_and_relse;
396	}
397	if (nested)
398		bh_lock_sock_nested(sk);
399	else
400		bh_lock_sock(sk);
401	if (!sock_owned_by_user(sk)) {
402		/*
403		 * trylock + unlock semantics:
404		 */
405		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
406
407		rc = sk_backlog_rcv(sk, skb);
408
409		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
410	} else if (sk_add_backlog(sk, skb)) {
411		bh_unlock_sock(sk);
412		atomic_inc(&sk->sk_drops);
413		goto discard_and_relse;
414	}
415
416	bh_unlock_sock(sk);
417out:
418	sock_put(sk);
419	return rc;
420discard_and_relse:
421	kfree_skb(skb);
422	goto out;
423}
424EXPORT_SYMBOL(sk_receive_skb);
425
426void sk_reset_txq(struct sock *sk)
427{
428	sk_tx_queue_clear(sk);
429}
430EXPORT_SYMBOL(sk_reset_txq);
431
432struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
433{
434	struct dst_entry *dst = __sk_dst_get(sk);
435
436	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
437		sk_tx_queue_clear(sk);
438		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
439		dst_release(dst);
440		return NULL;
441	}
442
443	return dst;
444}
445EXPORT_SYMBOL(__sk_dst_check);
446
447struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
448{
449	struct dst_entry *dst = sk_dst_get(sk);
450
451	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
452		sk_dst_reset(sk);
453		dst_release(dst);
454		return NULL;
455	}
456
457	return dst;
458}
459EXPORT_SYMBOL(sk_dst_check);
460
461static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
462{
463	int ret = -ENOPROTOOPT;
464#ifdef CONFIG_NETDEVICES
465	struct net *net = sock_net(sk);
466	char devname[IFNAMSIZ];
467	int index;
468
469	/* Sorry... */
470	ret = -EPERM;
471	if (!capable(CAP_NET_RAW))
472		goto out;
473
474	ret = -EINVAL;
475	if (optlen < 0)
476		goto out;
477
478	/* Bind this socket to a particular device like "eth0",
479	 * as specified in the passed interface name. If the
480	 * name is "" or the option length is zero the socket
481	 * is not bound.
482	 */
483	if (optlen > IFNAMSIZ - 1)
484		optlen = IFNAMSIZ - 1;
485	memset(devname, 0, sizeof(devname));
486
487	ret = -EFAULT;
488	if (copy_from_user(devname, optval, optlen))
489		goto out;
490
491	index = 0;
492	if (devname[0] != '\0') {
493		struct net_device *dev;
494
495		rcu_read_lock();
496		dev = dev_get_by_name_rcu(net, devname);
497		if (dev)
498			index = dev->ifindex;
499		rcu_read_unlock();
500		ret = -ENODEV;
501		if (!dev)
502			goto out;
503	}
504
505	lock_sock(sk);
506	sk->sk_bound_dev_if = index;
507	sk_dst_reset(sk);
508	release_sock(sk);
509
510	ret = 0;
511
512out:
513#endif
514
515	return ret;
516}
517
518static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
519{
520	if (valbool)
521		sock_set_flag(sk, bit);
522	else
523		sock_reset_flag(sk, bit);
524}
525
526/*
527 *	This is meant for all protocols to use and covers goings on
528 *	at the socket level. Everything here is generic.
529 */
530
531int sock_setsockopt(struct socket *sock, int level, int optname,
532		    char __user *optval, unsigned int optlen)
533{
534	struct sock *sk = sock->sk;
535	int val;
536	int valbool;
537	struct linger ling;
538	int ret = 0;
539
540	/*
541	 *	Options without arguments
542	 */
543
544	if (optname == SO_BINDTODEVICE)
545		return sock_bindtodevice(sk, optval, optlen);
546
547	if (optlen < sizeof(int))
548		return -EINVAL;
549
550	if (get_user(val, (int __user *)optval))
551		return -EFAULT;
552
553	valbool = val ? 1 : 0;
554
555	lock_sock(sk);
556
557	switch (optname) {
558	case SO_DEBUG:
559		if (val && !capable(CAP_NET_ADMIN))
560			ret = -EACCES;
561		else
562			sock_valbool_flag(sk, SOCK_DBG, valbool);
563		break;
564	case SO_REUSEADDR:
565		sk->sk_reuse = valbool;
566		break;
567	case SO_TYPE:
568	case SO_PROTOCOL:
569	case SO_DOMAIN:
570	case SO_ERROR:
571		ret = -ENOPROTOOPT;
572		break;
573	case SO_DONTROUTE:
574		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
575		break;
576	case SO_BROADCAST:
577		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
578		break;
579	case SO_SNDBUF:
580		/* Don't error on this BSD doesn't and if you think
581		   about it this is right. Otherwise apps have to
582		   play 'guess the biggest size' games. RCVBUF/SNDBUF
583		   are treated in BSD as hints */
584
585		if (val > sysctl_wmem_max)
586			val = sysctl_wmem_max;
587set_sndbuf:
588		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
589		if ((val * 2) < SOCK_MIN_SNDBUF)
590			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
591		else
592			sk->sk_sndbuf = val * 2;
593
594		/*
595		 *	Wake up sending tasks if we
596		 *	upped the value.
597		 */
598		sk->sk_write_space(sk);
599		break;
600
601	case SO_SNDBUFFORCE:
602		if (!capable(CAP_NET_ADMIN)) {
603			ret = -EPERM;
604			break;
605		}
606		goto set_sndbuf;
607
608	case SO_RCVBUF:
609		/* Don't error on this BSD doesn't and if you think
610		   about it this is right. Otherwise apps have to
611		   play 'guess the biggest size' games. RCVBUF/SNDBUF
612		   are treated in BSD as hints */
613
614		if (val > sysctl_rmem_max)
615			val = sysctl_rmem_max;
616set_rcvbuf:
617		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
618		/*
619		 * We double it on the way in to account for
620		 * "struct sk_buff" etc. overhead.   Applications
621		 * assume that the SO_RCVBUF setting they make will
622		 * allow that much actual data to be received on that
623		 * socket.
624		 *
625		 * Applications are unaware that "struct sk_buff" and
626		 * other overheads allocate from the receive buffer
627		 * during socket buffer allocation.
628		 *
629		 * And after considering the possible alternatives,
630		 * returning the value we actually used in getsockopt
631		 * is the most desirable behavior.
632		 */
633		if ((val * 2) < SOCK_MIN_RCVBUF)
634			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
635		else
636			sk->sk_rcvbuf = val * 2;
637		break;
638
639	case SO_RCVBUFFORCE:
640		if (!capable(CAP_NET_ADMIN)) {
641			ret = -EPERM;
642			break;
643		}
644		goto set_rcvbuf;
645
646	case SO_KEEPALIVE:
647#ifdef CONFIG_INET
648		if (sk->sk_protocol == IPPROTO_TCP)
649			tcp_set_keepalive(sk, valbool);
650#endif
651		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
652		break;
653
654	case SO_OOBINLINE:
655		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
656		break;
657
658	case SO_NO_CHECK:
659		sk->sk_no_check = valbool;
660		break;
661
662	case SO_PRIORITY:
663		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
664			sk->sk_priority = val;
665		else
666			ret = -EPERM;
667		break;
668
669	case SO_LINGER:
670		if (optlen < sizeof(ling)) {
671			ret = -EINVAL;	/* 1003.1g */
672			break;
673		}
674		if (copy_from_user(&ling, optval, sizeof(ling))) {
675			ret = -EFAULT;
676			break;
677		}
678		if (!ling.l_onoff)
679			sock_reset_flag(sk, SOCK_LINGER);
680		else {
681#if (BITS_PER_LONG == 32)
682			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
683				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
684			else
685#endif
686				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
687			sock_set_flag(sk, SOCK_LINGER);
688		}
689		break;
690
691	case SO_BSDCOMPAT:
692		sock_warn_obsolete_bsdism("setsockopt");
693		break;
694
695	case SO_PASSCRED:
696		if (valbool)
697			set_bit(SOCK_PASSCRED, &sock->flags);
698		else
699			clear_bit(SOCK_PASSCRED, &sock->flags);
700		break;
701
702	case SO_TIMESTAMP:
703	case SO_TIMESTAMPNS:
704		if (valbool)  {
705			if (optname == SO_TIMESTAMP)
706				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
707			else
708				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
709			sock_set_flag(sk, SOCK_RCVTSTAMP);
710			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
711		} else {
712			sock_reset_flag(sk, SOCK_RCVTSTAMP);
713			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
714		}
715		break;
716
717	case SO_TIMESTAMPING:
718		if (val & ~SOF_TIMESTAMPING_MASK) {
719			ret = -EINVAL;
720			break;
721		}
722		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
723				  val & SOF_TIMESTAMPING_TX_HARDWARE);
724		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
725				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
726		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
727				  val & SOF_TIMESTAMPING_RX_HARDWARE);
728		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
729			sock_enable_timestamp(sk,
730					      SOCK_TIMESTAMPING_RX_SOFTWARE);
731		else
732			sock_disable_timestamp(sk,
733					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
734		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
735				  val & SOF_TIMESTAMPING_SOFTWARE);
736		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
737				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
738		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
739				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
740		break;
741
742	case SO_RCVLOWAT:
743		if (val < 0)
744			val = INT_MAX;
745		sk->sk_rcvlowat = val ? : 1;
746		break;
747
748	case SO_RCVTIMEO:
749		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
750		break;
751
752	case SO_SNDTIMEO:
753		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
754		break;
755
756	case SO_ATTACH_FILTER:
757		ret = -EINVAL;
758		if (optlen == sizeof(struct sock_fprog)) {
759			struct sock_fprog fprog;
760
761			ret = -EFAULT;
762			if (copy_from_user(&fprog, optval, sizeof(fprog)))
763				break;
764
765			ret = sk_attach_filter(&fprog, sk);
766		}
767		break;
768
769	case SO_DETACH_FILTER:
770		ret = sk_detach_filter(sk);
771		break;
772
773	case SO_PASSSEC:
774		if (valbool)
775			set_bit(SOCK_PASSSEC, &sock->flags);
776		else
777			clear_bit(SOCK_PASSSEC, &sock->flags);
778		break;
779	case SO_MARK:
780		if (!capable(CAP_NET_ADMIN))
781			ret = -EPERM;
782		else
783			sk->sk_mark = val;
784		break;
785
786		/* We implement the SO_SNDLOWAT etc to
787		   not be settable (1003.1g 5.3) */
788	case SO_RXQ_OVFL:
789		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
790		break;
791
792	case SO_WIFI_STATUS:
793		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
794		break;
795
796	default:
797		ret = -ENOPROTOOPT;
798		break;
799	}
800	release_sock(sk);
801	return ret;
802}
803EXPORT_SYMBOL(sock_setsockopt);
804
805
806void cred_to_ucred(struct pid *pid, const struct cred *cred,
807		   struct ucred *ucred)
808{
809	ucred->pid = pid_vnr(pid);
810	ucred->uid = ucred->gid = -1;
811	if (cred) {
812		struct user_namespace *current_ns = current_user_ns();
813
814		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
815		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
816	}
817}
818EXPORT_SYMBOL_GPL(cred_to_ucred);
819
820int sock_getsockopt(struct socket *sock, int level, int optname,
821		    char __user *optval, int __user *optlen)
822{
823	struct sock *sk = sock->sk;
824
825	union {
826		int val;
827		struct linger ling;
828		struct timeval tm;
829	} v;
830
831	int lv = sizeof(int);
832	int len;
833
834	if (get_user(len, optlen))
835		return -EFAULT;
836	if (len < 0)
837		return -EINVAL;
838
839	memset(&v, 0, sizeof(v));
840
841	switch (optname) {
842	case SO_DEBUG:
843		v.val = sock_flag(sk, SOCK_DBG);
844		break;
845
846	case SO_DONTROUTE:
847		v.val = sock_flag(sk, SOCK_LOCALROUTE);
848		break;
849
850	case SO_BROADCAST:
851		v.val = !!sock_flag(sk, SOCK_BROADCAST);
852		break;
853
854	case SO_SNDBUF:
855		v.val = sk->sk_sndbuf;
856		break;
857
858	case SO_RCVBUF:
859		v.val = sk->sk_rcvbuf;
860		break;
861
862	case SO_REUSEADDR:
863		v.val = sk->sk_reuse;
864		break;
865
866	case SO_KEEPALIVE:
867		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
868		break;
869
870	case SO_TYPE:
871		v.val = sk->sk_type;
872		break;
873
874	case SO_PROTOCOL:
875		v.val = sk->sk_protocol;
876		break;
877
878	case SO_DOMAIN:
879		v.val = sk->sk_family;
880		break;
881
882	case SO_ERROR:
883		v.val = -sock_error(sk);
884		if (v.val == 0)
885			v.val = xchg(&sk->sk_err_soft, 0);
886		break;
887
888	case SO_OOBINLINE:
889		v.val = !!sock_flag(sk, SOCK_URGINLINE);
890		break;
891
892	case SO_NO_CHECK:
893		v.val = sk->sk_no_check;
894		break;
895
896	case SO_PRIORITY:
897		v.val = sk->sk_priority;
898		break;
899
900	case SO_LINGER:
901		lv		= sizeof(v.ling);
902		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
903		v.ling.l_linger	= sk->sk_lingertime / HZ;
904		break;
905
906	case SO_BSDCOMPAT:
907		sock_warn_obsolete_bsdism("getsockopt");
908		break;
909
910	case SO_TIMESTAMP:
911		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
912				!sock_flag(sk, SOCK_RCVTSTAMPNS);
913		break;
914
915	case SO_TIMESTAMPNS:
916		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
917		break;
918
919	case SO_TIMESTAMPING:
920		v.val = 0;
921		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
922			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
923		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
924			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
925		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
926			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
927		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
928			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
929		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
930			v.val |= SOF_TIMESTAMPING_SOFTWARE;
931		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
932			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
933		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
934			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
935		break;
936
937	case SO_RCVTIMEO:
938		lv = sizeof(struct timeval);
939		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
940			v.tm.tv_sec = 0;
941			v.tm.tv_usec = 0;
942		} else {
943			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
944			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
945		}
946		break;
947
948	case SO_SNDTIMEO:
949		lv = sizeof(struct timeval);
950		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
951			v.tm.tv_sec = 0;
952			v.tm.tv_usec = 0;
953		} else {
954			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
955			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
956		}
957		break;
958
959	case SO_RCVLOWAT:
960		v.val = sk->sk_rcvlowat;
961		break;
962
963	case SO_SNDLOWAT:
964		v.val = 1;
965		break;
966
967	case SO_PASSCRED:
968		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
969		break;
970
971	case SO_PEERCRED:
972	{
973		struct ucred peercred;
974		if (len > sizeof(peercred))
975			len = sizeof(peercred);
976		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
977		if (copy_to_user(optval, &peercred, len))
978			return -EFAULT;
979		goto lenout;
980	}
981
982	case SO_PEERNAME:
983	{
984		char address[128];
985
986		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
987			return -ENOTCONN;
988		if (lv < len)
989			return -EINVAL;
990		if (copy_to_user(optval, address, len))
991			return -EFAULT;
992		goto lenout;
993	}
994
995	/* Dubious BSD thing... Probably nobody even uses it, but
996	 * the UNIX standard wants it for whatever reason... -DaveM
997	 */
998	case SO_ACCEPTCONN:
999		v.val = sk->sk_state == TCP_LISTEN;
1000		break;
1001
1002	case SO_PASSSEC:
1003		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1004		break;
1005
1006	case SO_PEERSEC:
1007		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1008
1009	case SO_MARK:
1010		v.val = sk->sk_mark;
1011		break;
1012
1013	case SO_RXQ_OVFL:
1014		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1015		break;
1016
1017	case SO_WIFI_STATUS:
1018		v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1019		break;
1020
1021	default:
1022		return -ENOPROTOOPT;
1023	}
1024
1025	if (len > lv)
1026		len = lv;
1027	if (copy_to_user(optval, &v, len))
1028		return -EFAULT;
1029lenout:
1030	if (put_user(len, optlen))
1031		return -EFAULT;
1032	return 0;
1033}
1034
1035/*
1036 * Initialize an sk_lock.
1037 *
1038 * (We also register the sk_lock with the lock validator.)
1039 */
1040static inline void sock_lock_init(struct sock *sk)
1041{
1042	sock_lock_init_class_and_name(sk,
1043			af_family_slock_key_strings[sk->sk_family],
1044			af_family_slock_keys + sk->sk_family,
1045			af_family_key_strings[sk->sk_family],
1046			af_family_keys + sk->sk_family);
1047}
1048
1049/*
1050 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1051 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1052 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1053 */
1054static void sock_copy(struct sock *nsk, const struct sock *osk)
1055{
1056#ifdef CONFIG_SECURITY_NETWORK
1057	void *sptr = nsk->sk_security;
1058#endif
1059	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1060
1061	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1062	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1063
1064#ifdef CONFIG_SECURITY_NETWORK
1065	nsk->sk_security = sptr;
1066	security_sk_clone(osk, nsk);
1067#endif
1068}
1069
1070/*
1071 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1072 * un-modified. Special care is taken when initializing object to zero.
1073 */
1074static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1075{
1076	if (offsetof(struct sock, sk_node.next) != 0)
1077		memset(sk, 0, offsetof(struct sock, sk_node.next));
1078	memset(&sk->sk_node.pprev, 0,
1079	       size - offsetof(struct sock, sk_node.pprev));
1080}
1081
1082void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1083{
1084	unsigned long nulls1, nulls2;
1085
1086	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1087	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1088	if (nulls1 > nulls2)
1089		swap(nulls1, nulls2);
1090
1091	if (nulls1 != 0)
1092		memset((char *)sk, 0, nulls1);
1093	memset((char *)sk + nulls1 + sizeof(void *), 0,
1094	       nulls2 - nulls1 - sizeof(void *));
1095	memset((char *)sk + nulls2 + sizeof(void *), 0,
1096	       size - nulls2 - sizeof(void *));
1097}
1098EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1099
1100static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1101		int family)
1102{
1103	struct sock *sk;
1104	struct kmem_cache *slab;
1105
1106	slab = prot->slab;
1107	if (slab != NULL) {
1108		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1109		if (!sk)
1110			return sk;
1111		if (priority & __GFP_ZERO) {
1112			if (prot->clear_sk)
1113				prot->clear_sk(sk, prot->obj_size);
1114			else
1115				sk_prot_clear_nulls(sk, prot->obj_size);
1116		}
1117	} else
1118		sk = kmalloc(prot->obj_size, priority);
1119
1120	if (sk != NULL) {
1121		kmemcheck_annotate_bitfield(sk, flags);
1122
1123		if (security_sk_alloc(sk, family, priority))
1124			goto out_free;
1125
1126		if (!try_module_get(prot->owner))
1127			goto out_free_sec;
1128		sk_tx_queue_clear(sk);
1129	}
1130
1131	return sk;
1132
1133out_free_sec:
1134	security_sk_free(sk);
1135out_free:
1136	if (slab != NULL)
1137		kmem_cache_free(slab, sk);
1138	else
1139		kfree(sk);
1140	return NULL;
1141}
1142
1143static void sk_prot_free(struct proto *prot, struct sock *sk)
1144{
1145	struct kmem_cache *slab;
1146	struct module *owner;
1147
1148	owner = prot->owner;
1149	slab = prot->slab;
1150
1151	security_sk_free(sk);
1152	if (slab != NULL)
1153		kmem_cache_free(slab, sk);
1154	else
1155		kfree(sk);
1156	module_put(owner);
1157}
1158
1159#ifdef CONFIG_CGROUPS
1160void sock_update_classid(struct sock *sk)
1161{
1162	u32 classid;
1163
1164	rcu_read_lock();  /* doing current task, which cannot vanish. */
1165	classid = task_cls_classid(current);
1166	rcu_read_unlock();
1167	if (classid && classid != sk->sk_classid)
1168		sk->sk_classid = classid;
1169}
1170EXPORT_SYMBOL(sock_update_classid);
1171
1172void sock_update_netprioidx(struct sock *sk)
1173{
1174	struct cgroup_netprio_state *state;
1175	if (in_interrupt())
1176		return;
1177	rcu_read_lock();
1178	state = task_netprio_state(current);
1179	sk->sk_cgrp_prioidx = state ? state->prioidx : 0;
1180	rcu_read_unlock();
1181}
1182EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1183#endif
1184
1185/**
1186 *	sk_alloc - All socket objects are allocated here
1187 *	@net: the applicable net namespace
1188 *	@family: protocol family
1189 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1190 *	@prot: struct proto associated with this new sock instance
1191 */
1192struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1193		      struct proto *prot)
1194{
1195	struct sock *sk;
1196
1197	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1198	if (sk) {
1199		sk->sk_family = family;
1200		/*
1201		 * See comment in struct sock definition to understand
1202		 * why we need sk_prot_creator -acme
1203		 */
1204		sk->sk_prot = sk->sk_prot_creator = prot;
1205		sock_lock_init(sk);
1206		sock_net_set(sk, get_net(net));
1207		atomic_set(&sk->sk_wmem_alloc, 1);
1208
1209		sock_update_classid(sk);
1210		sock_update_netprioidx(sk);
1211	}
1212
1213	return sk;
1214}
1215EXPORT_SYMBOL(sk_alloc);
1216
1217static void __sk_free(struct sock *sk)
1218{
1219	struct sk_filter *filter;
1220
1221	if (sk->sk_destruct)
1222		sk->sk_destruct(sk);
1223
1224	filter = rcu_dereference_check(sk->sk_filter,
1225				       atomic_read(&sk->sk_wmem_alloc) == 0);
1226	if (filter) {
1227		sk_filter_uncharge(sk, filter);
1228		RCU_INIT_POINTER(sk->sk_filter, NULL);
1229	}
1230
1231	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1232
1233	if (atomic_read(&sk->sk_omem_alloc))
1234		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1235		       __func__, atomic_read(&sk->sk_omem_alloc));
1236
1237	if (sk->sk_peer_cred)
1238		put_cred(sk->sk_peer_cred);
1239	put_pid(sk->sk_peer_pid);
1240	put_net(sock_net(sk));
1241	sk_prot_free(sk->sk_prot_creator, sk);
1242}
1243
1244void sk_free(struct sock *sk)
1245{
1246	/*
1247	 * We subtract one from sk_wmem_alloc and can know if
1248	 * some packets are still in some tx queue.
1249	 * If not null, sock_wfree() will call __sk_free(sk) later
1250	 */
1251	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1252		__sk_free(sk);
1253}
1254EXPORT_SYMBOL(sk_free);
1255
1256/*
1257 * Last sock_put should drop reference to sk->sk_net. It has already
1258 * been dropped in sk_change_net. Taking reference to stopping namespace
1259 * is not an option.
1260 * Take reference to a socket to remove it from hash _alive_ and after that
1261 * destroy it in the context of init_net.
1262 */
1263void sk_release_kernel(struct sock *sk)
1264{
1265	if (sk == NULL || sk->sk_socket == NULL)
1266		return;
1267
1268	sock_hold(sk);
1269	sock_release(sk->sk_socket);
1270	release_net(sock_net(sk));
1271	sock_net_set(sk, get_net(&init_net));
1272	sock_put(sk);
1273}
1274EXPORT_SYMBOL(sk_release_kernel);
1275
1276static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1277{
1278	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1279		sock_update_memcg(newsk);
1280}
1281
1282/**
1283 *	sk_clone_lock - clone a socket, and lock its clone
1284 *	@sk: the socket to clone
1285 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1286 *
1287 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1288 */
1289struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1290{
1291	struct sock *newsk;
1292
1293	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1294	if (newsk != NULL) {
1295		struct sk_filter *filter;
1296
1297		sock_copy(newsk, sk);
1298
1299		/* SANITY */
1300		get_net(sock_net(newsk));
1301		sk_node_init(&newsk->sk_node);
1302		sock_lock_init(newsk);
1303		bh_lock_sock(newsk);
1304		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1305		newsk->sk_backlog.len = 0;
1306
1307		atomic_set(&newsk->sk_rmem_alloc, 0);
1308		/*
1309		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1310		 */
1311		atomic_set(&newsk->sk_wmem_alloc, 1);
1312		atomic_set(&newsk->sk_omem_alloc, 0);
1313		skb_queue_head_init(&newsk->sk_receive_queue);
1314		skb_queue_head_init(&newsk->sk_write_queue);
1315#ifdef CONFIG_NET_DMA
1316		skb_queue_head_init(&newsk->sk_async_wait_queue);
1317#endif
1318
1319		spin_lock_init(&newsk->sk_dst_lock);
1320		rwlock_init(&newsk->sk_callback_lock);
1321		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1322				af_callback_keys + newsk->sk_family,
1323				af_family_clock_key_strings[newsk->sk_family]);
1324
1325		newsk->sk_dst_cache	= NULL;
1326		newsk->sk_wmem_queued	= 0;
1327		newsk->sk_forward_alloc = 0;
1328		newsk->sk_send_head	= NULL;
1329		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1330
1331		sock_reset_flag(newsk, SOCK_DONE);
1332		skb_queue_head_init(&newsk->sk_error_queue);
1333
1334		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1335		if (filter != NULL)
1336			sk_filter_charge(newsk, filter);
1337
1338		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1339			/* It is still raw copy of parent, so invalidate
1340			 * destructor and make plain sk_free() */
1341			newsk->sk_destruct = NULL;
1342			bh_unlock_sock(newsk);
1343			sk_free(newsk);
1344			newsk = NULL;
1345			goto out;
1346		}
1347
1348		newsk->sk_err	   = 0;
1349		newsk->sk_priority = 0;
1350		/*
1351		 * Before updating sk_refcnt, we must commit prior changes to memory
1352		 * (Documentation/RCU/rculist_nulls.txt for details)
1353		 */
1354		smp_wmb();
1355		atomic_set(&newsk->sk_refcnt, 2);
1356
1357		/*
1358		 * Increment the counter in the same struct proto as the master
1359		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1360		 * is the same as sk->sk_prot->socks, as this field was copied
1361		 * with memcpy).
1362		 *
1363		 * This _changes_ the previous behaviour, where
1364		 * tcp_create_openreq_child always was incrementing the
1365		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1366		 * to be taken into account in all callers. -acme
1367		 */
1368		sk_refcnt_debug_inc(newsk);
1369		sk_set_socket(newsk, NULL);
1370		newsk->sk_wq = NULL;
1371
1372		sk_update_clone(sk, newsk);
1373
1374		if (newsk->sk_prot->sockets_allocated)
1375			sk_sockets_allocated_inc(newsk);
1376
1377		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1378			net_enable_timestamp();
1379	}
1380out:
1381	return newsk;
1382}
1383EXPORT_SYMBOL_GPL(sk_clone_lock);
1384
1385void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1386{
1387	__sk_dst_set(sk, dst);
1388	sk->sk_route_caps = dst->dev->features;
1389	if (sk->sk_route_caps & NETIF_F_GSO)
1390		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1391	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1392	if (sk_can_gso(sk)) {
1393		if (dst->header_len) {
1394			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1395		} else {
1396			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1397			sk->sk_gso_max_size = dst->dev->gso_max_size;
1398		}
1399	}
1400}
1401EXPORT_SYMBOL_GPL(sk_setup_caps);
1402
1403void __init sk_init(void)
1404{
1405	if (totalram_pages <= 4096) {
1406		sysctl_wmem_max = 32767;
1407		sysctl_rmem_max = 32767;
1408		sysctl_wmem_default = 32767;
1409		sysctl_rmem_default = 32767;
1410	} else if (totalram_pages >= 131072) {
1411		sysctl_wmem_max = 131071;
1412		sysctl_rmem_max = 131071;
1413	}
1414}
1415
1416/*
1417 *	Simple resource managers for sockets.
1418 */
1419
1420
1421/*
1422 * Write buffer destructor automatically called from kfree_skb.
1423 */
1424void sock_wfree(struct sk_buff *skb)
1425{
1426	struct sock *sk = skb->sk;
1427	unsigned int len = skb->truesize;
1428
1429	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1430		/*
1431		 * Keep a reference on sk_wmem_alloc, this will be released
1432		 * after sk_write_space() call
1433		 */
1434		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1435		sk->sk_write_space(sk);
1436		len = 1;
1437	}
1438	/*
1439	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1440	 * could not do because of in-flight packets
1441	 */
1442	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1443		__sk_free(sk);
1444}
1445EXPORT_SYMBOL(sock_wfree);
1446
1447/*
1448 * Read buffer destructor automatically called from kfree_skb.
1449 */
1450void sock_rfree(struct sk_buff *skb)
1451{
1452	struct sock *sk = skb->sk;
1453	unsigned int len = skb->truesize;
1454
1455	atomic_sub(len, &sk->sk_rmem_alloc);
1456	sk_mem_uncharge(sk, len);
1457}
1458EXPORT_SYMBOL(sock_rfree);
1459
1460
1461int sock_i_uid(struct sock *sk)
1462{
1463	int uid;
1464
1465	read_lock_bh(&sk->sk_callback_lock);
1466	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1467	read_unlock_bh(&sk->sk_callback_lock);
1468	return uid;
1469}
1470EXPORT_SYMBOL(sock_i_uid);
1471
1472unsigned long sock_i_ino(struct sock *sk)
1473{
1474	unsigned long ino;
1475
1476	read_lock_bh(&sk->sk_callback_lock);
1477	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1478	read_unlock_bh(&sk->sk_callback_lock);
1479	return ino;
1480}
1481EXPORT_SYMBOL(sock_i_ino);
1482
1483/*
1484 * Allocate a skb from the socket's send buffer.
1485 */
1486struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1487			     gfp_t priority)
1488{
1489	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1490		struct sk_buff *skb = alloc_skb(size, priority);
1491		if (skb) {
1492			skb_set_owner_w(skb, sk);
1493			return skb;
1494		}
1495	}
1496	return NULL;
1497}
1498EXPORT_SYMBOL(sock_wmalloc);
1499
1500/*
1501 * Allocate a skb from the socket's receive buffer.
1502 */
1503struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1504			     gfp_t priority)
1505{
1506	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1507		struct sk_buff *skb = alloc_skb(size, priority);
1508		if (skb) {
1509			skb_set_owner_r(skb, sk);
1510			return skb;
1511		}
1512	}
1513	return NULL;
1514}
1515
1516/*
1517 * Allocate a memory block from the socket's option memory buffer.
1518 */
1519void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1520{
1521	if ((unsigned)size <= sysctl_optmem_max &&
1522	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1523		void *mem;
1524		/* First do the add, to avoid the race if kmalloc
1525		 * might sleep.
1526		 */
1527		atomic_add(size, &sk->sk_omem_alloc);
1528		mem = kmalloc(size, priority);
1529		if (mem)
1530			return mem;
1531		atomic_sub(size, &sk->sk_omem_alloc);
1532	}
1533	return NULL;
1534}
1535EXPORT_SYMBOL(sock_kmalloc);
1536
1537/*
1538 * Free an option memory block.
1539 */
1540void sock_kfree_s(struct sock *sk, void *mem, int size)
1541{
1542	kfree(mem);
1543	atomic_sub(size, &sk->sk_omem_alloc);
1544}
1545EXPORT_SYMBOL(sock_kfree_s);
1546
1547/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1548   I think, these locks should be removed for datagram sockets.
1549 */
1550static long sock_wait_for_wmem(struct sock *sk, long timeo)
1551{
1552	DEFINE_WAIT(wait);
1553
1554	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1555	for (;;) {
1556		if (!timeo)
1557			break;
1558		if (signal_pending(current))
1559			break;
1560		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1561		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1562		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1563			break;
1564		if (sk->sk_shutdown & SEND_SHUTDOWN)
1565			break;
1566		if (sk->sk_err)
1567			break;
1568		timeo = schedule_timeout(timeo);
1569	}
1570	finish_wait(sk_sleep(sk), &wait);
1571	return timeo;
1572}
1573
1574
1575/*
1576 *	Generic send/receive buffer handlers
1577 */
1578
1579struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1580				     unsigned long data_len, int noblock,
1581				     int *errcode)
1582{
1583	struct sk_buff *skb;
1584	gfp_t gfp_mask;
1585	long timeo;
1586	int err;
1587
1588	gfp_mask = sk->sk_allocation;
1589	if (gfp_mask & __GFP_WAIT)
1590		gfp_mask |= __GFP_REPEAT;
1591
1592	timeo = sock_sndtimeo(sk, noblock);
1593	while (1) {
1594		err = sock_error(sk);
1595		if (err != 0)
1596			goto failure;
1597
1598		err = -EPIPE;
1599		if (sk->sk_shutdown & SEND_SHUTDOWN)
1600			goto failure;
1601
1602		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1603			skb = alloc_skb(header_len, gfp_mask);
1604			if (skb) {
1605				int npages;
1606				int i;
1607
1608				/* No pages, we're done... */
1609				if (!data_len)
1610					break;
1611
1612				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1613				skb->truesize += data_len;
1614				skb_shinfo(skb)->nr_frags = npages;
1615				for (i = 0; i < npages; i++) {
1616					struct page *page;
1617
1618					page = alloc_pages(sk->sk_allocation, 0);
1619					if (!page) {
1620						err = -ENOBUFS;
1621						skb_shinfo(skb)->nr_frags = i;
1622						kfree_skb(skb);
1623						goto failure;
1624					}
1625
1626					__skb_fill_page_desc(skb, i,
1627							page, 0,
1628							(data_len >= PAGE_SIZE ?
1629							 PAGE_SIZE :
1630							 data_len));
1631					data_len -= PAGE_SIZE;
1632				}
1633
1634				/* Full success... */
1635				break;
1636			}
1637			err = -ENOBUFS;
1638			goto failure;
1639		}
1640		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1641		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1642		err = -EAGAIN;
1643		if (!timeo)
1644			goto failure;
1645		if (signal_pending(current))
1646			goto interrupted;
1647		timeo = sock_wait_for_wmem(sk, timeo);
1648	}
1649
1650	skb_set_owner_w(skb, sk);
1651	return skb;
1652
1653interrupted:
1654	err = sock_intr_errno(timeo);
1655failure:
1656	*errcode = err;
1657	return NULL;
1658}
1659EXPORT_SYMBOL(sock_alloc_send_pskb);
1660
1661struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1662				    int noblock, int *errcode)
1663{
1664	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1665}
1666EXPORT_SYMBOL(sock_alloc_send_skb);
1667
1668static void __lock_sock(struct sock *sk)
1669	__releases(&sk->sk_lock.slock)
1670	__acquires(&sk->sk_lock.slock)
1671{
1672	DEFINE_WAIT(wait);
1673
1674	for (;;) {
1675		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1676					TASK_UNINTERRUPTIBLE);
1677		spin_unlock_bh(&sk->sk_lock.slock);
1678		schedule();
1679		spin_lock_bh(&sk->sk_lock.slock);
1680		if (!sock_owned_by_user(sk))
1681			break;
1682	}
1683	finish_wait(&sk->sk_lock.wq, &wait);
1684}
1685
1686static void __release_sock(struct sock *sk)
1687	__releases(&sk->sk_lock.slock)
1688	__acquires(&sk->sk_lock.slock)
1689{
1690	struct sk_buff *skb = sk->sk_backlog.head;
1691
1692	do {
1693		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1694		bh_unlock_sock(sk);
1695
1696		do {
1697			struct sk_buff *next = skb->next;
1698
1699			WARN_ON_ONCE(skb_dst_is_noref(skb));
1700			skb->next = NULL;
1701			sk_backlog_rcv(sk, skb);
1702
1703			/*
1704			 * We are in process context here with softirqs
1705			 * disabled, use cond_resched_softirq() to preempt.
1706			 * This is safe to do because we've taken the backlog
1707			 * queue private:
1708			 */
1709			cond_resched_softirq();
1710
1711			skb = next;
1712		} while (skb != NULL);
1713
1714		bh_lock_sock(sk);
1715	} while ((skb = sk->sk_backlog.head) != NULL);
1716
1717	/*
1718	 * Doing the zeroing here guarantee we can not loop forever
1719	 * while a wild producer attempts to flood us.
1720	 */
1721	sk->sk_backlog.len = 0;
1722}
1723
1724/**
1725 * sk_wait_data - wait for data to arrive at sk_receive_queue
1726 * @sk:    sock to wait on
1727 * @timeo: for how long
1728 *
1729 * Now socket state including sk->sk_err is changed only under lock,
1730 * hence we may omit checks after joining wait queue.
1731 * We check receive queue before schedule() only as optimization;
1732 * it is very likely that release_sock() added new data.
1733 */
1734int sk_wait_data(struct sock *sk, long *timeo)
1735{
1736	int rc;
1737	DEFINE_WAIT(wait);
1738
1739	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1740	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1741	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1742	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1743	finish_wait(sk_sleep(sk), &wait);
1744	return rc;
1745}
1746EXPORT_SYMBOL(sk_wait_data);
1747
1748/**
1749 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1750 *	@sk: socket
1751 *	@size: memory size to allocate
1752 *	@kind: allocation type
1753 *
1754 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1755 *	rmem allocation. This function assumes that protocols which have
1756 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1757 */
1758int __sk_mem_schedule(struct sock *sk, int size, int kind)
1759{
1760	struct proto *prot = sk->sk_prot;
1761	int amt = sk_mem_pages(size);
1762	long allocated;
1763	int parent_status = UNDER_LIMIT;
1764
1765	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1766
1767	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1768
1769	/* Under limit. */
1770	if (parent_status == UNDER_LIMIT &&
1771			allocated <= sk_prot_mem_limits(sk, 0)) {
1772		sk_leave_memory_pressure(sk);
1773		return 1;
1774	}
1775
1776	/* Under pressure. (we or our parents) */
1777	if ((parent_status > SOFT_LIMIT) ||
1778			allocated > sk_prot_mem_limits(sk, 1))
1779		sk_enter_memory_pressure(sk);
1780
1781	/* Over hard limit (we or our parents) */
1782	if ((parent_status == OVER_LIMIT) ||
1783			(allocated > sk_prot_mem_limits(sk, 2)))
1784		goto suppress_allocation;
1785
1786	/* guarantee minimum buffer size under pressure */
1787	if (kind == SK_MEM_RECV) {
1788		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1789			return 1;
1790
1791	} else { /* SK_MEM_SEND */
1792		if (sk->sk_type == SOCK_STREAM) {
1793			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1794				return 1;
1795		} else if (atomic_read(&sk->sk_wmem_alloc) <
1796			   prot->sysctl_wmem[0])
1797				return 1;
1798	}
1799
1800	if (sk_has_memory_pressure(sk)) {
1801		int alloc;
1802
1803		if (!sk_under_memory_pressure(sk))
1804			return 1;
1805		alloc = sk_sockets_allocated_read_positive(sk);
1806		if (sk_prot_mem_limits(sk, 2) > alloc *
1807		    sk_mem_pages(sk->sk_wmem_queued +
1808				 atomic_read(&sk->sk_rmem_alloc) +
1809				 sk->sk_forward_alloc))
1810			return 1;
1811	}
1812
1813suppress_allocation:
1814
1815	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1816		sk_stream_moderate_sndbuf(sk);
1817
1818		/* Fail only if socket is _under_ its sndbuf.
1819		 * In this case we cannot block, so that we have to fail.
1820		 */
1821		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1822			return 1;
1823	}
1824
1825	trace_sock_exceed_buf_limit(sk, prot, allocated);
1826
1827	/* Alas. Undo changes. */
1828	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1829
1830	sk_memory_allocated_sub(sk, amt, parent_status);
1831
1832	return 0;
1833}
1834EXPORT_SYMBOL(__sk_mem_schedule);
1835
1836/**
1837 *	__sk_reclaim - reclaim memory_allocated
1838 *	@sk: socket
1839 */
1840void __sk_mem_reclaim(struct sock *sk)
1841{
1842	sk_memory_allocated_sub(sk,
1843				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT, 0);
1844	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1845
1846	if (sk_under_memory_pressure(sk) &&
1847	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1848		sk_leave_memory_pressure(sk);
1849}
1850EXPORT_SYMBOL(__sk_mem_reclaim);
1851
1852
1853/*
1854 * Set of default routines for initialising struct proto_ops when
1855 * the protocol does not support a particular function. In certain
1856 * cases where it makes no sense for a protocol to have a "do nothing"
1857 * function, some default processing is provided.
1858 */
1859
1860int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1861{
1862	return -EOPNOTSUPP;
1863}
1864EXPORT_SYMBOL(sock_no_bind);
1865
1866int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1867		    int len, int flags)
1868{
1869	return -EOPNOTSUPP;
1870}
1871EXPORT_SYMBOL(sock_no_connect);
1872
1873int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1874{
1875	return -EOPNOTSUPP;
1876}
1877EXPORT_SYMBOL(sock_no_socketpair);
1878
1879int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1880{
1881	return -EOPNOTSUPP;
1882}
1883EXPORT_SYMBOL(sock_no_accept);
1884
1885int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1886		    int *len, int peer)
1887{
1888	return -EOPNOTSUPP;
1889}
1890EXPORT_SYMBOL(sock_no_getname);
1891
1892unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1893{
1894	return 0;
1895}
1896EXPORT_SYMBOL(sock_no_poll);
1897
1898int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1899{
1900	return -EOPNOTSUPP;
1901}
1902EXPORT_SYMBOL(sock_no_ioctl);
1903
1904int sock_no_listen(struct socket *sock, int backlog)
1905{
1906	return -EOPNOTSUPP;
1907}
1908EXPORT_SYMBOL(sock_no_listen);
1909
1910int sock_no_shutdown(struct socket *sock, int how)
1911{
1912	return -EOPNOTSUPP;
1913}
1914EXPORT_SYMBOL(sock_no_shutdown);
1915
1916int sock_no_setsockopt(struct socket *sock, int level, int optname,
1917		    char __user *optval, unsigned int optlen)
1918{
1919	return -EOPNOTSUPP;
1920}
1921EXPORT_SYMBOL(sock_no_setsockopt);
1922
1923int sock_no_getsockopt(struct socket *sock, int level, int optname,
1924		    char __user *optval, int __user *optlen)
1925{
1926	return -EOPNOTSUPP;
1927}
1928EXPORT_SYMBOL(sock_no_getsockopt);
1929
1930int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1931		    size_t len)
1932{
1933	return -EOPNOTSUPP;
1934}
1935EXPORT_SYMBOL(sock_no_sendmsg);
1936
1937int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1938		    size_t len, int flags)
1939{
1940	return -EOPNOTSUPP;
1941}
1942EXPORT_SYMBOL(sock_no_recvmsg);
1943
1944int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1945{
1946	/* Mirror missing mmap method error code */
1947	return -ENODEV;
1948}
1949EXPORT_SYMBOL(sock_no_mmap);
1950
1951ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1952{
1953	ssize_t res;
1954	struct msghdr msg = {.msg_flags = flags};
1955	struct kvec iov;
1956	char *kaddr = kmap(page);
1957	iov.iov_base = kaddr + offset;
1958	iov.iov_len = size;
1959	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1960	kunmap(page);
1961	return res;
1962}
1963EXPORT_SYMBOL(sock_no_sendpage);
1964
1965/*
1966 *	Default Socket Callbacks
1967 */
1968
1969static void sock_def_wakeup(struct sock *sk)
1970{
1971	struct socket_wq *wq;
1972
1973	rcu_read_lock();
1974	wq = rcu_dereference(sk->sk_wq);
1975	if (wq_has_sleeper(wq))
1976		wake_up_interruptible_all(&wq->wait);
1977	rcu_read_unlock();
1978}
1979
1980static void sock_def_error_report(struct sock *sk)
1981{
1982	struct socket_wq *wq;
1983
1984	rcu_read_lock();
1985	wq = rcu_dereference(sk->sk_wq);
1986	if (wq_has_sleeper(wq))
1987		wake_up_interruptible_poll(&wq->wait, POLLERR);
1988	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1989	rcu_read_unlock();
1990}
1991
1992static void sock_def_readable(struct sock *sk, int len)
1993{
1994	struct socket_wq *wq;
1995
1996	rcu_read_lock();
1997	wq = rcu_dereference(sk->sk_wq);
1998	if (wq_has_sleeper(wq))
1999		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2000						POLLRDNORM | POLLRDBAND);
2001	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2002	rcu_read_unlock();
2003}
2004
2005static void sock_def_write_space(struct sock *sk)
2006{
2007	struct socket_wq *wq;
2008
2009	rcu_read_lock();
2010
2011	/* Do not wake up a writer until he can make "significant"
2012	 * progress.  --DaveM
2013	 */
2014	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2015		wq = rcu_dereference(sk->sk_wq);
2016		if (wq_has_sleeper(wq))
2017			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2018						POLLWRNORM | POLLWRBAND);
2019
2020		/* Should agree with poll, otherwise some programs break */
2021		if (sock_writeable(sk))
2022			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2023	}
2024
2025	rcu_read_unlock();
2026}
2027
2028static void sock_def_destruct(struct sock *sk)
2029{
2030	kfree(sk->sk_protinfo);
2031}
2032
2033void sk_send_sigurg(struct sock *sk)
2034{
2035	if (sk->sk_socket && sk->sk_socket->file)
2036		if (send_sigurg(&sk->sk_socket->file->f_owner))
2037			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2038}
2039EXPORT_SYMBOL(sk_send_sigurg);
2040
2041void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2042		    unsigned long expires)
2043{
2044	if (!mod_timer(timer, expires))
2045		sock_hold(sk);
2046}
2047EXPORT_SYMBOL(sk_reset_timer);
2048
2049void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2050{
2051	if (timer_pending(timer) && del_timer(timer))
2052		__sock_put(sk);
2053}
2054EXPORT_SYMBOL(sk_stop_timer);
2055
2056void sock_init_data(struct socket *sock, struct sock *sk)
2057{
2058	skb_queue_head_init(&sk->sk_receive_queue);
2059	skb_queue_head_init(&sk->sk_write_queue);
2060	skb_queue_head_init(&sk->sk_error_queue);
2061#ifdef CONFIG_NET_DMA
2062	skb_queue_head_init(&sk->sk_async_wait_queue);
2063#endif
2064
2065	sk->sk_send_head	=	NULL;
2066
2067	init_timer(&sk->sk_timer);
2068
2069	sk->sk_allocation	=	GFP_KERNEL;
2070	sk->sk_rcvbuf		=	sysctl_rmem_default;
2071	sk->sk_sndbuf		=	sysctl_wmem_default;
2072	sk->sk_state		=	TCP_CLOSE;
2073	sk_set_socket(sk, sock);
2074
2075	sock_set_flag(sk, SOCK_ZAPPED);
2076
2077	if (sock) {
2078		sk->sk_type	=	sock->type;
2079		sk->sk_wq	=	sock->wq;
2080		sock->sk	=	sk;
2081	} else
2082		sk->sk_wq	=	NULL;
2083
2084	spin_lock_init(&sk->sk_dst_lock);
2085	rwlock_init(&sk->sk_callback_lock);
2086	lockdep_set_class_and_name(&sk->sk_callback_lock,
2087			af_callback_keys + sk->sk_family,
2088			af_family_clock_key_strings[sk->sk_family]);
2089
2090	sk->sk_state_change	=	sock_def_wakeup;
2091	sk->sk_data_ready	=	sock_def_readable;
2092	sk->sk_write_space	=	sock_def_write_space;
2093	sk->sk_error_report	=	sock_def_error_report;
2094	sk->sk_destruct		=	sock_def_destruct;
2095
2096	sk->sk_sndmsg_page	=	NULL;
2097	sk->sk_sndmsg_off	=	0;
2098
2099	sk->sk_peer_pid 	=	NULL;
2100	sk->sk_peer_cred	=	NULL;
2101	sk->sk_write_pending	=	0;
2102	sk->sk_rcvlowat		=	1;
2103	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2104	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2105
2106	sk->sk_stamp = ktime_set(-1L, 0);
2107
2108	/*
2109	 * Before updating sk_refcnt, we must commit prior changes to memory
2110	 * (Documentation/RCU/rculist_nulls.txt for details)
2111	 */
2112	smp_wmb();
2113	atomic_set(&sk->sk_refcnt, 1);
2114	atomic_set(&sk->sk_drops, 0);
2115}
2116EXPORT_SYMBOL(sock_init_data);
2117
2118void lock_sock_nested(struct sock *sk, int subclass)
2119{
2120	might_sleep();
2121	spin_lock_bh(&sk->sk_lock.slock);
2122	if (sk->sk_lock.owned)
2123		__lock_sock(sk);
2124	sk->sk_lock.owned = 1;
2125	spin_unlock(&sk->sk_lock.slock);
2126	/*
2127	 * The sk_lock has mutex_lock() semantics here:
2128	 */
2129	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2130	local_bh_enable();
2131}
2132EXPORT_SYMBOL(lock_sock_nested);
2133
2134void release_sock(struct sock *sk)
2135{
2136	/*
2137	 * The sk_lock has mutex_unlock() semantics:
2138	 */
2139	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2140
2141	spin_lock_bh(&sk->sk_lock.slock);
2142	if (sk->sk_backlog.tail)
2143		__release_sock(sk);
2144	sk->sk_lock.owned = 0;
2145	if (waitqueue_active(&sk->sk_lock.wq))
2146		wake_up(&sk->sk_lock.wq);
2147	spin_unlock_bh(&sk->sk_lock.slock);
2148}
2149EXPORT_SYMBOL(release_sock);
2150
2151/**
2152 * lock_sock_fast - fast version of lock_sock
2153 * @sk: socket
2154 *
2155 * This version should be used for very small section, where process wont block
2156 * return false if fast path is taken
2157 *   sk_lock.slock locked, owned = 0, BH disabled
2158 * return true if slow path is taken
2159 *   sk_lock.slock unlocked, owned = 1, BH enabled
2160 */
2161bool lock_sock_fast(struct sock *sk)
2162{
2163	might_sleep();
2164	spin_lock_bh(&sk->sk_lock.slock);
2165
2166	if (!sk->sk_lock.owned)
2167		/*
2168		 * Note : We must disable BH
2169		 */
2170		return false;
2171
2172	__lock_sock(sk);
2173	sk->sk_lock.owned = 1;
2174	spin_unlock(&sk->sk_lock.slock);
2175	/*
2176	 * The sk_lock has mutex_lock() semantics here:
2177	 */
2178	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2179	local_bh_enable();
2180	return true;
2181}
2182EXPORT_SYMBOL(lock_sock_fast);
2183
2184int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2185{
2186	struct timeval tv;
2187	if (!sock_flag(sk, SOCK_TIMESTAMP))
2188		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2189	tv = ktime_to_timeval(sk->sk_stamp);
2190	if (tv.tv_sec == -1)
2191		return -ENOENT;
2192	if (tv.tv_sec == 0) {
2193		sk->sk_stamp = ktime_get_real();
2194		tv = ktime_to_timeval(sk->sk_stamp);
2195	}
2196	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2197}
2198EXPORT_SYMBOL(sock_get_timestamp);
2199
2200int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2201{
2202	struct timespec ts;
2203	if (!sock_flag(sk, SOCK_TIMESTAMP))
2204		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2205	ts = ktime_to_timespec(sk->sk_stamp);
2206	if (ts.tv_sec == -1)
2207		return -ENOENT;
2208	if (ts.tv_sec == 0) {
2209		sk->sk_stamp = ktime_get_real();
2210		ts = ktime_to_timespec(sk->sk_stamp);
2211	}
2212	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2213}
2214EXPORT_SYMBOL(sock_get_timestampns);
2215
2216void sock_enable_timestamp(struct sock *sk, int flag)
2217{
2218	if (!sock_flag(sk, flag)) {
2219		unsigned long previous_flags = sk->sk_flags;
2220
2221		sock_set_flag(sk, flag);
2222		/*
2223		 * we just set one of the two flags which require net
2224		 * time stamping, but time stamping might have been on
2225		 * already because of the other one
2226		 */
2227		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2228			net_enable_timestamp();
2229	}
2230}
2231
2232/*
2233 *	Get a socket option on an socket.
2234 *
2235 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2236 *	asynchronous errors should be reported by getsockopt. We assume
2237 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2238 */
2239int sock_common_getsockopt(struct socket *sock, int level, int optname,
2240			   char __user *optval, int __user *optlen)
2241{
2242	struct sock *sk = sock->sk;
2243
2244	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2245}
2246EXPORT_SYMBOL(sock_common_getsockopt);
2247
2248#ifdef CONFIG_COMPAT
2249int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2250				  char __user *optval, int __user *optlen)
2251{
2252	struct sock *sk = sock->sk;
2253
2254	if (sk->sk_prot->compat_getsockopt != NULL)
2255		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2256						      optval, optlen);
2257	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2258}
2259EXPORT_SYMBOL(compat_sock_common_getsockopt);
2260#endif
2261
2262int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2263			struct msghdr *msg, size_t size, int flags)
2264{
2265	struct sock *sk = sock->sk;
2266	int addr_len = 0;
2267	int err;
2268
2269	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2270				   flags & ~MSG_DONTWAIT, &addr_len);
2271	if (err >= 0)
2272		msg->msg_namelen = addr_len;
2273	return err;
2274}
2275EXPORT_SYMBOL(sock_common_recvmsg);
2276
2277/*
2278 *	Set socket options on an inet socket.
2279 */
2280int sock_common_setsockopt(struct socket *sock, int level, int optname,
2281			   char __user *optval, unsigned int optlen)
2282{
2283	struct sock *sk = sock->sk;
2284
2285	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2286}
2287EXPORT_SYMBOL(sock_common_setsockopt);
2288
2289#ifdef CONFIG_COMPAT
2290int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2291				  char __user *optval, unsigned int optlen)
2292{
2293	struct sock *sk = sock->sk;
2294
2295	if (sk->sk_prot->compat_setsockopt != NULL)
2296		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2297						      optval, optlen);
2298	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2299}
2300EXPORT_SYMBOL(compat_sock_common_setsockopt);
2301#endif
2302
2303void sk_common_release(struct sock *sk)
2304{
2305	if (sk->sk_prot->destroy)
2306		sk->sk_prot->destroy(sk);
2307
2308	/*
2309	 * Observation: when sock_common_release is called, processes have
2310	 * no access to socket. But net still has.
2311	 * Step one, detach it from networking:
2312	 *
2313	 * A. Remove from hash tables.
2314	 */
2315
2316	sk->sk_prot->unhash(sk);
2317
2318	/*
2319	 * In this point socket cannot receive new packets, but it is possible
2320	 * that some packets are in flight because some CPU runs receiver and
2321	 * did hash table lookup before we unhashed socket. They will achieve
2322	 * receive queue and will be purged by socket destructor.
2323	 *
2324	 * Also we still have packets pending on receive queue and probably,
2325	 * our own packets waiting in device queues. sock_destroy will drain
2326	 * receive queue, but transmitted packets will delay socket destruction
2327	 * until the last reference will be released.
2328	 */
2329
2330	sock_orphan(sk);
2331
2332	xfrm_sk_free_policy(sk);
2333
2334	sk_refcnt_debug_release(sk);
2335	sock_put(sk);
2336}
2337EXPORT_SYMBOL(sk_common_release);
2338
2339#ifdef CONFIG_PROC_FS
2340#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2341struct prot_inuse {
2342	int val[PROTO_INUSE_NR];
2343};
2344
2345static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2346
2347#ifdef CONFIG_NET_NS
2348void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2349{
2350	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2351}
2352EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2353
2354int sock_prot_inuse_get(struct net *net, struct proto *prot)
2355{
2356	int cpu, idx = prot->inuse_idx;
2357	int res = 0;
2358
2359	for_each_possible_cpu(cpu)
2360		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2361
2362	return res >= 0 ? res : 0;
2363}
2364EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2365
2366static int __net_init sock_inuse_init_net(struct net *net)
2367{
2368	net->core.inuse = alloc_percpu(struct prot_inuse);
2369	return net->core.inuse ? 0 : -ENOMEM;
2370}
2371
2372static void __net_exit sock_inuse_exit_net(struct net *net)
2373{
2374	free_percpu(net->core.inuse);
2375}
2376
2377static struct pernet_operations net_inuse_ops = {
2378	.init = sock_inuse_init_net,
2379	.exit = sock_inuse_exit_net,
2380};
2381
2382static __init int net_inuse_init(void)
2383{
2384	if (register_pernet_subsys(&net_inuse_ops))
2385		panic("Cannot initialize net inuse counters");
2386
2387	return 0;
2388}
2389
2390core_initcall(net_inuse_init);
2391#else
2392static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2393
2394void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2395{
2396	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2397}
2398EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2399
2400int sock_prot_inuse_get(struct net *net, struct proto *prot)
2401{
2402	int cpu, idx = prot->inuse_idx;
2403	int res = 0;
2404
2405	for_each_possible_cpu(cpu)
2406		res += per_cpu(prot_inuse, cpu).val[idx];
2407
2408	return res >= 0 ? res : 0;
2409}
2410EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2411#endif
2412
2413static void assign_proto_idx(struct proto *prot)
2414{
2415	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2416
2417	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2418		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2419		return;
2420	}
2421
2422	set_bit(prot->inuse_idx, proto_inuse_idx);
2423}
2424
2425static void release_proto_idx(struct proto *prot)
2426{
2427	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2428		clear_bit(prot->inuse_idx, proto_inuse_idx);
2429}
2430#else
2431static inline void assign_proto_idx(struct proto *prot)
2432{
2433}
2434
2435static inline void release_proto_idx(struct proto *prot)
2436{
2437}
2438#endif
2439
2440int proto_register(struct proto *prot, int alloc_slab)
2441{
2442	if (alloc_slab) {
2443		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2444					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2445					NULL);
2446
2447		if (prot->slab == NULL) {
2448			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2449			       prot->name);
2450			goto out;
2451		}
2452
2453		if (prot->rsk_prot != NULL) {
2454			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2455			if (prot->rsk_prot->slab_name == NULL)
2456				goto out_free_sock_slab;
2457
2458			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2459								 prot->rsk_prot->obj_size, 0,
2460								 SLAB_HWCACHE_ALIGN, NULL);
2461
2462			if (prot->rsk_prot->slab == NULL) {
2463				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2464				       prot->name);
2465				goto out_free_request_sock_slab_name;
2466			}
2467		}
2468
2469		if (prot->twsk_prot != NULL) {
2470			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2471
2472			if (prot->twsk_prot->twsk_slab_name == NULL)
2473				goto out_free_request_sock_slab;
2474
2475			prot->twsk_prot->twsk_slab =
2476				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2477						  prot->twsk_prot->twsk_obj_size,
2478						  0,
2479						  SLAB_HWCACHE_ALIGN |
2480							prot->slab_flags,
2481						  NULL);
2482			if (prot->twsk_prot->twsk_slab == NULL)
2483				goto out_free_timewait_sock_slab_name;
2484		}
2485	}
2486
2487	mutex_lock(&proto_list_mutex);
2488	list_add(&prot->node, &proto_list);
2489	assign_proto_idx(prot);
2490	mutex_unlock(&proto_list_mutex);
2491	return 0;
2492
2493out_free_timewait_sock_slab_name:
2494	kfree(prot->twsk_prot->twsk_slab_name);
2495out_free_request_sock_slab:
2496	if (prot->rsk_prot && prot->rsk_prot->slab) {
2497		kmem_cache_destroy(prot->rsk_prot->slab);
2498		prot->rsk_prot->slab = NULL;
2499	}
2500out_free_request_sock_slab_name:
2501	if (prot->rsk_prot)
2502		kfree(prot->rsk_prot->slab_name);
2503out_free_sock_slab:
2504	kmem_cache_destroy(prot->slab);
2505	prot->slab = NULL;
2506out:
2507	return -ENOBUFS;
2508}
2509EXPORT_SYMBOL(proto_register);
2510
2511void proto_unregister(struct proto *prot)
2512{
2513	mutex_lock(&proto_list_mutex);
2514	release_proto_idx(prot);
2515	list_del(&prot->node);
2516	mutex_unlock(&proto_list_mutex);
2517
2518	if (prot->slab != NULL) {
2519		kmem_cache_destroy(prot->slab);
2520		prot->slab = NULL;
2521	}
2522
2523	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2524		kmem_cache_destroy(prot->rsk_prot->slab);
2525		kfree(prot->rsk_prot->slab_name);
2526		prot->rsk_prot->slab = NULL;
2527	}
2528
2529	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2530		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2531		kfree(prot->twsk_prot->twsk_slab_name);
2532		prot->twsk_prot->twsk_slab = NULL;
2533	}
2534}
2535EXPORT_SYMBOL(proto_unregister);
2536
2537#ifdef CONFIG_PROC_FS
2538static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2539	__acquires(proto_list_mutex)
2540{
2541	mutex_lock(&proto_list_mutex);
2542	return seq_list_start_head(&proto_list, *pos);
2543}
2544
2545static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2546{
2547	return seq_list_next(v, &proto_list, pos);
2548}
2549
2550static void proto_seq_stop(struct seq_file *seq, void *v)
2551	__releases(proto_list_mutex)
2552{
2553	mutex_unlock(&proto_list_mutex);
2554}
2555
2556static char proto_method_implemented(const void *method)
2557{
2558	return method == NULL ? 'n' : 'y';
2559}
2560static long sock_prot_memory_allocated(struct proto *proto)
2561{
2562	return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2563}
2564
2565static char *sock_prot_memory_pressure(struct proto *proto)
2566{
2567	return proto->memory_pressure != NULL ?
2568	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2569}
2570
2571static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2572{
2573
2574	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2575			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2576		   proto->name,
2577		   proto->obj_size,
2578		   sock_prot_inuse_get(seq_file_net(seq), proto),
2579		   sock_prot_memory_allocated(proto),
2580		   sock_prot_memory_pressure(proto),
2581		   proto->max_header,
2582		   proto->slab == NULL ? "no" : "yes",
2583		   module_name(proto->owner),
2584		   proto_method_implemented(proto->close),
2585		   proto_method_implemented(proto->connect),
2586		   proto_method_implemented(proto->disconnect),
2587		   proto_method_implemented(proto->accept),
2588		   proto_method_implemented(proto->ioctl),
2589		   proto_method_implemented(proto->init),
2590		   proto_method_implemented(proto->destroy),
2591		   proto_method_implemented(proto->shutdown),
2592		   proto_method_implemented(proto->setsockopt),
2593		   proto_method_implemented(proto->getsockopt),
2594		   proto_method_implemented(proto->sendmsg),
2595		   proto_method_implemented(proto->recvmsg),
2596		   proto_method_implemented(proto->sendpage),
2597		   proto_method_implemented(proto->bind),
2598		   proto_method_implemented(proto->backlog_rcv),
2599		   proto_method_implemented(proto->hash),
2600		   proto_method_implemented(proto->unhash),
2601		   proto_method_implemented(proto->get_port),
2602		   proto_method_implemented(proto->enter_memory_pressure));
2603}
2604
2605static int proto_seq_show(struct seq_file *seq, void *v)
2606{
2607	if (v == &proto_list)
2608		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2609			   "protocol",
2610			   "size",
2611			   "sockets",
2612			   "memory",
2613			   "press",
2614			   "maxhdr",
2615			   "slab",
2616			   "module",
2617			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2618	else
2619		proto_seq_printf(seq, list_entry(v, struct proto, node));
2620	return 0;
2621}
2622
2623static const struct seq_operations proto_seq_ops = {
2624	.start  = proto_seq_start,
2625	.next   = proto_seq_next,
2626	.stop   = proto_seq_stop,
2627	.show   = proto_seq_show,
2628};
2629
2630static int proto_seq_open(struct inode *inode, struct file *file)
2631{
2632	return seq_open_net(inode, file, &proto_seq_ops,
2633			    sizeof(struct seq_net_private));
2634}
2635
2636static const struct file_operations proto_seq_fops = {
2637	.owner		= THIS_MODULE,
2638	.open		= proto_seq_open,
2639	.read		= seq_read,
2640	.llseek		= seq_lseek,
2641	.release	= seq_release_net,
2642};
2643
2644static __net_init int proto_init_net(struct net *net)
2645{
2646	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2647		return -ENOMEM;
2648
2649	return 0;
2650}
2651
2652static __net_exit void proto_exit_net(struct net *net)
2653{
2654	proc_net_remove(net, "protocols");
2655}
2656
2657
2658static __net_initdata struct pernet_operations proto_net_ops = {
2659	.init = proto_init_net,
2660	.exit = proto_exit_net,
2661};
2662
2663static int __init proto_init(void)
2664{
2665	return register_pernet_subsys(&proto_net_ops);
2666}
2667
2668subsys_initcall(proto_init);
2669
2670#endif /* PROC_FS */
2671