sock.c revision 82d5e2b8b466d5bfc7c6278a7c04a53b9b287673
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/errqueue.h>
97#include <linux/types.h>
98#include <linux/socket.h>
99#include <linux/in.h>
100#include <linux/kernel.h>
101#include <linux/module.h>
102#include <linux/proc_fs.h>
103#include <linux/seq_file.h>
104#include <linux/sched.h>
105#include <linux/timer.h>
106#include <linux/string.h>
107#include <linux/sockios.h>
108#include <linux/net.h>
109#include <linux/mm.h>
110#include <linux/slab.h>
111#include <linux/interrupt.h>
112#include <linux/poll.h>
113#include <linux/tcp.h>
114#include <linux/init.h>
115#include <linux/highmem.h>
116#include <linux/user_namespace.h>
117#include <linux/static_key.h>
118#include <linux/memcontrol.h>
119#include <linux/prefetch.h>
120
121#include <asm/uaccess.h>
122
123#include <linux/netdevice.h>
124#include <net/protocol.h>
125#include <linux/skbuff.h>
126#include <net/net_namespace.h>
127#include <net/request_sock.h>
128#include <net/sock.h>
129#include <linux/net_tstamp.h>
130#include <net/xfrm.h>
131#include <linux/ipsec.h>
132#include <net/cls_cgroup.h>
133#include <net/netprio_cgroup.h>
134
135#include <linux/filter.h>
136
137#include <trace/events/sock.h>
138
139#ifdef CONFIG_INET
140#include <net/tcp.h>
141#endif
142
143#include <net/busy_poll.h>
144
145static DEFINE_MUTEX(proto_list_mutex);
146static LIST_HEAD(proto_list);
147
148/**
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
153 *
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
157 */
158bool sk_ns_capable(const struct sock *sk,
159		   struct user_namespace *user_ns, int cap)
160{
161	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162		ns_capable(user_ns, cap);
163}
164EXPORT_SYMBOL(sk_ns_capable);
165
166/**
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capability to use
170 *
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
173 * namespaces.
174 */
175bool sk_capable(const struct sock *sk, int cap)
176{
177	return sk_ns_capable(sk, &init_user_ns, cap);
178}
179EXPORT_SYMBOL(sk_capable);
180
181/**
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
185 *
186 * Test to see if the opener of the socket had when the socket was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
189 */
190bool sk_net_capable(const struct sock *sk, int cap)
191{
192	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193}
194EXPORT_SYMBOL(sk_net_capable);
195
196
197#ifdef CONFIG_MEMCG_KMEM
198int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199{
200	struct proto *proto;
201	int ret = 0;
202
203	mutex_lock(&proto_list_mutex);
204	list_for_each_entry(proto, &proto_list, node) {
205		if (proto->init_cgroup) {
206			ret = proto->init_cgroup(memcg, ss);
207			if (ret)
208				goto out;
209		}
210	}
211
212	mutex_unlock(&proto_list_mutex);
213	return ret;
214out:
215	list_for_each_entry_continue_reverse(proto, &proto_list, node)
216		if (proto->destroy_cgroup)
217			proto->destroy_cgroup(memcg);
218	mutex_unlock(&proto_list_mutex);
219	return ret;
220}
221
222void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223{
224	struct proto *proto;
225
226	mutex_lock(&proto_list_mutex);
227	list_for_each_entry_reverse(proto, &proto_list, node)
228		if (proto->destroy_cgroup)
229			proto->destroy_cgroup(memcg);
230	mutex_unlock(&proto_list_mutex);
231}
232#endif
233
234/*
235 * Each address family might have different locking rules, so we have
236 * one slock key per address family:
237 */
238static struct lock_class_key af_family_keys[AF_MAX];
239static struct lock_class_key af_family_slock_keys[AF_MAX];
240
241#if defined(CONFIG_MEMCG_KMEM)
242struct static_key memcg_socket_limit_enabled;
243EXPORT_SYMBOL(memcg_socket_limit_enabled);
244#endif
245
246/*
247 * Make lock validator output more readable. (we pre-construct these
248 * strings build-time, so that runtime initialization of socket
249 * locks is fast):
250 */
251static const char *const af_family_key_strings[AF_MAX+1] = {
252  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
253  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
254  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
255  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
256  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
257  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
258  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
259  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
260  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
261  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
262  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
263  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
264  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
265  "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
266};
267static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
269  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
270  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
271  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
272  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
273  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
274  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
275  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
276  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
277  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
278  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
279  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
280  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
281  "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
282};
283static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
285  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
286  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
287  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
288  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
289  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
290  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
291  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
292  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
293  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
294  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
295  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
296  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
297  "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
298};
299
300/*
301 * sk_callback_lock locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
303 */
304static struct lock_class_key af_callback_keys[AF_MAX];
305
306/* Take into consideration the size of the struct sk_buff overhead in the
307 * determination of these values, since that is non-constant across
308 * platforms.  This makes socket queueing behavior and performance
309 * not depend upon such differences.
310 */
311#define _SK_MEM_PACKETS		256
312#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
313#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315
316/* Run time adjustable parameters. */
317__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318EXPORT_SYMBOL(sysctl_wmem_max);
319__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320EXPORT_SYMBOL(sysctl_rmem_max);
321__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323
324/* Maximal space eaten by iovec or ancillary data plus some space */
325int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326EXPORT_SYMBOL(sysctl_optmem_max);
327
328struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
329EXPORT_SYMBOL_GPL(memalloc_socks);
330
331/**
332 * sk_set_memalloc - sets %SOCK_MEMALLOC
333 * @sk: socket to set it on
334 *
335 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
336 * It's the responsibility of the admin to adjust min_free_kbytes
337 * to meet the requirements
338 */
339void sk_set_memalloc(struct sock *sk)
340{
341	sock_set_flag(sk, SOCK_MEMALLOC);
342	sk->sk_allocation |= __GFP_MEMALLOC;
343	static_key_slow_inc(&memalloc_socks);
344}
345EXPORT_SYMBOL_GPL(sk_set_memalloc);
346
347void sk_clear_memalloc(struct sock *sk)
348{
349	sock_reset_flag(sk, SOCK_MEMALLOC);
350	sk->sk_allocation &= ~__GFP_MEMALLOC;
351	static_key_slow_dec(&memalloc_socks);
352
353	/*
354	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
355	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
356	 * it has rmem allocations there is a risk that the user of the
357	 * socket cannot make forward progress due to exceeding the rmem
358	 * limits. By rights, sk_clear_memalloc() should only be called
359	 * on sockets being torn down but warn and reset the accounting if
360	 * that assumption breaks.
361	 */
362	if (WARN_ON(sk->sk_forward_alloc))
363		sk_mem_reclaim(sk);
364}
365EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366
367int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368{
369	int ret;
370	unsigned long pflags = current->flags;
371
372	/* these should have been dropped before queueing */
373	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374
375	current->flags |= PF_MEMALLOC;
376	ret = sk->sk_backlog_rcv(sk, skb);
377	tsk_restore_flags(current, pflags, PF_MEMALLOC);
378
379	return ret;
380}
381EXPORT_SYMBOL(__sk_backlog_rcv);
382
383static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384{
385	struct timeval tv;
386
387	if (optlen < sizeof(tv))
388		return -EINVAL;
389	if (copy_from_user(&tv, optval, sizeof(tv)))
390		return -EFAULT;
391	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392		return -EDOM;
393
394	if (tv.tv_sec < 0) {
395		static int warned __read_mostly;
396
397		*timeo_p = 0;
398		if (warned < 10 && net_ratelimit()) {
399			warned++;
400			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401				__func__, current->comm, task_pid_nr(current));
402		}
403		return 0;
404	}
405	*timeo_p = MAX_SCHEDULE_TIMEOUT;
406	if (tv.tv_sec == 0 && tv.tv_usec == 0)
407		return 0;
408	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410	return 0;
411}
412
413static void sock_warn_obsolete_bsdism(const char *name)
414{
415	static int warned;
416	static char warncomm[TASK_COMM_LEN];
417	if (strcmp(warncomm, current->comm) && warned < 5) {
418		strcpy(warncomm,  current->comm);
419		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420			warncomm, name);
421		warned++;
422	}
423}
424
425#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
426
427static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428{
429	if (sk->sk_flags & flags) {
430		sk->sk_flags &= ~flags;
431		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
432			net_disable_timestamp();
433	}
434}
435
436
437int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
438{
439	int err;
440	int skb_len;
441	unsigned long flags;
442	struct sk_buff_head *list = &sk->sk_receive_queue;
443
444	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
445		atomic_inc(&sk->sk_drops);
446		trace_sock_rcvqueue_full(sk, skb);
447		return -ENOMEM;
448	}
449
450	err = sk_filter(sk, skb);
451	if (err)
452		return err;
453
454	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
455		atomic_inc(&sk->sk_drops);
456		return -ENOBUFS;
457	}
458
459	skb->dev = NULL;
460	skb_set_owner_r(skb, sk);
461
462	/* Cache the SKB length before we tack it onto the receive
463	 * queue.  Once it is added it no longer belongs to us and
464	 * may be freed by other threads of control pulling packets
465	 * from the queue.
466	 */
467	skb_len = skb->len;
468
469	/* we escape from rcu protected region, make sure we dont leak
470	 * a norefcounted dst
471	 */
472	skb_dst_force(skb);
473
474	spin_lock_irqsave(&list->lock, flags);
475	skb->dropcount = atomic_read(&sk->sk_drops);
476	__skb_queue_tail(list, skb);
477	spin_unlock_irqrestore(&list->lock, flags);
478
479	if (!sock_flag(sk, SOCK_DEAD))
480		sk->sk_data_ready(sk);
481	return 0;
482}
483EXPORT_SYMBOL(sock_queue_rcv_skb);
484
485int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
486{
487	int rc = NET_RX_SUCCESS;
488
489	if (sk_filter(sk, skb))
490		goto discard_and_relse;
491
492	skb->dev = NULL;
493
494	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
495		atomic_inc(&sk->sk_drops);
496		goto discard_and_relse;
497	}
498	if (nested)
499		bh_lock_sock_nested(sk);
500	else
501		bh_lock_sock(sk);
502	if (!sock_owned_by_user(sk)) {
503		/*
504		 * trylock + unlock semantics:
505		 */
506		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
507
508		rc = sk_backlog_rcv(sk, skb);
509
510		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
511	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
512		bh_unlock_sock(sk);
513		atomic_inc(&sk->sk_drops);
514		goto discard_and_relse;
515	}
516
517	bh_unlock_sock(sk);
518out:
519	sock_put(sk);
520	return rc;
521discard_and_relse:
522	kfree_skb(skb);
523	goto out;
524}
525EXPORT_SYMBOL(sk_receive_skb);
526
527struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
528{
529	struct dst_entry *dst = __sk_dst_get(sk);
530
531	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
532		sk_tx_queue_clear(sk);
533		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
534		dst_release(dst);
535		return NULL;
536	}
537
538	return dst;
539}
540EXPORT_SYMBOL(__sk_dst_check);
541
542struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
543{
544	struct dst_entry *dst = sk_dst_get(sk);
545
546	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547		sk_dst_reset(sk);
548		dst_release(dst);
549		return NULL;
550	}
551
552	return dst;
553}
554EXPORT_SYMBOL(sk_dst_check);
555
556static int sock_setbindtodevice(struct sock *sk, char __user *optval,
557				int optlen)
558{
559	int ret = -ENOPROTOOPT;
560#ifdef CONFIG_NETDEVICES
561	struct net *net = sock_net(sk);
562	char devname[IFNAMSIZ];
563	int index;
564
565	/* Sorry... */
566	ret = -EPERM;
567	if (!ns_capable(net->user_ns, CAP_NET_RAW))
568		goto out;
569
570	ret = -EINVAL;
571	if (optlen < 0)
572		goto out;
573
574	/* Bind this socket to a particular device like "eth0",
575	 * as specified in the passed interface name. If the
576	 * name is "" or the option length is zero the socket
577	 * is not bound.
578	 */
579	if (optlen > IFNAMSIZ - 1)
580		optlen = IFNAMSIZ - 1;
581	memset(devname, 0, sizeof(devname));
582
583	ret = -EFAULT;
584	if (copy_from_user(devname, optval, optlen))
585		goto out;
586
587	index = 0;
588	if (devname[0] != '\0') {
589		struct net_device *dev;
590
591		rcu_read_lock();
592		dev = dev_get_by_name_rcu(net, devname);
593		if (dev)
594			index = dev->ifindex;
595		rcu_read_unlock();
596		ret = -ENODEV;
597		if (!dev)
598			goto out;
599	}
600
601	lock_sock(sk);
602	sk->sk_bound_dev_if = index;
603	sk_dst_reset(sk);
604	release_sock(sk);
605
606	ret = 0;
607
608out:
609#endif
610
611	return ret;
612}
613
614static int sock_getbindtodevice(struct sock *sk, char __user *optval,
615				int __user *optlen, int len)
616{
617	int ret = -ENOPROTOOPT;
618#ifdef CONFIG_NETDEVICES
619	struct net *net = sock_net(sk);
620	char devname[IFNAMSIZ];
621
622	if (sk->sk_bound_dev_if == 0) {
623		len = 0;
624		goto zero;
625	}
626
627	ret = -EINVAL;
628	if (len < IFNAMSIZ)
629		goto out;
630
631	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
632	if (ret)
633		goto out;
634
635	len = strlen(devname) + 1;
636
637	ret = -EFAULT;
638	if (copy_to_user(optval, devname, len))
639		goto out;
640
641zero:
642	ret = -EFAULT;
643	if (put_user(len, optlen))
644		goto out;
645
646	ret = 0;
647
648out:
649#endif
650
651	return ret;
652}
653
654static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
655{
656	if (valbool)
657		sock_set_flag(sk, bit);
658	else
659		sock_reset_flag(sk, bit);
660}
661
662/*
663 *	This is meant for all protocols to use and covers goings on
664 *	at the socket level. Everything here is generic.
665 */
666
667int sock_setsockopt(struct socket *sock, int level, int optname,
668		    char __user *optval, unsigned int optlen)
669{
670	struct sock *sk = sock->sk;
671	int val;
672	int valbool;
673	struct linger ling;
674	int ret = 0;
675
676	/*
677	 *	Options without arguments
678	 */
679
680	if (optname == SO_BINDTODEVICE)
681		return sock_setbindtodevice(sk, optval, optlen);
682
683	if (optlen < sizeof(int))
684		return -EINVAL;
685
686	if (get_user(val, (int __user *)optval))
687		return -EFAULT;
688
689	valbool = val ? 1 : 0;
690
691	lock_sock(sk);
692
693	switch (optname) {
694	case SO_DEBUG:
695		if (val && !capable(CAP_NET_ADMIN))
696			ret = -EACCES;
697		else
698			sock_valbool_flag(sk, SOCK_DBG, valbool);
699		break;
700	case SO_REUSEADDR:
701		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
702		break;
703	case SO_REUSEPORT:
704		sk->sk_reuseport = valbool;
705		break;
706	case SO_TYPE:
707	case SO_PROTOCOL:
708	case SO_DOMAIN:
709	case SO_ERROR:
710		ret = -ENOPROTOOPT;
711		break;
712	case SO_DONTROUTE:
713		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
714		break;
715	case SO_BROADCAST:
716		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
717		break;
718	case SO_SNDBUF:
719		/* Don't error on this BSD doesn't and if you think
720		 * about it this is right. Otherwise apps have to
721		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
722		 * are treated in BSD as hints
723		 */
724		val = min_t(u32, val, sysctl_wmem_max);
725set_sndbuf:
726		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
727		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
728		/* Wake up sending tasks if we upped the value. */
729		sk->sk_write_space(sk);
730		break;
731
732	case SO_SNDBUFFORCE:
733		if (!capable(CAP_NET_ADMIN)) {
734			ret = -EPERM;
735			break;
736		}
737		goto set_sndbuf;
738
739	case SO_RCVBUF:
740		/* Don't error on this BSD doesn't and if you think
741		 * about it this is right. Otherwise apps have to
742		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
743		 * are treated in BSD as hints
744		 */
745		val = min_t(u32, val, sysctl_rmem_max);
746set_rcvbuf:
747		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
748		/*
749		 * We double it on the way in to account for
750		 * "struct sk_buff" etc. overhead.   Applications
751		 * assume that the SO_RCVBUF setting they make will
752		 * allow that much actual data to be received on that
753		 * socket.
754		 *
755		 * Applications are unaware that "struct sk_buff" and
756		 * other overheads allocate from the receive buffer
757		 * during socket buffer allocation.
758		 *
759		 * And after considering the possible alternatives,
760		 * returning the value we actually used in getsockopt
761		 * is the most desirable behavior.
762		 */
763		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
764		break;
765
766	case SO_RCVBUFFORCE:
767		if (!capable(CAP_NET_ADMIN)) {
768			ret = -EPERM;
769			break;
770		}
771		goto set_rcvbuf;
772
773	case SO_KEEPALIVE:
774#ifdef CONFIG_INET
775		if (sk->sk_protocol == IPPROTO_TCP &&
776		    sk->sk_type == SOCK_STREAM)
777			tcp_set_keepalive(sk, valbool);
778#endif
779		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
780		break;
781
782	case SO_OOBINLINE:
783		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
784		break;
785
786	case SO_NO_CHECK:
787		sk->sk_no_check_tx = valbool;
788		break;
789
790	case SO_PRIORITY:
791		if ((val >= 0 && val <= 6) ||
792		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
793			sk->sk_priority = val;
794		else
795			ret = -EPERM;
796		break;
797
798	case SO_LINGER:
799		if (optlen < sizeof(ling)) {
800			ret = -EINVAL;	/* 1003.1g */
801			break;
802		}
803		if (copy_from_user(&ling, optval, sizeof(ling))) {
804			ret = -EFAULT;
805			break;
806		}
807		if (!ling.l_onoff)
808			sock_reset_flag(sk, SOCK_LINGER);
809		else {
810#if (BITS_PER_LONG == 32)
811			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
812				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
813			else
814#endif
815				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
816			sock_set_flag(sk, SOCK_LINGER);
817		}
818		break;
819
820	case SO_BSDCOMPAT:
821		sock_warn_obsolete_bsdism("setsockopt");
822		break;
823
824	case SO_PASSCRED:
825		if (valbool)
826			set_bit(SOCK_PASSCRED, &sock->flags);
827		else
828			clear_bit(SOCK_PASSCRED, &sock->flags);
829		break;
830
831	case SO_TIMESTAMP:
832	case SO_TIMESTAMPNS:
833		if (valbool)  {
834			if (optname == SO_TIMESTAMP)
835				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
836			else
837				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
838			sock_set_flag(sk, SOCK_RCVTSTAMP);
839			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
840		} else {
841			sock_reset_flag(sk, SOCK_RCVTSTAMP);
842			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
843		}
844		break;
845
846	case SO_TIMESTAMPING:
847		if (val & ~SOF_TIMESTAMPING_MASK) {
848			ret = -EINVAL;
849			break;
850		}
851		if (val & SOF_TIMESTAMPING_OPT_ID &&
852		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
853			if (sk->sk_protocol == IPPROTO_TCP) {
854				if (sk->sk_state != TCP_ESTABLISHED) {
855					ret = -EINVAL;
856					break;
857				}
858				sk->sk_tskey = tcp_sk(sk)->snd_una;
859			} else {
860				sk->sk_tskey = 0;
861			}
862		}
863		sk->sk_tsflags = val;
864		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
865			sock_enable_timestamp(sk,
866					      SOCK_TIMESTAMPING_RX_SOFTWARE);
867		else
868			sock_disable_timestamp(sk,
869					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
870		break;
871
872	case SO_RCVLOWAT:
873		if (val < 0)
874			val = INT_MAX;
875		sk->sk_rcvlowat = val ? : 1;
876		break;
877
878	case SO_RCVTIMEO:
879		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
880		break;
881
882	case SO_SNDTIMEO:
883		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
884		break;
885
886	case SO_ATTACH_FILTER:
887		ret = -EINVAL;
888		if (optlen == sizeof(struct sock_fprog)) {
889			struct sock_fprog fprog;
890
891			ret = -EFAULT;
892			if (copy_from_user(&fprog, optval, sizeof(fprog)))
893				break;
894
895			ret = sk_attach_filter(&fprog, sk);
896		}
897		break;
898
899	case SO_DETACH_FILTER:
900		ret = sk_detach_filter(sk);
901		break;
902
903	case SO_LOCK_FILTER:
904		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
905			ret = -EPERM;
906		else
907			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
908		break;
909
910	case SO_PASSSEC:
911		if (valbool)
912			set_bit(SOCK_PASSSEC, &sock->flags);
913		else
914			clear_bit(SOCK_PASSSEC, &sock->flags);
915		break;
916	case SO_MARK:
917		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
918			ret = -EPERM;
919		else
920			sk->sk_mark = val;
921		break;
922
923		/* We implement the SO_SNDLOWAT etc to
924		   not be settable (1003.1g 5.3) */
925	case SO_RXQ_OVFL:
926		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
927		break;
928
929	case SO_WIFI_STATUS:
930		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
931		break;
932
933	case SO_PEEK_OFF:
934		if (sock->ops->set_peek_off)
935			ret = sock->ops->set_peek_off(sk, val);
936		else
937			ret = -EOPNOTSUPP;
938		break;
939
940	case SO_NOFCS:
941		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
942		break;
943
944	case SO_SELECT_ERR_QUEUE:
945		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
946		break;
947
948#ifdef CONFIG_NET_RX_BUSY_POLL
949	case SO_BUSY_POLL:
950		/* allow unprivileged users to decrease the value */
951		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
952			ret = -EPERM;
953		else {
954			if (val < 0)
955				ret = -EINVAL;
956			else
957				sk->sk_ll_usec = val;
958		}
959		break;
960#endif
961
962	case SO_MAX_PACING_RATE:
963		sk->sk_max_pacing_rate = val;
964		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
965					 sk->sk_max_pacing_rate);
966		break;
967
968	default:
969		ret = -ENOPROTOOPT;
970		break;
971	}
972	release_sock(sk);
973	return ret;
974}
975EXPORT_SYMBOL(sock_setsockopt);
976
977
978static void cred_to_ucred(struct pid *pid, const struct cred *cred,
979			  struct ucred *ucred)
980{
981	ucred->pid = pid_vnr(pid);
982	ucred->uid = ucred->gid = -1;
983	if (cred) {
984		struct user_namespace *current_ns = current_user_ns();
985
986		ucred->uid = from_kuid_munged(current_ns, cred->euid);
987		ucred->gid = from_kgid_munged(current_ns, cred->egid);
988	}
989}
990
991int sock_getsockopt(struct socket *sock, int level, int optname,
992		    char __user *optval, int __user *optlen)
993{
994	struct sock *sk = sock->sk;
995
996	union {
997		int val;
998		struct linger ling;
999		struct timeval tm;
1000	} v;
1001
1002	int lv = sizeof(int);
1003	int len;
1004
1005	if (get_user(len, optlen))
1006		return -EFAULT;
1007	if (len < 0)
1008		return -EINVAL;
1009
1010	memset(&v, 0, sizeof(v));
1011
1012	switch (optname) {
1013	case SO_DEBUG:
1014		v.val = sock_flag(sk, SOCK_DBG);
1015		break;
1016
1017	case SO_DONTROUTE:
1018		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1019		break;
1020
1021	case SO_BROADCAST:
1022		v.val = sock_flag(sk, SOCK_BROADCAST);
1023		break;
1024
1025	case SO_SNDBUF:
1026		v.val = sk->sk_sndbuf;
1027		break;
1028
1029	case SO_RCVBUF:
1030		v.val = sk->sk_rcvbuf;
1031		break;
1032
1033	case SO_REUSEADDR:
1034		v.val = sk->sk_reuse;
1035		break;
1036
1037	case SO_REUSEPORT:
1038		v.val = sk->sk_reuseport;
1039		break;
1040
1041	case SO_KEEPALIVE:
1042		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1043		break;
1044
1045	case SO_TYPE:
1046		v.val = sk->sk_type;
1047		break;
1048
1049	case SO_PROTOCOL:
1050		v.val = sk->sk_protocol;
1051		break;
1052
1053	case SO_DOMAIN:
1054		v.val = sk->sk_family;
1055		break;
1056
1057	case SO_ERROR:
1058		v.val = -sock_error(sk);
1059		if (v.val == 0)
1060			v.val = xchg(&sk->sk_err_soft, 0);
1061		break;
1062
1063	case SO_OOBINLINE:
1064		v.val = sock_flag(sk, SOCK_URGINLINE);
1065		break;
1066
1067	case SO_NO_CHECK:
1068		v.val = sk->sk_no_check_tx;
1069		break;
1070
1071	case SO_PRIORITY:
1072		v.val = sk->sk_priority;
1073		break;
1074
1075	case SO_LINGER:
1076		lv		= sizeof(v.ling);
1077		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1078		v.ling.l_linger	= sk->sk_lingertime / HZ;
1079		break;
1080
1081	case SO_BSDCOMPAT:
1082		sock_warn_obsolete_bsdism("getsockopt");
1083		break;
1084
1085	case SO_TIMESTAMP:
1086		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1087				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1088		break;
1089
1090	case SO_TIMESTAMPNS:
1091		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1092		break;
1093
1094	case SO_TIMESTAMPING:
1095		v.val = sk->sk_tsflags;
1096		break;
1097
1098	case SO_RCVTIMEO:
1099		lv = sizeof(struct timeval);
1100		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1101			v.tm.tv_sec = 0;
1102			v.tm.tv_usec = 0;
1103		} else {
1104			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1105			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1106		}
1107		break;
1108
1109	case SO_SNDTIMEO:
1110		lv = sizeof(struct timeval);
1111		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1112			v.tm.tv_sec = 0;
1113			v.tm.tv_usec = 0;
1114		} else {
1115			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1116			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1117		}
1118		break;
1119
1120	case SO_RCVLOWAT:
1121		v.val = sk->sk_rcvlowat;
1122		break;
1123
1124	case SO_SNDLOWAT:
1125		v.val = 1;
1126		break;
1127
1128	case SO_PASSCRED:
1129		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1130		break;
1131
1132	case SO_PEERCRED:
1133	{
1134		struct ucred peercred;
1135		if (len > sizeof(peercred))
1136			len = sizeof(peercred);
1137		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1138		if (copy_to_user(optval, &peercred, len))
1139			return -EFAULT;
1140		goto lenout;
1141	}
1142
1143	case SO_PEERNAME:
1144	{
1145		char address[128];
1146
1147		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1148			return -ENOTCONN;
1149		if (lv < len)
1150			return -EINVAL;
1151		if (copy_to_user(optval, address, len))
1152			return -EFAULT;
1153		goto lenout;
1154	}
1155
1156	/* Dubious BSD thing... Probably nobody even uses it, but
1157	 * the UNIX standard wants it for whatever reason... -DaveM
1158	 */
1159	case SO_ACCEPTCONN:
1160		v.val = sk->sk_state == TCP_LISTEN;
1161		break;
1162
1163	case SO_PASSSEC:
1164		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1165		break;
1166
1167	case SO_PEERSEC:
1168		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1169
1170	case SO_MARK:
1171		v.val = sk->sk_mark;
1172		break;
1173
1174	case SO_RXQ_OVFL:
1175		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1176		break;
1177
1178	case SO_WIFI_STATUS:
1179		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1180		break;
1181
1182	case SO_PEEK_OFF:
1183		if (!sock->ops->set_peek_off)
1184			return -EOPNOTSUPP;
1185
1186		v.val = sk->sk_peek_off;
1187		break;
1188	case SO_NOFCS:
1189		v.val = sock_flag(sk, SOCK_NOFCS);
1190		break;
1191
1192	case SO_BINDTODEVICE:
1193		return sock_getbindtodevice(sk, optval, optlen, len);
1194
1195	case SO_GET_FILTER:
1196		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1197		if (len < 0)
1198			return len;
1199
1200		goto lenout;
1201
1202	case SO_LOCK_FILTER:
1203		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1204		break;
1205
1206	case SO_BPF_EXTENSIONS:
1207		v.val = bpf_tell_extensions();
1208		break;
1209
1210	case SO_SELECT_ERR_QUEUE:
1211		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1212		break;
1213
1214#ifdef CONFIG_NET_RX_BUSY_POLL
1215	case SO_BUSY_POLL:
1216		v.val = sk->sk_ll_usec;
1217		break;
1218#endif
1219
1220	case SO_MAX_PACING_RATE:
1221		v.val = sk->sk_max_pacing_rate;
1222		break;
1223
1224	default:
1225		return -ENOPROTOOPT;
1226	}
1227
1228	if (len > lv)
1229		len = lv;
1230	if (copy_to_user(optval, &v, len))
1231		return -EFAULT;
1232lenout:
1233	if (put_user(len, optlen))
1234		return -EFAULT;
1235	return 0;
1236}
1237
1238/*
1239 * Initialize an sk_lock.
1240 *
1241 * (We also register the sk_lock with the lock validator.)
1242 */
1243static inline void sock_lock_init(struct sock *sk)
1244{
1245	sock_lock_init_class_and_name(sk,
1246			af_family_slock_key_strings[sk->sk_family],
1247			af_family_slock_keys + sk->sk_family,
1248			af_family_key_strings[sk->sk_family],
1249			af_family_keys + sk->sk_family);
1250}
1251
1252/*
1253 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1254 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1255 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1256 */
1257static void sock_copy(struct sock *nsk, const struct sock *osk)
1258{
1259#ifdef CONFIG_SECURITY_NETWORK
1260	void *sptr = nsk->sk_security;
1261#endif
1262	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1263
1264	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1265	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1266
1267#ifdef CONFIG_SECURITY_NETWORK
1268	nsk->sk_security = sptr;
1269	security_sk_clone(osk, nsk);
1270#endif
1271}
1272
1273void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1274{
1275	unsigned long nulls1, nulls2;
1276
1277	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1278	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1279	if (nulls1 > nulls2)
1280		swap(nulls1, nulls2);
1281
1282	if (nulls1 != 0)
1283		memset((char *)sk, 0, nulls1);
1284	memset((char *)sk + nulls1 + sizeof(void *), 0,
1285	       nulls2 - nulls1 - sizeof(void *));
1286	memset((char *)sk + nulls2 + sizeof(void *), 0,
1287	       size - nulls2 - sizeof(void *));
1288}
1289EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1290
1291static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1292		int family)
1293{
1294	struct sock *sk;
1295	struct kmem_cache *slab;
1296
1297	slab = prot->slab;
1298	if (slab != NULL) {
1299		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1300		if (!sk)
1301			return sk;
1302		if (priority & __GFP_ZERO) {
1303			if (prot->clear_sk)
1304				prot->clear_sk(sk, prot->obj_size);
1305			else
1306				sk_prot_clear_nulls(sk, prot->obj_size);
1307		}
1308	} else
1309		sk = kmalloc(prot->obj_size, priority);
1310
1311	if (sk != NULL) {
1312		kmemcheck_annotate_bitfield(sk, flags);
1313
1314		if (security_sk_alloc(sk, family, priority))
1315			goto out_free;
1316
1317		if (!try_module_get(prot->owner))
1318			goto out_free_sec;
1319		sk_tx_queue_clear(sk);
1320	}
1321
1322	return sk;
1323
1324out_free_sec:
1325	security_sk_free(sk);
1326out_free:
1327	if (slab != NULL)
1328		kmem_cache_free(slab, sk);
1329	else
1330		kfree(sk);
1331	return NULL;
1332}
1333
1334static void sk_prot_free(struct proto *prot, struct sock *sk)
1335{
1336	struct kmem_cache *slab;
1337	struct module *owner;
1338
1339	owner = prot->owner;
1340	slab = prot->slab;
1341
1342	security_sk_free(sk);
1343	if (slab != NULL)
1344		kmem_cache_free(slab, sk);
1345	else
1346		kfree(sk);
1347	module_put(owner);
1348}
1349
1350#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1351void sock_update_netprioidx(struct sock *sk)
1352{
1353	if (in_interrupt())
1354		return;
1355
1356	sk->sk_cgrp_prioidx = task_netprioidx(current);
1357}
1358EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1359#endif
1360
1361/**
1362 *	sk_alloc - All socket objects are allocated here
1363 *	@net: the applicable net namespace
1364 *	@family: protocol family
1365 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1366 *	@prot: struct proto associated with this new sock instance
1367 */
1368struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1369		      struct proto *prot)
1370{
1371	struct sock *sk;
1372
1373	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1374	if (sk) {
1375		sk->sk_family = family;
1376		/*
1377		 * See comment in struct sock definition to understand
1378		 * why we need sk_prot_creator -acme
1379		 */
1380		sk->sk_prot = sk->sk_prot_creator = prot;
1381		sock_lock_init(sk);
1382		sock_net_set(sk, get_net(net));
1383		atomic_set(&sk->sk_wmem_alloc, 1);
1384
1385		sock_update_classid(sk);
1386		sock_update_netprioidx(sk);
1387	}
1388
1389	return sk;
1390}
1391EXPORT_SYMBOL(sk_alloc);
1392
1393static void __sk_free(struct sock *sk)
1394{
1395	struct sk_filter *filter;
1396
1397	if (sk->sk_destruct)
1398		sk->sk_destruct(sk);
1399
1400	filter = rcu_dereference_check(sk->sk_filter,
1401				       atomic_read(&sk->sk_wmem_alloc) == 0);
1402	if (filter) {
1403		sk_filter_uncharge(sk, filter);
1404		RCU_INIT_POINTER(sk->sk_filter, NULL);
1405	}
1406
1407	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1408
1409	if (atomic_read(&sk->sk_omem_alloc))
1410		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1411			 __func__, atomic_read(&sk->sk_omem_alloc));
1412
1413	if (sk->sk_peer_cred)
1414		put_cred(sk->sk_peer_cred);
1415	put_pid(sk->sk_peer_pid);
1416	put_net(sock_net(sk));
1417	sk_prot_free(sk->sk_prot_creator, sk);
1418}
1419
1420void sk_free(struct sock *sk)
1421{
1422	/*
1423	 * We subtract one from sk_wmem_alloc and can know if
1424	 * some packets are still in some tx queue.
1425	 * If not null, sock_wfree() will call __sk_free(sk) later
1426	 */
1427	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1428		__sk_free(sk);
1429}
1430EXPORT_SYMBOL(sk_free);
1431
1432/*
1433 * Last sock_put should drop reference to sk->sk_net. It has already
1434 * been dropped in sk_change_net. Taking reference to stopping namespace
1435 * is not an option.
1436 * Take reference to a socket to remove it from hash _alive_ and after that
1437 * destroy it in the context of init_net.
1438 */
1439void sk_release_kernel(struct sock *sk)
1440{
1441	if (sk == NULL || sk->sk_socket == NULL)
1442		return;
1443
1444	sock_hold(sk);
1445	sock_release(sk->sk_socket);
1446	release_net(sock_net(sk));
1447	sock_net_set(sk, get_net(&init_net));
1448	sock_put(sk);
1449}
1450EXPORT_SYMBOL(sk_release_kernel);
1451
1452static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1453{
1454	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1455		sock_update_memcg(newsk);
1456}
1457
1458/**
1459 *	sk_clone_lock - clone a socket, and lock its clone
1460 *	@sk: the socket to clone
1461 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1462 *
1463 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1464 */
1465struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1466{
1467	struct sock *newsk;
1468	bool is_charged = true;
1469
1470	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1471	if (newsk != NULL) {
1472		struct sk_filter *filter;
1473
1474		sock_copy(newsk, sk);
1475
1476		/* SANITY */
1477		get_net(sock_net(newsk));
1478		sk_node_init(&newsk->sk_node);
1479		sock_lock_init(newsk);
1480		bh_lock_sock(newsk);
1481		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1482		newsk->sk_backlog.len = 0;
1483
1484		atomic_set(&newsk->sk_rmem_alloc, 0);
1485		/*
1486		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1487		 */
1488		atomic_set(&newsk->sk_wmem_alloc, 1);
1489		atomic_set(&newsk->sk_omem_alloc, 0);
1490		skb_queue_head_init(&newsk->sk_receive_queue);
1491		skb_queue_head_init(&newsk->sk_write_queue);
1492#ifdef CONFIG_NET_DMA
1493		skb_queue_head_init(&newsk->sk_async_wait_queue);
1494#endif
1495
1496		spin_lock_init(&newsk->sk_dst_lock);
1497		rwlock_init(&newsk->sk_callback_lock);
1498		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1499				af_callback_keys + newsk->sk_family,
1500				af_family_clock_key_strings[newsk->sk_family]);
1501
1502		newsk->sk_dst_cache	= NULL;
1503		newsk->sk_wmem_queued	= 0;
1504		newsk->sk_forward_alloc = 0;
1505		newsk->sk_send_head	= NULL;
1506		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1507
1508		sock_reset_flag(newsk, SOCK_DONE);
1509		skb_queue_head_init(&newsk->sk_error_queue);
1510
1511		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1512		if (filter != NULL)
1513			/* though it's an empty new sock, the charging may fail
1514			 * if sysctl_optmem_max was changed between creation of
1515			 * original socket and cloning
1516			 */
1517			is_charged = sk_filter_charge(newsk, filter);
1518
1519		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1520			/* It is still raw copy of parent, so invalidate
1521			 * destructor and make plain sk_free() */
1522			newsk->sk_destruct = NULL;
1523			bh_unlock_sock(newsk);
1524			sk_free(newsk);
1525			newsk = NULL;
1526			goto out;
1527		}
1528
1529		newsk->sk_err	   = 0;
1530		newsk->sk_priority = 0;
1531		/*
1532		 * Before updating sk_refcnt, we must commit prior changes to memory
1533		 * (Documentation/RCU/rculist_nulls.txt for details)
1534		 */
1535		smp_wmb();
1536		atomic_set(&newsk->sk_refcnt, 2);
1537
1538		/*
1539		 * Increment the counter in the same struct proto as the master
1540		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1541		 * is the same as sk->sk_prot->socks, as this field was copied
1542		 * with memcpy).
1543		 *
1544		 * This _changes_ the previous behaviour, where
1545		 * tcp_create_openreq_child always was incrementing the
1546		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1547		 * to be taken into account in all callers. -acme
1548		 */
1549		sk_refcnt_debug_inc(newsk);
1550		sk_set_socket(newsk, NULL);
1551		newsk->sk_wq = NULL;
1552
1553		sk_update_clone(sk, newsk);
1554
1555		if (newsk->sk_prot->sockets_allocated)
1556			sk_sockets_allocated_inc(newsk);
1557
1558		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1559			net_enable_timestamp();
1560	}
1561out:
1562	return newsk;
1563}
1564EXPORT_SYMBOL_GPL(sk_clone_lock);
1565
1566void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1567{
1568	__sk_dst_set(sk, dst);
1569	sk->sk_route_caps = dst->dev->features;
1570	if (sk->sk_route_caps & NETIF_F_GSO)
1571		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1572	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1573	if (sk_can_gso(sk)) {
1574		if (dst->header_len) {
1575			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1576		} else {
1577			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1578			sk->sk_gso_max_size = dst->dev->gso_max_size;
1579			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1580		}
1581	}
1582}
1583EXPORT_SYMBOL_GPL(sk_setup_caps);
1584
1585/*
1586 *	Simple resource managers for sockets.
1587 */
1588
1589
1590/*
1591 * Write buffer destructor automatically called from kfree_skb.
1592 */
1593void sock_wfree(struct sk_buff *skb)
1594{
1595	struct sock *sk = skb->sk;
1596	unsigned int len = skb->truesize;
1597
1598	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1599		/*
1600		 * Keep a reference on sk_wmem_alloc, this will be released
1601		 * after sk_write_space() call
1602		 */
1603		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1604		sk->sk_write_space(sk);
1605		len = 1;
1606	}
1607	/*
1608	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1609	 * could not do because of in-flight packets
1610	 */
1611	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1612		__sk_free(sk);
1613}
1614EXPORT_SYMBOL(sock_wfree);
1615
1616void skb_orphan_partial(struct sk_buff *skb)
1617{
1618	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1619	 * so we do not completely orphan skb, but transfert all
1620	 * accounted bytes but one, to avoid unexpected reorders.
1621	 */
1622	if (skb->destructor == sock_wfree
1623#ifdef CONFIG_INET
1624	    || skb->destructor == tcp_wfree
1625#endif
1626		) {
1627		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1628		skb->truesize = 1;
1629	} else {
1630		skb_orphan(skb);
1631	}
1632}
1633EXPORT_SYMBOL(skb_orphan_partial);
1634
1635/*
1636 * Read buffer destructor automatically called from kfree_skb.
1637 */
1638void sock_rfree(struct sk_buff *skb)
1639{
1640	struct sock *sk = skb->sk;
1641	unsigned int len = skb->truesize;
1642
1643	atomic_sub(len, &sk->sk_rmem_alloc);
1644	sk_mem_uncharge(sk, len);
1645}
1646EXPORT_SYMBOL(sock_rfree);
1647
1648void sock_edemux(struct sk_buff *skb)
1649{
1650	struct sock *sk = skb->sk;
1651
1652#ifdef CONFIG_INET
1653	if (sk->sk_state == TCP_TIME_WAIT)
1654		inet_twsk_put(inet_twsk(sk));
1655	else
1656#endif
1657		sock_put(sk);
1658}
1659EXPORT_SYMBOL(sock_edemux);
1660
1661kuid_t sock_i_uid(struct sock *sk)
1662{
1663	kuid_t uid;
1664
1665	read_lock_bh(&sk->sk_callback_lock);
1666	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1667	read_unlock_bh(&sk->sk_callback_lock);
1668	return uid;
1669}
1670EXPORT_SYMBOL(sock_i_uid);
1671
1672unsigned long sock_i_ino(struct sock *sk)
1673{
1674	unsigned long ino;
1675
1676	read_lock_bh(&sk->sk_callback_lock);
1677	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1678	read_unlock_bh(&sk->sk_callback_lock);
1679	return ino;
1680}
1681EXPORT_SYMBOL(sock_i_ino);
1682
1683/*
1684 * Allocate a skb from the socket's send buffer.
1685 */
1686struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1687			     gfp_t priority)
1688{
1689	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1690		struct sk_buff *skb = alloc_skb(size, priority);
1691		if (skb) {
1692			skb_set_owner_w(skb, sk);
1693			return skb;
1694		}
1695	}
1696	return NULL;
1697}
1698EXPORT_SYMBOL(sock_wmalloc);
1699
1700/*
1701 * Allocate a memory block from the socket's option memory buffer.
1702 */
1703void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1704{
1705	if ((unsigned int)size <= sysctl_optmem_max &&
1706	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1707		void *mem;
1708		/* First do the add, to avoid the race if kmalloc
1709		 * might sleep.
1710		 */
1711		atomic_add(size, &sk->sk_omem_alloc);
1712		mem = kmalloc(size, priority);
1713		if (mem)
1714			return mem;
1715		atomic_sub(size, &sk->sk_omem_alloc);
1716	}
1717	return NULL;
1718}
1719EXPORT_SYMBOL(sock_kmalloc);
1720
1721/*
1722 * Free an option memory block.
1723 */
1724void sock_kfree_s(struct sock *sk, void *mem, int size)
1725{
1726	kfree(mem);
1727	atomic_sub(size, &sk->sk_omem_alloc);
1728}
1729EXPORT_SYMBOL(sock_kfree_s);
1730
1731/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1732   I think, these locks should be removed for datagram sockets.
1733 */
1734static long sock_wait_for_wmem(struct sock *sk, long timeo)
1735{
1736	DEFINE_WAIT(wait);
1737
1738	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1739	for (;;) {
1740		if (!timeo)
1741			break;
1742		if (signal_pending(current))
1743			break;
1744		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1745		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1746		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1747			break;
1748		if (sk->sk_shutdown & SEND_SHUTDOWN)
1749			break;
1750		if (sk->sk_err)
1751			break;
1752		timeo = schedule_timeout(timeo);
1753	}
1754	finish_wait(sk_sleep(sk), &wait);
1755	return timeo;
1756}
1757
1758
1759/*
1760 *	Generic send/receive buffer handlers
1761 */
1762
1763struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1764				     unsigned long data_len, int noblock,
1765				     int *errcode, int max_page_order)
1766{
1767	struct sk_buff *skb = NULL;
1768	unsigned long chunk;
1769	gfp_t gfp_mask;
1770	long timeo;
1771	int err;
1772	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1773	struct page *page;
1774	int i;
1775
1776	err = -EMSGSIZE;
1777	if (npages > MAX_SKB_FRAGS)
1778		goto failure;
1779
1780	timeo = sock_sndtimeo(sk, noblock);
1781	while (!skb) {
1782		err = sock_error(sk);
1783		if (err != 0)
1784			goto failure;
1785
1786		err = -EPIPE;
1787		if (sk->sk_shutdown & SEND_SHUTDOWN)
1788			goto failure;
1789
1790		if (atomic_read(&sk->sk_wmem_alloc) >= sk->sk_sndbuf) {
1791			set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1792			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1793			err = -EAGAIN;
1794			if (!timeo)
1795				goto failure;
1796			if (signal_pending(current))
1797				goto interrupted;
1798			timeo = sock_wait_for_wmem(sk, timeo);
1799			continue;
1800		}
1801
1802		err = -ENOBUFS;
1803		gfp_mask = sk->sk_allocation;
1804		if (gfp_mask & __GFP_WAIT)
1805			gfp_mask |= __GFP_REPEAT;
1806
1807		skb = alloc_skb(header_len, gfp_mask);
1808		if (!skb)
1809			goto failure;
1810
1811		skb->truesize += data_len;
1812
1813		for (i = 0; npages > 0; i++) {
1814			int order = max_page_order;
1815
1816			while (order) {
1817				if (npages >= 1 << order) {
1818					page = alloc_pages(sk->sk_allocation |
1819							   __GFP_COMP |
1820							   __GFP_NOWARN |
1821							   __GFP_NORETRY,
1822							   order);
1823					if (page)
1824						goto fill_page;
1825					/* Do not retry other high order allocations */
1826					order = 1;
1827					max_page_order = 0;
1828				}
1829				order--;
1830			}
1831			page = alloc_page(sk->sk_allocation);
1832			if (!page)
1833				goto failure;
1834fill_page:
1835			chunk = min_t(unsigned long, data_len,
1836				      PAGE_SIZE << order);
1837			skb_fill_page_desc(skb, i, page, 0, chunk);
1838			data_len -= chunk;
1839			npages -= 1 << order;
1840		}
1841	}
1842
1843	skb_set_owner_w(skb, sk);
1844	return skb;
1845
1846interrupted:
1847	err = sock_intr_errno(timeo);
1848failure:
1849	kfree_skb(skb);
1850	*errcode = err;
1851	return NULL;
1852}
1853EXPORT_SYMBOL(sock_alloc_send_pskb);
1854
1855struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1856				    int noblock, int *errcode)
1857{
1858	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1859}
1860EXPORT_SYMBOL(sock_alloc_send_skb);
1861
1862/* On 32bit arches, an skb frag is limited to 2^15 */
1863#define SKB_FRAG_PAGE_ORDER	get_order(32768)
1864
1865/**
1866 * skb_page_frag_refill - check that a page_frag contains enough room
1867 * @sz: minimum size of the fragment we want to get
1868 * @pfrag: pointer to page_frag
1869 * @gfp: priority for memory allocation
1870 *
1871 * Note: While this allocator tries to use high order pages, there is
1872 * no guarantee that allocations succeed. Therefore, @sz MUST be
1873 * less or equal than PAGE_SIZE.
1874 */
1875bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1876{
1877	if (pfrag->page) {
1878		if (atomic_read(&pfrag->page->_count) == 1) {
1879			pfrag->offset = 0;
1880			return true;
1881		}
1882		if (pfrag->offset + sz <= pfrag->size)
1883			return true;
1884		put_page(pfrag->page);
1885	}
1886
1887	pfrag->offset = 0;
1888	if (SKB_FRAG_PAGE_ORDER) {
1889		pfrag->page = alloc_pages(gfp | __GFP_COMP |
1890					  __GFP_NOWARN | __GFP_NORETRY,
1891					  SKB_FRAG_PAGE_ORDER);
1892		if (likely(pfrag->page)) {
1893			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1894			return true;
1895		}
1896	}
1897	pfrag->page = alloc_page(gfp);
1898	if (likely(pfrag->page)) {
1899		pfrag->size = PAGE_SIZE;
1900		return true;
1901	}
1902	return false;
1903}
1904EXPORT_SYMBOL(skb_page_frag_refill);
1905
1906bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1907{
1908	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1909		return true;
1910
1911	sk_enter_memory_pressure(sk);
1912	sk_stream_moderate_sndbuf(sk);
1913	return false;
1914}
1915EXPORT_SYMBOL(sk_page_frag_refill);
1916
1917static void __lock_sock(struct sock *sk)
1918	__releases(&sk->sk_lock.slock)
1919	__acquires(&sk->sk_lock.slock)
1920{
1921	DEFINE_WAIT(wait);
1922
1923	for (;;) {
1924		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1925					TASK_UNINTERRUPTIBLE);
1926		spin_unlock_bh(&sk->sk_lock.slock);
1927		schedule();
1928		spin_lock_bh(&sk->sk_lock.slock);
1929		if (!sock_owned_by_user(sk))
1930			break;
1931	}
1932	finish_wait(&sk->sk_lock.wq, &wait);
1933}
1934
1935static void __release_sock(struct sock *sk)
1936	__releases(&sk->sk_lock.slock)
1937	__acquires(&sk->sk_lock.slock)
1938{
1939	struct sk_buff *skb = sk->sk_backlog.head;
1940
1941	do {
1942		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1943		bh_unlock_sock(sk);
1944
1945		do {
1946			struct sk_buff *next = skb->next;
1947
1948			prefetch(next);
1949			WARN_ON_ONCE(skb_dst_is_noref(skb));
1950			skb->next = NULL;
1951			sk_backlog_rcv(sk, skb);
1952
1953			/*
1954			 * We are in process context here with softirqs
1955			 * disabled, use cond_resched_softirq() to preempt.
1956			 * This is safe to do because we've taken the backlog
1957			 * queue private:
1958			 */
1959			cond_resched_softirq();
1960
1961			skb = next;
1962		} while (skb != NULL);
1963
1964		bh_lock_sock(sk);
1965	} while ((skb = sk->sk_backlog.head) != NULL);
1966
1967	/*
1968	 * Doing the zeroing here guarantee we can not loop forever
1969	 * while a wild producer attempts to flood us.
1970	 */
1971	sk->sk_backlog.len = 0;
1972}
1973
1974/**
1975 * sk_wait_data - wait for data to arrive at sk_receive_queue
1976 * @sk:    sock to wait on
1977 * @timeo: for how long
1978 *
1979 * Now socket state including sk->sk_err is changed only under lock,
1980 * hence we may omit checks after joining wait queue.
1981 * We check receive queue before schedule() only as optimization;
1982 * it is very likely that release_sock() added new data.
1983 */
1984int sk_wait_data(struct sock *sk, long *timeo)
1985{
1986	int rc;
1987	DEFINE_WAIT(wait);
1988
1989	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1990	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1991	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1992	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1993	finish_wait(sk_sleep(sk), &wait);
1994	return rc;
1995}
1996EXPORT_SYMBOL(sk_wait_data);
1997
1998/**
1999 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2000 *	@sk: socket
2001 *	@size: memory size to allocate
2002 *	@kind: allocation type
2003 *
2004 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2005 *	rmem allocation. This function assumes that protocols which have
2006 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2007 */
2008int __sk_mem_schedule(struct sock *sk, int size, int kind)
2009{
2010	struct proto *prot = sk->sk_prot;
2011	int amt = sk_mem_pages(size);
2012	long allocated;
2013	int parent_status = UNDER_LIMIT;
2014
2015	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2016
2017	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2018
2019	/* Under limit. */
2020	if (parent_status == UNDER_LIMIT &&
2021			allocated <= sk_prot_mem_limits(sk, 0)) {
2022		sk_leave_memory_pressure(sk);
2023		return 1;
2024	}
2025
2026	/* Under pressure. (we or our parents) */
2027	if ((parent_status > SOFT_LIMIT) ||
2028			allocated > sk_prot_mem_limits(sk, 1))
2029		sk_enter_memory_pressure(sk);
2030
2031	/* Over hard limit (we or our parents) */
2032	if ((parent_status == OVER_LIMIT) ||
2033			(allocated > sk_prot_mem_limits(sk, 2)))
2034		goto suppress_allocation;
2035
2036	/* guarantee minimum buffer size under pressure */
2037	if (kind == SK_MEM_RECV) {
2038		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2039			return 1;
2040
2041	} else { /* SK_MEM_SEND */
2042		if (sk->sk_type == SOCK_STREAM) {
2043			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2044				return 1;
2045		} else if (atomic_read(&sk->sk_wmem_alloc) <
2046			   prot->sysctl_wmem[0])
2047				return 1;
2048	}
2049
2050	if (sk_has_memory_pressure(sk)) {
2051		int alloc;
2052
2053		if (!sk_under_memory_pressure(sk))
2054			return 1;
2055		alloc = sk_sockets_allocated_read_positive(sk);
2056		if (sk_prot_mem_limits(sk, 2) > alloc *
2057		    sk_mem_pages(sk->sk_wmem_queued +
2058				 atomic_read(&sk->sk_rmem_alloc) +
2059				 sk->sk_forward_alloc))
2060			return 1;
2061	}
2062
2063suppress_allocation:
2064
2065	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2066		sk_stream_moderate_sndbuf(sk);
2067
2068		/* Fail only if socket is _under_ its sndbuf.
2069		 * In this case we cannot block, so that we have to fail.
2070		 */
2071		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2072			return 1;
2073	}
2074
2075	trace_sock_exceed_buf_limit(sk, prot, allocated);
2076
2077	/* Alas. Undo changes. */
2078	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2079
2080	sk_memory_allocated_sub(sk, amt);
2081
2082	return 0;
2083}
2084EXPORT_SYMBOL(__sk_mem_schedule);
2085
2086/**
2087 *	__sk_reclaim - reclaim memory_allocated
2088 *	@sk: socket
2089 */
2090void __sk_mem_reclaim(struct sock *sk)
2091{
2092	sk_memory_allocated_sub(sk,
2093				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2094	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2095
2096	if (sk_under_memory_pressure(sk) &&
2097	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2098		sk_leave_memory_pressure(sk);
2099}
2100EXPORT_SYMBOL(__sk_mem_reclaim);
2101
2102
2103/*
2104 * Set of default routines for initialising struct proto_ops when
2105 * the protocol does not support a particular function. In certain
2106 * cases where it makes no sense for a protocol to have a "do nothing"
2107 * function, some default processing is provided.
2108 */
2109
2110int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2111{
2112	return -EOPNOTSUPP;
2113}
2114EXPORT_SYMBOL(sock_no_bind);
2115
2116int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2117		    int len, int flags)
2118{
2119	return -EOPNOTSUPP;
2120}
2121EXPORT_SYMBOL(sock_no_connect);
2122
2123int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2124{
2125	return -EOPNOTSUPP;
2126}
2127EXPORT_SYMBOL(sock_no_socketpair);
2128
2129int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2130{
2131	return -EOPNOTSUPP;
2132}
2133EXPORT_SYMBOL(sock_no_accept);
2134
2135int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2136		    int *len, int peer)
2137{
2138	return -EOPNOTSUPP;
2139}
2140EXPORT_SYMBOL(sock_no_getname);
2141
2142unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2143{
2144	return 0;
2145}
2146EXPORT_SYMBOL(sock_no_poll);
2147
2148int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2149{
2150	return -EOPNOTSUPP;
2151}
2152EXPORT_SYMBOL(sock_no_ioctl);
2153
2154int sock_no_listen(struct socket *sock, int backlog)
2155{
2156	return -EOPNOTSUPP;
2157}
2158EXPORT_SYMBOL(sock_no_listen);
2159
2160int sock_no_shutdown(struct socket *sock, int how)
2161{
2162	return -EOPNOTSUPP;
2163}
2164EXPORT_SYMBOL(sock_no_shutdown);
2165
2166int sock_no_setsockopt(struct socket *sock, int level, int optname,
2167		    char __user *optval, unsigned int optlen)
2168{
2169	return -EOPNOTSUPP;
2170}
2171EXPORT_SYMBOL(sock_no_setsockopt);
2172
2173int sock_no_getsockopt(struct socket *sock, int level, int optname,
2174		    char __user *optval, int __user *optlen)
2175{
2176	return -EOPNOTSUPP;
2177}
2178EXPORT_SYMBOL(sock_no_getsockopt);
2179
2180int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2181		    size_t len)
2182{
2183	return -EOPNOTSUPP;
2184}
2185EXPORT_SYMBOL(sock_no_sendmsg);
2186
2187int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2188		    size_t len, int flags)
2189{
2190	return -EOPNOTSUPP;
2191}
2192EXPORT_SYMBOL(sock_no_recvmsg);
2193
2194int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2195{
2196	/* Mirror missing mmap method error code */
2197	return -ENODEV;
2198}
2199EXPORT_SYMBOL(sock_no_mmap);
2200
2201ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2202{
2203	ssize_t res;
2204	struct msghdr msg = {.msg_flags = flags};
2205	struct kvec iov;
2206	char *kaddr = kmap(page);
2207	iov.iov_base = kaddr + offset;
2208	iov.iov_len = size;
2209	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2210	kunmap(page);
2211	return res;
2212}
2213EXPORT_SYMBOL(sock_no_sendpage);
2214
2215/*
2216 *	Default Socket Callbacks
2217 */
2218
2219static void sock_def_wakeup(struct sock *sk)
2220{
2221	struct socket_wq *wq;
2222
2223	rcu_read_lock();
2224	wq = rcu_dereference(sk->sk_wq);
2225	if (wq_has_sleeper(wq))
2226		wake_up_interruptible_all(&wq->wait);
2227	rcu_read_unlock();
2228}
2229
2230static void sock_def_error_report(struct sock *sk)
2231{
2232	struct socket_wq *wq;
2233
2234	rcu_read_lock();
2235	wq = rcu_dereference(sk->sk_wq);
2236	if (wq_has_sleeper(wq))
2237		wake_up_interruptible_poll(&wq->wait, POLLERR);
2238	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2239	rcu_read_unlock();
2240}
2241
2242static void sock_def_readable(struct sock *sk)
2243{
2244	struct socket_wq *wq;
2245
2246	rcu_read_lock();
2247	wq = rcu_dereference(sk->sk_wq);
2248	if (wq_has_sleeper(wq))
2249		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2250						POLLRDNORM | POLLRDBAND);
2251	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2252	rcu_read_unlock();
2253}
2254
2255static void sock_def_write_space(struct sock *sk)
2256{
2257	struct socket_wq *wq;
2258
2259	rcu_read_lock();
2260
2261	/* Do not wake up a writer until he can make "significant"
2262	 * progress.  --DaveM
2263	 */
2264	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2265		wq = rcu_dereference(sk->sk_wq);
2266		if (wq_has_sleeper(wq))
2267			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2268						POLLWRNORM | POLLWRBAND);
2269
2270		/* Should agree with poll, otherwise some programs break */
2271		if (sock_writeable(sk))
2272			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2273	}
2274
2275	rcu_read_unlock();
2276}
2277
2278static void sock_def_destruct(struct sock *sk)
2279{
2280	kfree(sk->sk_protinfo);
2281}
2282
2283void sk_send_sigurg(struct sock *sk)
2284{
2285	if (sk->sk_socket && sk->sk_socket->file)
2286		if (send_sigurg(&sk->sk_socket->file->f_owner))
2287			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2288}
2289EXPORT_SYMBOL(sk_send_sigurg);
2290
2291void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2292		    unsigned long expires)
2293{
2294	if (!mod_timer(timer, expires))
2295		sock_hold(sk);
2296}
2297EXPORT_SYMBOL(sk_reset_timer);
2298
2299void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2300{
2301	if (del_timer(timer))
2302		__sock_put(sk);
2303}
2304EXPORT_SYMBOL(sk_stop_timer);
2305
2306void sock_init_data(struct socket *sock, struct sock *sk)
2307{
2308	skb_queue_head_init(&sk->sk_receive_queue);
2309	skb_queue_head_init(&sk->sk_write_queue);
2310	skb_queue_head_init(&sk->sk_error_queue);
2311#ifdef CONFIG_NET_DMA
2312	skb_queue_head_init(&sk->sk_async_wait_queue);
2313#endif
2314
2315	sk->sk_send_head	=	NULL;
2316
2317	init_timer(&sk->sk_timer);
2318
2319	sk->sk_allocation	=	GFP_KERNEL;
2320	sk->sk_rcvbuf		=	sysctl_rmem_default;
2321	sk->sk_sndbuf		=	sysctl_wmem_default;
2322	sk->sk_state		=	TCP_CLOSE;
2323	sk_set_socket(sk, sock);
2324
2325	sock_set_flag(sk, SOCK_ZAPPED);
2326
2327	if (sock) {
2328		sk->sk_type	=	sock->type;
2329		sk->sk_wq	=	sock->wq;
2330		sock->sk	=	sk;
2331	} else
2332		sk->sk_wq	=	NULL;
2333
2334	spin_lock_init(&sk->sk_dst_lock);
2335	rwlock_init(&sk->sk_callback_lock);
2336	lockdep_set_class_and_name(&sk->sk_callback_lock,
2337			af_callback_keys + sk->sk_family,
2338			af_family_clock_key_strings[sk->sk_family]);
2339
2340	sk->sk_state_change	=	sock_def_wakeup;
2341	sk->sk_data_ready	=	sock_def_readable;
2342	sk->sk_write_space	=	sock_def_write_space;
2343	sk->sk_error_report	=	sock_def_error_report;
2344	sk->sk_destruct		=	sock_def_destruct;
2345
2346	sk->sk_frag.page	=	NULL;
2347	sk->sk_frag.offset	=	0;
2348	sk->sk_peek_off		=	-1;
2349
2350	sk->sk_peer_pid 	=	NULL;
2351	sk->sk_peer_cred	=	NULL;
2352	sk->sk_write_pending	=	0;
2353	sk->sk_rcvlowat		=	1;
2354	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2355	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2356
2357	sk->sk_stamp = ktime_set(-1L, 0);
2358
2359#ifdef CONFIG_NET_RX_BUSY_POLL
2360	sk->sk_napi_id		=	0;
2361	sk->sk_ll_usec		=	sysctl_net_busy_read;
2362#endif
2363
2364	sk->sk_max_pacing_rate = ~0U;
2365	sk->sk_pacing_rate = ~0U;
2366	/*
2367	 * Before updating sk_refcnt, we must commit prior changes to memory
2368	 * (Documentation/RCU/rculist_nulls.txt for details)
2369	 */
2370	smp_wmb();
2371	atomic_set(&sk->sk_refcnt, 1);
2372	atomic_set(&sk->sk_drops, 0);
2373}
2374EXPORT_SYMBOL(sock_init_data);
2375
2376void lock_sock_nested(struct sock *sk, int subclass)
2377{
2378	might_sleep();
2379	spin_lock_bh(&sk->sk_lock.slock);
2380	if (sk->sk_lock.owned)
2381		__lock_sock(sk);
2382	sk->sk_lock.owned = 1;
2383	spin_unlock(&sk->sk_lock.slock);
2384	/*
2385	 * The sk_lock has mutex_lock() semantics here:
2386	 */
2387	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2388	local_bh_enable();
2389}
2390EXPORT_SYMBOL(lock_sock_nested);
2391
2392void release_sock(struct sock *sk)
2393{
2394	/*
2395	 * The sk_lock has mutex_unlock() semantics:
2396	 */
2397	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2398
2399	spin_lock_bh(&sk->sk_lock.slock);
2400	if (sk->sk_backlog.tail)
2401		__release_sock(sk);
2402
2403	/* Warning : release_cb() might need to release sk ownership,
2404	 * ie call sock_release_ownership(sk) before us.
2405	 */
2406	if (sk->sk_prot->release_cb)
2407		sk->sk_prot->release_cb(sk);
2408
2409	sock_release_ownership(sk);
2410	if (waitqueue_active(&sk->sk_lock.wq))
2411		wake_up(&sk->sk_lock.wq);
2412	spin_unlock_bh(&sk->sk_lock.slock);
2413}
2414EXPORT_SYMBOL(release_sock);
2415
2416/**
2417 * lock_sock_fast - fast version of lock_sock
2418 * @sk: socket
2419 *
2420 * This version should be used for very small section, where process wont block
2421 * return false if fast path is taken
2422 *   sk_lock.slock locked, owned = 0, BH disabled
2423 * return true if slow path is taken
2424 *   sk_lock.slock unlocked, owned = 1, BH enabled
2425 */
2426bool lock_sock_fast(struct sock *sk)
2427{
2428	might_sleep();
2429	spin_lock_bh(&sk->sk_lock.slock);
2430
2431	if (!sk->sk_lock.owned)
2432		/*
2433		 * Note : We must disable BH
2434		 */
2435		return false;
2436
2437	__lock_sock(sk);
2438	sk->sk_lock.owned = 1;
2439	spin_unlock(&sk->sk_lock.slock);
2440	/*
2441	 * The sk_lock has mutex_lock() semantics here:
2442	 */
2443	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2444	local_bh_enable();
2445	return true;
2446}
2447EXPORT_SYMBOL(lock_sock_fast);
2448
2449int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2450{
2451	struct timeval tv;
2452	if (!sock_flag(sk, SOCK_TIMESTAMP))
2453		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2454	tv = ktime_to_timeval(sk->sk_stamp);
2455	if (tv.tv_sec == -1)
2456		return -ENOENT;
2457	if (tv.tv_sec == 0) {
2458		sk->sk_stamp = ktime_get_real();
2459		tv = ktime_to_timeval(sk->sk_stamp);
2460	}
2461	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2462}
2463EXPORT_SYMBOL(sock_get_timestamp);
2464
2465int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2466{
2467	struct timespec ts;
2468	if (!sock_flag(sk, SOCK_TIMESTAMP))
2469		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2470	ts = ktime_to_timespec(sk->sk_stamp);
2471	if (ts.tv_sec == -1)
2472		return -ENOENT;
2473	if (ts.tv_sec == 0) {
2474		sk->sk_stamp = ktime_get_real();
2475		ts = ktime_to_timespec(sk->sk_stamp);
2476	}
2477	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2478}
2479EXPORT_SYMBOL(sock_get_timestampns);
2480
2481void sock_enable_timestamp(struct sock *sk, int flag)
2482{
2483	if (!sock_flag(sk, flag)) {
2484		unsigned long previous_flags = sk->sk_flags;
2485
2486		sock_set_flag(sk, flag);
2487		/*
2488		 * we just set one of the two flags which require net
2489		 * time stamping, but time stamping might have been on
2490		 * already because of the other one
2491		 */
2492		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2493			net_enable_timestamp();
2494	}
2495}
2496
2497int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2498		       int level, int type)
2499{
2500	struct sock_exterr_skb *serr;
2501	struct sk_buff *skb, *skb2;
2502	int copied, err;
2503
2504	err = -EAGAIN;
2505	skb = skb_dequeue(&sk->sk_error_queue);
2506	if (skb == NULL)
2507		goto out;
2508
2509	copied = skb->len;
2510	if (copied > len) {
2511		msg->msg_flags |= MSG_TRUNC;
2512		copied = len;
2513	}
2514	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2515	if (err)
2516		goto out_free_skb;
2517
2518	sock_recv_timestamp(msg, sk, skb);
2519
2520	serr = SKB_EXT_ERR(skb);
2521	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2522
2523	msg->msg_flags |= MSG_ERRQUEUE;
2524	err = copied;
2525
2526	/* Reset and regenerate socket error */
2527	spin_lock_bh(&sk->sk_error_queue.lock);
2528	sk->sk_err = 0;
2529	if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2530		sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2531		spin_unlock_bh(&sk->sk_error_queue.lock);
2532		sk->sk_error_report(sk);
2533	} else
2534		spin_unlock_bh(&sk->sk_error_queue.lock);
2535
2536out_free_skb:
2537	kfree_skb(skb);
2538out:
2539	return err;
2540}
2541EXPORT_SYMBOL(sock_recv_errqueue);
2542
2543/*
2544 *	Get a socket option on an socket.
2545 *
2546 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2547 *	asynchronous errors should be reported by getsockopt. We assume
2548 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2549 */
2550int sock_common_getsockopt(struct socket *sock, int level, int optname,
2551			   char __user *optval, int __user *optlen)
2552{
2553	struct sock *sk = sock->sk;
2554
2555	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2556}
2557EXPORT_SYMBOL(sock_common_getsockopt);
2558
2559#ifdef CONFIG_COMPAT
2560int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2561				  char __user *optval, int __user *optlen)
2562{
2563	struct sock *sk = sock->sk;
2564
2565	if (sk->sk_prot->compat_getsockopt != NULL)
2566		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2567						      optval, optlen);
2568	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2569}
2570EXPORT_SYMBOL(compat_sock_common_getsockopt);
2571#endif
2572
2573int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2574			struct msghdr *msg, size_t size, int flags)
2575{
2576	struct sock *sk = sock->sk;
2577	int addr_len = 0;
2578	int err;
2579
2580	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2581				   flags & ~MSG_DONTWAIT, &addr_len);
2582	if (err >= 0)
2583		msg->msg_namelen = addr_len;
2584	return err;
2585}
2586EXPORT_SYMBOL(sock_common_recvmsg);
2587
2588/*
2589 *	Set socket options on an inet socket.
2590 */
2591int sock_common_setsockopt(struct socket *sock, int level, int optname,
2592			   char __user *optval, unsigned int optlen)
2593{
2594	struct sock *sk = sock->sk;
2595
2596	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2597}
2598EXPORT_SYMBOL(sock_common_setsockopt);
2599
2600#ifdef CONFIG_COMPAT
2601int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2602				  char __user *optval, unsigned int optlen)
2603{
2604	struct sock *sk = sock->sk;
2605
2606	if (sk->sk_prot->compat_setsockopt != NULL)
2607		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2608						      optval, optlen);
2609	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2610}
2611EXPORT_SYMBOL(compat_sock_common_setsockopt);
2612#endif
2613
2614void sk_common_release(struct sock *sk)
2615{
2616	if (sk->sk_prot->destroy)
2617		sk->sk_prot->destroy(sk);
2618
2619	/*
2620	 * Observation: when sock_common_release is called, processes have
2621	 * no access to socket. But net still has.
2622	 * Step one, detach it from networking:
2623	 *
2624	 * A. Remove from hash tables.
2625	 */
2626
2627	sk->sk_prot->unhash(sk);
2628
2629	/*
2630	 * In this point socket cannot receive new packets, but it is possible
2631	 * that some packets are in flight because some CPU runs receiver and
2632	 * did hash table lookup before we unhashed socket. They will achieve
2633	 * receive queue and will be purged by socket destructor.
2634	 *
2635	 * Also we still have packets pending on receive queue and probably,
2636	 * our own packets waiting in device queues. sock_destroy will drain
2637	 * receive queue, but transmitted packets will delay socket destruction
2638	 * until the last reference will be released.
2639	 */
2640
2641	sock_orphan(sk);
2642
2643	xfrm_sk_free_policy(sk);
2644
2645	sk_refcnt_debug_release(sk);
2646
2647	if (sk->sk_frag.page) {
2648		put_page(sk->sk_frag.page);
2649		sk->sk_frag.page = NULL;
2650	}
2651
2652	sock_put(sk);
2653}
2654EXPORT_SYMBOL(sk_common_release);
2655
2656#ifdef CONFIG_PROC_FS
2657#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2658struct prot_inuse {
2659	int val[PROTO_INUSE_NR];
2660};
2661
2662static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2663
2664#ifdef CONFIG_NET_NS
2665void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2666{
2667	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2668}
2669EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2670
2671int sock_prot_inuse_get(struct net *net, struct proto *prot)
2672{
2673	int cpu, idx = prot->inuse_idx;
2674	int res = 0;
2675
2676	for_each_possible_cpu(cpu)
2677		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2678
2679	return res >= 0 ? res : 0;
2680}
2681EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2682
2683static int __net_init sock_inuse_init_net(struct net *net)
2684{
2685	net->core.inuse = alloc_percpu(struct prot_inuse);
2686	return net->core.inuse ? 0 : -ENOMEM;
2687}
2688
2689static void __net_exit sock_inuse_exit_net(struct net *net)
2690{
2691	free_percpu(net->core.inuse);
2692}
2693
2694static struct pernet_operations net_inuse_ops = {
2695	.init = sock_inuse_init_net,
2696	.exit = sock_inuse_exit_net,
2697};
2698
2699static __init int net_inuse_init(void)
2700{
2701	if (register_pernet_subsys(&net_inuse_ops))
2702		panic("Cannot initialize net inuse counters");
2703
2704	return 0;
2705}
2706
2707core_initcall(net_inuse_init);
2708#else
2709static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2710
2711void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2712{
2713	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2714}
2715EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2716
2717int sock_prot_inuse_get(struct net *net, struct proto *prot)
2718{
2719	int cpu, idx = prot->inuse_idx;
2720	int res = 0;
2721
2722	for_each_possible_cpu(cpu)
2723		res += per_cpu(prot_inuse, cpu).val[idx];
2724
2725	return res >= 0 ? res : 0;
2726}
2727EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2728#endif
2729
2730static void assign_proto_idx(struct proto *prot)
2731{
2732	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2733
2734	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2735		pr_err("PROTO_INUSE_NR exhausted\n");
2736		return;
2737	}
2738
2739	set_bit(prot->inuse_idx, proto_inuse_idx);
2740}
2741
2742static void release_proto_idx(struct proto *prot)
2743{
2744	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2745		clear_bit(prot->inuse_idx, proto_inuse_idx);
2746}
2747#else
2748static inline void assign_proto_idx(struct proto *prot)
2749{
2750}
2751
2752static inline void release_proto_idx(struct proto *prot)
2753{
2754}
2755#endif
2756
2757int proto_register(struct proto *prot, int alloc_slab)
2758{
2759	if (alloc_slab) {
2760		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2761					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2762					NULL);
2763
2764		if (prot->slab == NULL) {
2765			pr_crit("%s: Can't create sock SLAB cache!\n",
2766				prot->name);
2767			goto out;
2768		}
2769
2770		if (prot->rsk_prot != NULL) {
2771			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2772			if (prot->rsk_prot->slab_name == NULL)
2773				goto out_free_sock_slab;
2774
2775			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2776								 prot->rsk_prot->obj_size, 0,
2777								 SLAB_HWCACHE_ALIGN, NULL);
2778
2779			if (prot->rsk_prot->slab == NULL) {
2780				pr_crit("%s: Can't create request sock SLAB cache!\n",
2781					prot->name);
2782				goto out_free_request_sock_slab_name;
2783			}
2784		}
2785
2786		if (prot->twsk_prot != NULL) {
2787			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2788
2789			if (prot->twsk_prot->twsk_slab_name == NULL)
2790				goto out_free_request_sock_slab;
2791
2792			prot->twsk_prot->twsk_slab =
2793				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2794						  prot->twsk_prot->twsk_obj_size,
2795						  0,
2796						  SLAB_HWCACHE_ALIGN |
2797							prot->slab_flags,
2798						  NULL);
2799			if (prot->twsk_prot->twsk_slab == NULL)
2800				goto out_free_timewait_sock_slab_name;
2801		}
2802	}
2803
2804	mutex_lock(&proto_list_mutex);
2805	list_add(&prot->node, &proto_list);
2806	assign_proto_idx(prot);
2807	mutex_unlock(&proto_list_mutex);
2808	return 0;
2809
2810out_free_timewait_sock_slab_name:
2811	kfree(prot->twsk_prot->twsk_slab_name);
2812out_free_request_sock_slab:
2813	if (prot->rsk_prot && prot->rsk_prot->slab) {
2814		kmem_cache_destroy(prot->rsk_prot->slab);
2815		prot->rsk_prot->slab = NULL;
2816	}
2817out_free_request_sock_slab_name:
2818	if (prot->rsk_prot)
2819		kfree(prot->rsk_prot->slab_name);
2820out_free_sock_slab:
2821	kmem_cache_destroy(prot->slab);
2822	prot->slab = NULL;
2823out:
2824	return -ENOBUFS;
2825}
2826EXPORT_SYMBOL(proto_register);
2827
2828void proto_unregister(struct proto *prot)
2829{
2830	mutex_lock(&proto_list_mutex);
2831	release_proto_idx(prot);
2832	list_del(&prot->node);
2833	mutex_unlock(&proto_list_mutex);
2834
2835	if (prot->slab != NULL) {
2836		kmem_cache_destroy(prot->slab);
2837		prot->slab = NULL;
2838	}
2839
2840	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2841		kmem_cache_destroy(prot->rsk_prot->slab);
2842		kfree(prot->rsk_prot->slab_name);
2843		prot->rsk_prot->slab = NULL;
2844	}
2845
2846	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2847		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2848		kfree(prot->twsk_prot->twsk_slab_name);
2849		prot->twsk_prot->twsk_slab = NULL;
2850	}
2851}
2852EXPORT_SYMBOL(proto_unregister);
2853
2854#ifdef CONFIG_PROC_FS
2855static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2856	__acquires(proto_list_mutex)
2857{
2858	mutex_lock(&proto_list_mutex);
2859	return seq_list_start_head(&proto_list, *pos);
2860}
2861
2862static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2863{
2864	return seq_list_next(v, &proto_list, pos);
2865}
2866
2867static void proto_seq_stop(struct seq_file *seq, void *v)
2868	__releases(proto_list_mutex)
2869{
2870	mutex_unlock(&proto_list_mutex);
2871}
2872
2873static char proto_method_implemented(const void *method)
2874{
2875	return method == NULL ? 'n' : 'y';
2876}
2877static long sock_prot_memory_allocated(struct proto *proto)
2878{
2879	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2880}
2881
2882static char *sock_prot_memory_pressure(struct proto *proto)
2883{
2884	return proto->memory_pressure != NULL ?
2885	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2886}
2887
2888static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2889{
2890
2891	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2892			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2893		   proto->name,
2894		   proto->obj_size,
2895		   sock_prot_inuse_get(seq_file_net(seq), proto),
2896		   sock_prot_memory_allocated(proto),
2897		   sock_prot_memory_pressure(proto),
2898		   proto->max_header,
2899		   proto->slab == NULL ? "no" : "yes",
2900		   module_name(proto->owner),
2901		   proto_method_implemented(proto->close),
2902		   proto_method_implemented(proto->connect),
2903		   proto_method_implemented(proto->disconnect),
2904		   proto_method_implemented(proto->accept),
2905		   proto_method_implemented(proto->ioctl),
2906		   proto_method_implemented(proto->init),
2907		   proto_method_implemented(proto->destroy),
2908		   proto_method_implemented(proto->shutdown),
2909		   proto_method_implemented(proto->setsockopt),
2910		   proto_method_implemented(proto->getsockopt),
2911		   proto_method_implemented(proto->sendmsg),
2912		   proto_method_implemented(proto->recvmsg),
2913		   proto_method_implemented(proto->sendpage),
2914		   proto_method_implemented(proto->bind),
2915		   proto_method_implemented(proto->backlog_rcv),
2916		   proto_method_implemented(proto->hash),
2917		   proto_method_implemented(proto->unhash),
2918		   proto_method_implemented(proto->get_port),
2919		   proto_method_implemented(proto->enter_memory_pressure));
2920}
2921
2922static int proto_seq_show(struct seq_file *seq, void *v)
2923{
2924	if (v == &proto_list)
2925		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2926			   "protocol",
2927			   "size",
2928			   "sockets",
2929			   "memory",
2930			   "press",
2931			   "maxhdr",
2932			   "slab",
2933			   "module",
2934			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2935	else
2936		proto_seq_printf(seq, list_entry(v, struct proto, node));
2937	return 0;
2938}
2939
2940static const struct seq_operations proto_seq_ops = {
2941	.start  = proto_seq_start,
2942	.next   = proto_seq_next,
2943	.stop   = proto_seq_stop,
2944	.show   = proto_seq_show,
2945};
2946
2947static int proto_seq_open(struct inode *inode, struct file *file)
2948{
2949	return seq_open_net(inode, file, &proto_seq_ops,
2950			    sizeof(struct seq_net_private));
2951}
2952
2953static const struct file_operations proto_seq_fops = {
2954	.owner		= THIS_MODULE,
2955	.open		= proto_seq_open,
2956	.read		= seq_read,
2957	.llseek		= seq_lseek,
2958	.release	= seq_release_net,
2959};
2960
2961static __net_init int proto_init_net(struct net *net)
2962{
2963	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2964		return -ENOMEM;
2965
2966	return 0;
2967}
2968
2969static __net_exit void proto_exit_net(struct net *net)
2970{
2971	remove_proc_entry("protocols", net->proc_net);
2972}
2973
2974
2975static __net_initdata struct pernet_operations proto_net_ops = {
2976	.init = proto_init_net,
2977	.exit = proto_exit_net,
2978};
2979
2980static int __init proto_init(void)
2981{
2982	return register_pernet_subsys(&proto_net_ops);
2983}
2984
2985subsys_initcall(proto_init);
2986
2987#endif /* PROC_FS */
2988