sock.c revision df0bca049d01c0ee94afb7cd5dfd959541e6c8da
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 *		Alan Cox	: 	Numerous verify_area() problems
17 *		Alan Cox	:	Connecting on a connecting socket
18 *					now returns an error for tcp.
19 *		Alan Cox	:	sock->protocol is set correctly.
20 *					and is not sometimes left as 0.
21 *		Alan Cox	:	connect handles icmp errors on a
22 *					connect properly. Unfortunately there
23 *					is a restart syscall nasty there. I
24 *					can't match BSD without hacking the C
25 *					library. Ideas urgently sought!
26 *		Alan Cox	:	Disallow bind() to addresses that are
27 *					not ours - especially broadcast ones!!
28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30 *					instead they leave that for the DESTROY timer.
31 *		Alan Cox	:	Clean up error flag in accept
32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33 *					was buggy. Put a remove_sock() in the handler
34 *					for memory when we hit 0. Also altered the timer
35 *					code. The ACK stuff can wait and needs major
36 *					TCP layer surgery.
37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38 *					and fixed timer/inet_bh race.
39 *		Alan Cox	:	Added zapped flag for TCP
40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47 *	Pauline Middelink	:	identd support
48 *		Alan Cox	:	Fixed connect() taking signals I think.
49 *		Alan Cox	:	SO_LINGER supported
50 *		Alan Cox	:	Error reporting fixes
51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52 *		Alan Cox	:	inet sockets don't set sk->type!
53 *		Alan Cox	:	Split socket option code
54 *		Alan Cox	:	Callbacks
55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56 *		Alex		:	Removed restriction on inet fioctl
57 *		Alan Cox	:	Splitting INET from NET core
58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60 *		Alan Cox	:	Split IP from generic code
61 *		Alan Cox	:	New kfree_skbmem()
62 *		Alan Cox	:	Make SO_DEBUG superuser only.
63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64 *					(compatibility fix)
65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66 *		Alan Cox	:	Allocator for a socket is settable.
67 *		Alan Cox	:	SO_ERROR includes soft errors.
68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69 *		Alan Cox	: 	Generic socket allocation to make hooks
70 *					easier (suggested by Craig Metz).
71 *		Michael Pall	:	SO_ERROR returns positive errno again
72 *              Steve Whitehouse:       Added default destructor to free
73 *                                      protocol private data.
74 *              Steve Whitehouse:       Added various other default routines
75 *                                      common to several socket families.
76 *              Chris Evans     :       Call suser() check last on F_SETOWN
77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79 *		Andi Kleen	:	Fix write_space callback
80 *		Chris Evans	:	Security fixes - signedness again
81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 *		This program is free software; you can redistribute it and/or
87 *		modify it under the terms of the GNU General Public License
88 *		as published by the Free Software Foundation; either version
89 *		2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113
114#include <asm/uaccess.h>
115#include <asm/system.h>
116
117#include <linux/netdevice.h>
118#include <net/protocol.h>
119#include <linux/skbuff.h>
120#include <net/net_namespace.h>
121#include <net/request_sock.h>
122#include <net/sock.h>
123#include <net/xfrm.h>
124#include <linux/ipsec.h>
125
126#include <linux/filter.h>
127
128#ifdef CONFIG_INET
129#include <net/tcp.h>
130#endif
131
132/*
133 * Each address family might have different locking rules, so we have
134 * one slock key per address family:
135 */
136static struct lock_class_key af_family_keys[AF_MAX];
137static struct lock_class_key af_family_slock_keys[AF_MAX];
138
139/*
140 * Make lock validator output more readable. (we pre-construct these
141 * strings build-time, so that runtime initialization of socket
142 * locks is fast):
143 */
144static const char *af_family_key_strings[AF_MAX+1] = {
145  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
146  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
147  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
148  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
149  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
150  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
151  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
152  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
153  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
154  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
155  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
156  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
157  "sk_lock-AF_MAX"
158};
159static const char *af_family_slock_key_strings[AF_MAX+1] = {
160  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
161  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
162  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
163  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
164  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
165  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
166  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
167  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
168  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
169  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
170  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
171  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
172  "slock-AF_MAX"
173};
174static const char *af_family_clock_key_strings[AF_MAX+1] = {
175  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
176  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
177  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
178  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
179  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
180  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
181  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
182  "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
183  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
184  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
185  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
186  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
187  "clock-AF_MAX"
188};
189
190/*
191 * sk_callback_lock locking rules are per-address-family,
192 * so split the lock classes by using a per-AF key:
193 */
194static struct lock_class_key af_callback_keys[AF_MAX];
195
196/* Take into consideration the size of the struct sk_buff overhead in the
197 * determination of these values, since that is non-constant across
198 * platforms.  This makes socket queueing behavior and performance
199 * not depend upon such differences.
200 */
201#define _SK_MEM_PACKETS		256
202#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
203#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
204#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205
206/* Run time adjustable parameters. */
207__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
208__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
209__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
210__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
211
212/* Maximal space eaten by iovec or ancilliary data plus some space */
213int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
214
215static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
216{
217	struct timeval tv;
218
219	if (optlen < sizeof(tv))
220		return -EINVAL;
221	if (copy_from_user(&tv, optval, sizeof(tv)))
222		return -EFAULT;
223	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
224		return -EDOM;
225
226	if (tv.tv_sec < 0) {
227		static int warned __read_mostly;
228
229		*timeo_p = 0;
230		if (warned < 10 && net_ratelimit()) {
231			warned++;
232			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
233			       "tries to set negative timeout\n",
234				current->comm, task_pid_nr(current));
235		}
236		return 0;
237	}
238	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240		return 0;
241	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243	return 0;
244}
245
246static void sock_warn_obsolete_bsdism(const char *name)
247{
248	static int warned;
249	static char warncomm[TASK_COMM_LEN];
250	if (strcmp(warncomm, current->comm) && warned < 5) {
251		strcpy(warncomm,  current->comm);
252		printk(KERN_WARNING "process `%s' is using obsolete "
253		       "%s SO_BSDCOMPAT\n", warncomm, name);
254		warned++;
255	}
256}
257
258static void sock_disable_timestamp(struct sock *sk)
259{
260	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261		sock_reset_flag(sk, SOCK_TIMESTAMP);
262		net_disable_timestamp();
263	}
264}
265
266
267int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268{
269	int err = 0;
270	int skb_len;
271
272	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
273	   number of warnings when compiling with -W --ANK
274	 */
275	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276	    (unsigned)sk->sk_rcvbuf) {
277		err = -ENOMEM;
278		goto out;
279	}
280
281	err = sk_filter(sk, skb);
282	if (err)
283		goto out;
284
285	if (!sk_rmem_schedule(sk, skb->truesize)) {
286		err = -ENOBUFS;
287		goto out;
288	}
289
290	skb->dev = NULL;
291	skb_set_owner_r(skb, sk);
292
293	/* Cache the SKB length before we tack it onto the receive
294	 * queue.  Once it is added it no longer belongs to us and
295	 * may be freed by other threads of control pulling packets
296	 * from the queue.
297	 */
298	skb_len = skb->len;
299
300	skb_queue_tail(&sk->sk_receive_queue, skb);
301
302	if (!sock_flag(sk, SOCK_DEAD))
303		sk->sk_data_ready(sk, skb_len);
304out:
305	return err;
306}
307EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310{
311	int rc = NET_RX_SUCCESS;
312
313	if (sk_filter(sk, skb))
314		goto discard_and_relse;
315
316	skb->dev = NULL;
317
318	if (nested)
319		bh_lock_sock_nested(sk);
320	else
321		bh_lock_sock(sk);
322	if (!sock_owned_by_user(sk)) {
323		/*
324		 * trylock + unlock semantics:
325		 */
326		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328		rc = sk_backlog_rcv(sk, skb);
329
330		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331	} else
332		sk_add_backlog(sk, skb);
333	bh_unlock_sock(sk);
334out:
335	sock_put(sk);
336	return rc;
337discard_and_relse:
338	kfree_skb(skb);
339	goto out;
340}
341EXPORT_SYMBOL(sk_receive_skb);
342
343struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344{
345	struct dst_entry *dst = sk->sk_dst_cache;
346
347	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348		sk->sk_dst_cache = NULL;
349		dst_release(dst);
350		return NULL;
351	}
352
353	return dst;
354}
355EXPORT_SYMBOL(__sk_dst_check);
356
357struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358{
359	struct dst_entry *dst = sk_dst_get(sk);
360
361	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362		sk_dst_reset(sk);
363		dst_release(dst);
364		return NULL;
365	}
366
367	return dst;
368}
369EXPORT_SYMBOL(sk_dst_check);
370
371static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372{
373	int ret = -ENOPROTOOPT;
374#ifdef CONFIG_NETDEVICES
375	struct net *net = sock_net(sk);
376	char devname[IFNAMSIZ];
377	int index;
378
379	/* Sorry... */
380	ret = -EPERM;
381	if (!capable(CAP_NET_RAW))
382		goto out;
383
384	ret = -EINVAL;
385	if (optlen < 0)
386		goto out;
387
388	/* Bind this socket to a particular device like "eth0",
389	 * as specified in the passed interface name. If the
390	 * name is "" or the option length is zero the socket
391	 * is not bound.
392	 */
393	if (optlen > IFNAMSIZ - 1)
394		optlen = IFNAMSIZ - 1;
395	memset(devname, 0, sizeof(devname));
396
397	ret = -EFAULT;
398	if (copy_from_user(devname, optval, optlen))
399		goto out;
400
401	if (devname[0] == '\0') {
402		index = 0;
403	} else {
404		struct net_device *dev = dev_get_by_name(net, devname);
405
406		ret = -ENODEV;
407		if (!dev)
408			goto out;
409
410		index = dev->ifindex;
411		dev_put(dev);
412	}
413
414	lock_sock(sk);
415	sk->sk_bound_dev_if = index;
416	sk_dst_reset(sk);
417	release_sock(sk);
418
419	ret = 0;
420
421out:
422#endif
423
424	return ret;
425}
426
427static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428{
429	if (valbool)
430		sock_set_flag(sk, bit);
431	else
432		sock_reset_flag(sk, bit);
433}
434
435/*
436 *	This is meant for all protocols to use and covers goings on
437 *	at the socket level. Everything here is generic.
438 */
439
440int sock_setsockopt(struct socket *sock, int level, int optname,
441		    char __user *optval, int optlen)
442{
443	struct sock *sk=sock->sk;
444	int val;
445	int valbool;
446	struct linger ling;
447	int ret = 0;
448
449	/*
450	 *	Options without arguments
451	 */
452
453	if (optname == SO_BINDTODEVICE)
454		return sock_bindtodevice(sk, optval, optlen);
455
456	if (optlen < sizeof(int))
457		return -EINVAL;
458
459	if (get_user(val, (int __user *)optval))
460		return -EFAULT;
461
462	valbool = val?1:0;
463
464	lock_sock(sk);
465
466	switch(optname) {
467	case SO_DEBUG:
468		if (val && !capable(CAP_NET_ADMIN)) {
469			ret = -EACCES;
470		} else
471			sock_valbool_flag(sk, SOCK_DBG, valbool);
472		break;
473	case SO_REUSEADDR:
474		sk->sk_reuse = valbool;
475		break;
476	case SO_TYPE:
477	case SO_ERROR:
478		ret = -ENOPROTOOPT;
479		break;
480	case SO_DONTROUTE:
481		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
482		break;
483	case SO_BROADCAST:
484		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
485		break;
486	case SO_SNDBUF:
487		/* Don't error on this BSD doesn't and if you think
488		   about it this is right. Otherwise apps have to
489		   play 'guess the biggest size' games. RCVBUF/SNDBUF
490		   are treated in BSD as hints */
491
492		if (val > sysctl_wmem_max)
493			val = sysctl_wmem_max;
494set_sndbuf:
495		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
496		if ((val * 2) < SOCK_MIN_SNDBUF)
497			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
498		else
499			sk->sk_sndbuf = val * 2;
500
501		/*
502		 *	Wake up sending tasks if we
503		 *	upped the value.
504		 */
505		sk->sk_write_space(sk);
506		break;
507
508	case SO_SNDBUFFORCE:
509		if (!capable(CAP_NET_ADMIN)) {
510			ret = -EPERM;
511			break;
512		}
513		goto set_sndbuf;
514
515	case SO_RCVBUF:
516		/* Don't error on this BSD doesn't and if you think
517		   about it this is right. Otherwise apps have to
518		   play 'guess the biggest size' games. RCVBUF/SNDBUF
519		   are treated in BSD as hints */
520
521		if (val > sysctl_rmem_max)
522			val = sysctl_rmem_max;
523set_rcvbuf:
524		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
525		/*
526		 * We double it on the way in to account for
527		 * "struct sk_buff" etc. overhead.   Applications
528		 * assume that the SO_RCVBUF setting they make will
529		 * allow that much actual data to be received on that
530		 * socket.
531		 *
532		 * Applications are unaware that "struct sk_buff" and
533		 * other overheads allocate from the receive buffer
534		 * during socket buffer allocation.
535		 *
536		 * And after considering the possible alternatives,
537		 * returning the value we actually used in getsockopt
538		 * is the most desirable behavior.
539		 */
540		if ((val * 2) < SOCK_MIN_RCVBUF)
541			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
542		else
543			sk->sk_rcvbuf = val * 2;
544		break;
545
546	case SO_RCVBUFFORCE:
547		if (!capable(CAP_NET_ADMIN)) {
548			ret = -EPERM;
549			break;
550		}
551		goto set_rcvbuf;
552
553	case SO_KEEPALIVE:
554#ifdef CONFIG_INET
555		if (sk->sk_protocol == IPPROTO_TCP)
556			tcp_set_keepalive(sk, valbool);
557#endif
558		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
559		break;
560
561	case SO_OOBINLINE:
562		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
563		break;
564
565	case SO_NO_CHECK:
566		sk->sk_no_check = valbool;
567		break;
568
569	case SO_PRIORITY:
570		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
571			sk->sk_priority = val;
572		else
573			ret = -EPERM;
574		break;
575
576	case SO_LINGER:
577		if (optlen < sizeof(ling)) {
578			ret = -EINVAL;	/* 1003.1g */
579			break;
580		}
581		if (copy_from_user(&ling,optval,sizeof(ling))) {
582			ret = -EFAULT;
583			break;
584		}
585		if (!ling.l_onoff)
586			sock_reset_flag(sk, SOCK_LINGER);
587		else {
588#if (BITS_PER_LONG == 32)
589			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
590				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
591			else
592#endif
593				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
594			sock_set_flag(sk, SOCK_LINGER);
595		}
596		break;
597
598	case SO_BSDCOMPAT:
599		sock_warn_obsolete_bsdism("setsockopt");
600		break;
601
602	case SO_PASSCRED:
603		if (valbool)
604			set_bit(SOCK_PASSCRED, &sock->flags);
605		else
606			clear_bit(SOCK_PASSCRED, &sock->flags);
607		break;
608
609	case SO_TIMESTAMP:
610	case SO_TIMESTAMPNS:
611		if (valbool)  {
612			if (optname == SO_TIMESTAMP)
613				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
614			else
615				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
616			sock_set_flag(sk, SOCK_RCVTSTAMP);
617			sock_enable_timestamp(sk);
618		} else {
619			sock_reset_flag(sk, SOCK_RCVTSTAMP);
620			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
621		}
622		break;
623
624	case SO_RCVLOWAT:
625		if (val < 0)
626			val = INT_MAX;
627		sk->sk_rcvlowat = val ? : 1;
628		break;
629
630	case SO_RCVTIMEO:
631		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
632		break;
633
634	case SO_SNDTIMEO:
635		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
636		break;
637
638	case SO_ATTACH_FILTER:
639		ret = -EINVAL;
640		if (optlen == sizeof(struct sock_fprog)) {
641			struct sock_fprog fprog;
642
643			ret = -EFAULT;
644			if (copy_from_user(&fprog, optval, sizeof(fprog)))
645				break;
646
647			ret = sk_attach_filter(&fprog, sk);
648		}
649		break;
650
651	case SO_DETACH_FILTER:
652		ret = sk_detach_filter(sk);
653		break;
654
655	case SO_PASSSEC:
656		if (valbool)
657			set_bit(SOCK_PASSSEC, &sock->flags);
658		else
659			clear_bit(SOCK_PASSSEC, &sock->flags);
660		break;
661	case SO_MARK:
662		if (!capable(CAP_NET_ADMIN))
663			ret = -EPERM;
664		else {
665			sk->sk_mark = val;
666		}
667		break;
668
669		/* We implement the SO_SNDLOWAT etc to
670		   not be settable (1003.1g 5.3) */
671	default:
672		ret = -ENOPROTOOPT;
673		break;
674	}
675	release_sock(sk);
676	return ret;
677}
678
679
680int sock_getsockopt(struct socket *sock, int level, int optname,
681		    char __user *optval, int __user *optlen)
682{
683	struct sock *sk = sock->sk;
684
685	union {
686		int val;
687		struct linger ling;
688		struct timeval tm;
689	} v;
690
691	unsigned int lv = sizeof(int);
692	int len;
693
694	if (get_user(len, optlen))
695		return -EFAULT;
696	if (len < 0)
697		return -EINVAL;
698
699	v.val = 0;
700
701	switch(optname) {
702	case SO_DEBUG:
703		v.val = sock_flag(sk, SOCK_DBG);
704		break;
705
706	case SO_DONTROUTE:
707		v.val = sock_flag(sk, SOCK_LOCALROUTE);
708		break;
709
710	case SO_BROADCAST:
711		v.val = !!sock_flag(sk, SOCK_BROADCAST);
712		break;
713
714	case SO_SNDBUF:
715		v.val = sk->sk_sndbuf;
716		break;
717
718	case SO_RCVBUF:
719		v.val = sk->sk_rcvbuf;
720		break;
721
722	case SO_REUSEADDR:
723		v.val = sk->sk_reuse;
724		break;
725
726	case SO_KEEPALIVE:
727		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
728		break;
729
730	case SO_TYPE:
731		v.val = sk->sk_type;
732		break;
733
734	case SO_ERROR:
735		v.val = -sock_error(sk);
736		if (v.val==0)
737			v.val = xchg(&sk->sk_err_soft, 0);
738		break;
739
740	case SO_OOBINLINE:
741		v.val = !!sock_flag(sk, SOCK_URGINLINE);
742		break;
743
744	case SO_NO_CHECK:
745		v.val = sk->sk_no_check;
746		break;
747
748	case SO_PRIORITY:
749		v.val = sk->sk_priority;
750		break;
751
752	case SO_LINGER:
753		lv		= sizeof(v.ling);
754		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
755		v.ling.l_linger	= sk->sk_lingertime / HZ;
756		break;
757
758	case SO_BSDCOMPAT:
759		sock_warn_obsolete_bsdism("getsockopt");
760		break;
761
762	case SO_TIMESTAMP:
763		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
764				!sock_flag(sk, SOCK_RCVTSTAMPNS);
765		break;
766
767	case SO_TIMESTAMPNS:
768		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
769		break;
770
771	case SO_RCVTIMEO:
772		lv=sizeof(struct timeval);
773		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
774			v.tm.tv_sec = 0;
775			v.tm.tv_usec = 0;
776		} else {
777			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
778			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
779		}
780		break;
781
782	case SO_SNDTIMEO:
783		lv=sizeof(struct timeval);
784		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
785			v.tm.tv_sec = 0;
786			v.tm.tv_usec = 0;
787		} else {
788			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
789			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
790		}
791		break;
792
793	case SO_RCVLOWAT:
794		v.val = sk->sk_rcvlowat;
795		break;
796
797	case SO_SNDLOWAT:
798		v.val=1;
799		break;
800
801	case SO_PASSCRED:
802		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
803		break;
804
805	case SO_PEERCRED:
806		if (len > sizeof(sk->sk_peercred))
807			len = sizeof(sk->sk_peercred);
808		if (copy_to_user(optval, &sk->sk_peercred, len))
809			return -EFAULT;
810		goto lenout;
811
812	case SO_PEERNAME:
813	{
814		char address[128];
815
816		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
817			return -ENOTCONN;
818		if (lv < len)
819			return -EINVAL;
820		if (copy_to_user(optval, address, len))
821			return -EFAULT;
822		goto lenout;
823	}
824
825	/* Dubious BSD thing... Probably nobody even uses it, but
826	 * the UNIX standard wants it for whatever reason... -DaveM
827	 */
828	case SO_ACCEPTCONN:
829		v.val = sk->sk_state == TCP_LISTEN;
830		break;
831
832	case SO_PASSSEC:
833		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
834		break;
835
836	case SO_PEERSEC:
837		return security_socket_getpeersec_stream(sock, optval, optlen, len);
838
839	case SO_MARK:
840		v.val = sk->sk_mark;
841		break;
842
843	default:
844		return -ENOPROTOOPT;
845	}
846
847	if (len > lv)
848		len = lv;
849	if (copy_to_user(optval, &v, len))
850		return -EFAULT;
851lenout:
852	if (put_user(len, optlen))
853		return -EFAULT;
854	return 0;
855}
856
857/*
858 * Initialize an sk_lock.
859 *
860 * (We also register the sk_lock with the lock validator.)
861 */
862static inline void sock_lock_init(struct sock *sk)
863{
864	sock_lock_init_class_and_name(sk,
865			af_family_slock_key_strings[sk->sk_family],
866			af_family_slock_keys + sk->sk_family,
867			af_family_key_strings[sk->sk_family],
868			af_family_keys + sk->sk_family);
869}
870
871static void sock_copy(struct sock *nsk, const struct sock *osk)
872{
873#ifdef CONFIG_SECURITY_NETWORK
874	void *sptr = nsk->sk_security;
875#endif
876
877	memcpy(nsk, osk, osk->sk_prot->obj_size);
878#ifdef CONFIG_SECURITY_NETWORK
879	nsk->sk_security = sptr;
880	security_sk_clone(osk, nsk);
881#endif
882}
883
884static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
885		int family)
886{
887	struct sock *sk;
888	struct kmem_cache *slab;
889
890	slab = prot->slab;
891	if (slab != NULL)
892		sk = kmem_cache_alloc(slab, priority);
893	else
894		sk = kmalloc(prot->obj_size, priority);
895
896	if (sk != NULL) {
897		if (security_sk_alloc(sk, family, priority))
898			goto out_free;
899
900		if (!try_module_get(prot->owner))
901			goto out_free_sec;
902	}
903
904	return sk;
905
906out_free_sec:
907	security_sk_free(sk);
908out_free:
909	if (slab != NULL)
910		kmem_cache_free(slab, sk);
911	else
912		kfree(sk);
913	return NULL;
914}
915
916static void sk_prot_free(struct proto *prot, struct sock *sk)
917{
918	struct kmem_cache *slab;
919	struct module *owner;
920
921	owner = prot->owner;
922	slab = prot->slab;
923
924	security_sk_free(sk);
925	if (slab != NULL)
926		kmem_cache_free(slab, sk);
927	else
928		kfree(sk);
929	module_put(owner);
930}
931
932/**
933 *	sk_alloc - All socket objects are allocated here
934 *	@net: the applicable net namespace
935 *	@family: protocol family
936 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
937 *	@prot: struct proto associated with this new sock instance
938 */
939struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
940		      struct proto *prot)
941{
942	struct sock *sk;
943
944	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
945	if (sk) {
946		sk->sk_family = family;
947		/*
948		 * See comment in struct sock definition to understand
949		 * why we need sk_prot_creator -acme
950		 */
951		sk->sk_prot = sk->sk_prot_creator = prot;
952		sock_lock_init(sk);
953		sock_net_set(sk, get_net(net));
954	}
955
956	return sk;
957}
958
959void sk_free(struct sock *sk)
960{
961	struct sk_filter *filter;
962
963	if (sk->sk_destruct)
964		sk->sk_destruct(sk);
965
966	filter = rcu_dereference(sk->sk_filter);
967	if (filter) {
968		sk_filter_uncharge(sk, filter);
969		rcu_assign_pointer(sk->sk_filter, NULL);
970	}
971
972	sock_disable_timestamp(sk);
973
974	if (atomic_read(&sk->sk_omem_alloc))
975		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
976		       __func__, atomic_read(&sk->sk_omem_alloc));
977
978	put_net(sock_net(sk));
979	sk_prot_free(sk->sk_prot_creator, sk);
980}
981
982/*
983 * Last sock_put should drop referrence to sk->sk_net. It has already
984 * been dropped in sk_change_net. Taking referrence to stopping namespace
985 * is not an option.
986 * Take referrence to a socket to remove it from hash _alive_ and after that
987 * destroy it in the context of init_net.
988 */
989void sk_release_kernel(struct sock *sk)
990{
991	if (sk == NULL || sk->sk_socket == NULL)
992		return;
993
994	sock_hold(sk);
995	sock_release(sk->sk_socket);
996	release_net(sock_net(sk));
997	sock_net_set(sk, get_net(&init_net));
998	sock_put(sk);
999}
1000EXPORT_SYMBOL(sk_release_kernel);
1001
1002struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1003{
1004	struct sock *newsk;
1005
1006	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1007	if (newsk != NULL) {
1008		struct sk_filter *filter;
1009
1010		sock_copy(newsk, sk);
1011
1012		/* SANITY */
1013		get_net(sock_net(newsk));
1014		sk_node_init(&newsk->sk_node);
1015		sock_lock_init(newsk);
1016		bh_lock_sock(newsk);
1017		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1018
1019		atomic_set(&newsk->sk_rmem_alloc, 0);
1020		atomic_set(&newsk->sk_wmem_alloc, 0);
1021		atomic_set(&newsk->sk_omem_alloc, 0);
1022		skb_queue_head_init(&newsk->sk_receive_queue);
1023		skb_queue_head_init(&newsk->sk_write_queue);
1024#ifdef CONFIG_NET_DMA
1025		skb_queue_head_init(&newsk->sk_async_wait_queue);
1026#endif
1027
1028		rwlock_init(&newsk->sk_dst_lock);
1029		rwlock_init(&newsk->sk_callback_lock);
1030		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1031				af_callback_keys + newsk->sk_family,
1032				af_family_clock_key_strings[newsk->sk_family]);
1033
1034		newsk->sk_dst_cache	= NULL;
1035		newsk->sk_wmem_queued	= 0;
1036		newsk->sk_forward_alloc = 0;
1037		newsk->sk_send_head	= NULL;
1038		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1039
1040		sock_reset_flag(newsk, SOCK_DONE);
1041		skb_queue_head_init(&newsk->sk_error_queue);
1042
1043		filter = newsk->sk_filter;
1044		if (filter != NULL)
1045			sk_filter_charge(newsk, filter);
1046
1047		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1048			/* It is still raw copy of parent, so invalidate
1049			 * destructor and make plain sk_free() */
1050			newsk->sk_destruct = NULL;
1051			sk_free(newsk);
1052			newsk = NULL;
1053			goto out;
1054		}
1055
1056		newsk->sk_err	   = 0;
1057		newsk->sk_priority = 0;
1058		atomic_set(&newsk->sk_refcnt, 2);
1059
1060		/*
1061		 * Increment the counter in the same struct proto as the master
1062		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1063		 * is the same as sk->sk_prot->socks, as this field was copied
1064		 * with memcpy).
1065		 *
1066		 * This _changes_ the previous behaviour, where
1067		 * tcp_create_openreq_child always was incrementing the
1068		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1069		 * to be taken into account in all callers. -acme
1070		 */
1071		sk_refcnt_debug_inc(newsk);
1072		sk_set_socket(newsk, NULL);
1073		newsk->sk_sleep	 = NULL;
1074
1075		if (newsk->sk_prot->sockets_allocated)
1076			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1077	}
1078out:
1079	return newsk;
1080}
1081
1082EXPORT_SYMBOL_GPL(sk_clone);
1083
1084void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1085{
1086	__sk_dst_set(sk, dst);
1087	sk->sk_route_caps = dst->dev->features;
1088	if (sk->sk_route_caps & NETIF_F_GSO)
1089		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1090	if (sk_can_gso(sk)) {
1091		if (dst->header_len) {
1092			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1093		} else {
1094			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1095			sk->sk_gso_max_size = dst->dev->gso_max_size;
1096		}
1097	}
1098}
1099EXPORT_SYMBOL_GPL(sk_setup_caps);
1100
1101void __init sk_init(void)
1102{
1103	if (num_physpages <= 4096) {
1104		sysctl_wmem_max = 32767;
1105		sysctl_rmem_max = 32767;
1106		sysctl_wmem_default = 32767;
1107		sysctl_rmem_default = 32767;
1108	} else if (num_physpages >= 131072) {
1109		sysctl_wmem_max = 131071;
1110		sysctl_rmem_max = 131071;
1111	}
1112}
1113
1114/*
1115 *	Simple resource managers for sockets.
1116 */
1117
1118
1119/*
1120 * Write buffer destructor automatically called from kfree_skb.
1121 */
1122void sock_wfree(struct sk_buff *skb)
1123{
1124	struct sock *sk = skb->sk;
1125
1126	/* In case it might be waiting for more memory. */
1127	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1128	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1129		sk->sk_write_space(sk);
1130	sock_put(sk);
1131}
1132
1133/*
1134 * Read buffer destructor automatically called from kfree_skb.
1135 */
1136void sock_rfree(struct sk_buff *skb)
1137{
1138	struct sock *sk = skb->sk;
1139
1140	skb_truesize_check(skb);
1141	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1142	sk_mem_uncharge(skb->sk, skb->truesize);
1143}
1144
1145
1146int sock_i_uid(struct sock *sk)
1147{
1148	int uid;
1149
1150	read_lock(&sk->sk_callback_lock);
1151	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1152	read_unlock(&sk->sk_callback_lock);
1153	return uid;
1154}
1155
1156unsigned long sock_i_ino(struct sock *sk)
1157{
1158	unsigned long ino;
1159
1160	read_lock(&sk->sk_callback_lock);
1161	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1162	read_unlock(&sk->sk_callback_lock);
1163	return ino;
1164}
1165
1166/*
1167 * Allocate a skb from the socket's send buffer.
1168 */
1169struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1170			     gfp_t priority)
1171{
1172	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1173		struct sk_buff * skb = alloc_skb(size, priority);
1174		if (skb) {
1175			skb_set_owner_w(skb, sk);
1176			return skb;
1177		}
1178	}
1179	return NULL;
1180}
1181
1182/*
1183 * Allocate a skb from the socket's receive buffer.
1184 */
1185struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1186			     gfp_t priority)
1187{
1188	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1189		struct sk_buff *skb = alloc_skb(size, priority);
1190		if (skb) {
1191			skb_set_owner_r(skb, sk);
1192			return skb;
1193		}
1194	}
1195	return NULL;
1196}
1197
1198/*
1199 * Allocate a memory block from the socket's option memory buffer.
1200 */
1201void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1202{
1203	if ((unsigned)size <= sysctl_optmem_max &&
1204	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1205		void *mem;
1206		/* First do the add, to avoid the race if kmalloc
1207		 * might sleep.
1208		 */
1209		atomic_add(size, &sk->sk_omem_alloc);
1210		mem = kmalloc(size, priority);
1211		if (mem)
1212			return mem;
1213		atomic_sub(size, &sk->sk_omem_alloc);
1214	}
1215	return NULL;
1216}
1217
1218/*
1219 * Free an option memory block.
1220 */
1221void sock_kfree_s(struct sock *sk, void *mem, int size)
1222{
1223	kfree(mem);
1224	atomic_sub(size, &sk->sk_omem_alloc);
1225}
1226
1227/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1228   I think, these locks should be removed for datagram sockets.
1229 */
1230static long sock_wait_for_wmem(struct sock * sk, long timeo)
1231{
1232	DEFINE_WAIT(wait);
1233
1234	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1235	for (;;) {
1236		if (!timeo)
1237			break;
1238		if (signal_pending(current))
1239			break;
1240		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1241		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1242		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1243			break;
1244		if (sk->sk_shutdown & SEND_SHUTDOWN)
1245			break;
1246		if (sk->sk_err)
1247			break;
1248		timeo = schedule_timeout(timeo);
1249	}
1250	finish_wait(sk->sk_sleep, &wait);
1251	return timeo;
1252}
1253
1254
1255/*
1256 *	Generic send/receive buffer handlers
1257 */
1258
1259static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1260					    unsigned long header_len,
1261					    unsigned long data_len,
1262					    int noblock, int *errcode)
1263{
1264	struct sk_buff *skb;
1265	gfp_t gfp_mask;
1266	long timeo;
1267	int err;
1268
1269	gfp_mask = sk->sk_allocation;
1270	if (gfp_mask & __GFP_WAIT)
1271		gfp_mask |= __GFP_REPEAT;
1272
1273	timeo = sock_sndtimeo(sk, noblock);
1274	while (1) {
1275		err = sock_error(sk);
1276		if (err != 0)
1277			goto failure;
1278
1279		err = -EPIPE;
1280		if (sk->sk_shutdown & SEND_SHUTDOWN)
1281			goto failure;
1282
1283		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1284			skb = alloc_skb(header_len, gfp_mask);
1285			if (skb) {
1286				int npages;
1287				int i;
1288
1289				/* No pages, we're done... */
1290				if (!data_len)
1291					break;
1292
1293				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1294				skb->truesize += data_len;
1295				skb_shinfo(skb)->nr_frags = npages;
1296				for (i = 0; i < npages; i++) {
1297					struct page *page;
1298					skb_frag_t *frag;
1299
1300					page = alloc_pages(sk->sk_allocation, 0);
1301					if (!page) {
1302						err = -ENOBUFS;
1303						skb_shinfo(skb)->nr_frags = i;
1304						kfree_skb(skb);
1305						goto failure;
1306					}
1307
1308					frag = &skb_shinfo(skb)->frags[i];
1309					frag->page = page;
1310					frag->page_offset = 0;
1311					frag->size = (data_len >= PAGE_SIZE ?
1312						      PAGE_SIZE :
1313						      data_len);
1314					data_len -= PAGE_SIZE;
1315				}
1316
1317				/* Full success... */
1318				break;
1319			}
1320			err = -ENOBUFS;
1321			goto failure;
1322		}
1323		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1324		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1325		err = -EAGAIN;
1326		if (!timeo)
1327			goto failure;
1328		if (signal_pending(current))
1329			goto interrupted;
1330		timeo = sock_wait_for_wmem(sk, timeo);
1331	}
1332
1333	skb_set_owner_w(skb, sk);
1334	return skb;
1335
1336interrupted:
1337	err = sock_intr_errno(timeo);
1338failure:
1339	*errcode = err;
1340	return NULL;
1341}
1342
1343struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1344				    int noblock, int *errcode)
1345{
1346	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1347}
1348
1349static void __lock_sock(struct sock *sk)
1350{
1351	DEFINE_WAIT(wait);
1352
1353	for (;;) {
1354		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1355					TASK_UNINTERRUPTIBLE);
1356		spin_unlock_bh(&sk->sk_lock.slock);
1357		schedule();
1358		spin_lock_bh(&sk->sk_lock.slock);
1359		if (!sock_owned_by_user(sk))
1360			break;
1361	}
1362	finish_wait(&sk->sk_lock.wq, &wait);
1363}
1364
1365static void __release_sock(struct sock *sk)
1366{
1367	struct sk_buff *skb = sk->sk_backlog.head;
1368
1369	do {
1370		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1371		bh_unlock_sock(sk);
1372
1373		do {
1374			struct sk_buff *next = skb->next;
1375
1376			skb->next = NULL;
1377			sk_backlog_rcv(sk, skb);
1378
1379			/*
1380			 * We are in process context here with softirqs
1381			 * disabled, use cond_resched_softirq() to preempt.
1382			 * This is safe to do because we've taken the backlog
1383			 * queue private:
1384			 */
1385			cond_resched_softirq();
1386
1387			skb = next;
1388		} while (skb != NULL);
1389
1390		bh_lock_sock(sk);
1391	} while ((skb = sk->sk_backlog.head) != NULL);
1392}
1393
1394/**
1395 * sk_wait_data - wait for data to arrive at sk_receive_queue
1396 * @sk:    sock to wait on
1397 * @timeo: for how long
1398 *
1399 * Now socket state including sk->sk_err is changed only under lock,
1400 * hence we may omit checks after joining wait queue.
1401 * We check receive queue before schedule() only as optimization;
1402 * it is very likely that release_sock() added new data.
1403 */
1404int sk_wait_data(struct sock *sk, long *timeo)
1405{
1406	int rc;
1407	DEFINE_WAIT(wait);
1408
1409	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1410	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1411	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1412	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1413	finish_wait(sk->sk_sleep, &wait);
1414	return rc;
1415}
1416
1417EXPORT_SYMBOL(sk_wait_data);
1418
1419/**
1420 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1421 *	@sk: socket
1422 *	@size: memory size to allocate
1423 *	@kind: allocation type
1424 *
1425 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1426 *	rmem allocation. This function assumes that protocols which have
1427 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1428 */
1429int __sk_mem_schedule(struct sock *sk, int size, int kind)
1430{
1431	struct proto *prot = sk->sk_prot;
1432	int amt = sk_mem_pages(size);
1433	int allocated;
1434
1435	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1436	allocated = atomic_add_return(amt, prot->memory_allocated);
1437
1438	/* Under limit. */
1439	if (allocated <= prot->sysctl_mem[0]) {
1440		if (prot->memory_pressure && *prot->memory_pressure)
1441			*prot->memory_pressure = 0;
1442		return 1;
1443	}
1444
1445	/* Under pressure. */
1446	if (allocated > prot->sysctl_mem[1])
1447		if (prot->enter_memory_pressure)
1448			prot->enter_memory_pressure(sk);
1449
1450	/* Over hard limit. */
1451	if (allocated > prot->sysctl_mem[2])
1452		goto suppress_allocation;
1453
1454	/* guarantee minimum buffer size under pressure */
1455	if (kind == SK_MEM_RECV) {
1456		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1457			return 1;
1458	} else { /* SK_MEM_SEND */
1459		if (sk->sk_type == SOCK_STREAM) {
1460			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1461				return 1;
1462		} else if (atomic_read(&sk->sk_wmem_alloc) <
1463			   prot->sysctl_wmem[0])
1464				return 1;
1465	}
1466
1467	if (prot->memory_pressure) {
1468		int alloc;
1469
1470		if (!*prot->memory_pressure)
1471			return 1;
1472		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1473		if (prot->sysctl_mem[2] > alloc *
1474		    sk_mem_pages(sk->sk_wmem_queued +
1475				 atomic_read(&sk->sk_rmem_alloc) +
1476				 sk->sk_forward_alloc))
1477			return 1;
1478	}
1479
1480suppress_allocation:
1481
1482	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1483		sk_stream_moderate_sndbuf(sk);
1484
1485		/* Fail only if socket is _under_ its sndbuf.
1486		 * In this case we cannot block, so that we have to fail.
1487		 */
1488		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1489			return 1;
1490	}
1491
1492	/* Alas. Undo changes. */
1493	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1494	atomic_sub(amt, prot->memory_allocated);
1495	return 0;
1496}
1497
1498EXPORT_SYMBOL(__sk_mem_schedule);
1499
1500/**
1501 *	__sk_reclaim - reclaim memory_allocated
1502 *	@sk: socket
1503 */
1504void __sk_mem_reclaim(struct sock *sk)
1505{
1506	struct proto *prot = sk->sk_prot;
1507
1508	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1509		   prot->memory_allocated);
1510	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1511
1512	if (prot->memory_pressure && *prot->memory_pressure &&
1513	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1514		*prot->memory_pressure = 0;
1515}
1516
1517EXPORT_SYMBOL(__sk_mem_reclaim);
1518
1519
1520/*
1521 * Set of default routines for initialising struct proto_ops when
1522 * the protocol does not support a particular function. In certain
1523 * cases where it makes no sense for a protocol to have a "do nothing"
1524 * function, some default processing is provided.
1525 */
1526
1527int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1528{
1529	return -EOPNOTSUPP;
1530}
1531
1532int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1533		    int len, int flags)
1534{
1535	return -EOPNOTSUPP;
1536}
1537
1538int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1539{
1540	return -EOPNOTSUPP;
1541}
1542
1543int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1544{
1545	return -EOPNOTSUPP;
1546}
1547
1548int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1549		    int *len, int peer)
1550{
1551	return -EOPNOTSUPP;
1552}
1553
1554unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1555{
1556	return 0;
1557}
1558
1559int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1560{
1561	return -EOPNOTSUPP;
1562}
1563
1564int sock_no_listen(struct socket *sock, int backlog)
1565{
1566	return -EOPNOTSUPP;
1567}
1568
1569int sock_no_shutdown(struct socket *sock, int how)
1570{
1571	return -EOPNOTSUPP;
1572}
1573
1574int sock_no_setsockopt(struct socket *sock, int level, int optname,
1575		    char __user *optval, int optlen)
1576{
1577	return -EOPNOTSUPP;
1578}
1579
1580int sock_no_getsockopt(struct socket *sock, int level, int optname,
1581		    char __user *optval, int __user *optlen)
1582{
1583	return -EOPNOTSUPP;
1584}
1585
1586int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1587		    size_t len)
1588{
1589	return -EOPNOTSUPP;
1590}
1591
1592int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1593		    size_t len, int flags)
1594{
1595	return -EOPNOTSUPP;
1596}
1597
1598int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1599{
1600	/* Mirror missing mmap method error code */
1601	return -ENODEV;
1602}
1603
1604ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1605{
1606	ssize_t res;
1607	struct msghdr msg = {.msg_flags = flags};
1608	struct kvec iov;
1609	char *kaddr = kmap(page);
1610	iov.iov_base = kaddr + offset;
1611	iov.iov_len = size;
1612	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1613	kunmap(page);
1614	return res;
1615}
1616
1617/*
1618 *	Default Socket Callbacks
1619 */
1620
1621static void sock_def_wakeup(struct sock *sk)
1622{
1623	read_lock(&sk->sk_callback_lock);
1624	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1625		wake_up_interruptible_all(sk->sk_sleep);
1626	read_unlock(&sk->sk_callback_lock);
1627}
1628
1629static void sock_def_error_report(struct sock *sk)
1630{
1631	read_lock(&sk->sk_callback_lock);
1632	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1633		wake_up_interruptible(sk->sk_sleep);
1634	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1635	read_unlock(&sk->sk_callback_lock);
1636}
1637
1638static void sock_def_readable(struct sock *sk, int len)
1639{
1640	read_lock(&sk->sk_callback_lock);
1641	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1642		wake_up_interruptible_sync(sk->sk_sleep);
1643	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1644	read_unlock(&sk->sk_callback_lock);
1645}
1646
1647static void sock_def_write_space(struct sock *sk)
1648{
1649	read_lock(&sk->sk_callback_lock);
1650
1651	/* Do not wake up a writer until he can make "significant"
1652	 * progress.  --DaveM
1653	 */
1654	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1655		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1656			wake_up_interruptible_sync(sk->sk_sleep);
1657
1658		/* Should agree with poll, otherwise some programs break */
1659		if (sock_writeable(sk))
1660			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1661	}
1662
1663	read_unlock(&sk->sk_callback_lock);
1664}
1665
1666static void sock_def_destruct(struct sock *sk)
1667{
1668	kfree(sk->sk_protinfo);
1669}
1670
1671void sk_send_sigurg(struct sock *sk)
1672{
1673	if (sk->sk_socket && sk->sk_socket->file)
1674		if (send_sigurg(&sk->sk_socket->file->f_owner))
1675			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1676}
1677
1678void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1679		    unsigned long expires)
1680{
1681	if (!mod_timer(timer, expires))
1682		sock_hold(sk);
1683}
1684
1685EXPORT_SYMBOL(sk_reset_timer);
1686
1687void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1688{
1689	if (timer_pending(timer) && del_timer(timer))
1690		__sock_put(sk);
1691}
1692
1693EXPORT_SYMBOL(sk_stop_timer);
1694
1695void sock_init_data(struct socket *sock, struct sock *sk)
1696{
1697	skb_queue_head_init(&sk->sk_receive_queue);
1698	skb_queue_head_init(&sk->sk_write_queue);
1699	skb_queue_head_init(&sk->sk_error_queue);
1700#ifdef CONFIG_NET_DMA
1701	skb_queue_head_init(&sk->sk_async_wait_queue);
1702#endif
1703
1704	sk->sk_send_head	=	NULL;
1705
1706	init_timer(&sk->sk_timer);
1707
1708	sk->sk_allocation	=	GFP_KERNEL;
1709	sk->sk_rcvbuf		=	sysctl_rmem_default;
1710	sk->sk_sndbuf		=	sysctl_wmem_default;
1711	sk->sk_state		=	TCP_CLOSE;
1712	sk_set_socket(sk, sock);
1713
1714	sock_set_flag(sk, SOCK_ZAPPED);
1715
1716	if (sock) {
1717		sk->sk_type	=	sock->type;
1718		sk->sk_sleep	=	&sock->wait;
1719		sock->sk	=	sk;
1720	} else
1721		sk->sk_sleep	=	NULL;
1722
1723	rwlock_init(&sk->sk_dst_lock);
1724	rwlock_init(&sk->sk_callback_lock);
1725	lockdep_set_class_and_name(&sk->sk_callback_lock,
1726			af_callback_keys + sk->sk_family,
1727			af_family_clock_key_strings[sk->sk_family]);
1728
1729	sk->sk_state_change	=	sock_def_wakeup;
1730	sk->sk_data_ready	=	sock_def_readable;
1731	sk->sk_write_space	=	sock_def_write_space;
1732	sk->sk_error_report	=	sock_def_error_report;
1733	sk->sk_destruct		=	sock_def_destruct;
1734
1735	sk->sk_sndmsg_page	=	NULL;
1736	sk->sk_sndmsg_off	=	0;
1737
1738	sk->sk_peercred.pid 	=	0;
1739	sk->sk_peercred.uid	=	-1;
1740	sk->sk_peercred.gid	=	-1;
1741	sk->sk_write_pending	=	0;
1742	sk->sk_rcvlowat		=	1;
1743	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1744	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1745
1746	sk->sk_stamp = ktime_set(-1L, 0);
1747
1748	atomic_set(&sk->sk_refcnt, 1);
1749	atomic_set(&sk->sk_drops, 0);
1750}
1751
1752void lock_sock_nested(struct sock *sk, int subclass)
1753{
1754	might_sleep();
1755	spin_lock_bh(&sk->sk_lock.slock);
1756	if (sk->sk_lock.owned)
1757		__lock_sock(sk);
1758	sk->sk_lock.owned = 1;
1759	spin_unlock(&sk->sk_lock.slock);
1760	/*
1761	 * The sk_lock has mutex_lock() semantics here:
1762	 */
1763	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1764	local_bh_enable();
1765}
1766
1767EXPORT_SYMBOL(lock_sock_nested);
1768
1769void release_sock(struct sock *sk)
1770{
1771	/*
1772	 * The sk_lock has mutex_unlock() semantics:
1773	 */
1774	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1775
1776	spin_lock_bh(&sk->sk_lock.slock);
1777	if (sk->sk_backlog.tail)
1778		__release_sock(sk);
1779	sk->sk_lock.owned = 0;
1780	if (waitqueue_active(&sk->sk_lock.wq))
1781		wake_up(&sk->sk_lock.wq);
1782	spin_unlock_bh(&sk->sk_lock.slock);
1783}
1784EXPORT_SYMBOL(release_sock);
1785
1786int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1787{
1788	struct timeval tv;
1789	if (!sock_flag(sk, SOCK_TIMESTAMP))
1790		sock_enable_timestamp(sk);
1791	tv = ktime_to_timeval(sk->sk_stamp);
1792	if (tv.tv_sec == -1)
1793		return -ENOENT;
1794	if (tv.tv_sec == 0) {
1795		sk->sk_stamp = ktime_get_real();
1796		tv = ktime_to_timeval(sk->sk_stamp);
1797	}
1798	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1799}
1800EXPORT_SYMBOL(sock_get_timestamp);
1801
1802int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1803{
1804	struct timespec ts;
1805	if (!sock_flag(sk, SOCK_TIMESTAMP))
1806		sock_enable_timestamp(sk);
1807	ts = ktime_to_timespec(sk->sk_stamp);
1808	if (ts.tv_sec == -1)
1809		return -ENOENT;
1810	if (ts.tv_sec == 0) {
1811		sk->sk_stamp = ktime_get_real();
1812		ts = ktime_to_timespec(sk->sk_stamp);
1813	}
1814	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1815}
1816EXPORT_SYMBOL(sock_get_timestampns);
1817
1818void sock_enable_timestamp(struct sock *sk)
1819{
1820	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1821		sock_set_flag(sk, SOCK_TIMESTAMP);
1822		net_enable_timestamp();
1823	}
1824}
1825
1826/*
1827 *	Get a socket option on an socket.
1828 *
1829 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1830 *	asynchronous errors should be reported by getsockopt. We assume
1831 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1832 */
1833int sock_common_getsockopt(struct socket *sock, int level, int optname,
1834			   char __user *optval, int __user *optlen)
1835{
1836	struct sock *sk = sock->sk;
1837
1838	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1839}
1840
1841EXPORT_SYMBOL(sock_common_getsockopt);
1842
1843#ifdef CONFIG_COMPAT
1844int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1845				  char __user *optval, int __user *optlen)
1846{
1847	struct sock *sk = sock->sk;
1848
1849	if (sk->sk_prot->compat_getsockopt != NULL)
1850		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1851						      optval, optlen);
1852	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1853}
1854EXPORT_SYMBOL(compat_sock_common_getsockopt);
1855#endif
1856
1857int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1858			struct msghdr *msg, size_t size, int flags)
1859{
1860	struct sock *sk = sock->sk;
1861	int addr_len = 0;
1862	int err;
1863
1864	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1865				   flags & ~MSG_DONTWAIT, &addr_len);
1866	if (err >= 0)
1867		msg->msg_namelen = addr_len;
1868	return err;
1869}
1870
1871EXPORT_SYMBOL(sock_common_recvmsg);
1872
1873/*
1874 *	Set socket options on an inet socket.
1875 */
1876int sock_common_setsockopt(struct socket *sock, int level, int optname,
1877			   char __user *optval, int optlen)
1878{
1879	struct sock *sk = sock->sk;
1880
1881	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1882}
1883
1884EXPORT_SYMBOL(sock_common_setsockopt);
1885
1886#ifdef CONFIG_COMPAT
1887int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1888				  char __user *optval, int optlen)
1889{
1890	struct sock *sk = sock->sk;
1891
1892	if (sk->sk_prot->compat_setsockopt != NULL)
1893		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1894						      optval, optlen);
1895	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1896}
1897EXPORT_SYMBOL(compat_sock_common_setsockopt);
1898#endif
1899
1900void sk_common_release(struct sock *sk)
1901{
1902	if (sk->sk_prot->destroy)
1903		sk->sk_prot->destroy(sk);
1904
1905	/*
1906	 * Observation: when sock_common_release is called, processes have
1907	 * no access to socket. But net still has.
1908	 * Step one, detach it from networking:
1909	 *
1910	 * A. Remove from hash tables.
1911	 */
1912
1913	sk->sk_prot->unhash(sk);
1914
1915	/*
1916	 * In this point socket cannot receive new packets, but it is possible
1917	 * that some packets are in flight because some CPU runs receiver and
1918	 * did hash table lookup before we unhashed socket. They will achieve
1919	 * receive queue and will be purged by socket destructor.
1920	 *
1921	 * Also we still have packets pending on receive queue and probably,
1922	 * our own packets waiting in device queues. sock_destroy will drain
1923	 * receive queue, but transmitted packets will delay socket destruction
1924	 * until the last reference will be released.
1925	 */
1926
1927	sock_orphan(sk);
1928
1929	xfrm_sk_free_policy(sk);
1930
1931	sk_refcnt_debug_release(sk);
1932	sock_put(sk);
1933}
1934
1935EXPORT_SYMBOL(sk_common_release);
1936
1937static DEFINE_RWLOCK(proto_list_lock);
1938static LIST_HEAD(proto_list);
1939
1940#ifdef CONFIG_PROC_FS
1941#define PROTO_INUSE_NR	64	/* should be enough for the first time */
1942struct prot_inuse {
1943	int val[PROTO_INUSE_NR];
1944};
1945
1946static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
1947
1948#ifdef CONFIG_NET_NS
1949void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1950{
1951	int cpu = smp_processor_id();
1952	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
1953}
1954EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1955
1956int sock_prot_inuse_get(struct net *net, struct proto *prot)
1957{
1958	int cpu, idx = prot->inuse_idx;
1959	int res = 0;
1960
1961	for_each_possible_cpu(cpu)
1962		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
1963
1964	return res >= 0 ? res : 0;
1965}
1966EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
1967
1968static int sock_inuse_init_net(struct net *net)
1969{
1970	net->core.inuse = alloc_percpu(struct prot_inuse);
1971	return net->core.inuse ? 0 : -ENOMEM;
1972}
1973
1974static void sock_inuse_exit_net(struct net *net)
1975{
1976	free_percpu(net->core.inuse);
1977}
1978
1979static struct pernet_operations net_inuse_ops = {
1980	.init = sock_inuse_init_net,
1981	.exit = sock_inuse_exit_net,
1982};
1983
1984static __init int net_inuse_init(void)
1985{
1986	if (register_pernet_subsys(&net_inuse_ops))
1987		panic("Cannot initialize net inuse counters");
1988
1989	return 0;
1990}
1991
1992core_initcall(net_inuse_init);
1993#else
1994static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
1995
1996void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1997{
1998	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
1999}
2000EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2001
2002int sock_prot_inuse_get(struct net *net, struct proto *prot)
2003{
2004	int cpu, idx = prot->inuse_idx;
2005	int res = 0;
2006
2007	for_each_possible_cpu(cpu)
2008		res += per_cpu(prot_inuse, cpu).val[idx];
2009
2010	return res >= 0 ? res : 0;
2011}
2012EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2013#endif
2014
2015static void assign_proto_idx(struct proto *prot)
2016{
2017	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2018
2019	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2020		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2021		return;
2022	}
2023
2024	set_bit(prot->inuse_idx, proto_inuse_idx);
2025}
2026
2027static void release_proto_idx(struct proto *prot)
2028{
2029	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2030		clear_bit(prot->inuse_idx, proto_inuse_idx);
2031}
2032#else
2033static inline void assign_proto_idx(struct proto *prot)
2034{
2035}
2036
2037static inline void release_proto_idx(struct proto *prot)
2038{
2039}
2040#endif
2041
2042int proto_register(struct proto *prot, int alloc_slab)
2043{
2044	if (alloc_slab) {
2045		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2046					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2047					NULL);
2048
2049		if (prot->slab == NULL) {
2050			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2051			       prot->name);
2052			goto out;
2053		}
2054
2055		if (prot->rsk_prot != NULL) {
2056			static const char mask[] = "request_sock_%s";
2057
2058			prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2059			if (prot->rsk_prot->slab_name == NULL)
2060				goto out_free_sock_slab;
2061
2062			sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2063			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2064								 prot->rsk_prot->obj_size, 0,
2065								 SLAB_HWCACHE_ALIGN, NULL);
2066
2067			if (prot->rsk_prot->slab == NULL) {
2068				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2069				       prot->name);
2070				goto out_free_request_sock_slab_name;
2071			}
2072		}
2073
2074		if (prot->twsk_prot != NULL) {
2075			static const char mask[] = "tw_sock_%s";
2076
2077			prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2078
2079			if (prot->twsk_prot->twsk_slab_name == NULL)
2080				goto out_free_request_sock_slab;
2081
2082			sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2083			prot->twsk_prot->twsk_slab =
2084				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2085						  prot->twsk_prot->twsk_obj_size,
2086						  0,
2087						  SLAB_HWCACHE_ALIGN |
2088							prot->slab_flags,
2089						  NULL);
2090			if (prot->twsk_prot->twsk_slab == NULL)
2091				goto out_free_timewait_sock_slab_name;
2092		}
2093	}
2094
2095	write_lock(&proto_list_lock);
2096	list_add(&prot->node, &proto_list);
2097	assign_proto_idx(prot);
2098	write_unlock(&proto_list_lock);
2099	return 0;
2100
2101out_free_timewait_sock_slab_name:
2102	kfree(prot->twsk_prot->twsk_slab_name);
2103out_free_request_sock_slab:
2104	if (prot->rsk_prot && prot->rsk_prot->slab) {
2105		kmem_cache_destroy(prot->rsk_prot->slab);
2106		prot->rsk_prot->slab = NULL;
2107	}
2108out_free_request_sock_slab_name:
2109	kfree(prot->rsk_prot->slab_name);
2110out_free_sock_slab:
2111	kmem_cache_destroy(prot->slab);
2112	prot->slab = NULL;
2113out:
2114	return -ENOBUFS;
2115}
2116
2117EXPORT_SYMBOL(proto_register);
2118
2119void proto_unregister(struct proto *prot)
2120{
2121	write_lock(&proto_list_lock);
2122	release_proto_idx(prot);
2123	list_del(&prot->node);
2124	write_unlock(&proto_list_lock);
2125
2126	if (prot->slab != NULL) {
2127		kmem_cache_destroy(prot->slab);
2128		prot->slab = NULL;
2129	}
2130
2131	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2132		kmem_cache_destroy(prot->rsk_prot->slab);
2133		kfree(prot->rsk_prot->slab_name);
2134		prot->rsk_prot->slab = NULL;
2135	}
2136
2137	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2138		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2139		kfree(prot->twsk_prot->twsk_slab_name);
2140		prot->twsk_prot->twsk_slab = NULL;
2141	}
2142}
2143
2144EXPORT_SYMBOL(proto_unregister);
2145
2146#ifdef CONFIG_PROC_FS
2147static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2148	__acquires(proto_list_lock)
2149{
2150	read_lock(&proto_list_lock);
2151	return seq_list_start_head(&proto_list, *pos);
2152}
2153
2154static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2155{
2156	return seq_list_next(v, &proto_list, pos);
2157}
2158
2159static void proto_seq_stop(struct seq_file *seq, void *v)
2160	__releases(proto_list_lock)
2161{
2162	read_unlock(&proto_list_lock);
2163}
2164
2165static char proto_method_implemented(const void *method)
2166{
2167	return method == NULL ? 'n' : 'y';
2168}
2169
2170static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2171{
2172	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2173			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2174		   proto->name,
2175		   proto->obj_size,
2176		   sock_prot_inuse_get(seq_file_net(seq), proto),
2177		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2178		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2179		   proto->max_header,
2180		   proto->slab == NULL ? "no" : "yes",
2181		   module_name(proto->owner),
2182		   proto_method_implemented(proto->close),
2183		   proto_method_implemented(proto->connect),
2184		   proto_method_implemented(proto->disconnect),
2185		   proto_method_implemented(proto->accept),
2186		   proto_method_implemented(proto->ioctl),
2187		   proto_method_implemented(proto->init),
2188		   proto_method_implemented(proto->destroy),
2189		   proto_method_implemented(proto->shutdown),
2190		   proto_method_implemented(proto->setsockopt),
2191		   proto_method_implemented(proto->getsockopt),
2192		   proto_method_implemented(proto->sendmsg),
2193		   proto_method_implemented(proto->recvmsg),
2194		   proto_method_implemented(proto->sendpage),
2195		   proto_method_implemented(proto->bind),
2196		   proto_method_implemented(proto->backlog_rcv),
2197		   proto_method_implemented(proto->hash),
2198		   proto_method_implemented(proto->unhash),
2199		   proto_method_implemented(proto->get_port),
2200		   proto_method_implemented(proto->enter_memory_pressure));
2201}
2202
2203static int proto_seq_show(struct seq_file *seq, void *v)
2204{
2205	if (v == &proto_list)
2206		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2207			   "protocol",
2208			   "size",
2209			   "sockets",
2210			   "memory",
2211			   "press",
2212			   "maxhdr",
2213			   "slab",
2214			   "module",
2215			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2216	else
2217		proto_seq_printf(seq, list_entry(v, struct proto, node));
2218	return 0;
2219}
2220
2221static const struct seq_operations proto_seq_ops = {
2222	.start  = proto_seq_start,
2223	.next   = proto_seq_next,
2224	.stop   = proto_seq_stop,
2225	.show   = proto_seq_show,
2226};
2227
2228static int proto_seq_open(struct inode *inode, struct file *file)
2229{
2230	return seq_open_net(inode, file, &proto_seq_ops,
2231			    sizeof(struct seq_net_private));
2232}
2233
2234static const struct file_operations proto_seq_fops = {
2235	.owner		= THIS_MODULE,
2236	.open		= proto_seq_open,
2237	.read		= seq_read,
2238	.llseek		= seq_lseek,
2239	.release	= seq_release_net,
2240};
2241
2242static __net_init int proto_init_net(struct net *net)
2243{
2244	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2245		return -ENOMEM;
2246
2247	return 0;
2248}
2249
2250static __net_exit void proto_exit_net(struct net *net)
2251{
2252	proc_net_remove(net, "protocols");
2253}
2254
2255
2256static __net_initdata struct pernet_operations proto_net_ops = {
2257	.init = proto_init_net,
2258	.exit = proto_exit_net,
2259};
2260
2261static int __init proto_init(void)
2262{
2263	return register_pernet_subsys(&proto_net_ops);
2264}
2265
2266subsys_initcall(proto_init);
2267
2268#endif /* PROC_FS */
2269
2270EXPORT_SYMBOL(sk_alloc);
2271EXPORT_SYMBOL(sk_free);
2272EXPORT_SYMBOL(sk_send_sigurg);
2273EXPORT_SYMBOL(sock_alloc_send_skb);
2274EXPORT_SYMBOL(sock_init_data);
2275EXPORT_SYMBOL(sock_kfree_s);
2276EXPORT_SYMBOL(sock_kmalloc);
2277EXPORT_SYMBOL(sock_no_accept);
2278EXPORT_SYMBOL(sock_no_bind);
2279EXPORT_SYMBOL(sock_no_connect);
2280EXPORT_SYMBOL(sock_no_getname);
2281EXPORT_SYMBOL(sock_no_getsockopt);
2282EXPORT_SYMBOL(sock_no_ioctl);
2283EXPORT_SYMBOL(sock_no_listen);
2284EXPORT_SYMBOL(sock_no_mmap);
2285EXPORT_SYMBOL(sock_no_poll);
2286EXPORT_SYMBOL(sock_no_recvmsg);
2287EXPORT_SYMBOL(sock_no_sendmsg);
2288EXPORT_SYMBOL(sock_no_sendpage);
2289EXPORT_SYMBOL(sock_no_setsockopt);
2290EXPORT_SYMBOL(sock_no_shutdown);
2291EXPORT_SYMBOL(sock_no_socketpair);
2292EXPORT_SYMBOL(sock_rfree);
2293EXPORT_SYMBOL(sock_setsockopt);
2294EXPORT_SYMBOL(sock_wfree);
2295EXPORT_SYMBOL(sock_wmalloc);
2296EXPORT_SYMBOL(sock_i_uid);
2297EXPORT_SYMBOL(sock_i_ino);
2298EXPORT_SYMBOL(sysctl_optmem_max);
2299